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We investigate spectral properties of the Neumann Laplacian Aε on a
periodic unbounded domain Ωε depending on a small parameter ε > 0. The
domain Ωε is obtained by removing from Rn m ∈ N families of ε-periodically
distributed small resonators. We prove that the spectrum of Aε has at least
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1. Introduction

The problem addressed in this paper belongs to spectral analysis of periodic
differential operators. It is well-known (see, e.g., [9,29,30]) that the spectrum of
such operators has the form of a locally finite union of compact intervals (bands).
In general the bands may touch each other and even (in the multidimensional
case) overlap. The open interval (α, β) is called a gap if it has an empty inter-
section with the spectrum, but its endpoints belong to it.

The presence of gaps in the spectrum is not guaranteed. For example, the
spectrum of the Laplacian on Rn has no gaps: σ(−∆Rn) = [0,∞). Therefore the
natural and interesting problem arises here: to construct examples of periodic
operators with non-void spectral gaps. This problem has been actively studied
since mid of the 90th and currently a lot of examples for various classes of periodic
operators are available in the literature. We refer to some pioneer articles [12–
14,16,38], further references can be found in the overviews [17,30].

The problem of the spectral gaps opening received a strong motivation coming
from the advances in investigation of novel materials of various sorts, in partic-
ular, the so-called photonic crystals — periodic dielectric nanostructure whose
characteristic feature is that they strongly affect the propagation of light waves
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Fig. 1.1: Left: The sets Rj,ε (dark gray color) and Tj,ε (light gray color). The
black dot in the center of Tj,ε corresponds to the point zj . Right: The set Yε
(period cell before re-scaling); here m = 3.

at certain optical frequencies, which is caused by gaps in the spectrum of the
Maxwell operator or related scalar operators. In practice, one deals with ar-
tificially fabricated photonic crystals, which are composed of relatively simple
materials (dielectrics or metals) in a tricky way and have a spatially periodic
structure, typically at the length scale of hundred nanometers. For more details
on mathematics of photonic crystals we refer to [8].

ε(Rj,ε + i)

ε

Fig. 1.2: The domain Ωε, here m = 3. The dotted lattice separates different
period cells.

The next important question in spectral theory of periodic operators con-
cerns the possibility of engineering a prescribed gap structure (i.e., opening of
spectral gaps with prescribed locations and lengths) — by choosing a properly
devised material texture. In the present paper, we investigate this problem for
the Neumann Laplacian Aε on unbounded periodic domain Ωε ⊂ Rn (n ≥ 2),
which is obtained by removing from Rn m families of ε-periodically distributed
small resonators (see Figure 1.2):

Ωε = Rn \
⋃

i∈Zn

m⋃

j=1

ε(Rj,ε + i), m ∈ N. (1.1)

Here ε > 0 is a small parameter, the sets Rj,ε (resonators), j ∈ {1, . . . ,m} have
the form

Rj,ε = (Fj \Bj) \ Tj,ε



458 Andrii Khrabustovskyi and Evgen Khruslov

where Bj ⊂ Fj ⊂ (0, 1)n and Tj,ε are thin passages connecting the opposite sides
of the domain Fj \ Bj (see Figure 1.1, left picture). The passages diameters ηj,ε
are chosen as follows,

ηj,ε = O(ε
2

n−1 ). (1.2)

We demonstrate that the spectrum σ(Aε) of Aε has the following properties:

• there is Λ > 0 such that σ(Aε) has m gaps withing the interval [0,Λε−2] for
sufficiently small ε,

• the endpoints of these m gaps converges to the endpoints of some pairwise
disjoint intervals (αj , βj). The numbers αj and βj depend on the lengths of
the passages, the (re-scaled) areas of their cross-sections and the volumes of
the domains Fj and Bj ,

• one can choose the domains Fj , Bj and the constants standing at the expres-
sions for ηj,ε (see (2.6)) in such a way that (αj , βj) do coincide with predefined
intervals.

Similar problem was treated by the first author in [25] for “zero-thickness”
resonators, i.e. when Ωε is again of the form (1.1), but the sets Rj,ε have the
form Rj,ε = ∂Bj \Tj,ε, where Bj are bounded domains and Tj,ε are small subsets
of ∂Bj . In this case the critical scaling for the diameters ηj,ε of Tj,ε is

ηj,ε = O(ε
2

n−2 ) as n > 2 and | ln(εηj,ε)|−1 = O(ε2) as n = 2.

The problem of opening of spectral gaps having prescribed locations and
lengths was also considered in [22] for Laplace–Beltrami operators on periodic
Riemannian manifolds, in [24] for periodic elliptic operators on Rn, in [2, 26] for
periodic quantum graphs, and in [10] for periodic Schrödinger operators with
singular potentials. The proofs in [22, 24] rely on methods of homogenization
theory, while in [2,10,25,26] the approach is close to the one of the present paper
(asymptotic analysis of the quasi-periodic, Neumann and Dirichlet eigenvalue
problems on a smallest period cell).

Peculiar effects caused by inserting small resonators are long known. For
example, a suitably scaled resonator may abruptly change the spectrum (even
if the resonator diameter is very small) — the first example goes back to the
Courant–Hilbert monograph [6], further investigations were carried out in [1,36].
Another remarkable application of small resonators is the possibility to construct
materials with frequency-dependent effective properties, with large and/or neg-
ative permittivities [32], materials with memory [33], etc. (see the overview [37]
for more details).

In the next section we formulate the problem more precisely and present
the main results. We also demonstrate how to apply these results for photonic
crystals design.
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2. Problem setting and main results

Let ε > 0 (the small parameter), n ∈ N \ {1} (the space dimension), m ∈ N
(the number of resonators per a period cell). We set

M := {1, . . . ,m}, M0 := {0, . . . ,m}. (2.1)

In the following, by x′ = (x1, . . . , xn−1) and x = (x′, xn) we denote the Cartesian
coordinates in Rn−1 and Rn, respectively.

Let (Fj)j∈M, (Bj)j∈M be Lipschitz domains in Rn satisfying

Bj ⊂ Fj , Fj ⊂ Y := (0, 1)n, j ∈M, Fi ∩ Fj = ∅, i 6= j.

Furthermore, we assume that for each j ∈ M there exist zj = (z′j , z
n
j ) ∈ Rn and

positive numbers hj and dj such that

{
x = (x′, xn) ∈ Rn : |xn − znj | < hj/2, ‖x′ − z′j‖Rn−1 ≤ dj

}
⊂ Fj \Bj , (2.2)

{
x = (x′, xn) ∈ Rn : xn − znj = hj/2, ‖x′ − z′j‖Rn−1 ≤ dj

}
⊂ ∂Fj , (2.3)

{
x = (x′, xn) ∈ Rn : xn − znj = −hj/2, ‖x′ − z′j‖Rn−1 ≤ dj

}
⊂ ∂Bj (2.4)

(here ‖ · ‖Rn−1 stands for the Euclidean distance in Rn−1). We define the passage
Tj,ε connecting the opposite sides of Fj \Bj via

Tj,ε :=
{
x = (x′, xn) : |xn − znj | ≤ hj/2, x′ − z′j ∈ ηj,εDj

}
, (2.5)

where

ηj,ε = ηjε
2/(n−1), ηj > 0, (2.6)

(Dj)j∈M are connected Lipschitz domains in Rn−1 satisfying 0 ∈ Dj and ε is
sufficiently small in order to have ηj,εDj ⊂ {x′ ∈ Rn−1 : ‖x′‖Rn−1 < dj}. Finally,
we define the domain Ωε (see Figure 1.2):

Ωε = Rn \
⋃

i∈Zn

⋃

j∈M
ε(Rj,ε + i).

where the sets Rj,ε, j ∈ M, which will play role of the resonators before scaling
(see Figure 1.1, left picture), are defined via

Rj,ε = (Fj \Bj) \ Tj,ε.

