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edness of the commutators on these spaces.

Key words: amalgam spaces, maximal operator, commutator

Mathematical Subject Classification 2020: 42B25, 43A15, 47B47

1. Introduction

Amalgam spaces were first introduced by N. Wiener, who employed some
special cases in his study of representation of functions by trigonometrical inte-
grals [13] and as part of his Tauberian theorems [14]. The first systematic study of
amalgam spaces on the real line is due to F. Holland [9]. He also obtained several
results for the more general amalgam (E,ωρ), where E is the Cartesian product
of a family {En}n∈Z of normed spaces and ωρ is a partially ordered vector space
of real sequences endowed with a Riesz norm ρ. Another relevant generalization
was studied by J. Stewart [12], who defined the amalgam (Lp, `q)(G) for a locally
compact Abelian group G. We will focus on the amalgam spaces (Lp, `q)(Rn).

Let us denote by Q0 the unit cube [0, 1)n in Rn and, for each z ∈ Rn, we
denote Qz = z + Q0. The amalgam space (Lp, `q)(Rn) is defined, for 1 ≤ p, q ≤
∞, as the set of all measurable functions f on Rn such that

‖f‖p,q = ‖{‖f‖Lp(Qw)}w∈Zn‖`q(Zn) <∞.

It is well known that (Lp, `q)(Rn) is a Banach space [9, Theorem 1] when
endowed with the norm ‖ · ‖p,q. Notice that for p, q <∞,

‖f‖p,q =

{∑
w∈Zn

(∫
Qw

|f(z)|p dz
)q/p}1/q

.

So, if p = q < ∞, then (Lp, `q)(Rn) = Lp(Rn). The same conclusion follows for
p = q =∞.
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If 1 ≤ q < p ≤ ∞, then the inclusion (Lp, `q)(Rn) ( Lp(Rn) ∩ Lq(Rn) holds.
In this case, the amalgam space does not contain any new functions besides the
ones already contained in Lp(Rn) and Lq(Rn). A more interesting case is 1 ≤ p <
q ≤ ∞ for Lp(Rn) ∪ Lq(Rn) ( (Lp, `q)(Rn). For example, consider the function

f(x) =


0 if x ≤ 0,

x−1/q if 0 < x ≤ 1,

x−1/p if 1 < x.

It is not hard to prove that f ∈ (Lp, `q)(R) but f /∈ Lp(R) ∪ Lq(R) for q > 1.

Other important inclusions are (Lp, `q1)(Rn) ( (Lp, `q2)(Rn) when q1 < q2 and
(Lp2 , `q)(Rn) ( (Lp1 , `q)(Rn) when p1 < p2. These and other basic properties of
amalgam spaces can be found in [6] and [12]. Regarding the dual space of an
amalgam space, it is characterized in the next theorem [9]:

Theorem 1.1. Let 1 < p, q < ∞. Then the dual space of (Lp, `q)(Rn) is
(Lp

′
, `q
′
)(Rn), where p′ and q′ are the conjugate exponents of p and q respectively.

We finish this section with the amalgam version of Hölder’s inequality [6]:

Theorem 1.2. If f ∈ (Lp, `q)(Rn) and g ∈ (Lp
′
, `q
′
)(Rn), then gf ∈ L1(Rn)

and

‖fg‖L1(Rn) ≤ ‖f‖p,q‖g‖p′,q′ .

2. Boundedness of the Hardy–Littlewood maximal

Recall that the Hardy–Littlewood maximal operator is defined as

(Mf)(x) = sup
Q3x

1

|Q|

∫
Q
|f(y)| dy,

where the supremum is taken over all cubes Q, with sides parallel to he axis,
containing x, and |Q| denotes the Lebesgue measure of Q. All cubes considered
in this paper are supposed to have sides satisfying this property. An equivalent
operator is obtained by using balls instead of cubes. It is known that M defines
a bounded operator on Lp. Even more, it is bounded on Lp spaces with certain
weights as stated in the next result, which is essential for proving the boundedness
of the Hardy–Littlewood maximal operator on the amalgam spaces [7, Corollary
1.13, p. 393]:

Theorem 2.1. Let (u, v) ∈ Ap. Then, for every q with 1 < p < q < ∞,
the maximal operator M is bounded from Lq(v) to Lq(u), that is, there exists a
constant C such that for every f ∈ L1

loc(Rn):∫
Rn
|Mf(x)|qu(x) dx ≤ C

∫
Rn
|f(x)|qv(x) dx. (2.1)
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We should remember that a pair of weights (u, v) belongs to the class Ap, for
1 < p <∞, if

sup
Q

(
1

|Q|

∫
Q
u(x) dx

)(
1

|Q|

∫
Q
v(x)−1/(p−1) dx

)p−1
<∞.

