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Uniform Estimate of Potentials by Reflection

Coefficients and its Application to KdV Flow
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Potentials of 1D Schrödinger operators are estimated by the moments of
the reflection coefficients. Since the reflection coefficients are invariant under
the KdV flow, the estimates provide information on some pre-compactness
of solutions to the KdV equation starting from initial data having finite
moments of the reflection coefficients.
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1. Introduction

The Korteweg-de Vries (KdV) equation

∂tq = −∂3
xq + 6q∂xq, q(0, x) = q0(x) ∈ R

was proposed as a model describing the propagation of waves on shallow water.
In the 1960s, it experienced a rapid development due to the discovery of infinitely
many invariants by Gardner, Greene, Kruskal and Miura [9], which showed the
spectrum of the Schrödinger operators with potentials of solutions to the KdV
equation is invariant. Peter Lax [16] revealed this mystery. Since then, the inverse
spectral technique was employed extensively to obtain solutions having periodic
or decaying initial data.

It is known that these invariants cannot be exploited effectively if the ini-
tial data are neither periodic nor decaying. If the spectra of the associated
Schrödinger operators consist of finitely many intervals and reflectionless there,
there is an algebro-geometric approach and it is known that the solutions to the
KdV equation are quasi-periodic in space as well as in time (see the book [10]).
However, for infinite-gap setting the problem has been developed partially. The
almost periodic initial data were investigated by Egorova [5] firstly, but virtually
the class she discussed was a certain class of limit periodic initial data. Recently,
almost-periodic initial data whose associated Schrödinger operators have purely
absolutely continuous spectrum are considered as initial data [1, 3, 7]. Step-like
initial data decaying on the right half axis have been investigated by [22] and [8]
through the Hirota’s Tau-function. More general initial data including ergodic
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initial data were studied recently by expressing Sato’s Tau-functions by Weyl-
functions [14,15].

The purpose of the present article is to extend the result of Lundina [17],
Marchenko [19]. We try to replace their reflectionless condition on [0,∞) by the
finiteness of the moments of the reflection coefficients.

Let us first prepare some basic terminologies such as Herglotz functions, Weyl
functions, reflection coefficients etc., and then state our main theorem. For real
valued measurable function q of L1

loc (R), we consider the associated Schrödinger
operator Lq = −∂2

x + q on L2 (R). We assume the boundaries ±∞ are of limit
point type, which means

dim
{
u ∈ L2 (R±) : −u′′ + qu− zu = 0

}
= 1

for any z ∈ C\R. The Weyl functions m± (z) are defined by

m± (z) = ±u
′(0)

u(0)
with u ∈ L2 (R±) \ {0} satisfying Lqu = zu

for z ∈ C\R. It is known that m± (z) are holomorphic on C\R and satisfy

Imm± (z) > 0 and m± (z) = m± (z) on C+.

A holomorphic function m on C+ having positive imaginary part is called a
Herglotz function, and m has a non-vanishing finite limit

m (λ+ i0) ≡ lim
ε↓0

m (λ+ iε)

for a.e. λ ∈ R. The (right) reflection coefficient R (z) is defined by

R(z) =
m+(z) +m−(z)

m+(z) +m−(z)
,

which trivially satisfies |R(z)| ≤ 1. Reflection coefficients for 1D Schrödinger
operators and Jacobi operators were considered by [11] and developed by [21]
and [20] later as a generalization of conventional reflection coefficients for decay-
ing potentials, namely the modulus |R(λ+ i0)| coincides with that of the conven-
tional reflection coefficient if the potential decays sufficiently fast. This object is
effectively used to measure the degree of absolutely continuous spectrum. Indeed,
we have

Σac ≡ (the a.c. spectrum of Lq) = {λ ∈ R : |R(λ+ i0)| < 1}

up to set of measure zero (see [20]).
We call m±(z) (or q) reflectionless on a Borel set A ⊂ R if

m+(λ+ i0) = −m−(λ− i0) for almost every λ ∈ A. (1.1)

Observe that identity (1.1) is valid if and only if |R(λ+ i0)| = 0. Set

Σrefl =
{
λ ∈ R : m+(λ+ i0, q) = −m−(λ− i0, q)

}
.
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Then, it clearly holds that

Σrefl ⊂ Σac ⊂ spLq.

Denote a solution to the KdV equation with initial data q by qt. It is known that
Lq and Lqt are unitarilly equivalent, hence the a.c. spectrum Σac is invariant
under the KdV equation. Moreover, |R(λ+ i0)| has a remarkable property that
it is invariant under an action of the KdV flow the shift operation and the KdV
equation. Therefore, Σrefl turns to be also invariant under the shift operation and
the KdV equation.

On the other hand, if the potential q is ergodic, namely qω (x) = Q (θxω) on
a probability space

(
Ω,F , µ, {θx}x∈R

)
, then it is known that the corresponding

Schrödinger operator Lqω has a property Σω
refl = Σω

ac (see [13]).

Fix λ0 ∈ R and an integer N ≥ 1. Set

QA =

{
q ∈ L1

loc (R) : inf spLq ≥ λ0,

∫ ∞
0

ecλ|R(λ+ i0)| dλ <∞ for a c > 0

}
,

QN =

{
q ∈ L1

loc (R) : inf spLq ≥ λ0,

∫ ∞
0

λN+1/2|R(λ+ i0)| dλ <∞
}
,

and Q∞ :=
⋂∞
N=1QN . Then obviously, QA ⊂ Q∞ is valid. If the potentials are

ergodic, then q ∈ QA is equivalent to∫
[0,∞)\Σac

ecλ dλ <∞

due to Σac = Σrefl. And for the same reason, q ∈ QN is equivalent to∫
[0,∞)\Σac

λN+1/2 dλ <∞.