The set Ωε is Zn-periodic with a period cell εYε, where (see Figure 1.1, right
picture)

Yε := Y \
⋃

j∈M
Rj,ε.

Now, we define the (minus) Neumann Laplacian Aε on Ωε. In the space
L2(Ωε) we introduce the sesquilinear form aε via

aε[u, v] =

∫

Ωε

∇u · ∇v dx, dom(aε) = H1(Ωε)
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This form is densely defined, closed, and positive, hence by the first representa-
tion theorem [21, Chapter 6, Theorem 2.1] there is a the unique self-adjoint and
positive operator Aε satisfying dom(Aε) ⊂ dom(aε) and

(Aεu, v)L2(Ωε) = aε[u, v], ∀u ∈ dom(Aε), ∀v ∈ dom(aε).

Our goal is to describe the behaviour of the spectrum σ(Aε) of Aε as ε→ 0.
To state the results we have to introduce some notations.

For j ∈M we denote

αj :=
ηn−1
j |Dj |
hj |Bj |

, (2.7)

where the notation | · | stands for the volume of either a domain in Rn (as Bj) or
a domain in Rn−1 (as Dj). We assume that the numbers αj are pairwise distinct;
without loss of generality we may assume that

αj < αj+1, j ∈ {1, . . . ,m− 1}. (2.8)

Remark 2.1. The quantity (2.7) is connected with the so-called Helmholtz
resonance — the phenomenon of air resonance in a cavity, which one can expe-
rience, for example, blowing across the top of an empty bottle. The Helmholtz
resonator consists of a rigid container with a small neck — so, in substance, it
has the same shape as the resonators we treat in this work.

Apparently, the first mathematically rigorous derivation of the resonator fre-
quency formula was performed in [36]. In this paper the author analized the
spectrum of the Laplace operator on a domain obtained by removing a small set
from a bounded domain Ω ⊂ Rn with the removed set being congruent, up to
minor differences, to the re-scaled resonator εR1,ε (hereinafter, we assume for
simplicity that m = 1). It was shown in [36] that the spectrum of the Laplacian
subject to the Neumann boundary conditions on the removed set boundary is
asymptotically close (as ε → 0) to the union of the spectrum of the Laplacian
on Ω and an additional point ω2, where ω (Helmholtz resonance frequency) is
calculated as follows,

ω = lim
ε→0

√
Aε
LεVε

. (2.9)

Here Vε = εn|B1| is the resonator volume, Lε = εh1 is the channel length, Aε =
εn−1|D1,ε| = εn−1ηn−1

1,ε |D1| is the channel cross section area. Evidently, under the
scaling (2.6), the right-hand-side of (2.9) coincides with α1 given in (2.7).

Further, we consider the following function:

F (λ) := 1 +
∑

j∈M

αj |Bj |
|B0|(αj − λ)

, (2.10)
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where the set B0 is defined by

B0 := Y \ ∪j∈MFj .

It is easy to see that F (λ) has exactly m zeros, they are real and interlace with
αj provided (2.8) holds. We denote them βj , j ∈ M assuming that they are
renumbered in the ascending order; then one has

αj < βj < αj+1, j ∈ {1, . . . ,m− 1}, αm < βm <∞. (2.11)

Remark 2.2. For m = 1, we have β1 = α1(|B0|+ |B1|)|B0|−1. For m = 2 and
j = 1, 2, one has

βj =
1

2
(α1 + α2 + α1k1 + α2k2)

+
1

2
(−1)j

(
(α1 + α2 + α1k1 + α2k2)2 − 4α1α2(1 + k1 + k2)

)1/2
,

where kj := |Bj ||B0|−1. Further, using Cardano–Tartaglia and Ferrari’s formulae,
one can write down the exact expressions for βj as m = 3, 4. It seems impossible
to present exact formulae for βj as n ≥ 5. However, one is able to solve a kind of
an inverse problem — knowing the zeros of F (λ), to reconstruct the coefficients
entering the expression for the function F (λ) – see Theorem 2.4 and its proof for
more precise statement.

We are now in position to formulate the main results of this work.

Theorem 2.3. There exists Λ > 0 depending on the set B0 only such that
the the spectrum of Aε has the following form within the interval [0,Λε−2] for
sufficiently small ε:

σ(Aε) ∩ [0,Λε−2] = [0,Λε−2] \


⋃

j∈M
(αj,ε, βj,ε)


 (2.12)

The closures of the intervals (αj,ε, βj,ε) ⊂ (0,Λε−2) are pairwise disjoint and their
endpoints satisfy

lim
ε→0

αj,ε = αj , lim
ε→0

βj,ε = βj . (2.13)

Our second result states that one can choose the resonators in such a way
that the limiting intervals (αj , βj) coincide with prescribed intervals.

Theorem 2.4. Let (α̃j)j∈M and (β̃j)j∈M be positive numbers satisfying

α̃j < β̃j < α̃j+1, j ∈ {1, . . . ,m− 1}, α̃m < β̃m <∞. (2.14)

Then one can choose the domains Fj, Bj and the numbers ηj in such a way that

αj = α̃j , βj = β̃j , j ∈M.
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Remark 2.5. The design of domains with prescribed spectral properties is an
interesting problem of spectral theory – see, e.g., [5, 15, 18] and the overview [3].
In this connection, one may ask the following natural question: is it possible to
achieve the precise coincidence of spectral gaps of our operator Aε with prescribed
intervals for some fixed small ε > 0. Similar problem was addressed and partly
solved in by the first author in [26]. In this paper the periodic Hamiltonian
on a given periodic metric graph was constructed such that its spectrum has at
least m gaps (m ∈ N is given), and their asymptotic behavior can be completely
controlled through a suitable choice of coupling constants standing in the vertex
conditions. Moreover, it was shown that for fixed (small enough) ε one can
ensure the precise coincidence of the left endpoints of the first m spectral gaps
with predefined numbers; the main ingredient in the proof of the latter result
is the multi-dimensional version of the intermediate value theorem established
in [15]. Unfortunately, for the operators we treat in the current work this theorem
from [15] cannot be utilized; the reason is the lack of the monotonicity with
respect to the parameter ηj of the left endpoints αj,ε of the spectral gaps (for
fixed ε), while, this monotonicity is one of the prerequisites to apply the above
mentioned theorem from [15]. (To be precise, this monotonocity may take place,
but is not at all obvious — when one deals with the Neumann Laplacian, the
monotonicity of its eigenvalues with respect to domain variations is unclear, and
usually it can be justified only for some particular cases.) Note, however, that
for “zero-thickness” resonators considered in [25] such monotonicity takes place,
and consequently, by using the same proof methods as in [26], one is able to
achieve the precise coincidence of the left endpoints of the first m spectral gaps
with predefined numbers.