We will prove the following result:

Theorem 2.2. The maximal operator M : (Lp, `q)(Rn) −→ (Lp, `q)(Rn) is
bounded for 1 < p, q <∞.

To prove it, we require first the following weaker property.

Lemma 2.3. Let f ∈ (Lp, `q)(Rn) be bounded with compact support. Then
Mf ∈ (Lp, `q)(Rn).

Notice that unlike many other proofs for boundedness, where it is simulta-
neously proved that an operator is well defined and bounded, we do require the
Hardy–Littlewood maximal operator to be well defined on certain functions in
order to prove it is bounded on the amalgam spaces.

Proof. Let K = supp(f). If Q is any cube in Rn, then

1

|Q|

∫
Q
|f | ≤ 1

|Q|

∫
Q
‖f‖∞ = ‖f‖∞.

This shows Mf is bounded on Rn, although we will require a better bound to
show that Mf ∈ (Lp, `q)(Rn).

Since K is a compact, there exists R > 0 such that BR(0), the ball with
center at 0 and radius R, contains K. In consequence, the restriction of f to
any ball contained in the complement of BR(0) is identically zero. Let x ∈ Rn
with the euclidean norm ‖x‖ > R + 1, and let Br(x0) be a ball containing x
such that Br(x0) ∩ BR(0) 6= ∅. Then r ≥ (‖x‖ − R)/2. Since the volume of
an n-dimensional sphere is Crn for some constant C that depends only on n, we
obtain

1

|Br(x0)|

∫
Br(x0)

|f | . ‖f‖∞
rn
|Br(x0) ∩BR(0)|,

where the symbol . means that the inequality holds up to some constant that
depends only on n, p or q. One could obtain an explicit expression for the quantity
|Br(x0)∩BR(0)| as the sum of the volume of two n−dimensional spherical caps.
However, we do not require such a sharp bound in order to prove this lemma. If
we take C(f) = ‖f‖∞|BR(0)|, since r ≥ (‖x‖ −R)/2, we obtain

1

|Br(x0)|

∫
Br(x0)

|f | . C(f)

rn
≤ 2n

(‖x‖ −R)n
C(f) .

1

‖x‖n
C(f),

where the last inequality holds since

sup
‖x‖>R+1

2‖x‖
‖x‖ −R

<∞.
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For any cube Q in Rn, there exist two balls BQ
1 and BQ

2 such that BQ
1 ⊂ Q ⊂

BQ
2 and |BQ

2 |/|B
Q
1 | . 1. Then, if Q is a cube that contains x, with the radius of

BQ
2 greater than (‖x‖ −R)/2, we get

1

|Q|

∫
Q
|f | ≤ 1

|BQ
1 |

∫
BQ2

|f | = |B
Q
2 |

|BQ
1 |

1

|BQ
2 |

∫
BQ2

|f | . C(f)

||x||n
.

Therefore,

(Mf)(x) .


‖f‖∞ if ‖x‖ ≤ R+ 1,

C(f)

‖x‖n
if ‖x‖R+ 1.

Now we focus on the series

∑
m∈Zm

(∫
Qm

|Mf(x)|p dx
)q/p

.

Since we are only interested in its convergence, by the bounds we found for
(Mf)(x) it is enough to prove that

∑
m∈Zn
‖m‖>R1

(∫
Qm

(1/‖x‖n)pd x

)q/p
<∞

for some R1 large enough. We can also take R1 such that ‖x‖ > ‖m‖/2 whenever
x ∈ Qm. Then

∑
m∈Zn
‖m‖>R1

(∫
Qm

(1/‖x‖n)p dx

)q/p
≤

∑
m∈Zn
‖m‖>R1

(∫
Qm

(2n/‖m‖n)p dx

)q/p

= 2nq
∑
m∈Zn
‖m‖>R1

‖m‖−nq.

Observe now that∑
m∈Zn
m 6=0

‖m‖−nq =
∑
m∈Zn
m 6=0

∫
Q̃m

‖m‖−nqχ
Q̃m

(x)dx

.
∑
m∈Zn
m 6=0

∫
Q̃m

h(x)nq dx =

∫
Rn
h(x)nq dx,

where Q̃m is the cube with side 1 centered in m, and the positive function h is
defined as

h(x) =

{
1, if ‖x‖ ≤ 1,

‖x‖−1, if ‖x‖ > 1.
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It remains to verify the integrability of hnq over Rn. By using hyperspherical
coordinates, it is enough to verify that∫ ∞

1
r−nq+n−1 dr <∞,

which is true for q > 1.