Let c, d > 0 be constants determined by

c2(c+ 1) = 6, d =
√
c+ 1. (1.2)

Then we have

c > 1, cd2 ≥ 2. (1.3)

Theorem 1.1. Assume q ∈ QN for N ≥ 2 and r > 0 is any constant
satisfying

1

2

∫ ∞
0

N−1∑
k=1

rkλk−1

k!
|R(λ+ λ0)| dλ ≤ 1.

Then, it holds that for n = 0, 1, 2, . . . , 2N − 3,∣∣∣q(n)(x)
∣∣∣ ≤ 2cdnr−(1+n/2)(n+ 1)!.
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Theorem 1.2. Assume q ∈ QA and r > 0 is any constant satisfying

1

2

∫ ∞
0

erλ − 1

λ
|R(λ+ λ0)| dλ ≤ 1.

Then, the associated potential q is analytically extendable to a strip{
z ∈ C, | Im z| < d−1√r

}
and q(z) satisfies a uniform estimate

|q(z)− λ0| ≤ cr−1
(

1− dr−1/2| Im z|
)−2

. (1.4)

Let

Γ = {g = eh : h is a real odd polynomial}.

Then, Theorems 2 and 3 of [14] and the invariance of the |R(λ, qt)| imply the
existence of KdV flow with initial data in Q∞ and QA. Therefore we have

Corollary 1.3. For any g ∈ Γ, the following uniform estimates are valid:∣∣ (K(g)q)(n) (x)− λ0

∣∣ ≤ 2cdnr−(1+n/2)(n+ 1)! if q ∈ Q∞,∣∣ (K(g)q) (z)− λ0

∣∣ ≤ cr−1
(

1− dr−1/2| Im z|
)−2

if q ∈ QA.

Remark 1.4. Marchenko [19, p. 294, Corollary] proved q(z) is analytic on a
strip

{
z ∈ C : | Im z| < (−λ0)−1/2

}
and satisfies

|q(z)| ≤ 2(−λ0)
(

1− (−λ0)1/2| Im z|
)−2

by assuming the corresponding m±(z) are reflectionless on (0,∞) and spLq ⊂
[λ0,∞) (hence λ0 < 0). Under this assumption, we see that

1

2

∫ ∞
0

erλ − 1

λ
|R(λ+ λ0)| dλ ≤ 1

2

∫ −λ0
0

erλ − 1

λ
dλ =

1

2

∫ (−λ0)r

0

ex − 1

x
dx.

By numerical computation, this integral equals 1 approximately at (−λ0)r =
1.35. Thus our estimate yields

|q(z)− λ0| ≤
c

1.35
(−λ0)

(
1− d

1.351/2
(−λ0)1/2| Im z|

)−2

with

c1.35−1 = 1.14, d−11.351/2 = 0.73.

Therefore, (1.4) is slightly worse than the result obtained by Marchenko.
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Remark 1.5. If the potentials are ergodic, then q ∈ QA is equivalent to∫
[0,∞)\Σac

ecλ dλ <∞ (1.5)

due to the fact Σac = Σrefl (Kotani [13]) up to measure 0 set for ergodic po-
tentials. And particularly, for some quasi-periodic potentials, condition (1.5) is
fulfilled according to [6,18]. More precisely, Eliasson [6] had proved that for any
Diophatine frequency, there exists a sufficiently large constant E0 such that on
[E0,∞), Schrödinger operator has ac spectrum, thus (1.5) reduced to∫

[E0,∞)\ spLq

ecλ dλ <∞. (1.6)

Recall that ω ∈ R2 is called Diophantine if |nω| ≥ α|n|τ for some 0 < α <
1, and τ > 2. Besides, for sufficiently small quasi-periodic potentials satisfying
Diophantine frequency, the authors showed that the length of spectral gaps decays
exponentially [18]. Moreover, due to the Dinaburg–Sinai transformation [2], the
result for any potentials can be reduced to only for sufficiently small potentials
with sufficiently large energy. Therefore, (1.6) holds for some c > 0.

Notation. Throughout the paper we use the following notation: R and C,
denote the real line and the whole complex plane respectively,

R+ = {x ∈ R : x > 0} , R− = {x ∈ R : x < 0} , C+ = {z ∈ C : Im z > 0};

z denotes the complex conjugate of z ∈ C;
√
z is defined as a holomorphic function

on C\R− satisfying
√

1 = 1.

2. Reflection coefficients and Xi functions

As we have mentioned in the previous section, |R(z)| on R is invariant under
the KdV flow, since it is invariant under an action of some transfer matrices. Let
T ∈ SL (2,R) be

T =

(
t11 t12

t21 t22

)
For m ∈ C, define

T ·m =
t11m+ t12

t21m+ t22
.

Set

σ =

(
1 0
0 −1

)
.

Then, we easily have

Lemma 2.1. For m± ∈ C satisfying Imm±0, set

m̂+ = T ·m+, m̂− = (σTσ) ·m−.
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Then, it holds that ∣∣∣∣m+ +m−
m+ +m−

∣∣∣∣ =

∣∣∣∣∣m̂+ + m̂−
m̂+ + m̂−

∣∣∣∣∣ .
One can apply this Lemma to the shift operation. Define the shift operation

θx on potentials by
(θxq)(·) = q(·+ x).