Before to proceed to the proof of the above results we briefly demonstrate how
to apply them for constructing periodic 2D photonic crystals; for more details
see [27].

We introduce the following sets in R3 (see Figure 2.1):

Ω̃ε =
{

(x1, x2, z) ∈ R3 : x = (x1, x2) ∈ Ωε, z ∈ R
}
, R̃ε = R3 \ Ω̃ε,

where Ωε ⊂ R2 is a periodic domain being defined above. We assume that Ω̃ε is
occupied by a dielectric medium with the electric permittivity and the magnetic
permeability being equal to 1, while the set R̃ε is made of a perfectly conducting
material.

It is well-known that the propagation of electromagnetic waves in the dielectric
Ω̃ε is governed by the Maxwell operator Mε acting on U = (E,H) (E and H are
the electric and magnetic fields, respectively) as follows,

MεU = (i∇×H, −i∇× E) ,

subject to the conditions

∇ · E = ∇ ·H = 0 in Ω̃ε, Eτ = 0, Hν = 0 on ∂R̃ε.
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R̃ε

Fig. 2.1: 2D photonic crystal. The union of vertical columns R̃ε is made from a
perfectly conducting material, while the rest space is occupied by a dielectric

Here Eτ and Hν are the tangential and normal components of E and H, respec-
tively.

In the following we focus on the case when E,H depends on x1, x2 only, i.e.
the waves propagated along the plane {z = 0}. It is known that if the medium
is periodic in two directions and homogeneous with respect to the third one (2D
medium), then the analysis of the Maxwell operator reduces to the analysis of
scalar elliptic operators on the two-dimensional cross-section Ωε. Namely, we
denote

J =
{

(E,H) : ∇ · E = ∇ ·H = 0 in Ω̃ε, Eτ = Hµ = 0 on ∂R̃ε
}
,

JE = {(E,H) ∈ J : E1 = E2 = H3 = 0},
JH = {(E,H) ∈ J : H1 = H2 = E3 = 0}.

The elements of JE and JH are called TE (Transverse Electric)- and
TM(Transverse Magnetic)-polarized waves, respectively. JE and JH are invariant
subspaces of Mε, they are L2-orthogonal, and each U ∈ J can be represented in
unique way as U = UE + UH with UE ∈ JE , UH ∈ JH . Consequently, one has

σ(Mε) = σ(Mε|JE ) ∪ σ(Mε|JH ). (2.15)

We denote by ADε and Aε, respectively, the Dirichlet and the Neumann Lapla-
cians on Ωε. One can be show (see, e.g, [19]) that

ω ∈ σ(Mε|JE ) ⇔ ω2 ∈ σ(ADε ) and ω ∈ σ(Mε|JH ) ⇔ ω2 ∈ σ(Aε). (2.16)

The spectrum of Aε is already described, see Theorems 2.3–2.4. As for the spec-
trum of A D

ε , one can easily derive (cf. [27, Lemma 3.1]) the following Poincare-
type inequality:

aDε [u, u] ≥ Cε−2‖u‖2L2(Ωε)
, ∀u ∈ dom(aDε )

(the constant C > 0 is independent of ε, aDε is the form associated with A D
ε ).

Consequently,

inf σ(ADε )→∞, ε→ 0. (2.17)
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Then by virtue of Theorem 2.3, (2.15)–(2.17) we conclude that for an arbitrary
(large enough) L > 0 the Maxwell operator Mε has 2m gaps in [−L,L] when ε
is sufficiently small. These gaps converge to the intervals ±(

√
αj ,
√
βj), whose

location and lengths can be controlled via a suitable choice of the resonators (see
Theorem 2.4).

The rest of the paper is devoted to the proof of the main results. In Section 3
we prove Theorem 2.3: in Subsection 3.1 we sketch some elements of Floquet–
Bloch theory establishing a relationship between the spectrum of Aε and the
spectra of certain operators on Yε; in Subsection 3.2 we detect Λ > 0 such that
σ(Aε) has at mostm gaps within [0,Λε−2]; in Subsection 3.3 we recall the abstract
result from [20] serving to describe the convergence of eigenvalues of operators
in varying Hilbert spaces; using this abstract result we complete the proof in
Subsections 3.4–3.6. In Section 4 we prove Theorem 2.4.

3. Proof of Theorem 2.3

In the following, if A is a self-adjoint operator with purely discrete spectrum
bounded from below and accumulating at ∞, we denote by λj(A ) its kth eigen-
value, where, as usual, the eigenvalues are arranged in the ascending order and
repeated according to their multiplicities.

By C, C1, . . . we denote generic constants being independent of ε and of
functions appearing in the estimates and equalities where these constants occur.

3.1. Preliminaries. The operator Aε is Zn-periodic with the period cell εYε.
It is convenient to work further with a period cell Yε, whose internal boundary
∂Y is ε-independent. Thereby, we set

Ξε := ε−1Ωε = Rn \
⋃

i∈Zn

⋃

j∈M
(Rj,ε + i),

and introduce the operator Aε in L2(Ξε) via

Aε = −ε−2∆Ξε ,

where ∆Ξε is the Neumann Laplacian on Ξε. The operator Aε is periodic with
respect to the period cell Yε, and it is easy to see that

σ(Aε) = σ(Aε). (3.1)

The Floquet–Bloch theory (see, e.g., [9, 29, 30]) establishes a relationship be-
tween the spectrum of Aε and the spectra of certain operators on Yε. Namely,
let

θ = (θ1, . . . , θn) ∈ [0, 2π)n.

We introduce the space H1,θ(Yε), which consists of functions from H1(Yε) satisfy-
ing the following conditions at the opposite faces of ∂Y :

∀k ∈ {1, . . . , n} : u(x+ ek) = exp(iθk)u(x) for x = (x1, x2, . . . , 0, . . . , xn)
↑

k-th place

, (3.2)
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where ek = (0, 0, . . . , 1, . . . , 0). In the space L2(Yε) we introduce the sesquilinear
form aθε,

aθε[u, v] = ε−2

∫

Yε

∇u · ∇v dx, dom(aθε) = H1,θ(Yε).

Let Aθ
ε be the associated with this form self-adjoint operator. This operator acts

as

−ε−2∆.

The functions u ∈ dom(Aθ
ε) belong to H2

loc(Yε) and, besides (3.2), satisfy

∀k ∈ {1, . . . , n} :
∂u

∂xk
(x+ ek) = exp(iθk)

∂u

∂xk
(x)

for x = (x1, x2, . . . , 0, . . . , xn)
↑

k-th place

. (3.3)

The spectrum of Aθ
ε is purely discrete. The Floquet–Bloch theory (see, e.g.,

the overview [30] and the articles [11, 31, 34] treating the case of periodically
perforated domains) yields

σ(Aε) =
⋃

k∈N
Lk,ε, where Lk,ε := ∪θ∈[0,2π)n

{
λj(A

θ
ε)
}
, (3.4)

and moreover, for any fixed k ∈ N the set Lk,ε is a compact interval (the kth
spectral band).

