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Existence Results for Some Anisotropic
Elliptic Problems Having Variable Exponent
and L'-data

Mohamed Badr Benboubker and Hassane Hjiaj

In this paper, we propose to study the existence of entropy solutions for
the strongly nonlinear anisotropic elliptic equation

Au+ H(z,u,Vu) = f in Q,

where f belongs to L(€2), A is a Leray—Lions operator and H is a nonlinear
lower order term with nonstandard growth with respect to |Vu| (i.e., such
that |H(z,s,8)| < c(z) + b(|5|)Z:fV:1 & P(®)), but without assuming the
sign condition H(z,s,&)s > 0. A concrete example is given to illustrate the
existence result.
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1. Introduction

This paper is devoted to the study of some classes of anisotropic elliptic
boundary value problems of the form

1.1
u=20 on 0f) (1.1)

{Au+ H(z,u,Vu)=f in Q,
in a bounded open domain Q € RY, (N > 2). The interest in these problems
relies on the fact that they are strongly nonlinear and non-homogeneous. Here,
the anisotropic operator under considerarion is a differential operator involving
partial derivatives with different powers p;(x) > 1, that is,

N
Au = — Z Dia;(z,u, Vu),
i=1

where D' = 9/0x;, fori = 1,..., N. Therefore, in order to prove the existence re-
sults, we need to consider a different functional setting from the classical Sobolev
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space. Indeed, the appropriate space to capture sgch formulated problem is the
anisotropic variable exponent Sobolev space VVO1 P (')(Q) recently introduced by
Mihalescu—Pucci-Raduslescu in [20].

Another relevant class of operators, for which a general and almost complete
theory is now available, is without a doubt one of the equations with the so-called
p(-)—growth, i.e., the p(-)-Laplacian equation

—div (|Vu[P®~2vy) = f,

where p : @ — (1,00) is a bounded and continuous function. We recall some
papers (and references therein), in which this theory is developed: [3,12,15,22].

We mention that partial differential equations and variational problems re-
lated to p(-)-growth conditions have been extensively studied in the last decades.
The reason is that they can model various phenomena arising from the study of
elastic mechanics, electrorheological fluids or image restoration.

The interest of considering anisotropic problems with variable exponents is
linked to a large scale of applications containing some non-homogeneous materials
that have different behaviors in different space directions. It was established
that for an appropriate treatment of these materials we can not rely on the
classical Sobolev space and that we have to allow the exponent to vary instead.
Furthermore, anisotropic fluids are widely applicable in the common life. Most
of the modern electronic displays are liquid crystal based. We can mention also
magnetorheological shock absorber of buildings or in the automotive industry,
magnetorheological damper and electrorheological clutch.

Let us note that the definition of the variable exponent Lebesgue spaces and
the variable exponent Sobolev spaces requires only the measurability of p(-), in
this work we do not need to use Sobolev and Poincaré inequalities. Moreover,
the sharp Sobolev inequality is proved for p(-) log-Holder continuous, while the
Poincaré inequality requires only the continuity of p(-), (for more details, we refer
to [6,13,17]).

It should be mentioned that in [I] Benboubker et al studied the following
problem which is quite close to (1.1):

Au+ H(x,u, Vu) + 6|u[*@ 2y = f in Q,
u=20 on 052,

where the nonlinear term H satisfies some growth condition without the sign
condition. In [1], the authors proved the existence of solutions in the convex
class Ky = {u € Wol’ﬁ(')(Q) | uw > v ae. in Q}, where ¢ is a fixed obstacle
function such that " € Wol’ﬁ(')(Q) N L>(Q).

The novelty of our work is in extending the results in [2] by taking into account
a more general type of operator, that is, the anisotropic operator, and prove a
new existence result without any sign condition on H.

The main difficulty in proving the existence of a solution stems from the
fact that H(z,u,Vu) does not assume the sign condition (i.e., H(z,s,{)s >
0). In other words, the term H(x,u,Vu) is said to be an absorption term. In
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this case, a detailed picture of what happens is available (see, e.g., [2,5,9-11]).
Secondly, we have to face the problem that the operator Au is not coercive in
the anisotropic variable exponent Sobolev space T/VO1 P (')(Q). For this reason we
try to overcome this difficulty by using a penalization term %\UP’O_QU in the
approximate problems.