The dependence on q is denoted by m±(z, q), ξj(z, q), R(z, q). Assume that
{ϕz(x, q), ψz(x, q)} are solutions to

Lqf = zf

with initial values

f(0) = 1, f
′
(0) = 0,

f(0) = 0, f
′
(0) = 1,

respectively. Since

m+(z, θxq) =
ϕ

′
z(x, q) +m+(z, q)ψ

′
z(x, q)

ϕz(x, q) +m+(z, q)ψz(x, q)
,

m−(z, θxq) = −ϕ
′
z(x, q)−m−(z, q)ψ

′
z(x, q)

ϕz(x, q)−m−(z, q)ψz(x, q)

hold and {ϕz(x, q), ψz(x, q)} take real values if z ∈ R, Lemma 2.1 implies the
invariance of |R(λ + i0, q)| under θx. For the KdV equation, Rybkin [21] also
showed this invariance.

Lemma 2.2. There exists a measure 0 set A in R such that

|R(λ+ i0, q)| = |R(λ+ i0, θxq)| = R(λ+ i0, qt)

is valid for any λ ∈ R\A, x, t ∈ R, where qt is a solution to the KdV equation
with initial data q.

This invariance was discussed by [20] from a general point of view.
Although the reflection coefficient has these beautiful properties, for our pur-

pose, it is better to introduce other quantities which connect R(z) and m±(z).
For two Herglotz functions m± (z), one can define new Herglotz functions g1, g2

by

g1 (z) =
−1

m+(z) +m−(z)
, g2(z) =

m+(z)m−(z)

m+(z) +m−(z)
,

and their xi functions by

ξ1(z) =
1

π
arg g1 (z) , ξ2(z) =

1

π
arg g2 (z) ∈ [0, 1],

among which the first one was investigated by [12] systematically. For λ ∈ Σrefl,
(1.1) implies ξ1(λ + i0) = ξ2(λ + i0) = 1/2. More precisely, they are related as
follows.
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Lemma 2.3. For z such that Im z ≥ 0, we have g1, g2 ∈ C+ and

|R(z)| ≤ 1, |ξ1(z)− 1

2
|, |ξ2(z)− 1

2
| ≤ 1

2
|R(z)|.

Proof. These inequalities are valid for any two complex numbers m± ∈
{Im z ≥ 0} satisfying m+ + m− 6= 0. The first one is trivial. The others can
be verified as follows: set

−1

m+ +m−
= reiπξ1 = ireiπ(ξ1−1/2).

Note

|R|2 = 1−

 2 Im
−1

m+ +m−
1

Imm+
+

1

Imm−


2

= 1− 4r2(
1

Imm+
+

1

Imm−

)2 cos2(π (ξ1 − 1/2)).

Observing |ξ1 − 1/2| ≤ 1/2 and

4r = 4

∣∣∣∣ −1

m+ +m−

∣∣∣∣ ≤ 4

Imm+ + Imm−
≤ 1

Imm+
+

1

Imm−
,

we have

|R|2 ≥ 1− cos2(π (ξ1 − 1/2)) ≥ 1− cos(π (ξ1 − 1/2))

= 2 sin2(π (ξ1 − 1/2) /2) ≥ 4 |ξ1 − 1/2|2

since sin (πx/2) ≥
√

2x if 0 ≤ x ≤ 1/2. To show the last inequality for ξ2, set
m̂± = (−m±)−1 ∈ C+. Note

m+m−
m+ +m−

= − 1

m̂+ + m̂−

and

R̂ =
m̂+ + m̂−
m̂+ + m̂−

=
(−m+)−1 + (−m−)−1

(−m+)−1 + (−m−)−1 =
m+

m+
R.

Then, one can apply the previous argument to m̂±.

The Herglotz functions gj (z) can be represented by ξj(λ+i0). Assume spLq ⊂
[λ0,∞). Then, it is known that

m± (z) = −
√
−z + o (1) (2.1)

as z →∞ in a sector C\ {|arg z| < ε} for any ε > 0.
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Lemma 2.4. Suppose∫ ∞
0

|ξj(λ+ i0)− 1/2|
λ+ 1

dλ <∞

for j = 1, 2. Then, we have

g1 (z) =
1

2
√
−z

exp

(∫ ∞
λ0

ξ1(λ+ i0)− Iλ>0/2

λ− z
dλ

)
,

g2 (z) =
−
√
−z

2
exp

(∫ ∞
λ0

ξ2(λ+ i0)− Iλ>0/2

λ− z
dλ

)
.

Proof. The proof follows from the fact that ξj(z) = (Im gj(z)) /π are also of
Herglotz and g1 (λ) > 0, g2 (λ) < 0 on (−∞, λ0) and (2.1).

3. Uniform estimate of potentials by reflection coefficients

In this section, uniform estimates for the derivatives of q ∈ QN or QA are
given in terms of |R (λ+ i0)|.

3.1. Relations between m±(z) and ξj(z). In this subsection we assume
λ0 = 0. Suppose q ∈ CM (R). Then, the asymptotic expansions

m+(z, θxq) = −
√
−z −

M+1∑
j=1

cj+1 (x)
√
−z−j + o

(√
−z−M−1

)
,

m−(z, θxq) = −
√
−z −

M+1∑
j=1

(−1)j+1cj+1 (x)
√
−z−j + o

(√
−z−M−1

)
(3.1)

are valid in a sector C\ {|arg (z)| < ε} for any fixed ε > 0, and the coefficients
cj+1 (x) can be obtained by the recurrence relation

c1 = 0, c2 = q(x)/2,

cj =
1

2
(c

′
j−1 −

j−1∑
`=1

c`cj−`), j ≥ 3 (3.2)

(see [4, 23]). If we set

g1(x, z) =
−1

m+(z, θxq) +m−(z, θxq)
,

g2(x, z) =
m+(z, θxq)m−(z, θxq)

m+(z, θxq) +m−(z, θxq)
,

then expansions (3.1) can be translated to

g1(x, z) =
1

2
√
−z

(
1 +

N−1∑
k=1

ak (x) z−k

)
+ o

(
z−N+1/2

)
,



158 Shinichi Kotani and Jinhui Li

g2(x, z) =
−
√
−z

2

(
1 +

N−1∑
k=1

bk(x)z−k

)
+ o

(
z−N+1/2

)
(3.3)

if M = 2 (N − 1) − 1. On the other hand, for q ∈ QN Lemma 2.3 implies that
the xi functions ξj(λ, x) = ξj(λ, θxq) satisfy∫ ∞

0
λN+1/2|ξj(λ, x)− 1/2| dλ <∞.