Along with the operators Aθ
ε we also introduce the operators AN

ε and AD
ε ,

which differ from Aθ
ε only by the boundary conditions at ∂Y : instead of the

θ-conditions we impose the Neumann and the Dirichlet ones, respectively. More
precisely, let AN

ε and AD
ε be the operators in L2(Yε) being associated with the

sesquilinear forms aNε and aDε with the domains

aNε [u, v] = aDε [u, v] = ε−2

∫

Yε

∇u · ∇v dx,

dom
(
aNε
)

= H1(Yε) and dom
(
aDε
)

=
{
u ∈ H1(Yε) : u �∂Y = 0

}

The spectra of these operators are purely discrete. One has

∀θ ∈ [0, 2π)n : dom
(
aNε
)
⊃ dom

(
aθε
)
⊃ dom

(
aDε
)
,

whence, by the min-max principle [7, Section 4.5], we get

∀k ∈ N, ∀θ ∈ [0, 2π)n : λk
(
AN
ε

)
≤ λk

(
Aθ
ε

)
≤ λk

(
AD
ε

)
. (3.5)

We will see further that the band edges are asymptotically (as ε → 0) reached
by the eigenvalues of the Neumann and Dirichlet operators introduced above.



466 Andrii Khrabustovskyi and Evgen Khruslov

3.2. Determination of Λ. In this subsection we detect Λ > 0 such that
the spectrum of Aε (or, equivalently, the spectrum of Aε, cf. (3.1)) has at most
m gaps in the interval [0,Λε−2].

Let θ ∈ [0, 2π)n.
For j ∈M we denote

Qj,ε := Yε \B0 ∪ (∪i∈M: i 6=jTi,ε ∪Bi).

In the space L2(Yε) we introduce the form aθ,dec
ε by

aθ,dec
ε [u, v] = ε−2

∫

B0

∇u · ∇v dx+ ε−2
∑

j∈M

∫

Qj,ε

∇u · ∇v dx

on the domain

dom(aθ,dec
ε ) =

{
u ∈ L2(Yε) :

u ∈ H1(B0), u satisfies (3.2), u ∈ H1(Qj,ε), ∀j ∈M
}
.

Let Aθ,dec
ε be the self-adjoint operator being associated with this form. Evidently,

with respect to the decomposition L2(Yε) = L2(B0)⊕
(
⊕j∈ML2(Qj,ε)

)
, one has

Aθ,dec
ε =

(
−ε−2∆θ

B0

)
⊕
(
⊕mk=1

(
−ε−2∆Qj,ε

))
,

where ∆θ
B0

is the Laplace operator on B0 subject to the Neumann conditions
on ∪j∈M∂Fj and conditions (3.2), (3.3) on ∂Y , ∆Qj,ε is the Neumann Laplacian

on Qj,ε. In fact, Aθ,dec
ε differs from Aθ

ε by introducing the Neumann boundary
conditions from both sides of Tj,ε ∩B0, j ∈M.

It is easy to see that

dom(aθ,dec
ε ) ⊃ dom(aθε) and aθ,dec

ε [u, u] = aθε[u, u], ∀u ∈ dom(aθε),

whence, by the min-max principle, we get

∀k ∈M : λk(A
θ,dec
ε ) ≤ λk(Aθ

ε).

The first m eigenvalues of Aθ,dec
ε are equal to zero, while the (m+1)th eigenvalue

equals ε−2Λθ, where Λθ is the smallest eigenvalue of the operator −∆θ(B0); note
that Λθ > 0 if θ 6= (0, 0, . . . , 0). Hence we obtain the estimate

∀θ ∈ [0, 2π)n : ε−2Λθ ≤ λm+1(Aθ
ε) ≤ supLm+1,ε

(recall that Lm+1,ε is the (m+ 1)th band of σ(Aε), see (3.4)), whence

ε−2Λ ≤ supLm+1,ε, where Λ := max
θ∈[0,2π)n

Λθ. (3.6)

Note that Λ depends only on the set B0.
From (3.6) and (3.4) we immediately conclude the following result.

Lemma 3.1. The spectrum σ(Aε) has at most m gaps within the interval
[0,Λε−2].
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3.3. Abstract scheme. To describe the behaviour of the eigenvalues of the
operators AN

ε , AD
ε and Aθ

ε as ε→ 0, we utilize the abstract result from [20] (see
also [35] for more detailed proofs) concerning the convergence of eigenvalues of
compact self-adjoint operators in varying Hilbert spaces.

Let Hε and H be separable Hilbert spaces, and Rε and R be linear compact
self-adjoint non-negative operators in Hε and H , respectively. We denote by
{µk,ε}k∈N and {µk}k∈N the sequences of eigenvalues of the operators Rε and R,
respectively, being renumbered in the descending order and with account of their
multiplicity.

Theorem 3.2 ( [20, Lemma 1]). Let the following conditions (A1)–(A4) hold:

(A1) There exists linear bounded operator Jε : H →Hε such that

∀f ∈H : ‖Jεf‖Hε → ‖f‖H as ε→ 0.

(A2) The operators Rε are bounded uniformly in ε.

(A3) For any f ∈H one has

‖RεJεf −JεRf‖Hε → 0 as ε→ 0.

(A4) For any family {fε ∈Hε}ε with supε ‖fε‖Hε <∞ there exists a subsequence
(fεm)m∈N with εm → 0 as m→∞ and w ∈H such that

‖Rεmfεm −Jεmw‖Hεm
→ 0 as m→∞.

Then for any k ∈ N we have

µk,ε → µk as ε→ 0.

Remark 3.3. The above result was established under the assumption
dim H = dim Hε = ∞. Tracing its proof in [20, 35] one can easily see that
for dim H <∞ and R being a self-adjoint operator in H with

σ(R) = {µ1 ≥ µ2 ≥ · · · ≥ µdim(H ) > 0},

the result reads as follows:

conditions (A1)–(A4) imply lim
ε→0

µk,ε = µk for k ∈ {1, . . . , dim H }.

3.4. Asymptotic behavior of Neumann and periodic eigenvalue
problems. One has:

λ1

(
AN
ε

)
= 0. (3.7)

For the next eigenvalues one has the following convergence result. Recall that the
numbers βj are the zeros of the function F (λ) (2.10) being arranged according
to (2.11).
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Lemma 3.4. For any k ∈ {2, . . . ,m+ 1} one has

λk
(
AN
ε

)
→ βk−1, ε→ 0. (3.8)

Proof. Let H N be the space Cm+1 equipped with the weighted scalar prod-
uct,

(u,v)H N =
∑

j∈M0

ujvj |Bj | (3.9)

(recall that the notations M and M0 are defined in (2.1)). Hereinafter the elements
of H N are denoted by bold letters, and their entries are enumerated starting from
zero:

u ∈H N ⇒ u = (u0, . . . , um) with uj ∈ C.

In this space we introduce the sesquilinear form aN via

aN [u,v] =
∑

j∈M
αj |Bj |(uj − u0)(vj − v0), dom

(
aN
)

= H N .