Before proceeding with the proof of Theorem 2.2, we are to introduce a dis-
crete version of the Hardy–Littlewood maximal. For every x ∈ Zn and for every
function defined on Zn, the discrete maximal operator Md is defined as

Mdf(x) = sup
t>0

1

#(Gt(x) ∩ Zn)

∑
y∈Gt(x)∩Zn

f(y),

where Gt(x) = {y ∈ Rn : ‖x − y‖∞ ≤ t} and #(A) denotes the cardinality of
the set A. This operator is known to be bounded on `r(Zn) for 1 < r < ∞.
Some recent researches regarding bounds for the norm ofMd can be found in [2]
and [3]. Of particular interest to us is the “uncentered” version of the discrete
Hardy–Littlewood maximal operator defined as

Mdf(x) = sup
S3x

1

#(S)

∑
y∈S
|f(y)|,

where the supremum is taken over all sets of the form S = Gt(z) for some z ∈ Zn
and t > 0 that contain x. It is known that Md and Md are equivalent [8], that
is,

Mdf(x) .Mdf(x) .Mdf(x)

holds for all f : Zn → C and every x ∈ Zn.

Proof of Theorem 2.2. We follow the argument of the proof contained in
[4] adjusting it for cubes in Rn instead of intervals. But before that, let us
establish some notation that will simplify the following calculations. For x =
(x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn:

• x ≤ y means that xj ≤ yj for j = 1, 2, . . . , n.

• For x ≤ y and a, b ≥ 0, we define the set [[x, a; y, b]] as
[x1 − a, y1 + b] × [x2 − a, y2 + b] × · · · × [xn − a, yn + b], and [[x, a; y, b]]Z =
[[x, a; y, b]] ∩ Zn.

Notice that every cube in Rn can be written as [[x, h;x, h]] for some x ∈ Rn and
h > 0. Consider f ∈ (Lp, `q)(Rn) bounded with compact support, so we have
Mf ∈ (Lp, `q)(Rn). This analysis is divided into two cases:

i. Suppose that 1 < p < q < ∞. Take r = (q/p)′. For any b = {bm}m∈Zn ∈
`r(Zn), Hölder’s inequality gives us

∑
m∈Zn

(∫
Qm

|Mf |p
)
|bm| ≤

{ ∑
m∈Zn

(∫
Qm

|Mf |p
)q/p}p/q{ ∑

m∈Zn
|bm|r

}1/r
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= ‖Mf‖pp,q‖b‖`r . (2.2)

By taking λ > 0 and

bm = λ

(∫
Qm

|Mf |p
)(q/p)/r

= λ

(∫
Qm

|Mf |p
)(q−p)/p

,

the equality is attained in (2.2). For this particular choice, b ∈ `r if and only
if Mf ∈ (Lp, `q)(Rn). Thus, the assumptions of f being bounded with compact
support are necessary in order to apply Lemma 2.3. Then we can take λ such
that ‖b‖`r = 1 to obtain

‖Mf‖pp,q =
∑
m∈Zn

(∫
Qm

|Mf |p
)
bm =

∫
Rn
|Mf(x)|pu(x) dx, (2.3)

where u(x) =
∑

m∈Zn bmχQm(x).
Let us define, for m ∈ Zn,

αm := Md({bk}k∈Zn)(m) and βm =
∑

k∈[[m,2;m,2]]Z

bk.

Take now Λm = max{αm, βm} and consider the weight

v(x) =
∑
m∈Zn

ΛmχQm(x).

We will see now that (u, v) ∈ Ap0 for 1 < p0 < p. Let Q = [[x0, h;x0, h]] be some
cube, with x0 ∈ Rn and h > 0. Then there exists a unique m0 ∈ Zn such that
x0 ∈ Qm0 . We consider two cases:

A) Suppose 0 < h < 1. Then Q ⊂
⋃

k∈[[m0,1;m0,1]]Z

Qk and in consequence,

1

|Q|

∫
Q
u =

1

|Q|

∫
Q

∑
k∈[[m0,1;m0,1]]Z

bkχQk(x)dx =
1

|Q|
∑

k∈[[m0,1;m0,1]]Z

bk

∫
Q
χQk(x)dx

≤ 1

|Q|
∑

k∈[[m0,1;m0,1]]Z

bk

∫
Q
dx =

∑
k∈[[m0,1;m0,1]]Z

bk.

On the other hand, for x ∈ Q,

v(x)1/(1−p0) =
∑

m∈[[m0,1;m0,1]]Z

Λ1/(1−p0)
m χQm(x).