Then Lemma 2.4 shows

g1(x, z) =
1

2
√
−z

exp

(∫ ∞
0

ξ1(λ, x)− 1/2

λ− z
dλ

)
,

g2(x, z) =
−
√
−z

2
exp

(∫ ∞
0

ξ2(λ, x)− 1/2

λ− z
dλ

)
. (3.4)

To describe the asymptotics of gj(x, z), define

µk(x) = −
∫ ∞

0
λk−1(ξ1(λ, x)− 1/2) dλ,

νk(x) = −
∫ ∞

0
λk−1(ξ2(λ, x)− 1/2) dλ.

Here we change the variable z to −k2 for later purpose. Then∫ ∞
0

ξ1(λ, x)− 1/2

λ+ k2
dλ =

N+1∑
j=1

µj(x)
(
−k2

)−j − (−k2
)−N−1

h1 (k) ,

∫ ∞
0

ξ2(λ, x)− 1/2

λ+ k2
dλ =

N+1∑
j=1

νj(x)
(
−k2

)−j − (−k2
)−N−1

h2 (k) (3.5)

hold with

hj (k) =

∫ ∞
0

λN+1 (ξj(λ, x)− 1/2)

λ+ k2
dλ for j = 1, 2.

Moreover, hj has bounds

|hj (k)| ≤ 1

Re k

∫ ∞
0

λN+1/2 |ξj(λ, x)− 1/2| dλ,∫ ∞
−∞
|hj (t+ iy)|2 dy ≤ 1

2t

(∫ ∞
0

λN+1/2 |ξj(λ, x)− 1/2| dλ
)2

(3.6)

if Re k > 0, t > 0, since

hj (k) =

∫ ∞
0

e−kα dα

∫ ∞
0

λN+1/2 (ξj(λ, x)− 1/2) sin
√
λα dλ

is valid. Hence hj ∈ H2,∞ (Re k > a) for any a > 0. Here we define the Hardy
spaces

H2 (Re k > a) =

{
h : h is holomorphic on {Re k > a} and
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satisfies sup
t>c

∫ ∞
−∞
|h (t+ iy)|2 dy <∞

}
,

H2,∞ (Re k > a) =

{
h ∈ H2 (Re k > a) : sup

Re k>c
|h (k)| <∞

}
. (3.7)

H2,∞ (Re k > c) is closed under product. More precisely we have

Lemma 3.1. Suppose

f (k) =
N∑
j=1

ajk
−j + k−Nh (k)

with aj ∈ C, h ∈ H2,∞ (Re k > a). Let φ (z) be a power series

φ (z) =
∞∑
n=1

αnz
n

with convergent radius r > 0. If supRe k>c |f (k)| < r is satisfied, then

φ (f (k)) =

N∑
j=1

bjk
−j + k−Nh1 (k) (3.8)

is valid with some bj ∈ C, h1 ∈ H2,∞ (Re k > a).

Proof. If N = 0, then the statement is trivially valid. For N ≥ 1, observe

φ (f (k)) =
N∑
n=1

αn

 N∑
j=1

ajk
−j + k−Nh (k)

n

+ k−N−1
∞∑

n=N+1

αn

 N∑
j=1

ajk
−j+1 + k−N+1h (k)

n

,

and set

N∑
n=1

αn

 N∑
j=1

ajk
−j + k−Nh (k)

n

=
N∑
j=1

bjk
−j + k−Nh2 (k)

h1 (k) = h2 (k) + k−1
∞∑

n=N+1

αn

 N∑
j=1

ajk
−j+1 + k−N+1h (k)

n

with h1, h2 ∈ H2,∞ (Re k > a). Then, (3.8) holds.

To relate (3.3) with (3.5) for q ∈ QN , we have to know q ∈ CM (R) for
some M .
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Lemma 3.2. Suppose q ∈ QN . Let J be the smallest j such that µj(0) +
νj(0) 6= 0. If there is no such j, we set J = N + 1. Then, there exist c±j ∈ R,

h± ∈ H2,∞ (Re k > a) such that

m±
(
−k2

)
= −k −

2N−J+1∑
j=1

c±j k
−j + k−2N+J−1h± (k)

hold for sufficiently large a.

Proof. Under a suitable definition of
√

1 + 4g1(−k2)g2(−k2), m± are ob-
tained from gj by

m±
(
−k2

)
= − 1

2g1(−k2)
±
√

1 + 4g1(−k2)g2(−k2)

2g1(−k2)
. (3.9)

Set

δ1 (k) = −
∫ ∞

0

ξ1(λ)− 1/2

λ+ k2
dλ = −

N+1∑
j=1

µj(0)
(
−k2

)−j
+
(
−k2

)−N−1
h1 (k) .

Then |δ1 (k)| has a bound

sup
Re k≥a

|δ1 (k)| ≤
N+1∑
j=1

|µj(0)| a−2j + a−2(N+1)−1

∫ ∞
0

λN+1/2 |ξj(λ)− 1/2| dλ.

