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Algebraic Symplectic Reduction and
Quantization of Singular Spaces
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The algebraic method of singular reduction is applied for non regular
group action on manifolds which provides singular symplectic spaces. The
problem of deformation quantization of the singular surfaces is the focus. For
some examples of singular Poisson spaces Gronewold—Moyal series is explic-
itly constructed and convergence is checked. Some examples of deformation
quantization of singular Poisson spaces are considered in detail.
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1. Introduction

The problem of quantum systems with constraints goes back to Dirac [6].
The general method of Meyer—Marsden—Weinstein works for reduction of a sym-
plectic manifold with constraints and a free group action. If the group action is
not free the constraint locus is singular. The singular points are often the most
interesting because they have smaller orbits and larger symmetry. Sniatycki and
Weinstein [12] applied a pure algebraic method for symplectic reduction in a
modelling case. The problem of singular symplectic reduction of the angular mo-
mentum was studied by geometric methods in [1,5]. Batalin—Vilkovisky—Fradkin’s
method [3,7] was proposed for gauge systems. Stasheff extended this method for
a wider class of singular reduced spaces in terms of differential graded free alge-
braic resolutions. In [4] the BRST method was developed based on the rather
complicated homological construction including ghosts fields.

The method of algebraic singular reduction can be applied to any algebraic
Poisson manifold (X, ¢) with an algebraic momentum map and action of an al-
gebraic group G. It ends up on an affine Poisson algebraic variety (Xied, Gred)
with an algebra sheaf O,q of G invariant functions restricted to the constraint
locus. This variety is singular if the group action is not free. This is the case
of the Yang—Mills theory and general relativity where the constraint locus has
quadratic singularities and the reduced space X,qq is singular [2].

We give here explicit constructions of deformation quantization of some singu-
lar spaces Xyeq. Our method is based on the general Gronewold-Moyal formula.
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We check in the simplest case that the associative product converges for local
holomorphic arguments.

The problem of quantization of spaces with singularity was rased by Kontse-
vich [9]. To my best knowledge there is no examples of deformation quantization
of singular spaces so far. See [11] for basics of theory of quantization of singular
spaces.

2. Singular reduction

The following construction of singular reduction is close to that of [12]. Let
X be a real algebraic variety endowed with a Poisson bracket ¢ defined on the
algebra of real rational functions on X. In a more general setting let (X, Ox) be a
real algebraic scheme with a Poisson biderivation g : Ox x Ox — Ox. Let G be
an algebraic group defined on X such that the bracket g is G covariant and Ox/¢
be the subsheaf of Ox of GG invariant germs. It is a sheaf of algebras defined on
the orbit space X/G (which needs not to be an analytic manifold). An invariant
Poisson bracket g can be lifted to a Poisson bracket g¢ on Ox/q-

Let J : X — g* be an algebraic mapping called momentum map, where g* is
the dual space to Lie algebra g of G. The set Y = J ! (0) is the subscheme of Ox
(called constraint locus) with structure sheaf Oy = Ox/ (J), where (J) denotes
the ideal in Ox generated by elements of J. We suppose that (J) is invariant
under action of G and J generates a mapping Jg defined on Y /G making the
diagram commutative:

Y S5 x4y

I ! [
Xea =Y/G — X/G 5 g

We assume further that the bracket ¢ is Hamiltonian that is for any v € g and
any a € Ox, we have

q((v,J),a) =dgA(7) (a) (2.1)
where A : X x G — X denotes the group action and dgA : g — T (X) is the
tangent map.

Proposition 2.1. The bracket q as above can be lifted to a biderivation qreq
on Xieqa = Y/G. This is a Poisson bracket.