Let AN be the operator in H N associated with this form. It is represented by
the (m+1)× (m+1) symmetric (with respect to the scalar product (3.9)) matrix

AN

=




m∑

k=1

αj |Bj ||B0|−1 −α1|B1||B0|−1 −α2|B2||B0|−1 . . . −αm|Bm||B0|−1

−α1 α1 0 . . . 0
−α2 0 α2 . . . 0

...
...

...
. . .

...
−αm 0 0 . . . αm




.

(3.10)

Remark 3.5. The matrix AN has an interesting interpretation. Let Γ be a
combinatorial star graph with m + 1 vertices. We denote by V = (vk, k ∈ M0)
the set of these vertices; here v0 is the internal vertex and vk, k ∈ M are the
boundary vertices. We equip the graph with the measure m : V → C, which is
defined by m(vk) = |Bk|, k ∈ M0. Then (see, e.g., [28, Chapter 2]) the matrix
AN corresponds to the weighted discrete Laplacian on (Γ,m), where the weight
function (i.e., the function assigning a number to a pair of connected vertices) is
defined by bv0,vk = αk|Bk|, k ∈M.

We denote the eigenvalues of AN by λ1(AN ) ≤ λ2(AN ) ≤ · · · ≤ λm+1(AN ).
The eigenvalue problem ANu = λu is equivalent to the following system of m+
1 linear equations with unknowns u0, . . . , um:

(∑

i∈M
αi|Bi||B0|−1

)
u0 −

∑

j∈M
αj |Bj ||B0|−1uj = λu0, (3.11)
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−αku0 + αkuk = λuk, k ∈M. (3.12)

If λ = αk for some k ∈ M, then u0 = 0 due to (3.12); consequently, by virtue of
(3.11), uk = 0 for each k ∈M, which contradics to u 6= 0. Thus λ /∈ {αk, k ∈M}.
Taking this fact into account, we conclude from (3.12):

uk =
αk

αk − λ
u0, k ∈M. (3.13)

Inserting (3.13) into (3.11), we arrive at the equality

λF (λ)u0 = 0,

where the function F (λ) is defined by (2.10). Note that u0 6= 0 (otherwise, due
to (3.13), u would be zero vector). Thus λ is an eigenvalue of AN iff either λ =
0 or F (λ) = 0. whence (cf. (2.11))

λ1(AN ) = 0, λk(A
N ) = βk−1, k = 2, . . . ,m+ 1. (3.14)

Our goal is to show that for k = 1, . . . ,m+ 1 one has

λk(A
N
ε )→ λk(A

N ) as ε→ 0. (3.15)

Then the desired convergence result (3.8) follows immediately from (3.14)–(3.15).
To prove (3.15) we utilize abstract Theorem 3.2. We denote Hε := L2(Yε)

and introduce the operators RN
ε and RN acting in Hε and H N , respectively:

RN
ε := (AN

ε + I)−1, RN := (AN + I)−1

(hereinafter I stands for an identity operator). The operators RN
ε , RN are com-

pact, non-negative, moreover, one has

‖RN
ε ‖ ≤ 1. (3.16)

We denote by {µNk,ε}k∈N the set of the eigenvalues of RN
ε being renumbered in

the descending order and with account of their multiplicity. By virtue of spectral
mapping theorem one has

µNk,ε = (λk(A
N
ε ) + I)−1, k ∈ N. (3.17)

Similarly, we have

µNk = (λk(A
N ) + I)−1, k = 1, . . . ,m+ 1, (3.18)

where 1 = µN1 ≥ µN2 ≥ · · · ≥ µNm+1 > 0 are the eigenvalues of the operator
RN . Finally, we introduce the linear operator J N

ε : H N → Hε acting on f =
(f0, . . . , fm) as follows,

(J N
ε f)(x) =

{
fj , x ∈ Bj , j ∈M0

0, x ∈ Tj,ε, j ∈M
.
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It is easy to see that for each f ∈H N one has
∥∥J N

ε f
∥∥

Hε
= ‖f‖H N . (3.19)

Below we demonstrate that the operators RN
ε , RN and J N

ε satisfy the con-
ditions (A3) and (A4) of Theorem 3.2 (the other two conditions (A1) and (A2) are
fulfilled due to (3.19) and (3.16)); then, by virtue of Theorem 3.2 and Remark 3.3
we get

µNk,ε → µNk as ε→ 0

for k = 1, . . . ,m + 1, whence, owing to (3.17)–(3.18), the desired convergence
(3.15) follows.

Let us check the fulfillment of (A3). Let f ∈ H N . We denote fε := J N
ε f

and

uε := RN
ε fε. (3.20)

Then AN
ε uε + uε = fε, whence, uε ∈ H1(Yε) and

aNε [uε, vε] + (uε, vε)Hε = (fε, vε)Hε , ∀vε ∈ H1(Yε). (3.21)

The equality (3.21) implies easily the estimate

ε−2‖∇uε‖2L2(Yε)
+ ‖uε‖2L2(Yε)

≤ ‖fε‖2L2(Yε)
= ‖f‖2H N . (3.22)

In particular, it follows from (3.22) that the norms ‖uε‖H1(Yε) are uniformly
bounded with respect to ε ∈ (0, 1]. Hence, by virtue of Banach–Alaoglu and
Rellich–Kondrachov theorems, there exists a sequence (εm)m∈N with εm ↘ 0 as
m→∞ and uj ∈ H1(Bj), j ∈M0 such that

∇uεm → ∇uj weakly in L2(Bj), (3.23)

uεm → uj strongly in L2(Bj), (3.24)

as m→∞. Furthermore, using (3.22), (3.23), we get

‖∇uj‖2L2(Bj)
≤ lim inf

m→∞
‖∇uεm‖L2(Bj) ≤ lim

m→∞
(εm)2‖f‖H N = 0,

whence uj are constant functions, and we can regard u = (u0, . . . , um) as the
element of H N . Note that (3.24) implies

lim
m→∞

〈uεm〉Bj = 〈uj〉Bj = uj , j ∈M0. (3.25)

where by 〈u〉B we denote the mean value of the function u(x) over the domain
B, i.e.,

〈u〉B =
1

|B|

∫

B
u(x) dx.

The same notation will be used further (see (3.29)) for the mean value of a
function defined on a subset S of an (n− 1)-dimensional hyperplane, i.e,

〈u〉S =
1

|S|

∫

S
uds, |S| =

∫

S
ds,
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where ds stands for the density of the surface measure on S.