Hence Lemma 3.1 shows

eδ1(k) = 1 +
N+1∑
j=1

αjk
−2j + k−2(N+1)h3 (k)

with αj ∈ R, h3 ∈ H2,∞ (Re k > a), and

− 1

2g1(−k2)
= −keδ1(k) = −k −

N+1∑
j=1

αjk
−2j+1 − k−2(N+1)+1h3 (k) . (3.10)

On the other hand, to estimate the second term of (3.9), note (3.4) and (3.5), for
x = 0, show

1 + 4g1(−k2)g2(−k2) = 1− eδ(k)

with

δ (k) =

N+1∑
j=1

(µj(0) + νj(0))
(
−k2

)−j
+
(
−k2

)−N−1
(h1 (k) + h2 (k))

= (µJ(0) + νJ(0))
(
−k2

)−J 1 +

N+1∑
j=J+1

µj(0) + νj(0)

µJ(0) + νJ(0)

(
−k2

)−j+J
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+
(
−k2

)−N−1+J h1 (k) + h2 (k)

µJ(0) + νJ(0)

 ,

where J is the smallest j such that µj(0) + νj(0) 6= 0. Then, applying Lemma
3.1 yields√

1 + 4g1(−k2)g2(−k2) =

√
(−1)J (µJ(0) + νJ(0))

× k−J
1 +

N−J+1∑
j=1

βjk
−2j + k−2(N−J+1)h4 (k)

 (3.11)

with some βj ∈ R, h4 ∈ H2,∞ (Re k > a) if a is sufficiently large. Then, (3.10)
and (3.11) show

m+

(
−k2

)
= − k −

N+1∑
j=1

αjk
−2j+1 − k−2(N+1)+1h3 (k)

+ k

1 +
N+1∑
j=1

αjk
−2j + k−2(N+1)h3 (k)


×
(√

(−1)J (µJ(0) + νJ(0))k−J
)

×

1 +

N−J+1∑
j=1

βjk
−2j + k−2(N−J+1)h4 (k)


= − k −

2N−J+1∑
j=1

c+
j k
−j + k−2N+J−1h+ (k) (3.12)

with some cj ∈ R, h+ ∈ H2,∞ (Re k > a). If µj(0) + νj(0) = 0 for all j =
1, 2, . . . , N + 1, then√

1 + 4g1(−k2)g2(−k2) =

√
1− exp

(
(−k2)−N−1 (h1 (k) + h2 (k))

)
= k−N−1h6 (k)

holds with

h6 (k) =

√√√√(−1)−N
∞∑
n=1

1

n!
(−k2)−(n−1)(N+1) (h1 (k) + h2 (k))n.

Since h6 (k) = 2g1(−k2)m+

(
−k2

)
+1, one can define h6 as a holomorphic function

on Re k > 0, hence h6 ∈ H2,∞ (Re k > a) holds. Therefore, in this case also, we
have

m+

(
−k2

)
= −k −

N+1∑
j=1

αjk
−2j+1 − k−2(N+1)+1h3 (k)
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+ k

1 +
N+1∑
j=1

αjk
−2j + k−2(N+1)h3 (k)

× k−N−1h6 (k)

= −k −
N∑
j=1

c+
j k
−j + k−Nh+(k).

Note that m−
(
−k2

)
can be treated similarly.

Lemma 3.3. For N ≥ 0, it holds that

q ∈ Q0 ⇒ q ∈ L2
loc (R) ,

q ∈ Q1 ⇒ q(1) ∈ L2
loc (R) ,

q ∈ QN ⇒ q(2(N−1)) ∈ L2
loc (R) if N ≥ 2.

Proof. We apply Proposition 4.1 in Appendix. If N = 0, the asymptotics of
m±

(
−k2

)
are

m±
(
−k2

)
= −k + h± (k) .

Then, letting N1 = N2 = 0 in Proposition 4.1, we have q ∈ L2
loc (R). If N = 1,

we have

m±
(
−k2

)
= −k −

3−J∑
j=1

c±j k
−j + k−3+Jh± (k)

with J = 1 or 2. Since N1 = N2 = 3 − J ≥ 1 in either case, Proposition 4.1
implies

q ∈ C ([0,∞)) ∩ C ((−∞, 0]) .

Therefore, if we follow the above argument for m±
(
−k2, θxq

)
at x (6= 0), we can

show q ∈ C (R) and q(1) ∈ L2
loc (R). If N ≥ 3, a similar argument shows q ∈

C1 ([0,∞)) ∩ C1 ((−∞, 0]), and hence q ∈ C1 (R). Unless q is constant, there
exists x ∈ R such that q′ (x) 6= 0. Without loss of generality, we can assume
q′(0) 6= 0. Applying (3.1) for M = 1 yields

m+(−k2) = −k − c2 (0) k−1 − c3 (0) k−2 + o
(
k−2

)
,

m−(−k2) = −k − c2 (0) k−1 + c3 (0) k−2 + o
(
k−2

)
,

which implies

1 + 4g1(−k2)g2(−k2) =

(
m+

(
−k2

)
−m−

(
−k2

)
m+ (−k2) +m− (−k2)

)2

=
q′ (0)2

16
k−6 + o

(
k−6

)
due to c3 (0) = q′ (0) /4. Therefore, we see J = 3 and Proposition 4.1 implies
q(k) ∈ C ((−∞, 0]) ∩ C ([0,∞)) for any k ≤ 2 (N − 1) − 1. One can replace 0 by
other x which satisfies q′(x) 6= 0, and complete the proof.
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Now turning to (3.3) and (3.5) for M = 2 (N − 1)− 1, we have

log

(
1 +

N−1∑
k=1

ak (x) z−k

)
+ o

(
z−N+1/2

)
=

N+1∑
k=1

µk(x)z−k +O
(
z−N−2

)
,

log

(
1 +

N−1∑
k=1

bk(x)z−k

)
+ o

(
z−N+1/2

)
=

N+1∑
k=1

νk(x)z−k +O
(
z−N−2

)
if z →∞. Generally, the relation

log

(
1 +

N−1∑
k=1

akz
−k

)
+ o(z−N+1) =

N−1∑
k=1

µkz
−k + o

(
z−N+1

)
for large z implies

a1 = µ1 and ak = µk +
k−1∑
`=1

`

k
ak−`µ` for k ≥ 2.