It is easy to see that for m ∈ [[m0, 1;m0, 1]]Z we have

Λm ≥ βm ≥
∑

m∈[[m0,1;m0,1]]Z

bk.
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Then(
1

|Q|

∫
Q
v1/(1−p0)

)p0−1
=

(
1

|Q|

∫
Q

∑
m∈[[m0,1;m0,1]]Z

Λ1/(1−p0)
m χQm(x)dx

)p0−1

≤
({ ∑

m∈[[m0,1;m0,1]]Z

bk

}1/(1−p0) 1

|Q|

∫
Q

∑
m∈[[m0,1;m0,1]]Z

χQm(x)dx

)p0−1

=

({ ∑
m∈[[m0,1;m0,1]]Z

bk

}1/(1−p0) 1

|Q|

∫
Q
dx

)p0−1
=

{ ∑
m∈[[m0,1;m0,1]]Z

bk

}−1
.

Therefore, for 0 < h < 1, we obtain(
1

|Q|

∫
Q
u

)(
1

|Q|

∫
Q
v1/(1−p0)

)p0−1
≤ 1. (2.4)

B) Now we consider 1 ≤ h < ∞ and denote by bhc its integer part. In this
case,

Q ⊂ Qh := [[n0, bhc+ 2;n0, bhc+ 2]]

for some n0 ∈ Zn, and thus we obtain

1

|Q|

∫
Q
u =

1

(2h)n

∫
Q

∑
m∈QhZ

bmχQm(x) dx

≤ 1

(2h)n
#(QhZ)

#(QhZ)

∫
Qh

∑
m∈QhZ

bmχQm(x) dx ≤ (2bhc+ 5)n

(2h)n
1

#(QhZ)

∑
m∈QhZ

bm,

where QhZ = Qh ∩ Zn. Since 1 ≤ h, it follows that

2bhc+ 5

2h
≤ 2h+ 5

2h
= 1 +

5

2h
≤ 7

2
.

On the other hand, by the definition of the discrete maximal operator Md,

1

#(QhZ)

∑
m∈QhZ

bm ≤Md({bj}j)(k)

for each k ∈ Qh. Then, by taking

γ(m0, bhc) := min{Md({bk}k)(m) : m ∈ QhZ},

we obtain
1

|Q|

∫
Q
u ≤

(
7

2

)n
γ(n0, bhc).

Also, for x ∈ Q, we have

v(x)1/(1−p0) =
∑
m∈QhZ

Λ1/(1−p0)
m χQm(x).



686 Antonio L. Baisón, Jorge Bueno-Contreras, and Victor A. Cruz

By the construction, for m ∈ Qh ∩ Zn, we get

Λm ≥ αm = Md({bk}k)(m) ≥ γ(n0, bhc),

and in consequence,(
1

|Q|

∫
Q
v1/(1−p0)

)p0−1
=

(
1

|Q|

∫
Q

∑
m∈QhZ

Λ1/(1−p0)
m χQm(x) dx

)p0−1

≤
(

1

|Q|

∫
Q

∑
m∈QhZ

γ(n0, bhc)1/(1−p0)χQm(x) dx

)p0−1

=

(
γ(n0, bhc)1/(1−p0)

1

|Q|

∫
Q

∑
m∈QhZ

χQm(x) dx

)p0−1

=

(
γ(n0, bhc)1/(1−p0)

1

|Q|

∫
Q
dx

)p0−1
= γ(n0, bhc)−1.

Therefore, (
1

|Q|

∫
Q
u

)(
1

|Q|

∫
Q
v1/(1−p0)

)p0−1
≤
(

7

2

)n
. (2.5)

By (2.4) and (2.5), we conclude that (u, v) ∈ Ap0 . Since p0 < p, we can use
Theorem 2.1 to guarantee the existence of a constant C > 0 such that∫

Rn
|Mf(x)|pu(x) dx ≤ C

∫
Rn
|f(x)|pv(x) dx.

Notice that this constant C may depend on u and v since Theorem 2.1 deals with
the boundedness of the maximal from Lp(u) into Lp(v). However, analysing the
proofs of [7, Theorem 1.12, p. 393] and Theorem 2.1, one concludes that C can
be taken as a constant of the same order of some upper bound for(

1

|Q|

∫
Q
u

)(
1

|Q|

∫
Q
v1/(1−p0)

)p0−1
,

which we have bounded by (7/2)n, a constant depending only on n.
On the other hand, 1 < p < q <∞. So, we can also use (2.3) to obtain

‖Mf‖pp,q =

∫
Rn
|Mf(x)|pu(x) dx ≤ C

∫
Rn
|f(x)|pv(x) dx.

To finish the case 1 < p < q <∞, we only have to prove that∫
Rn
|f(x)|pv(x)dx . ‖f‖pp,q.

We have taken r such that r′ = q/p. Then, by Hölder’s inequality, we obtain∫
Rn
|f |pv =

∫
Rn
|f(x)|p

( ∑
m∈Zn

ΛmχQm(x)

)
dx
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=
∑
m∈Zn

Λm

∫
Rn
|f(x)|pχQm(x)dx =

∑
m∈Zn

Λm

∫
Qm

|f(x)|pdx

≤

( ∑
m∈Zn

Λrm

)1/r( ∑
m∈Zn

{∫
Qm

|f |p
}q/p)p/q

=

( ∑
m∈Zn

Λrm

)1/r

‖f‖pp,q.

