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We establish an operator theoretic version of the Wiener–Ikehara Taube-
rian theorem and use it to obtain a short proof of the Prime number theorem
that should be accessible to anyone with a basic knowledge of operator the-
ory and Fourier analysis.
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1. Introduction

We begin by stating a version of Ikehara’s Tauberian theorem, due to Korevaar
[4]. To this end, we remark that by a pseudo-function, we mean the distributional
Fourier transform of a function v ∈ L∞(R) such that lim|x|→∞ v(x) = 0.

Theorem 1.1 (Ikehara–Wiener–Korevaar). Let S(u) be a non-decreasing
function with support in [0,∞), and suppose that the Laplace transform

L S(s) =

∫ ∞
0

S(u)e−su du

exists for Re s > 1, and, for some constant A, let

g(s) = L S(s)− A

s− 1
.

If g(s) coincides with a pseudo-function on every bounded interval on the abscissa
Re s = 1 then

lim
u→∞

S(u)

eu
= A.

Conversely, if this limit holds, then g extends to a pseudo-function on Re s = 1.

We point out that Ikehara, a student of Wiener, originally established his
Tauberian theorem in order to find a simple analytic proof for the Prime number
theorem.
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Our aim is to state and prove an operator theoretic generalisation of the
Ikehara–Korevaar theorem. Since the machinery of operator theory allows us to
avoid the delicate manipulations of limits required to prove the classical Ikehara–
Korevaar theorem, this provides a more direct route to the Prime number theorem
for anyone with a basic familiarity of operator theory and Fourier analysis (we
mention that J.-P. Kahane has an ingenious functional analytic proof of the Prime
number theorem [3]).

To motivate our approach, we recall some ideas from [5]. Specifically, we
define, for intervals I ⊂ R symmetric with respect to the origin, the following
operator on L2(I) (which we consider as a subspace of L2(R)):

WI : f 7−→ lim
ε→0+

1

π

∫
I
f(τ) Re

ζ
(
1 + ε+ i(t− τ)

)
1 + ε+ i(t− τ)

dτ,

where ζ(s) =
∑

n∈N n
−s is the Riemann zeta function. Now, on the one hand, it

is well-known that
ζ(s)

s
=

1

s− 1
+ ψ(s), (1.1)

where ψ is analytic on C\{0}. Plugging (1.1) into the formula for WI , and noting
that the term 1/(s− 1) leads to the appearance of the Poisson kernel, we obtain

WIf = f + ΨIf, (1.2)

where ΨI is a compact operator on L2(I). On the other hand, ζ(s)/s is the
Laplace transform of πN(eu), where we let πN denote the counting function of the
integers. It therefore follows by Plancherel’s theorem that

WIf(t) =
1

2π

∫
R

πN(e|u|)

e|u|
f̂(u)eiut du. (1.3)

By the Fourier inversion formula, in combination with (1.2) with (1.3), we obtain

ΨIf(t) = WIf(t)− f(t) =
1

2π

∫
R

(
πN(e|u|)

e|u|
− 1

)
f̂(u)eiut du. (1.4)

Inspired by this computation, we now formulate our main result, where Id denotes
the identity operator on L2(I).

Theorem 1.2. Let S(u) be a non-decreasing function on [0,∞) such that the
Laplace transform L S(s) exists for Re s > 1 and, for intervals I ⊂ R symmetric
with respect to the origin, consider

WS,I : f ∈ L2(I) 7−→ lim
ε→0+

1

π

∫
I
f(τ) Re L S

(
1 + ε+ i(t− τ)

)
dτ.

Then the following holds:

(i) For all I, WS,I is a well-defined bounded operator on L2(I) if and only if

sup
u≥0

S(u)

eu
<∞.
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(ii) For all I sufficiently large, WS,I = AId + ΨS,I , for some constant A and
compact operator ΨS,I , if and only if

lim
u→∞

S(u)

eu
= A.

Before discussing the proof of the above result, we explain how the Prime
number theorem follows from Theorem 1.2. This part of the argument should be
clear to anyone familiar with Ikehara’s theorem.

Corollary 1.3 (The Prime number theorem). Let πP be the counting function
for the prime numbers. Then

lim
x→∞

πP(x)
lnx

x
= 1.

Proof. Let ζP(s) =
∑

p prime p
−s. Then,

ζP(s)

s
= L

{
πP(eu)

}
(s). (1.5)

By taking the logarithm of the Euler product formula

ζ(s) =
∏

p prime

1

1− p−s
,

and using the first order Taylor approximation of log(1− x), we find that

log ζ(s) = ζP(s) +
∑

p prime

O
(
p−2s

)
.

In particular, since ζ(s) has no zeroes on Re s = 1, as was independently proved
by de la Vallée Poussin and Hadamard as a key step of their proofs for the Prime
number theorem (see [1, 2]), it follows from (1.1) that

ζP(s)

s
=

1

s
log

1

s− 1
+ ψP(s), (1.6)

where ψP(s) is analytic in a neighbourhood of Re s ≥ 1. We now combine formulas
(1.5) and (1.6), and differentiate, to obtain the relation

L
{
uπP(eu)

}
(s) =

1

s− 1
+ ϕP(s),

where ϕP is analytic in a neighbourhood of {Re s ≥ 1}\{s = 1} and locally
integrable on Re s = 1 (in the sense that φP(ε + it) converges in L1(I) as ε →
0+). Finally, by the same reasoning used to deduce (1.2) from (1.1), this implies
that for S(u) = uπP(eu), we have

WS,If = Id +ΨS,If,

where ΨS,I is readily seen to be compact (e.g., by Lemma 2 in [5]). And so, by
Theorem 1.2, the Prime number theorem follows.
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2. Proof of Theorem 1.2

Proof of part (i). First, suppose that WS,I is a bounded operator on L2(I),
and let {en}n∈Z denote the standard orthonormal exponential basis for L2(I). A
straight-forward application of the monotone convergence theorem yields

〈WS,Ien, en〉 = lim
ε→0+

1

2π

∫
R

S(|u|)
e|u|

|ên(u)|2 e−ε|u| du

=
1

2π

∫
R

S(|u|)
e|u|

|I|
(

sin(u |I| /2)

u |I| /2− πn

)2

du.