Motivated by the ideas in [1,21], the method used here is to define approximate
problems, then to obtain a priori estimates for their solutions using suitable test
functions (exponential type) and finally to prove a new compactness property in
order to pass to the limit.

This paper is organized as follows. In Section 2, we present some necessary
preliminary knowledge on anisotropic variable exponent Sobolev spaces. In Sec-
tion 3, we state the problem and formulate the main result. We also present some
auxiliary results which will be used to prove the existence theorem in Section 4,
and finally we give a concrete example of our main result.

2. Preliminaries

In this section, we will introduce some definitions and properties concerning
the anisotropic variable exponent Sobolev space used for the study of our main
existence result.

Let Q be a bounded open subset of RY (N > 2). We denote
C. () = {measurable function p(-): Q+— R suchthat 1<p <p' < oo},
where
p~ =essinf{p(x) | x € Q} and p" =esssup{p(z) |z € Q}.

We define the Lebesgue space with variable exponent LP()(Q) as the set of all
measurable functions u : 2 — R for which the convex modular

)= [ i
Q
is finite, and the expression
lullpy = inf{A >0 | ppry(u/A) < 1}

defines a norm in LP()(Q), called the Luxemburg norm. The space
(LPO(Q), |-[lp(.y) is a separable Banach space. Moreover, if 1 < p~ < pt <
+00, then LPC (€2) is uniformly convex, hence reflexive, and its dual space is iso-

morphic to Lp/(‘)(Q), where L) + =~ = 1. Finally, we have the Holder type
inequality

p(z p'(z)
1

1
/qu dz| < <p_ + p") Hu”p(-)H”Hp’(-)

for all w € LP0)(Q) and v € LP'O)(Q).
An important role in manipulating the generalized Lebesgue spaces is played
by the modular p,.) of the space LP(')(Q). We have the following result.
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Proposition 2.1 (see [16,23]). If u,,u € LPO)(Q), then the following prop-
erties hold true:

(1) ullpy <1 (resp.,=1,>1) & p(u) <1 (resp.,=1,>1),
. - +
) Nl > 1= ullZ)) < o) < lull2) and
+ p—
lally < 1= ) < o) <l
(iii) flunllpy = 0 & pun) = 0 and |lug|[p) = 00 & p(un) — oo.

We notice that the norm convergence and the modular convergence are equiv-
alent.
Now we define the variable exponent Sobolev space by

WHO(Q) = {u e IPV(Q) | [Vu| € LPO(Q)},
which is a Banach space equipped with the norm
ullpiy = lellpey + [ Vullpey,  we WHPO(Q).

We denote by Wol’p(')(Q) the closure of C§°(Q) in WP()(Q), and we define the
Sobolev exponent by

Np(z)
PHa) = Np(2) for p(xz) < N,
00 for p(x) > N.

Proposition 2.2 (see [14]).

(i) Assuming 1 < p~ < pt < oo, the spaces W'P()(Q) and Wol’p(')(ﬂ) are
separable and reflexive Banach spaces.

(i) If q(-) € C+(Q) and q(z) < p*(z) for a.e. x € Q, then the embedding
Wol’p(')(Q) s L1O)(Q) is continuous and compact.

In order to study problem (1.1), let us introduce the functional spaces where
it will be discussed. We will give just a brief review of some basic concepts and
facts of the anisotropic variable exponent Sobolev spaces. For more details we
refer the readers to [20].

We now recall some facts on the anisotropic variable exponent Sobolev spaces
used in the present paper. Let po(z),p1(z),...,pn(x) be N+1 variable exponents
in C4+(£2). We denote

7)) =1{po(),...,pn()}, D°w=w, and D'u= Ou for 1=1,...,N

8%

and define
p =min(py,p;,...,py) thenp>1.