Since Λm = max{αm, βm} ≤ αm + βm, Minkowski’s inequality implies that( ∑
m∈Zn

Λrm

)1/r

≤

( ∑
m∈Zn

αrm

)1/r

+

( ∑
m∈Zn

βrm

)1/r

.

Recall that

αm := Md({bk}k∈Zn)(m) and βm =
∑
k∈Zn

k∈[[m,2;m,2]]Z

bk.

Since the discrete maximal is bounded on `r(Zn), by the construction of the
sequence {bk}k, we conclude that( ∑

m∈Zn
αrm

)1/r

≤ ‖Md‖‖{bk}k‖`r = ‖Md‖.

Regarding the remaining term, consider the shift operators

ϕk : `r −→ `r

{aj}j 7−→ {aj+k}j

for k ∈ Zn. It is clear that these operators are isometries on `r. Hence, they are
all bounded, their norms are equal to 1, and

{βm}m =
∑

k∈[[0,2;0,2]]Z

ϕk({bj}j).

Then

‖{βm}m‖`r =

∥∥∥∥∥
( ∑
k∈[[0,2;0,2]]Z

ϕk

)
({bj}j)

∥∥∥∥∥
`r

≤

∥∥∥∥∥ ∑
k∈[[0,2;0,2]]Z

ϕk

∥∥∥∥∥‖{bj}j‖`r
≤

∑
k∈[[0,2;0,2]]Z

‖ϕk‖ = #([[0, 2; 0, 2]]Z) = 5n,

which ends this half of the proof.

ii. Suppose now that 1 < q < p < ∞. If β is such that 1
q = 1

p + 1
pβ , then β =

q
p−q > 1. Given {uk}k∈Zn ∈ `β(Zn), with uk > 0. By Hölder’s inequality, for any
h ∈ (Lp, `q)(Rn), we obtain

‖h‖p,q =

∥∥∥∥∥∥

(∫

Qm

|h|p
)1/p


m∈Zn

∥∥∥∥∥∥
`q
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=

∥∥∥∥∥∥

(∫

Qm

|h|pu−1m

)1/p

u1/pm


m∈Zn

∥∥∥∥∥∥
`q

≤

∥∥∥∥∥∥

(∫

Qm

|h|pu−1m

)1/p

m∈Zn

∥∥∥∥∥∥
`p

∥∥{u1/pm }m∈Zn
∥∥
`pβ

=

{ ∑
m∈Zn

u−1m

∫
Qm

|h|p
}1/p{ ∑

m∈Zn

∣∣u1/pm

∣∣pβ}1/pβ

=


∫
Rn
|h(x)|p

( ∑
m∈Zn

u−1m χQm(x)

)
dx


1/p

( ∑
m∈Zn

|um|β
)1/β


1/p

. (2.6)

Notice that {uk}k∈Zn ∈ `β(Zn) if and only if {u1/pk }k∈Zn ∈ `
pβ. Then we can take,

just like in the previous case, u with ‖u‖`β = 1 such that equality is attained in
Hölder’s inequality. For this particular sequence u, inequality (2.6) gives us the
identity

‖f‖p,q =

{∫
Rn
|f(x)|p

( ∑
m∈Zn

u−1m χQm(x)

)
dx

}1/p

. (2.7)

For a sequence {vk}k∈Zn , with vk > 0, we get the inequality

‖Mf‖p,q ≤

{ ∑
m∈Zn

v−1m

∫
Qm

|Mf |p
}1/p{ ∑

m∈Zn
|vm|β

}1/pβ

. (2.8)

Now it should be noticed that since 1 < q < p < ∞, then there exists p0 <
p such that p0 − 1 > p − q. Then (p0 − 1)β = q(p0 − 1)/(p − q) > q > 1. By
the continuity of the discrete maximal operator on `β(p0−1)(Zn), we can take A =
‖Md‖p0−1

`β(p0−1)→`β(p0−1) . Then we obtain∥∥∥∥{[Md({u1/(p0−1)k }k∈Z)(m)
]p0−1}

m∈Zn

∥∥∥∥
`β(Zn)

=

=

{ ∑
m∈Zn

∣∣∣Md({u1/(p0−1)k }k∈Zn)(m)
∣∣∣(p0−1)β}1/β

=
∥∥∥{Md({u1/(p0−1)k }k∈Zn)(m)

}
m∈Zn

∥∥∥p0−1
`β(p0−1)

≤ A
∥∥∥{u1/(p0−1)k

}
k∈Zn

∥∥∥p0−1
`β(p0−1)

= A

{ ∑
m∈Zn

|u1/(p0−1)k |β(p0−1)
}(p0−1)/(β(p0−1))

= A

{ ∑
m∈Zn

|uk|β
}1/β

= A.