Proof. Check that inclusion ¢ (j,b) € (J) holds for any j € (J) and arbitrary
b€ Ox/q- Let j = (7,J)a for some a € Ox and v € g. We have

q(j:0) = (7. ) a(a,b) + aq ((v, ), b)
because ¢ is biderivation. The first term belongs to (J) and by (2.1)
q((v,J),b) =dgA(7) (b)) =0

since b is constant on any orbit and the field dgA () is tangent to orbits of G.
Finally ¢ (4,0) € (J) . O
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The Poisson variety (Xred, Oy/G,Qred) will be called singular symplectic re-
duction of (X, ¢, G, J). This construction is translated to the category of sheaves
of smooth functions on X with obvious modifications.

3. The Poisson bracket of Hamiltonian fields

Let A be a unitary commutative algebra over a field K of zero characteristic.

Proposition 3.1. Let g be a Poisson bracket on A. If q(q(a,b), ) = 0 for
some a,b € A, then the Hamiltonian fields A(-) = q(-,a) and B(-) = ¢(b,-)
commute.

This follows from the Jacobi identity.

For arbitrary derivations A, B on A, we define the biderivation (A A B) (a, b) =
A(a)B(b) —B(a)A(b), a,b € A. For a biderivation ¢, we denote

Jac[q] (a,b,¢) = q(q(a,b),¢) +q(q(b,c),a)+q(q(c,a),b)
and have Jac [q] = 0 if ¢ is a Poisson bracket.
Proposition 3.2. If fields A;, B;, i =1,...,n, are defined on A and satisfy
[Ai,B;] = 0 for any i and j then bracket ¢ = > A; AB; fulfils the Jacobi identity.

Proof. For n = 1 this identity can be checked by a direct computation. In
the general case we set U = S_t'A;, V = > #"'B; where t is a real parameter.
The fields U and V' commute, hence Jac[U A V] = 0. The left hand side is a
polynomial in ¢ which vanishes identically. In particular the term with ¢" is equal
zero which implies the statement. O

We say that a subalgebra B of A is dense, if any derivation § in A that
vanishes on B vanishes also on A.
Proposition 3.3. Let ¢ be a Poisson bracket on A. If there exist elements
a;, by € A, i=1,...,n, such that
q(ai,a;) = q(bi,b;) =0, q(as,b;) =65, i,5=1,...,n, (3.1)
and a;,b; generate the dense subalgebra B of A then

=> q(be) Agla, ). (3.2)
1

Proof. Proposition 3.1 implies commutativity of any pair of the fields ¢ (-, by),
q(ag,-), 1,7 =1,2,...,n. By (3.1) the biderivation
n
[ =D q(br) Ag(ag, ) Zq .br) q (ak, ) Zq yak) q (b, )
=1
fulfils
n
[ai, by = > q (ai, b) q (ax, b Zq bj,bk) ¢ (ak, a;) = i
k=1
for any 4,7 that is [a;,b;] = ¢(as,b;). Therefore [p,q] = ¢(p,q) for arbitrary
p,q € B.This implies that the brackets coincide on A since B is dense in A. [
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4. The Gronewold—Moyal star product

The idea of quantization of a physical space-time supplied with a Pois-
son structure goes back to Weyl [15]. It was developed by Groénewold [8] and
Moyal [10]). The idea was used later in the form of deformation quantization by
Kontsevich [9] and formalized by the author for the category of singular analytic
spaces [11].

Theorem 4.1. For a commutative R-algebra A with Poisson bracket ¢ and
elements a;, b; fulfilling (3.1), the generalized Gronewold-Moyal (GM) product is
a bilinear associative operation

(uxv) (t) #uv+Zng (u,v), u,v € A, (4.1)
k=1""
where for any k=1,2,3,...
L D S
Qk (’LL, U) :Z j‘ (k _ j)' i1 " AijBi]’+1 : Blk (U) Bil B ]Aij+1 Alk (’U)
j=0 =1

In particular @1 (u,v) = q (u,v).
Proof. For the phase space T* (R™) = R™ x R™ the classical Poisson bracket