Set

f(x) =
1

2

∫ ∞
0

N−1∑
k=1

xkλk−1

k!
|R(λ)| dλ.

Let r > 0 be any constant number such that f(r) ≤ 1. Then, we have

Lemma 3.4. It holds that

|ak(x)|, |bk(x)| ≤ r−kk! for k = 1, 2, . . . , N − 1. (3.13)

Proof. We prove the statement only for ak(x). Set

tk =
1

2

∫ ∞
0

λk−1|R(λ)| dλ.

Inequalities (3.13) hold for k = 1 since

|a1(x)| = |µ1(x)| ≤
∫ ∞

0

∣∣∣∣12 − ξ1(x, λ)

∣∣∣∣ dλ ≤ 1

2

∫ ∞
0
|R(λ)| dλ = t1,

and

1 ≥ f(r) =
N−1∑
k=1

rk

k!
tk ≥ rt1.

Assume (3.13) is valid up to k. Note that

|µk(x)| ≤
∣∣∣∣∫ ∞

0
λk−1

(
1

2
− ξ1(x, λ)

)
dλ

∣∣∣∣ ≤ 1

2

∫ ∞
0

λk−1|R(λ)| dλ = tk

for any k ≥ 1. Hence Lemma 3.3 implies

|ak+1(x)| ≤ |µk+1(x)|+
k∑
`=1

`

k + 1
|ak+1−`(x)| |µ`(x)|
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≤
k+1∑
`=1

`

k + 1
r−k−1+`(k + 1− `)!t`

= r−k−1(k + 1)!

k+1∑
`=1

`

k + 1

`!(k + 1− `)!
(k + 1)!

r`
t`
`!
.

Since `
k+1

`!(k+1−`)!
(k+1)! ≤ 1, we see

|ak+1(x)| ≤ r−k−1(k + 1)!
k+1∑
`=1

r`
t`
`!
≤ r−k−1(k + 1)!f(r) ≤ r−k−1(k + 1)!,

which shows the conclusion.

3.2. Estimate of q(n)(x). In this subsection, still assume λ0 = 0. First

observe the estimates of q(n)(x) follows from those of a
(n)
1 (x) since a1(x) = q(x)/2.

To achieve this procedure, we obtain a recursive relation of {ak(x), bk(x)}k≥1. It
is known that m±(z, θxq) satisfy Ricatti equations

∂xm+(z, θxq) = q(x)− z −m+(z, θxq)
2,

−∂xm−(z, θxq) = q(x)− z −m−(z, θxq)
2.

Then we have the following identities.

Lemma 3.5. We have

(i) ∂xg1(x, z) = −m+(z)−m−(z)

m+(z) +m−(z)
,

(ii) ∂xg2(x, z) = (q(x)− z)∂xg1(x, z),

(iii) ∂2
xg1(x, z) = 2(q(x)− z)g1(x, z) + 2g2(x, z),

(iv) ∂3
xg1(x, z) = 2q

′
(x)g1(x, z) + 4(q(x)− z)∂xg1(x, z).

This lemma yields recurrence relations.

Lemma 3.6. We have a1(x) = −b1(x) = q(x)/2 and

(i)

k−1∑
j=1

a
′
k−j(x)a

′
j(x) = 4

k+1∑
j=0

ak+1−j(x)bj(x),

(ii) b
′
k+1(x) = q(x)a

′
k(x)− a′

k+1(x),

(iii) a
′′
k(x) = 2q(x)ak(x)− 2ak+1(x) + 2bk+1(x),

(iv) a
′′′
k (x) = 2q

′
(x)ak(x) + 4q(x)a

′
k(x)− 4a

′
k+1(x).

Here we set a0(x) = b0(x) = 1.

Proof. The identities a1(x) = −b1(x) = q(x)/2 come from (3.1), (3.2). To
deduce (i), note that

(∂xg1(x, x, q))2 = 1 + 4g1(x, z)g2(x, z),
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which implies

1

−4z

(
N−1∑
k=1

a
′
k(x)z−k + o(z−N+1)

)2

= 1−

(
1 +

N−1∑
k=1

ak(x)z−k + o(z−N+1)

)(
1 +

N−1∑
k=1

bk(x)z−k + o(z−N+1)

)

= −
N−1∑
k=1

(ak(x) + bk(x))z−k −
N−1∑
k=1

ak(x)z−k
N−1∑
k=1

ak(x)z−k +O(z−N+1).

Comparing the coefficients of the both sides of z−k for each k = 1, 2, . . . , we
obtain (i). Relations (ii) and (iii) are obtained by similar calculations. Relation
(iv) follows from (ii) and (iii).

Lemma 3.6 implies ak(x), bk(x) are polynomials of
{
q(j) (x)

}
0≤j≤2(k−1)

, hence

ak(x) ∈ C2(N−k)−1 (R). Now we can show the key lemma.

Lemma 3.7. For any k, n satisfying 1 ≤ k ≤ N−1 and 0 ≤ n ≤ 2 (N − k)−
1, it holds that ∣∣∣a(n)

k (x)
∣∣∣ ≤ cdnr−k−n/2(k + n)!, (3.14)

which yields ∣∣∣q(n)(x)
∣∣∣ ≤ 2cdnr−1−n/2(1 + n)! (3.15)

for n ≤ 2N − 3.