By choosing vm =
[
Md({u1/(p0−1)k }k∈Zn)(m)

]p0−1
, we obtain( ∑

m∈Zn
vβn

)1/β

≤ ‖Md‖p0−1
`β(p0−1)→`β(p0−1) . (2.9)
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Now we will consider the weights

v(x) =
∑
m∈Zn

v−1m χQm(x) and u(x) =
∑
m∈Zn

u−1m χQm(x).

Let us prove that the pair (v, u) belongs to the class Ap0 . Let Q be a cube, with
x0 ∈ Rn and h > 0 such that Q = [[x0, h;x0, h]]. Then there exists a unique m0 ∈
Zn that satisfies x0 ∈ Qm0 . Further we will separate different possibilities for h.

A) Suppose h > 1. Then

Q ⊂
⋃
k∈QhZ

Qk,

where Qh = [[m0, bhc+ 1;m0, bhc+ 1]]. Then we can write the weights u and v
as

v(x) =
∑
m∈QhZ

v−1m χQm(x)

and
u(x)1/(1−p0) =

∑
m∈QhZ

u1/(p0−1)m χQm(x)

whenever x ∈ Q. It follows that

1

|Q|

∫
Q
v =

1

|Q|

∫
Q

∑
m∈QhZ

v−1m χQm(x)dx =
1

|Q|
∑
m∈QhZ

∫
Q
v−1m χQm(x)dx

≤ 1

|Q|
∑
m∈QhZ

∫
Qm

v−1m χQm(x)dx =
1

(2h)n

∑
m∈QhZ

v−1m

=
1

(2h)n

∑
m∈QhZ

[Md({u1/(p0−1)k }k)(m)]1−p0

≤ 1

(2h)n
#(Qh ∩ Zn) max

m∈QhZ
[Md({u1/(p0−1)k }k)(m)]1−p0 .

Just like before, since h > 1, we have

#(Qh ∩ Zn)

(2h)n
≤ (2h+ 5)n

(2h)n
≤
(

7

2

)n
.

Notice that 1− p0 < 0, so we also have

max
m∈QhZ

[Md({u1/(p0−1)j }j)(m)]1−p0 =

(
min
m∈QhZ

Md({u1/(p0−1)k }k)(m)

)1−p0

.

On the other hand,

(
1

|Q|

∫
Q
u1/(1−p0)

)p0−1
=

 1

(2h)n

∫
Q

∑
m∈QhZ

u1/(p0−1)m χQm(x)

p0−1
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≤

 1

(2h)n

∑
m∈QhZ

∫
Qm

u1/(p0−1)m χQm(x)

p0−1

≤

 1

(2h)n
#(Qh ∩ Zn)

#(Qh ∩ Zn)

∑
m∈QhZ

u1/(p0−1)m

p0−1

≤

{7

2

}n 1

#(Qh ∩ Zn)

∑
m∈QhZ

u1/(p0−1)m

p0−1

.

Since p0 − 1 > 0, this implies that(
1

|Q|

∫
Q
u1/(1−p0)

)p0−1
≤
(

7

2

)n(p0−1)(
Md({u1/(p0−1)m }m)(k)

)p0−1
for every k ∈ Qh ∩ Zn. In particular,(

1

|Q|

∫
Q
u1/(1−p0)

)p0−1
≤
(

7

2

)n(p0−1)
min
m∈QhZ

(
Md({u1/(p0−1)k }k)(m)

)p0−1
=

(
7

2

)n(p0−1)(
min
m∈QhZ

Md({u1/(p0−1)k }k)(m)
)p0−1

,

where the last equality holds since p0 − 1 > 0. Therefore, we obtain(
1

|Q|

∫
Q
v

)(
1

|Q|

∫
Q
u1/(1−p0)

)p0−1
≤
(

7

2

)np0
for h > 1.