Oa Ob  Oa Ob

q(a,b) = 8%287@_87&81’2

(4.2)

is a particular case of formula (3.2) written for coordinate functions a; = z,
b; = &. Operation (4.1) has the same form as the classical Gronewold—Moyal
star series. Only Jacobi identity is necessary for the proof of this property [8,10].
This implies that (4.1) is an associative operation in the general case. O

5. Invariant quantization of a flat phase space

The action of the orthogonal group O (n) on R" x R" : (z,§) — (Uxz,U¢§)
preserves the Poisson bracket and momentum map

J:R" x R" = APR", J(2,6) =z AE.

The constraint locus Y = J~!(0) consists of pairs (z,&) of proportional vectors
x and . For elements ej;, = Y0 /0y* — y*d/oyl, j # k =1,...,n of Lie algebra
of the group O (n), we have (ejy, J) = 27¢; — z¥¢; and equation

Oa . Ja Oa
g 00 90 k9 404 () (a)
/33

q ({ejk: J),a) = & 5k % B

oa
0¢;
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implies (2.1). By Proposition 2.1 the bracket ¢ is lifted to the Poisson bracket
Greda iIn Y/G.

Let A be the algebra of real polynomials on X = R"™ x R". The algebra Ay
of invariant polynomials on X with respect to the action of O (n) is generated by

S1 = |$|27 S2 = ‘£|27 53:<$7£>'
The generators fulfils one equation f(s) = s3 — s;so = 0, hence Ay/q =
R [s1, s2,53] / (f) . The bracket is defined by

Qred (51,82) =453, q(s1,83) =251, q(s2,83) = —252
or equivalently
Qred = 48301 A Oo — 28909 A\ O3 — 28103 N 0. (5.1)

The elements a; = (/s1, b1 = /s2 belong to the quadratic extension A* of the
algebra Ay g and
4s3

This bracket fulfils conditions of Proposition 3.3 for n = 1 and the algebra B of

polynomials of a; and by is dense in A*. It follows that the bracket ¢..q admits
the quantization of GM type on the algebra A*.

Qred (a1,b1) 1.

6. Convergence of the Gronewold—Moyal series

Theorem 6.1. The terms Q,, of the GM quantization of bracket (5.1) are
bidifferential operators with polynomial coefficients of degree < m in each argu-
ment.

Proof. The fields

A=q(b1) =q(Vs2) = 2V5101 + /5203,
B =q(a1,-) = q(-,Vs1) = 2V/5202 + /5103

commute, vanish on f and satisfy A A B = ¢q. By Theorem 4.1 for an arbitrary
even k, we have

k! o S
Qy (a, b) _ Z WAQzBQJ (a) B2 A2 (b)
itj=k/2 J:

- i ABA?BY (a) - ABAYB* (b). (6.1)
i Tk /2 (20 + 1)!1(25 + 1)! ’ )
1+ =

For any odd &,

(k- 1)!
il

q (AiBj (a),AVB’ (b)) .
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where second order differential operators

A? = 4818? + 201 + Sgag, B? = 482822 + 205 + 5103,
BA = AB = 4530109 + 2510103 + 2590203 + 838?%

have linear coefficients. O

Theorem 6.2. For arbitrary holomorphic functions a,b defined on the ball
{s € C3 |s| <r}, the GM series (4.1) for the Poisson bracket (5.1) converges if
{|s| < r/4} and |t| < r/?/18.

The proof is given in the last section.

7. Commuting matrices

Let M> be the space of 2 x 2 matrices with complex entries. The manifold
X = My x My is endowed with Poisson bracket

4
q:ZiAi (7.1)

where

are coordinates in X. The group S1(2,C) acts diagonally by

g:(A,B)— (9Ag~",9Bg ™).