The anisotropic variable exponent Sobolev space Wl’ﬁ(')(Q) is defined as follows:

WHPO(Q) = {u e LPU(Q) | D'u e LPO(Q) for i = 1,2,..., N},
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endowed with the norm
N .
lall g = S 1D o . (2.1)
i=0

We define also Wol’ﬁ(') (Q) as the closure of C°() in WHP()(Q) with respect to the

norm (2.1). The space (Wol’ﬁ(')(Q), |ull1,5.)) is a separable and reflexive Banach
space (cf. [20]).

Lemma 2.3. We have the following continuous and compact embeddings:
o ifp <N, then Wol’ﬁ(')(Q) —— LI(Q), for q € [p,p*[, where p* = NN—_%);
o ifp=N, then Wol’ﬁ(')(Q) —— L9(Q), for q € [p, +o0f; )
o ifp> N, then Wy (Q) s L®(Q) N CO(Q).

The proof of this lemma follows from the fact that the embedding

1
VVO1 P ()(Q) — W, ’E(Q) is continuous, and in view of the compact embedding
theorem for Sobolev spaces.

The dual of Wol’ﬁ(')(ﬂ) is denoted by WLF'0)(Q), where p'(:) =
_|_

{ro(-), -, Py()} with p;1(~) pil(_) =1, (cf. [8] for the constant exponent case).

Proposition 2.4. For each F € W=P'0)(Q), there exists F; € LPi0)(Q) for
1=0,1,...,N such that F = Fy — Zfil D'F;. Moreover, for anyu € Wol’p(')(Q),

we have
N .
(F,u) :Z/ F; D'udz.
i=0 Y

We define a norm on the dual space by

N
|1y = E Y ([ F -
i=0
For any k& > 0, we define the truncation function Ty(-) by : Ti(s) :=
max{—Fk, min{k, s}}. We set
761’5(')(9) = {u:Q+— R | uis measurable and Tj(u) GWOLﬁ(')(Q) for any k>0}.

Proposition 2.5. Let u € %l’ﬁ(')(Q). For any i € {1,...,N}, there exists a
unique measurable function v; : Q — R such that

vk >0 DZTk(u) = ViX{|u|<k} @-€ T € Q,

where xp denotes the characteristic function of a measurable set B. The func-
tions v; are called the weak partial derivatives of u and are still denoted by D'u.
Moreover, if u belongs to WOI’I(Q), then v; coincides with the standard distribu-
tional derivative of u, that is, v; = D'u.
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3. Statement of the problem and the main result

Let Q be a bounded open subset of RY (N > 2) and p;(-) € C(Q) for i =
0,1,..., N. We assume that

Ve e Q po(x) > max{p;(x)|i=1,2,...,N}. (3.1)

Here A is an operator of Leray—Lions type acting from VVO1 P (')(Q) into its dual
W=17'0)(Q) defined by the formula

N
Ay = — Z Dia;(z,u, Vu),
i=1
where a; : Q x R x RV = R is a Carathéodory function for i = 1,..., N (mea-

surable with respect to x in Q for every (s,£) in R x RY, and continuous with
respect to (s,£) in R x RY for almost every z in ) which satisfies the following
conditions:

lai(z,5,6)] < B (Ki(z) + s~ 16O~ fori=1,...,N,  (3.2)
(Ii(iU, 575)57; > O‘|£’L|pl(x) for ¢ = 17 HERR N7 (33)

for all £ = (&1,...,¢&n) and &' = (&],...,&y), we have
(CLi("II, Sag) - ai($a 875,))(51' - g;) >0 with gz ?é f;a (34)

for a.e. x € Q and all (s,¢) € R x RY, with K;(z) being a nonnegative function
lying in LPi()(Q), and o, 8 > 0.

As a consequence of (3.3) and the continuity of the function a(z,s,-) with
respect to &, we have

a(z,s,0) = 0.

The nonlinear term H(x, s,€) is a Carathéodory function which satisfies only the
growth condition

N
|H (2, 5,6)] < e(2) +b(|s]) Y 1GI", (3.5)
i=1

where b(-) : R — RT is a continuous positive function that belongs to L*(R) N
L>®(R), while c(-) € L(Q2) is a nonnegative function.
We consider the following strongly nonlinear p(-)—elliptic problem:

(3.6)

Au+ H(z,u,Vu) = f in Q,
u=20 on 0f),

where f € LY(Q).
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Definition 3.1. A function w is called an entropy solution of the strongly
nonlinear p(-)-elliptic problem (3.6) if u € 761’7)(')(9), H(z,u,Vu) € L*(Q) and

N
Z/Qai(m,u,Vu)Dsz(u—v) dx—i—/QH(x,u,Vu)Tk(u—v) de/Qka(u—v) dx

for every v € Wol’ﬁ(')(Q) N L>(Q).