Let v = (v0, . . . , vm) ∈H N . We define the function vε ∈ H1(Yε) via

vε(x) :=

{
vj , x ∈ Bj , j ∈M0
v0−vj
hj

(xn − znj ) +
v0+vj

2 , x ∈ Tj,ε, j ∈M

(recall that zj = (z′j , z
n
j ) ∈ Rn is a point around which we built the passage Tj,ε,

see (2.5)). Inserting this vε into (3.21), we arrive at the equality

ε−2
∑

j∈M

(∫

Tj,ε

∂uε
∂xn

dx

)
v0 − vj
hj

+
∑

j∈M0

〈uε〉Bjvj |Bj |

+
∑

j∈M
(uε, vε)L2(Tj,ε) = (f ,v)H N . (3.26)

Using (3.25) we get

lim
m→∞

∑

j∈M0

〈uεm〉Bjvj |Bj | =
∑

j∈M0

ujvj |Bj | = (u,v)H N , (3.27)

Further, one has

|(uε, vε)L2(Tj,ε)| ≤ ‖uε‖L2(Tj,ε)‖vε‖L2(Tj,ε) ≤ ‖uε‖L2(Yε) max{|vj |; |v0|}|Tj,ε|1/2,

whence, taking into account that ‖uε‖L2(Yε) ≤ ‖f‖H N and |Tj,ε| → 0, we conclude

lim
ε→0

∑

j∈M
(uε, vε)L2(Tj,ε) = 0. (3.28)

Now, let us inspect the first term in the left-hand-side of (3.26). We denote by
S±j,ε the top and bottom faces of the passage Tj,ε, i.e.,

S±j,ε :=
{
x = (x′, xn) ∈ Rn : xn − znj = ±hj/2, x′ − z′j ∈ ηj,εDj

}
.

Then, integrating by parts, we obtain:

ε−2
∑

j∈M

(∫

Tj,ε

∂uε
∂xn

dx

)
v0 − vj
hj

= ε−2
∑

j∈M

(∫

S+
j,ε

uds−
∫

S−j,ε

uds

)
v0 − vj
hj

=
∑

j∈M
αj |Bj |

(
〈uε〉S+

j,ε
− 〈uε〉S−j,ε

)
(v0 − vj) (3.29)

(on the last step we use |S±j,ε| = (ηj,ε)
n−1|Dj | = (ηj)

n−1ε2|Dj | = αj |Bj |hjε2, see
(2.6) and (2.7)). One has the following estimates for j ∈M:

|〈uε〉S+
j,ε
− 〈uε〉B0 |2 ≤ C‖∇uε‖2L2(B0)

{
(ηk,ε)

2−n, n ≥ 3

| ln ηk,ε|, n = 2
, (3.30)
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|〈uε〉S−j,ε − 〈uε〉Bj |
2 ≤ C‖∇uε‖2L2(Bj)

{
(ηk,ε)

2−n, n ≥ 3

| ln ηk,ε|, n = 2
. (3.31)

The proof is similar to the proof of [23, Lemma 2.1]. From (2.6), (3.22), (3.30),
(3.31) we get

|〈uε〉S+
j,ε
− 〈uε〉B0 |2 + |〈uε〉S−j,ε − 〈uε〉Bj |

2

=

{
O(ε2/(n−1)), n ≥ 3

O(ε2| ln ε|), n = 2

}
→ 0 as ε→ 0. (3.32)

Using (3.25) and (3.32), we finally conclude from (3.29):

lim
m→∞

(εm)−2
∑

j∈M

(∫

Tj,εm

∂uεm
∂xn

dx

)
v0 − vj
hj

=
∑

j∈M
αj |Bj |(u0 − uj)(v0 − vj)

= aN [u,v]. (3.33)

Combining (3.26), (3.27), (3.28), (3.33) we arrive at the equality

aN [u,v] + (u,v)H N = (f ,v)H N , ∀v ∈H N ,

whence we get

u = RN f . (3.34)

The limiting vector u is independent of the sequence uεm satisfying (3.23)–(3.24)
(u is defined in a unique way by (3.34)), whence we conclude that the whole
family uε converges to u:

uε → uj strongly in L2(Bj) as ε→ 0, j ∈M0. (3.35)

Finally, using (3.20), (3.34) and the definition of the operator J N
ε , we get

‖RN
ε J N

ε f −J N
ε RN f‖2Hε

=
∑

j∈M0

‖uε − uj‖2L2(Bj)
+
∑

j∈M
‖uε‖2L2(Tj,ε)

. (3.36)

Due to (3.35) the first term in the right-hand-side of (3.36) tends to zero as ε→
0. Furthermore, one has the following estimate:

∀u ∈ H1(Tj,ε ∪B0) :

‖u‖2L2(Tj,ε)
≤ C

(
ηn−1
j,ε ‖u‖

2
L2(B0) + ηj,εκj,ε‖∇u‖2L2(B0) + ‖∇u‖2L2(Tj,ε)

)
, (3.37)

where κj,ε := 1 as n ≥ 3 and κj,ε := | ln ηj,ε| as n = 2. The proof of (3.37) is
similar to the proof of inequality (5.16) in [4]. It follows from (2.6), (3.22), (3.37)
that

‖uε‖2L2(Tj,ε)
≤ C

(
ηn−1
j,ε ‖uε‖

2
L2(Yε)

+ ‖∇uε‖2L2(Yε)

)
≤ C1ε

2‖f‖2H N . (3.38)
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Thus the second term in the right-hand-side of (3.36) goes to zero too; conse-
quently, condition (A3) is fulfilled.

Finally, we check the fulfillment of (A4). Let fε ∈ Hε with ‖fε‖Hε ≤ C. We
set

uε := RN
ε fε. (3.39)

The function uε belongs to H1(Yε), it satisfies (3.21) and the estimate (3.22) holds
true. From this estimate we conclude that there exist a sequence (εm)m∈N with
εm ↘ 0 as m→∞ and wj ∈ H1(Bj), j ∈M0 such that

uεm → wj strongly in L2(Bj) (3.40)

as m→∞; furthermore, the functions wj are constants (so, we can regard w =
(w0, . . . , wm) as the element of H N ). Also, similarly to (3.38), we get

‖uε‖2L2(Tj,ε)
≤ Cε2‖fε‖2Hε

→ 0 as ε→ 0. (3.41)

It follows from (3.39)–(3.41) and the definition of the operator J N
ε that

∥∥RN
εmfεm −J N

εmw
∥∥

Hεm
→ 0 as m→∞.

Hence condition (A4) is also fulfilled. This completes the proof Lemma 3.4.

Similar result holds for the eigenvalues of the operator Aθ
ε with θ =

(0, 0, . . . , 0), which corresponds to the periodic conditions on ∂Y . One has:

λ1

(
Aθ
ε

)
= 0 if θ = (0, 0, . . . , 0), (3.42)

while for the next eigenvalues one has the following lemma.

Lemma 3.6. Let θ = (0, 0, . . . , 0). Then for any k ∈ {2, . . . ,m+ 1} one has

λk
(
Aθ
ε

)
→ βk−1, ε→ 0.

The proof of Lemma 3.6 repeats verbatim the proof of Lemma 3.4. Note that
the boundary conditions (3.2) imply no restrictions on the limiting constant u0

(see (3.23)–(3.24)), since any constant function satisfies (3.2) if θ = (0, 0, . . . , 0).

3.5. Asymptotic behavior of Dirichlet and antiperiodic eigenvalue
problems. Recall that the numbers αj are given in (2.7) and satisfy (2.8).

Lemma 3.7. For any k ∈ {1, . . . ,m} one has

λk(A
D
ε )→ αk, ε→ 0. (3.43)
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Proof. The proof resembles the one of Lemma 3.4, thus we underline only the
principal differences. Let H D be the space Cm equipped with the scalar product

(u,v)H D =
∑

j∈M
ujvj |Bj | (3.44)

(its elements are denoted by bold letters, their entries are enumerated from 1 to
m). In the space H D we introduce the sesquilinear form aD via

aD[u,v] =
∑

j∈M
αj |Bj |ujvj , dom

(
aD
)

= H D.