Proof. We employ the method used by Marchenko [19, p. 22, the proof of
Lemma 2.2]. It is easy to see that Lemma 3.4 shows (3.14) for n = 0 due to (1.3)
and c > 1. Since Lemma 3.4 also shows |bk(x)| ≤ r−kk!, for k ≥ 1, (iii) of Lemma
3.6 implies

|a(2)
k (x)| ≤ 4|a1(x)ak(x)|+ 2|ak+1(x)|+ 2|bk+1(x)|

≤ 4r−1r−kk! + 2r−k−1(k + 1)! + 2r−k−1(k + 1)

= 4r−k−1k!(k + 2) ≤ 2r−k−1(k + 2)!,

which yields (3.14) for n = 2 due to (1.3). Here the reason why we employ

estimate (3.14), a worse one than
∣∣a(2)
k (x)

∣∣ ≤ 2r−k−1(k + 1)! shown above, is
that (3.14) is attached to an induction. For n = 1, it is not clear that Lemma
3.6 could induce the corresponding estimate, so we apply the Landau–Hadamard
inequality for bounded smooth function f

‖f ′‖2∞ ≤ 2‖f‖∞‖f ′′‖∞,

which implies∣∣a(1)
k (x)

∣∣2 ≤ 2
∥∥ak∥∥∞∥∥a(2)

k

∥∥
∞ ≤ 2r−kk!4r−k−1k!(k + 2) = 8r−2k−1(k!)2(k + 2).
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Whence, we have∣∣a(1)
k (x)

∣∣ ≤ 23/2r−k−1/2k!
√

(k + 2) ≤ cdr−k−1/2(k + 1)!,

which yields (3.14) for n = 1 since cd ≥
√

6 ≥ 23/2
√

(k + 2)/(k + 1). Now we
assume (3.14) is valid up to n (≥ 2) and for all k ≥ 1. Then (iv) of Lemma 3.6
shows

a
(n+1)
k (x) = 4

n−2∑
j=0

(
n− 2

j

)
a

(j+1)
1 (x)a

(n−2−j)
k (x)

+ 8

n−2∑
j=0

(
n− 2

j

)
a

(j)
1 (x)a

(n−1−j)
k (x)− a(n−1)

k+1 (x),

which yields∣∣∣a(n+1)
k (x)

∣∣∣
≤ 4c2

n−2∑
j=0

(
n− 2

j

)
dj+1r−1−(j+1)/2(2 + j)!dn−2−jr−(k+(n−2−j)/2)(k + n− 2− j)!

+ 8c2
n−2∑
j=0

(
n− 2

j

)
djr−1−j/2(1 + j)!dn−1−jr−(k+(n−1−j)/2)(k + n− 1− j)!

+ 4c dn−1r−(k+1+(n−1)/2)(k + n)!

= 4c2dn−1r−k−(n+1)/2
n−2∑
j=0

(
n− 2

j

)
(2 + j)!(k + n− 2− j)!

+ 8c2dn−1r−k−(n+1)/2
n−2∑
j=0

(
n− 2

j

)
(1 + j)!(k + n− 1− j)!

+ 4c dn−1r−k−(n+1)/2(k + n)!.

Here we note an identity

(k + n+ 1)!

(k + 1)!
=

n∑
j=0

(
n

j

)
(k − `+ n− j)!

(k − `)!
(`+ j)!

`!
(3.16)

for 0 ≤ ` ≤ k, which was obtained by Marchenko [19] by differentiating n times
on the both sides of the identity z−(`+2) = z−(`−j+1)z−(j+1). Then replacing n,
`, k by n− 2, 2, k + 2, we have

n−2∑
j=0

(
n− 2

j

)
(2 + j)!(k + n− 2− j)!

= 2!k!

n−2∑
j=0

(
n− 2

j

)
(2 + j)!(k + n− 2− j)!

2!k!
=

2(k + n+ 1)!

(k + 1)(k + 2)(k + 3)
,
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and replacing n, `, k by n− 2, 1, k + 2, we have

n−2∑
j=0

(
n− 2

j

)
(1 + j)!(k + n− 1− j)!

= (k + 1)!

n−2∑
j=0

(
n− 2

j

)
(1 + j)!(k + n− 1− j)!

(k + 1)!
=

(k + n+ 1)!

(k + 2)(k + 3)
.

Therefore, we can obtain that∣∣a(n+1)
k (x)

∣∣
≤ 4cdn−1r−k−(n+1)/2

(
2c(k + n+ 1)!

(k + 1)(k + 2)(k + 3)
+

c(k + n+ 1)!

(k + 2)(k + 3)
+ (k + n)!

)
= 4cdn−1r−k−(n+1)/2(k + n+ 1)!

(
2c

(k + 1)(k + 3)
+

1

k + n+ 1

)
≤ 4cdn+1r−k−(n+1)/2(k + n+ 1)!d−2(c+ 1),

which completes the induction due to (1.2). And estimate (3.15) follows from
a1(x) = q(x)/2.

3.3. Proof of Theorem 1.1 and Theorem 1.2. For q ∈ QN , let q̃(x) =
q(x)− λ0. Then spLq̃ ⊂ [0,∞) and inf spLq̃ = 0. Theorem 1.1 can be obtained
directly from Lemma 3.7. If q ∈ Q, then for any N ≥ 1 we have Q ⊂ QN and

1

2

∫ ∞
0

N−1∑
k=1

rkλk−1

k!
|R(λ+ λ0)| dλ ≤ 1

2

∫ ∞
0

∞∑
k=1

rkλk−1

k!
|R(λ+ λ0)| dλ

=
1

2

∫ ∞
0

erλ − 1

λ
|R(λ+ λ0)| dλ ≤ 1.