In particular, the latter integral converges. To obtain a contradiction, suppose
that there exists a sequence uk of positive numbers tending to infinity, such that
S(uk)/e

uk ≥ k. Since S is non-decreasing, we get, for any ∆u > 0, that

S(uk + ∆u)

euk+∆u
≥ S(uk)

euk
1

e∆u
≥ k

e∆u
.

But this immediately implies that the sequence 〈WS,Ien, en〉 is unbounded, which
is absurd.

To obtain the converse, suppose that S(u)/eu is bounded. In particular,
S(|u|)/e|u| is a bounded Fourier multiplier on L2(R). As we view L2(I) as a
subspace of L2(R), this implies the boundedness of WS,I . Indeed,

‖WS,If‖L2(I) ≤ ‖WS,If‖L2(R) =

∥∥∥∥S(|u|)
e|u|

f̂

∥∥∥∥
L2(R)

≤ sup
u≥0

S(u)

eu
‖f‖L2(I),

where we used the monotone convergence theorem in the second step.

Proof of part (ii). We first note that if ΨS,I is compact for some interval I,
then

|〈ΨS,Ien, en〉| −→
n→∞

0. (2.1)

As ΨS,I compact implies WS,I bounded, it follows by the lemma that S(u)/eu is
bounded. So, by Lebesgue’s theorem on dominated convergence,

〈ΨS,Ien, en〉 =
1

2π

∫
R

(
S(|u|)

e|u|
−A

)
|I|
(

sin(u |I| /2)

u |I| /2− πn

)2

du. (2.2)

Set h(u) := S(|u|)
e|u|
− A. To arrive at a contradiction, suppose that h(u) does not

decay to 0 as |u| → ∞. There are now two cases. In the first, we suppose that
there exists an ε > 0 and an unbounded sequence uk of real numbers so that

h(uk) =
S(|uk|)

e|uk|
−A ≥ ε.

Without loss of generality, we may assume that all uk > 0. Since S is non-
decreasing, this implies that

S(uk + ∆u)

euk+∆u
≥ S(uk)

euk
1

e∆u
,
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from which it follows that there exists a fixed ∆u > 0 so that for all k ∈ N and
u ∈ [uk, uk + ∆u] we have

h(u) ≥ ε

2
.

Since S(u)/eu is bounded, it is now straight-forward to apply this estimate to
the integral expression in (2.2) to see that for all I large enough, there exists a
constant c = c(I) > 0 so that for infinitely many n, we have

|〈ΨS,Ien, en〉| ≥ c.

This contradicts (2.1). In the remaining case, we suppose that there exist an
unbounded sequence of real numbers uk so that h(u) ≤ −ε. This case is settled
as above with the adjustment that we consider intervals of the type [uk−∆u, uk].

To obtain the reverse implication (which is not needed to prove the Prime
number theorem), we suppose that S(u)/eu −→ A as |u| → ∞. In the same way
that we arrived at (1.4), with h as above, we obtain

ΨS,I =
1

2π

∫
R
h(u)f̂(u)euit du. (2.3)

As h(u) decays to 0, it readily follows that ΨS,I is compact (e.g., by the proof of
Lemma 2 in [5]).
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nombres premiers généralisés de Beurling., Harmonic analysis from the Pichorides
viewpoint (Anogia, 1995), 41-49, Publ. Math. Orsay, 96-01, Univ. Paris XI, Orsay,
1996.

[4] J. Korevaar, Distributional Wiener-Ikehara theorem and twin primes, Indag. Math.
(N.S.) 16 (2005), No. 1, 37–49.

[5] J.-F. Olsen, Modified zeta functions as kernels of integral operators, J. Funct. Anal.
259 (2010), No. 2, 359–383.

Received March 3, 2023, revised January 9, 2023.

Jan-Fredrik Olsen,

Centre for Mathematical Sciences, Lund University, P.O. Box 118, SE-221 00 Lund,
Sweden,
E-mail: jan-fredrik.olsen@math.lu.se

mailto:jan-fredrik.olsen@math.lu.se


An Operator Theoretic Approach to the Prime Number Theorem 177

Теоретико-операторний пiдхiд до теореми про
розподiл простих чисел

Jan-Fredrik Olsen

Ми встановлюємо теоретико-операторну версiю теореми Вiнера–
Iкегара–Таубера та використовуємо її для одержання короткого дове-
дення теореми про розподiл простих чисел, яке має бути доступним
будь-кому, хто володiє базовими знаннями з теорiї операторiв i аналi-
зу Фур’є.

Ключовi слова: теорема про розподiл простих чисел, тауберови тео-
реми, iнтегральнi оператори
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