The associated (with respect to the scalar product (3.44)) operator AD is repre-
sented by the m×m matrix

AD = diag(α1, . . . , αm).

Its eigenvalues are given by λ1(AD) ≤ λ2(AD) ≤ · · · ≤ λm(AD), and we have

λk
(
AD
)

= αk, k = 1, . . . ,m. (3.45)

Below we demonstrate that for k = 1, . . . ,m one has

λk
(
AD
ε

)
→ λk(A

D), ε→ 0. (3.46)

Then the desired convergence result (3.43) follows immediately from (3.45)–
(3.46).

For the proof of (3.46) we again use Theorem 3.2. As before, we denote Hε :=

L2(Yε), and introduce compact non-negative operators RD
ε :=

(
AD
ε + I

)−1
and

RD :=
(
AD + I

)−1
acting in Hε and H D, respectively. One has

∥∥RD
ε

∥∥ ≤ 1. (3.47)

We denote by {µDk,ε}k∈N the set of the eigenvalues of RD
ε being renumbered in the

descending order and with account of their multiplicity; similarly, µD1 ≥ µD2 ≥
· · · ≥ µDm+1 stand for the eigenvalues of the operator RD. One has

µDk,ε =
(
λk
(
AD
ε

)
+ I
)−1

, k ∈ N, µDk =
(
λk
(
AD
)

+ I
)−1

, k = 1, . . . ,m, (3.48)

Finally, we introduce the operator J D
ε : H D → Hε acting on f = (f0, . . . , fm)

as follows,
(
J D

ε f
)
(x) =

{
fj , x ∈ Bj , j ∈M,

0, x ∈ B0 ∪ (∪j∈MTj,ε) .

Obviously, for each f ∈H D we have

∥∥J D
ε f
∥∥

Hε
= ‖f‖H D . (3.49)
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The conditions (A1) and (A2) of Theorem 3.2 are fulfilled, see (3.47) and
(3.49). Let us check the fulfillment of the condition (A3). Let f ∈ H D, fε :=
J D

ε f and

uε := RD
ε fε. (3.50)

Then uε ∈ H1(Yε), uε = 0 on ∂Y ,

aDε [uε, vε] + (uε, vε)Hε = (fε, vε)Hε , ∀vε ∈ dom(aDε ). (3.51)

and the estimate

ε−2‖∇uε‖2L2(Yε)
+ ‖uε‖2L2(Yε)

≤ ‖f‖H D (3.52)

holds true. It follows from (3.52) that the norms ‖uε‖H1(Yε) are uniformly bounded
with respect to ε ∈ (0, 1], whence there exists a sequence (εm)m∈N with εm ↘ 0
as m → ∞ and the constant functions uj , j ∈ M0 such that (3.23)–(3.24) hold.
Moreover, uεm → u0 strongly in L2(∂Y ), hence u0 = 0 a.e. on ∂Y , and, since u0

is a constant function, we conclude

u0 ≡ 0. (3.53)

In the following we regard u = (u1, . . . , um) as the element of H D. We fix an
arbitrary v = (v1, . . . , vm) ∈H D, and define the function vε ∈ dom(aDε ) by

vε(x) :=





vj , x ∈ Bj , j ∈M,

0, x ∈ B0,

− vj
hj

(xn − znj ) +
vj
2 , x ∈ Tj,ε, j ∈M.

Inserting vε into (3.51), we obtain the equality

−ε−2
∑

j∈M

(∫

Tj,ε

∂uε
∂xn

dx

)
vj
hj

+
∑

j∈M
〈uε〉Bjvj |Bj |

+
∑

j∈M
(uε, vε)L2(Tj,ε) = (f ,v)H D . (3.54)

Repeating the arguments from the proof of Lemma 3.4 (taking into account
(3.53)) we get

− lim
m→∞

(εm)−2
∑

j∈M

(∫

Tj,εm

∂uεm
∂xn

dx

)
vj
hj

= aD[u,v], (3.55)

lim
m→∞

∑

j∈M
〈uεm〉Bjvj |Bj | = (u,v)H D , lim

ε→0

∑

j∈M
(uε, vε)L2(Tj,ε) = 0. (3.56)

From (3.54)–(3.56) we conclude aD[u,v] + (u,v)H D = (f ,v)H D for all v ∈H D,
whence

u = RDf . (3.57)
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The limiting vector u is independent of a sequence uεm , whence the whole family
uε converges to u, namely,

uε → uj strongly in L2(Bj) as ε→ 0. (3.58)

Furthermore (cf. (3.38), (3.41)), one has

∑

j∈M
‖uε‖2L2(Tj,ε)

→ 0 as ε→ 0. (3.59)

The property (A3) follows immediately from (3.50), (3.53), (3.57), (3.58), (3.59)
and the definition of the operator J D

ε . The property (A4) is proven similarly
(cf. Lemma 3.4).

By Theorem 3.2 and Remark 3.3 the fulfillment of the conditions (A1)–(A4)
yield

µDk,ε → µDk as ε→ 0, k = 1, . . . ,m,

whence, using (3.48), we get the desired convergence (3.46). Lemma 3.7 is proven.

Lemma 3.8. Let θ /∈ (0, 0, . . . , 0). Then for any k ∈ {1, . . . ,m} one has

λk(A
θ
ε)→ αk, ε→ 0.

The proof of Lemma 3.8 is similar to the proof of Lemma 3.7. Here we have to
take into account that if uε satisfies the boundary conditions (3.2), then (3.23)–
(3.24) imply that the limiting constant function u0 satisfies (3.2) too, but for θ /∈
(0, 0, . . . , 0) this is possible only if u0 ≡ 0.

3.6. End of proof. We denote

θ0 := (0, 0, . . . , 0), θπ := (π, π, . . . , π).

By virtue of (3.4) and (3.5) we get

σ(Aε) =
⋃

k∈N
Lk,ε, (3.60)

where the compact intervals Lk,ε =
[
`−k,ε, `

+
k,ε

]
satisfy

λk
(
AN
ε

)
≤ `−k,ε ≤ λk

(
Aθ0
ε

)
, λk

(
Aθπ
ε

)
≤ `+k,ε ≤ λk

(
AD
ε

)
.

Due to (3.7) and (3.42) one has

`−1,ε = 0. (3.61)

Furthermore, Lemmata 3.4–3.6 yield

lim
ε→0

`−k,ε = βk−1, k = 2, . . . ,m+ 1, (3.62)
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and Lemmata 3.7–3.8 give

lim
ε→0

`+k,ε = αk, k = 1, . . . ,m. (3.63)

Setting αk,ε := `+k,ε, βk,ε := `−k+1,ε (k = 1, . . . ,m) we conclude from (3.60)–(3.63),
(2.11) and Lemma 3.1 the desired properties (2.12)–(2.13). Theorem 2.3 is proven.

