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We establish an operator theoretic version of the Wiener—Ikehara Taube-
rian theorem and use it to obtain a short proof of the Prime number theorem
that should be accessible to anyone with a basic knowledge of operator the-
ory and Fourier analysis.
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1. Introduction

We begin by stating a version of Ikehara’s Tauberian theorem, due to Korevaar
[4]. To this end, we remark that by a pseudo-function, we mean the distributional
Fourier transform of a function v € L*(R) such that lim, . v(z) = 0.

Theorem 1.1 (Ikehara—Wiener—Korevaar). Let S(u) be a non-decreasing
function with support in [0,00), and suppose that the Laplace transform

ZS(s) = /000 S(u)e " du

exists for Res > 1, and, for some constant A, let

A
s—1

g(s) = ZS(s) -

If g(s) coincides with a pseudo-function on every bounded interval on the abscissa
Res =1 then g
lim ()

u—oo el

= A.

Conversely, if this limit holds, then g extends to a pseudo-function on Res = 1.

We point out that Tkehara, a student of Wiener, originally established his
Tauberian theorem in order to find a simple analytic proof for the Prime number
theorem.
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Our aim is to state and prove an operator theoretic generalisation of the
Ikehara—Korevaar theorem. Since the machinery of operator theory allows us to
avoid the delicate manipulations of limits required to prove the classical Ikehara—
Korevaar theorem, this provides a more direct route to the Prime number theorem
for anyone with a basic familiarity of operator theory and Fourier analysis (we
mention that J.-P. Kahane has an ingenious functional analytic proof of the Prime
number theorem [3]).

To motivate our approach, we recall some ideas from [5]. Specifically, we
define, for intervals I C R symmetric with respect to the origin, the following
operator on L?(I) (which we consider as a subspace of L?(R)):

1 C(1+e+i(t—1))
/If(r) Re d

Wr: fr— lim —
1 o I+e+i(t—r)

i

where ((s) = >, cyn~° is the Riemann zeta function. Now, on the one hand, it
is well-known that
¢s) _ 1

— = +1(s), (1.1)

S s—1

where 1) is analytic on C\{0}. Plugging (1.1) into the formula for W7, and noting
that the term 1/(s — 1) leads to the appearance of the Poisson kernel, we obtain

Wif=Ff+Y¥:f, (1.2)

where U; is a compact operator on L?(I). On the other hand, ((s)/s is the
Laplace transform of my(e"), where we let 7y denote the counting function of the
integers. It therefore follows by Plancherel’s theorem that

ey .
Wi () = 1/R N 2t dy, (1.3)

o elul

By the Fourier inversion formula, in combination with (1.2) with (1.3), we obtain

o elul

(el . .
Vi) = Wif() = F0) = 5 [ ( i1 )—1> Fupe du.  (1.4)

Inspired by this computation, we now formulate our main result, where Id denotes
the identity operator on L?(I).

Theorem 1.2. Let S(u) be a non-decreasing function on [0,00) such that the
Laplace transform £S(s) exists for Res > 1 and, for intervals I C R symmetric
with respect to the origin, consider

e—0t+ T

1
Wsr: f € L*(I)— lim — /f(T) RefS(l +e+i(t— 7')) dr.
I
Then the following holds:
(i) For all I, Wg is a well-defined bounded operator on L*(I) if and only if

sup S(u)
u>0 €

< 00.
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(ii) For all I sufficiently large, W = Ald 4+ Vg, for some constant A and
compact operator Vg 1, if and only if

lim S(u)

u—oo e

= A.

Before discussing the proof of the above result, we explain how the Prime
number theorem follows from Theorem 1.2. This part of the argument should be
clear to anyone familiar with Ikehara’s theorem.

Corollary 1.3 (The Prime number theorem). Let mp be the counting function
for the prime numbers. Then

whﬁngo 7T[P($)h’17$ =1
Proof. Let (p(s) = 3_, primeP - Then,
QPS(S) - z{m(e“)}(s). (1.5)

By taking the logarithm of the Euler product formula

=TI ==

p prime
and using the first order Taylor approximation of log(1 — x), we find that
log((s) = Ge(s)+ D O(p™).
p prime

In particular, since ((s) has no zeroes on Res = 1, as was independently proved
by de la Vallée Poussin and Hadamard as a key step of their proofs for the Prime
number theorem (see [1,2]), it follows from (1.1) that

Ge(s) 1

S

log —— + () (L6)

where ¥p(s) is analytic in a neighbourhood of Re s > 1. We now combine formulas
(1.5) and (1.6), and differentiate, to obtain the relation