B) Suppose that 0 < h < 1. Then Q ⊂ [[m0, 1;m0, 1]], so

v(x) =
∑

m∈[[m0,1;m0,1]]Z

v−1m χQm(x)

and
u(x)1/(1−p0) =

∑
m∈[[m0,1;m0,1]]Z

u1/(p0−1)m χQm(x)

whenever x ∈ Q. Then

1

|Q|

∫
Q
v =

1

|Q|

∫
Q

∑
m∈[[m0,1;m0,1]]Z

v−1m χQm(x) dx

=
∑

m∈[[m0,1;m0,1]]Z

v−1m
1

|Q|

∫
Q
χQm(x) dx

≤
∑

m∈[[m0,1;m0,1]]Z

v−1m
1

|Q|

∫
Q

1 dx =
∑

m∈[[m0,1;m0,1]]Z

v−1m .
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On the other hand,(
1

|Q|

∫
Q
u1/(1−p0)

)p0−1
=

 1

|Q|

∫
Q

∑
m∈[[m0,1;m0,1]]Z

u1/(p0−1)m χQm(x) dx

p0−1

=

 ∑
m∈[[m0,1;m0,1]]Z

u1/(p0−1)m

1

|Q|

∫
Q
χQm(x) dx

p0−1

≤

#([[m0, 1;m0, 1]]Z)

#([[m0, 1;m0, 1]]Z)

∑
m∈[[m0,1;m0,1]]Z

u1/(p0−1)m

1

|Q|

∫
Q

1 dx

p0−1

=

3n
1

#([[m0, 1;m0, 1]]Z)

∑
m∈[[m0,1;m0,1]]Z

u1/(p0−1)m

p0−1

.

Since p0 − 1 > 0, we obtain(
1

|Q|

∫
Q
u1/(1−p0)

)p0−1
≤ 3n(p0−1)

[
Md({u1/(p0−1)k }k)(m)

]p0−1
= 3n(p0−1)vm

for every m ∈ [[m0, 1;m0, 1]]Z. In consequence,(
1

|Q|

∫
Q
u1/(1−p0)

)p0−1
≤ 3n(p0−1) min

m∈[[m0,1;m0,1]]Z
vk.

This implies that(
1

|Q|

∫
Q
v

)(
1

|Q|

∫
Q
u1/(1−p0)

)p0−1
≤ 3n(p0−1)

 ∑
m∈[[m0,1;m0,1]]Z

v−1m

( min
m∈[[m0,1;m0,1]]Z

vk

)

= 3n(p0−1)
∑

m∈[[m0,1;m0,1]]Z

1

vm
min

m∈[[m0,1;m0,1]]Z
vk

≤ 3n(p0−1)
∑

m∈[[m0,1;m0,1]]Z

1 = 3n(p0−1)3n = 3np0 .

This proves that the pair (v, u) belongs to the class Ap0 . Then there exists a
constant C > 0 such that∫

Rn
|Mf(x)|pv(x) dx ≤ C

∫
Rn
|f(x)|pu(x) dx.

By the same argument as in the case p < q, the constant C will depend only on
n and p0. By taking into account (2.7), (2.8) and (2.9), we obtain

‖Mf‖pp,q ≤ ‖Md‖p(p0−1)
`β(p0−1)→`β(p0−1)

∫
Rn
|Mf(x)|pv(x) dx
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≤ C‖Md‖p(p0−1)
`β(p0−1)→`β(p0−1)

∫
Rn
|f(x)|pu(x) dx

= C‖Md‖p(p0−1)
`β(p0−1)→`β(p0−1)‖f‖pp,q.

So far we have proved, for 1 < p, q < ∞, the existence of some positive
constant K such that if f is a bounded function with compact support on Rn,
then

‖Mf‖p,q ≤ K‖f‖p,q.

To finish the demonstration, we let f ∈ (Lp, `q)(Rn) and take a sequence {fk}∞k=1

of bounded functions with compact support that converges to f in the norm of
(Lp, `q)(Rn).

3. On the sharp and the commutator

After verifying the boundedness of the maximal operator on the amalgam
spaces (Lp, `q)(Rn), we focus our attention on the sharp function. Recall that it
is defined as

f ](x) = sup
Q3x

1

|Q|

∫
Q
|f(y)− fQ| dy.

It is known that the operator f 7→ f ] is bounded on Lp. We adapt the argu-
ment used in [11, Theorem 2, p.148] in order to obtain that boundedness on the
amalgam spaces.

Theorem 3.1. Suppose 1 < p, q < ∞. Then there exist positive constants
C1 and C2 such that for every f ∈ (Lp, `q)(Rn) the following inequalities hold:

C1‖f ]‖p,q ≤ ‖f‖p,q ≤ C2‖f ]‖p,q.

Proof. Let f ∈ (Lp, `q)(Rn). It is easy to verify the pointwise inequality

f ](x) ≤ 2Mf(x).

Thus, f ] ∈ (Lp, `q)(Rn) and

‖f ]‖p,q ≤ 2‖Mf‖p,q ≤ C‖f‖p,q.