Remark 3.9. The first step in proof of the convergence result in [25], where
“zero-thickness” resonators were treated, is the same to the current problem: to
enclose the left (respectively right) endpoint of each spectral band between the
Neumann and periodic (resp. antiperiodic and Dirichlet) eigenvalues. However,
further investigation of the asymptotic beghaviour of these eigenvalues was carried
out in a different way: the limiting operators AN and AD was not identified at
all, instead, to to obtain the asymptotics of eigenvalues, a sutable convenient
approximations for the corresponding eigenfunctions were constructed.

4. Proof of Theorem 2.4

Let (α̃j)j∈M and (β̃j)j∈M be positive numbers satisfying (2.14). We consider
the following system of m linear equations with unknowns %j , j = 1, . . . ,m:

1 +

m∑

j=1

%j
α̃j

α̃j − β̃k
= 0, k = 1, . . . ,m. (4.1)

It was shown in [22, Lemma 4.1] that the system (4.1) has the unique solution
%1, . . . , %m given by

%j =
β̃j − α̃j
α̃j

∏

i=1,m|i 6=j

(
β̃i − α̃j
α̃i − α̃j

)
, j ∈M. (4.2)

Note that due to (2.14) we have

∀j : α̃j < β̃j , ∀i 6= j : sign(β̃i − α̃j) = sign(α̃i − α̃j) 6= 0.

Consequently, the numbers %j are positive.
Let γ > 0. We set

τj :=
%j

γn +
∑

i∈M
%i
, j ∈M,

where %j are given by (4.2). One has

τj > 0 and
∑

i∈M
τj < 1. (4.3)

Now, let Fj , j = 1, . . . ,m be hyperrectangles with axes being parallel to the
coordinate ones and satisfying

∪j∈MFj ⊂ Y, Fi ∩ Fj = ∅, i 6= j, |Fj | = τj .
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It is easy to see that such a choice is always possible due to (4.3). Let yj ∈ Fj be
the center of the hyperrectangle Fj ; then we define

Bj := γ(Fj − yj) + yj

(i.e., Bj is obtained from Fj by a homothety with the center at yj and the ratio
γ). In the following we choose γ < 1, which implies Bj ⊂ Fj . Further, we remove
from Fj \Bj the set Tj,ε of the form (2.5); due to the fact that Fj and Bj are two
homothetic hyperrectangle with axes being parallel to the coordinate ones, one
can always do this in such a way that the assumptions (2.2)–(2.4) are fulfilled.

We choose an arbitrary cross-section profile Dj , while the constant ηj in (2.6)
are chosen as follows:

ηj =

(
α̃jhj |Bj |
|Dj |

)1/(n−1)

.

With such a choice of ηj we immediately obtain

αj = α̃j , j ∈M, (4.4)

where αj are defined by (2.7). Moreover, we have

|Bj |
|B0|

=
γn|Fj |

|Y | −
∑

i∈M |Fi|
=

γnτj
1−

∑
i∈M τj

= %j . (4.5)

Since (%1, . . . , %m) is a solution to the system (4.1), we conclude from (4.4) and
(4.5) that

1 +
∑

j∈M

αj |Bj |
|B0|(αj − β̃k)

= 0, k = 1, . . . ,m.

Hence β̃j are zeros of the function F (λ) (see (2.10)), and consequently (taking
into account (2.11), (2.14)), we obtain

βj = β̃j , j ∈M.

Theorem 2.4 is proven.
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donnée, Ann. Sci. École Norm. Sup. (4) 20 (1987), No. 4, 599–615.

[6] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. 1, Wiley–
Interscience, New York, 1953.

[7] E.B. Davies, Spectral Theory and Differential Operators, Cambridge University
Press, Cambridge, 1995.

[8] W. Dörfler, A. Lechleiter, M. Plum, G. Schneider and C. Wieners, Photonic Crystals.
Mathematical Analysis and Numerical Approximation, Springer, Berlin, 2011.

[9] M. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Aca-
demic Press, Edinburg, 1973.

[10] P. Exner and A. Khrabustovskyi, Gap control by singular Schrödinger operators
in a periodically structured metamaterial, J. Math. Phys. Anal. Geom. 14 (2018),
No. 3, 270–285.

[11] F. Ferraresso and J. Taskinen, Singular perturbation Dirichlet problem in a double
periodic perforated plane, Ann. Univ. Ferrara 61 (2015), 277–290.

[12] A. Figotin and P. Kuchment, Band-gap structure of the spectrum of periodic dielec-
tric and acoustic media. I. Scalar model, SIAM J. Appl. Math. 56 (1996), No. 1,
68–88.

[13] A. Figotin and P. Kuchment, Band-gap structure of the spectrum of periodic di-
electric and acoustic media. II. Two-dimensional photonic crystals, SIAM J. Appl.
Math. 56 (1996), No. 6, 1561–1620.

[14] E.L. Green, Spectral theory of Laplace-Beltrami operators with periodic metrics, J.
Differ. Equ. 133 (1997), No. 1, 15–29.

[15] R. Hempel, T. Kriecherbauer and P. Plankensteiner, Discrete and Cantor spectrum
for Neumann Laplacians of combs, Math. Nachr. 188 (1997), No. 1, 141–168.

[16] R. Hempel and K. Lienau, Spectral properties of periodic media in the large coupling
limit, Commun. Partial Differ. Equations 25 (2000), No. 7–8, 1445–1470.

[17] R. Hempel and O. Post, Spectral gaps for periodic elliptic operators with high
contrast: an overview, Progress in Analysis, Proceedings of the 3rd International
ISAAC Congress Berlin 2001, Vol. 1, 577-587, 2003.

[18] R. Hempel, L.A. Seco, and B. Simon, The essential spectrum of Neumann Laplacians
on some bounded singular domains, J. Funct. Anal. 102 (1991), No. 2, 448–483.
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Створення та контроль спектральних лакун у
перiодичних середовищах iз малими резонаторами

Andrii Khrabustovskyi and Evgen Khruslov

Дослiджуються спектральнi властивостi лапласiана Неймана Aε на
перiодичнiй необмеженiй областi Ωε, яка залежить вiд малого параме-
тра ε > 0. Область Ωε отримується шляхом видалення з Rn m ∈ N
сiмейств ε-перiодично розташованих малих резонаторiв. Доведено, що
спектр Aε має принаймнi m лакун. Першi m лакун прямують при ε→ 0
до деяких iнтервалiв, розташуванням i довжиною яких можна керувати
шляхом певного вибору резонаторiв; iншi лакуни (якщо вони є) пряму-
ють до нескiнченностi. Обговорюються застосування до теорiї фотонних
кристалiв.

Ключовi слова: перiодичнi середовища, резонатори, лапласiан Не-
ймана, спектральнi лакуни

mailto:andrii.khrabustovskyi@uhk.cz
mailto:khruslov@ilt.kharkov.ua

	Introduction
	Problem setting and main results
	Proof of Theorem 2.3
	Preliminaries.
	Determination of Lambda.
	Abstract scheme.
	Asymptotic behavior of Neumann and periodic eigenvalue problems.
	Asymptotic behavior of Dirichlet and antiperiodic eigenvalue problems.
	End of proof.

	Proof of Theorem 2.4