2 {ume(@) }(s) = — +on(s),

where ¢p is analytic in a neighbourhood of {Res > 1}\{s = 1} and locally
integrable on Res = 1 (in the sense that ¢p(e + it) converges in L!(I) as ¢ —
0"). Finally, by the same reasoning used to deduce (1.2) from (1.1), this implies
that for S(u) = ump(e*), we have

Wsif=1d+¥Ys1f,

where Wg  is readily seen to be compact (e.g., by Lemma 2 in [5]). And so, by
Theorem 1.2, the Prime number theorem follows. O
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2. Proof of Theorem 1.2

Proof of part (i). First, suppose that Ws s is a bounded operator on L?(I),
and let {e, }nez denote the standard orthonormal exponential basis for L2(I). A
straight-forward application of the monotone convergence theorem yields

(Ws.ren,en) = lim L[ 5(ul)

e—0t 27 JR elul

1 [ S(ul) 1] <sin(UII!/2) >2 du.

21 Jp elul ulll/2 —mn

én(w)|? e du

In particular, the latter integral converges. To obtain a contradiction, suppose
that there exists a sequence uy of positive numbers tending to infinity, such that
S(ug)/e" > k. Since S is non-decreasing, we get, for any Au > 0, that

S(uk+Au)>S(uk) 1 S k
eu;ﬁ-Au —  eUk eAiu—eAiu

But this immediately implies that the sequence (W rey, €y) is unbounded, which
is absurd.

To obtain the converse, suppose that S(u)/e" is bounded. In particular,
S(Jul)/e"! is a bounded Fourier multiplier on L?(R). As we view L*(I) as a
subspace of L?(R), this implies the boundedness of Ws 1. Indeed,

S(lul) 7 S(u)
W fluoay < Wsa Sl = | 2G| < oup 00y oy,
e L2(R) u>0 ©
where we used the monotone convergence theorem in the second step. O

Proof of part (ii). We first note that if Ug; is compact for some interval I,
then
(Vs r€n,en)| — 0. (2.1)
n—oo

As Wg; compact implies Wg ; bounded, it follows by the lemma that S(u)/e" is
bounded. So, by Lebesgue’s theorem on dominated convergence,

(W ren, en) = — /R<S(|“|)A> 1| <Sin(u|l|/2))2du. (2.2)

o elul wl|lI| /2 —7n

Set h(u) := % — A. To arrive at a contradiction, suppose that h(u) does not

decay to 0 as |u| — co. There are now two cases. In the first, we suppose that
there exists an € > 0 and an unbounded sequence uy of real numbers so that

h(ug) = Sé!:j’)

Without loss of generality, we may assume that all ux > 0. Since S is non-
decreasing, this implies that

S(uy, + Au)
euk—l—Au

—A>e

S(uk) 1

eUk eAu ’

>
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from which it follows that there exists a fixed Au > 0 so that for all k¥ € N and
u € [ug, up + Au] we have

h(u) >

N

Since S(u)/e* is bounded, it is now straight-forward to apply this estimate to
the integral expression in (2.2) to see that for all I large enough, there exists a
constant ¢ = ¢(I) > 0 so that for infinitely many n, we have

|<\I’S,Ienu en>| > c.

This contradicts (2.1). In the remaining case, we suppose that there exist an
unbounded sequence of real numbers uy so that h(u) < —e. This case is settled
as above with the adjustment that we consider intervals of the type [ur — Au, ug].

To obtain the reverse implication (which is not needed to prove the Prime
number theorem), we suppose that S(u)/e* — A as |u| — co. In the same way
that we arrived at (1.4), with h as above, we obtain

1 ~ .
Ve = / h(u)f(u)e™™ du. (2.3)
2 R
As h(u) decays to 0, it readily follows that Wg ; is compact (e.g., by the proof of
Lemma 2 in [5]). O
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TeopeTuko-onepaTopHuil NiJIXig 10 TeopeMu IIpo
PO3IIO/iJI IPOCTUX YUCEJT

Jan-Fredrik Olsen

Mu BCTAaHOBIIOEMO TEOPETUKO-OMEPATOPHY Bepciio Teopemu Binmepa—
Ikerapa—Taybepa Ta BEUKOPHUCTOBYEMO i1 JiJIst OJIep2KAHHS KOPOTKOTO I0BE-
JIEHHsI TEOPEMU TPO PO3IOJIIJ MPOCTUX UHCEJI, SKE€ M€ OYyTU MOCTYITHUM
OyIb-KOMY, XTO BOJIOJIE€ 0A30BUMM 3HAHHSIME 3 TeOpil omepaTopiB i anaJi-
3y @yp’e.

KirrodoBi cioBa: TeopeMa Mmpo PO3MOJLIT TPOCTUX YUCE], TayOepoBH Teo-
peMH, iHTerpaabHi OIepaTopu
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