Hence, we can choose the same r for any N in Theorem 1.1 and we have estimates∣∣∣q(n)(x)
∣∣∣ ≤ 2cdnr−1−n/2(1 + n)!

for any n ≥ 0 and x ∈ R. Then for any a ∈ R, applying (3.15) yields
∞∑
n=0

|q(n)(a)|
n!

|z − a|n ≤ c
∞∑
n=0

dnr−(1+n/2)(n+ 1)!

n!
|z − a|n

= cr−1
∞∑
n=0

(n+ 1)(dr−1/2)n|z − a|n

= cr−1(1− dr−1/2|z − a|)−2.

Therefore, q can be analytically extendable to the strip{
z ∈ C : | Im z| < d−1√r

}
.

Moreover, for z of this strip, taking a = Re z, we see |z − a| = | Im z|, hence

|q(z)− λ0| = |q̃(z)| ≤
c

r

(
1− d−1√r|z − a|

)−2
=
c

r

(
1− d−1√r| Im z|

)−2
,

which completes the proof of Theorem 1.2.
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4. Appendix

Let q be a potential of a Schrödinger operator Lq and m+ (z) be its (right)
Weyl function. We assume here

spLq ⊂ [λ0,∞) (4.1)

with some λ0 > −∞. If the potential is in CN ([0, a)) for some a > 0, then it
is known that m+ (z) has asymptotics (3.1). As far as the authors know there
exists no converse statement. In this appendix we give a partial answer to this
issue.

For our purpose the A-function introduced by B. Simon [23] is quite suitable
since it is directly related with m+. For a bounded potential q the A-function is
defined through an identity

m+

(
−k2

)
= −k −

∫ ∞
0

e−2αkA (α) dα. (4.2)

Here A (α) satisfies

|A (α)| ≤ α−1 ‖q‖1/2∞ exp
(

2α ‖q‖1/2∞
)
. (4.3)

Let A (α, x) be the A-function for the shifted potential q (·+ x). Then, A (α, x)
satisfies

∂xA (α, x) = ∂αA (α, x) +

∫ α

0
A (β, x)A (α− β, x) dβ (4.4)

in a distributional sense, and

q (x) = lim
α↓0

A (α, x) . (4.5)

Therefore, for a given initial value A (α, 0) = A (α), solving equation (4.4) yields
the potential q by (4.5).

Proposition 4.1. Assume the Weyl function m+(z) takes a form of

m+

(
−k2

)
= −k −

N1∑
j=1

cjk
−j − k−N2h (k) (4.6)

for N1, N2 ≥ 0 with h satisfying

sup
t≥a

∫ ∞
−∞
|h (t+ iy)|2 dy <∞, h ∈ H2 (Re k ≥ a) , (4.7)

for some a > ‖q‖1/2∞ . Then, q ∈ CN2−1 ([0,∞)) and q(N2) ∈ L2
loc ([0,∞)) hold.

Proof. The function h (k) is analytic on
{

Re k > ‖q‖1/2∞
}

since m+ (z) is an-

alytic on C\[−‖q‖∞ ,∞). Set f (ζ) = h (a− iζ/2). Then, f (ζ) is analytic on C+
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and condition (4.7) implies that f is an element of the Hardy space on C+, hence
there exists φ ∈ L2 (R+) such that

f (ζ) =

∫ ∞
0

eiζαφ (α) dα.

Let ψ (α) be the function defined by

∂N2
α ψ (α) = e2aαφ (α) , ∂jαψ (0) = 0 for j = 0, 1, 2, . . . , N2 − 1.

Then, we have

−k −
∫ ∞

0
e−2αk

2

N1−1∑
j=0

cj+1

j!
(2α)j + 2N2+1ψ (α)

 dα = m+

(
−k2

)
,

hence

A (α) = 2

N1−1∑
j=0

cj+1

j!
(2α)j + 2N2+1ψ (α) . (4.8)

For x < γ, set C (γ, x) = A (γ − x, x). Then, (4.4) reads

C (γ, x) = A (γ) +

∫ x

0
dy

∫ γ

y
C (λ, y)C (γ − λ+ y, y) dλ,

which is solvable by iteration C0 (γ, x) = A (γ) and

Cn (γ, x) = A (γ) +

∫ x

0
dy

∫ γ

y
Cn−1 (λ, y)Cn−1 (γ − λ+ y, y) dλ

for n ≥ 1. If the initial value A (γ) is CN2−1 ([0,∞)) and A(N2) ∈ L2
loc ([0,∞)),

then Cn (γ, x) are of CN2−1 in γ, x and their uniform limit C (γ, x) is of CN2−1,
hence q(x) = C (x, x) is of CN2−1 as well. The property q(N2) ∈ L2

loc ([0,∞)) is
also verified similarly.
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Однорiдна оцiнка потенцiалiв через коефiцiєнти
вiдбиття та її застосування до
потоку Кортевега–де Фрiза

Shinichi Kotani and Jinhui Li

Оцiнено потенцiали одновимiрних операторiв Шредiнгера через мо-
менти коефiцiєнтiв вiдбиття. Оскiльки коефiцiєнти вiдбиття є iнварiан-
тними вiдносно потоку Кортевега–де Фрiза, оцiнки надають iнформацiю
про певну передкомпактнiсть розв’язкiв рiвняння Кортевега–де Фрiза,
починаючи з початкових значень, якi мають скiнченнi моменти коефi-
цiєнтiв вiдбиття.

Ключовi слова: оператор Шредiнгера, коефiцiєнт вiдвиття, рiвняння
Кортевега–де Фрiза
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