Let J : (A,B) — [A, B] be the momentum map on X; the constraint locus is the
cone

Y = {(A, B) :bg (a1 — ag) — as (b1 - b2) = O,
b4 (a1 - CLQ) — Q4 (b1 — b2) = 0}. (72)

Condition (2.1) is easy to check. The polynomials
ay =trA, ag =detA, [y =trB, [ =detB, v =1trAB

generate the algebra Ay /g of invariant polynomials on X. The reduced Poisson
bracket equals

N T N LAy L
fred = Oa; 0B Y901 " 0 Y90y " 0p 73042 032
0 0 0 0 0
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Proposition 7.1. The algebra Ay/G of invariant polynomials of the algebra
Ax/q restricted to Y is isomorphic to B/ (p) , where B =R a1, ay, 81, Ba,7] and

1 2
p=7"—o1 By + aBi+Bya] — dagfa = (72a151> -3

7= (4ag — af) (482 — 4}) (7.4)

Proof. Check that p = 0 on Y. For any pair (A,B) € Y, there exists g €
S1(2,C) such that both matrices gAg~! and gBg~—! have Jordan form. This is
easy to prove by means of (7.2). Let (a1, a2) and (b, by) be its diagonal elements,
respectively. Then

a1 = aj+az, ag = — (a1 —az)®, 1 = by +ba, Bo=— (b1 — b2)?*, v = arb; +ashs

and (7.4) can be checked directly. It is easy to show that this equation generates
all algebraic relations. O

It follows that the spectrum of the algebra Ay is a two-fold covering of c*
ramified over the discriminant set {m = 0} .

Conclusion 7.2. The singular symplectic reduction of the wvariety
(X,0(2),q) is singular hypersurface X,oq = {p = 0} with coordinate functions
a1, ag, B, P2, v defined by (7.4) with the Poisson bracket queq as in (7.3).

Let A" be the extension of the algebra Ay,; by means of the element
2y — a1 py) V2 = A
Proposition 7.3. Elements

1 1

L= s by = Eﬁl»
_3/4 =3/4
ag = ;ZM by = ;52/4 (7.5)
of algebra A* fulfil (3.1) with n = 2 where do = day — o2, By = 46y — B2
Proof. 1t is easy to check that
q(a1,b1) =1, q(a1,a2) = g (a1, b2) = q(az,b1) = g (b1, bz) = 0.
By (7.3)
¢ (G2, 8y) =167~ 8018 = 872 (7.6)

on A* hence by (7.6)

4 (a3, by) — i [d;1/4351/4q (d:;/z;’ ~§»/4) _ Gy <d§/4, ~21/4>} =1. O

Corollary 7.4. The Poisson bracket qroq admits a quantization by means of
GM series with the Hamiltonian fields Ay = q (-,bg), Br = ¢ (ax,-), k= 1,2.
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This follows from Proposition 3.3. These fields are well defined on A* since
they vanish on p. Explicitly,

Ay =q (-, b2)
8 3 _1/4 (9 1 _1/4 BQ 3
—by 42 by — 201 81) — — = 4y — 200 81) 22
b2a,y T (4y — 201 51) Doy 4" (4y — 2a151) ENETER
0 0 0
oA =22 0L 152
V2 1 Doy + aq Dy + 51 9y’

0 0 0
V2By =2+ 1o + o1,
1= 205 Fhigg tagy

3 O 1 ;B O B,
Ay = Sqpl/t = _ S22 4 — (b
2 27T 6042 271' d2862+ 28"}/ Q(v 2)5

2
San 0 Lapte 0 0,

2By = —
279 0B 2 Bo Oz 0
since 3 /4
1/4 @ _ P2
Q9 d;/‘l

Conjecture 7.5. The Gréinewold—-Moyal quantization of A* generated by
elements (7.5) can be lifted to A.

This conjectured is fulfilled at least for the second term Qg2 (a,b) .