Let g ∈ (Lp
′
, `q
′
)(Rn). Consider a pair of sequences {fk}∞k=1 and {gk}∞k=1 satisfying

the following properties:

(i) fk → f a.e.;

(ii) fk is bounded;

(iii) |gk| → |g| a.e.;

(iv) gk has compact support;

(v) The gk are dominated by some function in (Lp
′
, `q
′
)(Rn);

(vi)
∫
Rn gk = 0.
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Properties (i)–(v) can be satisfied if we obtain the sequences {fk}k and {gk}k
by applying the construction used at the end of the previous demonstration. To
satisfy (vi), consider the function

ϕk(r) =

∣∣∣∣∣
∫
|x|≤r

gk(y) dy

∣∣∣∣∣−
∣∣∣∣∣
∫
|x|≥r

gk(y) dy

∣∣∣∣∣.
This function is continuous on [0,∞) and clearly, ϕk(0) ≤ 0, while ϕk(t) ≥ 0 for
t large enough. Then there exists R > 0 such that ϕk(R) = 0, i.e.,∣∣∣∣∣

∫
|x|≤R

gk(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
|x|≥R

gk(x) dx

∣∣∣∣∣ .
Now we can find a constant λ, with |λ| = 1, such that the function g̃k, defined as

g̃k(x) =

{
λgk(x) if |x| ≤ R
gk(x) if |x| > R.

satisfies the required property

∫
Rn
g̃k(x)dx = 0 and the previous ones.

The conditions imposed in [11, Theorem 2, p.148] are used to prove that gk
belongs to the Hardy space H1 in order to apply the following result:

If u is bounded and v ∈ H1, then∣∣∣∣∫
Rn
u(x)v(x) dx

∣∣∣∣ . ∫
Rn
u](x)Mv(x) dx. (3.1)

TheM in the previous inequality is a maximal operator whose definition can be
found in [11, §1.2, p. 90]. It is shown in that same section that the following
pointwise inequality holds:

Mf(x) .Mf(x). (3.2)

By applying (3.1) to fk and gk and using (3.2) together with Hölder’s inequality
for the amalgam spaces, we obtain∫

Rn
|fk(x)gk(x)|dx ≤

∫
Rn
f ]k(x)Mgk(x)dx .

∫
Rn
f ]k(x)Mgk(x)dx

≤ ‖f ]k‖p,q‖Mgk‖p′,q′ . ‖f ]k‖p,q‖gk‖p′,q′ .

By letting k →∞, it follows that∣∣∣∣ ∫
Rn
f(x)g(x)dx

∣∣∣∣ ≤ ∫
Rn
|f(x)g(x)|dx . ‖f ]‖p,q‖g‖p′,q′ .

The previous inequality holds for any f ∈ (Lp, `q)(Rn) and g ∈ (Lp
′
, `q
′
)(Rn). If

we take the supremum on the left side over all the g’s with ‖g‖p′,q′ ≤ 1, we get

‖f‖p,q ≤ C2‖f ]‖p,q.
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Our last result is obtained as a Corollary of the previous one. For any b ∈
BMO(Rn), and T a Calderón-Zygmund operator on Rn, let [b, T ] denote the
commutator of T and the multiplication operator φ 7→ b · φ. The commutator
acts on C∞0 (Rn) by the rule

[b, T ]φ = b · (Tφ)− T (b · φ).

The boundedness of [b, T ] on Lp was first proved by Coifman, Rochberg and Weiss
in 1976 [5]. Other sources, where one can find this result include [1] and [10].
The standard proof employs the pointwise inequality

([b, T ]φ)](z) ≤ Cr‖b‖BMO

[
(M(φr)(z))1/r + (M((Tφ)r)(z))1/r

]
, (3.3)

which holds whenever φ ∈ Lp, 1 < p < ∞ and 1 < r < p. In particular, it will
hold for every φ bounded with compact support. If we approximate any f ∈
(Lp, `q)(Rn) using bounded functions with compact support, by applying (3.3)
and the boundedness of both the Hardy–Littlewood maximal operator and the
operator φ 7→ φ] on the amalgam spaces, we obtain:

Theorem 3.2. Let T be a Calderón–Zygmund operator on Rn and b ∈
BMO(Rn). Then the commutator operator [b, T ] is bounded on (Lp, `q)(Rn) for
1 < p, q <∞.
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inequalities for averaging operators in Rd, Geom. Funct. Anal. 28 (2018), 58–99.

[3] J. Bourgain, M. Mirek, E.M. Stein, and B.A. Wróbel, Dimension-free estimates for
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Максимальний оператор на амальгамному просторi
Antonio L. Baisón, Jorge Bueno-Contreras, and Victor A. Cruz

Ми доводимо обмеженiсть максимального оператора Хардi–Лiттл-
вуда на амальгамних просторах (Lp, `q)(Rn). Як наслiдок, одержуємо
обмеженiсть комутаторiв на цих просторах.

Ключовi слова: амальгамнi простори, максимальний оператор, кому-
татор
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