Other groups. The above method works for the conjugate action of the
orthogonal group O (2) on the space of pairs of real symmetric 2 x 2 matrices as
well for action of the unitary group SU (2) on the space of pairs of Hermitian 2 x
2 matrices. The algebra of invariants is generated by the same five symmetric
polynomials. This bracket can be quantized in a similar way.

8. K3 surfaces

K3 surfaces are topologically trivial Calabi—Yau 2-manifolds. Any nonsingular
variety X given in CP3 by an equation f = 0 of degree 4 is a K3 surface. The
Poisson bracket g on O (C]P’3) / (f) is equal to const x; Y40 on the chart Xy =
{zo # 0}, where

81(1 82& 83(1
qo (a, b) = det ohb Db O3b ]|, 0;= 8/81‘“ (81)
Of Oof Osf

and xg, 1, T2, x3 are arbitrary homogeneous coordinates on CP3. Theorem 4.1
can be applied to the nonsinular K3 variety Xy where

(=3 + 2 + 23+ 73) .

=

f=
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The canonical Poisson bracket is given by
qr = x%@l A Oy + $§’62 A O3 + x%ag A Op

on the chart Xo = {xg =1}. We set a = ¢ (x3) x1, b = ¢ (z3) x2 for an unknown
function ¢ and solve equation

qr (a,b) = q5 (¢ (w3) 21, ¢ (x3) 22) = 1. (8:2)
This equation reads
e 0 ¢
det [ 0 ¢ x| =adp® - (afll + x%) op =1
v} 23 a3

where ' = 0p/0x3. For k = p?, we get

3 3

;2 2 _ 2xy 2

k=7 R e zh = 1
Ty + x5 xy+ry;  1—ux3 1— a3

Calculate a solution of this equation

4
3 y3 1/953 dz A—1/2
2 d = — = (1 —
exp</1 1_y4 Yy exp 2 ), 1-2 ( :E3) ,

_ x3 d
o— (] — 1/2/ _dy
U=, (1—yH'?

This yields

p(as) = w12 (2) = (1= 2)TIN2 X () = /1 (1—y") " dy.

The products

I

mA1/2 (x%) s b (SL') = L)\l/Q (x%)

a(r) =

(z) RIS
belong to extension of the algebra C [z, z2, 23] by means of £'/2 and fulfil (8.2).
The corresponding GM series is generated by the fields

01 Oy O3

A=det[ 0 &b ¢b| =r"? ((x% — w’x%) 01 + ' a3a00y — xi’ag)
.I‘S LU3 LU3
1 2 3
81a 0 cp’a

B = det 61 (92 83 = /{1/2 (.%'1.1‘%(,0/81 + (.%'g — xil(p/) 82 — w%ag)
3 3 3

Ty Ty I3

such that A A B = ¢qy.
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9. Singular surfaces in CP® of degree 4

Few more examples of quantization of singular surfaces of degree 4 are given
below.

I. The singular hypersurface of degree 4x0x§ — 2222 = 0 has singularity at
four points where both terms z¢z3, 2323 vanish. The bracket

q= 31’01’%81 A Oy — 2.%'1.%%82 A 0O3 — 21‘%%283 A O1

is quantized on Xy by the functions

X2 1
a—= b=

1‘3\/.%'0’ wgw/l‘()‘

Equation ¢y (a,b) = 1 implies that the Hamiltonian fields

1
B=gs(a,) = —— (3:095381 + 2:51:1:%9:;232 + 2m1x%1:§183) ,
Vo
1
A=gqr(,b)=——= (23:?:%2@}281 + xox30s + 2$%CL’21‘§183)

V20
generate a quantization of GM type.
IL. If f = 2323 — 2323 then

qr = 21‘%1‘361 A Oy + 21‘11‘%82 A O3 + 2%‘%.1:283 A O1

and have ¢r (a1, b1) = 1 if we take

il T2

Q= — e —

21’0\/1‘37 21‘01/1‘3'

III. For f = a4 — 2323 we have gy (a,b) = 1 for the elements

I Z2

b=— .
1'31/$3’ T3+4/T3

10. Convergence of GM series

Proof of Theorem 6.2. Denote

ajl = max als
Jafl = max_ fa(s)

for any polynomial @ on C3. It is easy to check that ||s;al| < ||a|, i = 1,2,3, and
|0iam]| < m ||am]|| for any polynomial a,, of degree m. For any operator

p(s,D) = sz'iji@jE% pijk € C,

degree of the polynomial p (s, D) a,, is < m — 1 and

m)!
Ip (s, D) aml| < =) Ipll flamll, 1Pl =" Ipijl -
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For arbitrary 4, j, A%*B% (a,,) is a polynomial of degree m — i — j and

m!(m —1)! m! 2
[AB (am)|| < 92 (m — ;)1 (m z 3)! laml| < 9? <(m—2)'> lam|l

B (g i+ m!(m —1)!
1AB? (am)| < 9 (m—i—(m—i—75—1)!

| 2
< giti m:
<o (i) Jool

max (JABJ [A%[] [[B*][) < 9.

el

since

It follows that for an arbitrary homogeneous polynomial b,, of degree n, and any
even k,

k! (k—1)!
k
1k (@m bl <9 3 s+ > o

i+j=k/2 i+j=k—1

m! n! 2
‘ <(m —i)l (n —j)!> [[am]| [|bn]]

k 2 m-rn m-rn
< 0" (51) 4™l Il < € A9 B a0

for m +n > k/2. Otherwise Qg (am,by) = 0. Similar estimate holds for any odd

k, since ||q|] < 9. Let
a=> am, b= bn (10.1)

be series of homogeneous polynomials a,,, b,,. We assume that both series con-
verge on the ball of radius  which implies

max {||anl| , [bm|} < Cee™ (10.2)

for arbitrary € > 1/r and some constant C. that does not depend on m. For any
k, by (10.2)
|Qu (0,05 9)] < (| Qi (@, b || s +*/2

since Qg (a, b; s) is a homogeneous polynomial in s. Finally obtain the inequality

k
S0 Qi () < LT O8I s ST (e sy
By

k m+n>k/2
C! k
< e (18 " —1/2) 4 k/2
STooh #l1572) (4 Js)
k>0
Cl

1— (4es]) (1 — 18e1/2 }¢])’

where |s| < 1/4¢ and for |t| < €1/2/18. The estimate implies that the series
converges for any s and ¢ such that |s| < /4 and |t| < 71/2/18. O
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AnrebpaiyHa CUMILIEKTUYHA PEJYKINid i KBaHTU3AIlis
CUHTYJISIPHUX IIPOCTOPiB

Victor Palamodov

AutrebpalyHuii MeTO CUHTYJIIPHOT PEYKIl1l 32aCTOCOBAHO JIJIsi HEPEryJIsip-
HUX TPYI Ji#f Ha MHOTOBHU/IAX, Ki 3a0€3MeUyIOTh CHHTY/ISIPHI CUMILIEKTUIHI
npocropu. ¥ (okyci mpobsiema KBaHTU3AI gedopMaliil CHHTIYISPHAX TPO-
cropiB. [yt meskux npukiaiB cuHryaspaux npocropis Ilyaccona mobymo-
Bamo psn I poresomna-Moifasa Ta mepesipemo ix 36iKHicTb. JleTambHo po3-
TJISTHYTO JIedKi MPUKIaIM KBAHTU3AI1 JedopMaliii CHHTYISPHUX TPOCTOPIB
IIyaccona.

Kirouosi cioBa: muoroeuz, Ilyaccona, oOMeKeHHsI, CHHTYJISIDHA CHM-

IUTEKTUYHA, PEIyKIlis, KBaHTu3anus medopMariil, I00yTOK 3 3ipOYKOIO
I'poresosaa—Moitana, K3 mosepxmi
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