Theorem 3.2. Assuming that (3.2)~(3.5) hold and f € L*(Q), the problem
(3.6) has at least one entropy solution.

Remark 3.3. The assumption (3.1) is essential to ensure that a;(x,u, Vu)
belongs to LPi()(Q). In the case of Au= — Zfil D'a;(x,Vu), the existence of
entropy solution is guaranteed without using this assumption.

To prove the existence theorem, we will need the following auxiliary results.

Lemma 3.4 (see [18, Theorem 13.47]). Let (u,)n be a sequence in L*(Q) and
u € LY(Q) such that

(1)  up — u ae inQ,

(i) wup >0 andu >0 a.e. in Q,

(iii) /undx%/udm

then u, — u in L

Lemma 3.5 (see [4]). Let g€ LPO(Q) and g, € LPO(Q) with lgnllpe) <
C forl < p(z) < occ.

If go(z) = g(z) a.e. on Q, then g, — g in LPO)(Q).

Lemma 3 6 (see [7]). Assuming that (3.2)—~(3.4) hold, let (up)nen be a se-
quence in W ()(Q) such that u, — u in Wol’p(‘)(Q) and

/ (un PP ~20, — [P @20 (1, — u) da (3.7)
Q
+ Z / (ai (2, U, Viy) — a;i(x, Uy, Vu))(Duy, — Diu) dz — 0, (3.8)
Q

then u, — u in Wol’ﬁ(')(Q) for a subsequence.

4. Proof of Theorem 3.2

Step 1: Approximate problems. Let (f,)neny be a sequence of smooth
functions such that f, — f in LY(Q) and |f,,| < |f|. We consider the approximate
problem

1
Anun + Hn(xvuru vun) + *|un|p0(r)_2un = fn (4 1)
n .
Uy, € Wolvﬁ(')(Q)’
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with A,v = —Zij\il %ai(x,Tn(U),Vv) and H,(x,s,§) = T,,(H(x,s,£)). Notice
that
|Hn(l‘,$,£)| S |H(l‘,$,£)| and |Hn($,8,£)| S n, ne N*

We define the operator Ry, : Wol’ﬁ(')(Q) = WLP'0)(Q) by

1 .
(Ryu,v) = / H,(z,u,Vu)vdx + n/ \u]po(x)_qu der, wu,ve€ Wol’p( )(Q)
Q Q

Thanks to the generalized Holder type inequality, for all u,v € VVO1 P (’)(Q), we
have

|(Rpu,v)| = ‘/Hn(x,u,Vu)vda:+T1L/ [P @) =2y da:
Q Q

1 1 1 .
(= 7= ) (o 2+ S0

1 1
) — ] 7 y—
J. ()
Q n QO

! o=
<9 ((n(p6)+ meas() + 1) o)~ 4 1 (/ |u|P0(m) dz + 1) (2p) >Hv”1,ﬁ(-)
n\Ja
< Collvll1p()- (42)

IN

IN

In view of Lemma A.1 (see Appendix) and the classical theorem of Lions (cf. [19,

Theorem 2.7, page 180]), there exists at least one solution u,, € I/VO1 P (')(Q) of the
problem (4.1).

Step 2: A priori estimates. Let n be large enough (n > k). We define

B(s) = 1/05 b(|7]) dr.

a

Note that since the function b(-) is integrable on R, then 0 < B(oco) :=
é oJrOO b(|t|) dt is finite. Thus, taking Tk(un>6B(|“”|) as a test function in (4.1),
we get

N
D7 [ s o). V) Dt [ ) P
=179

N

+ Z/ az(xaTn(un),vun)Dsz(un)quunD dx
i=1 7

+ / H (2, 14, Vtn) T ()50 gz
Q

1
_|_/ ‘un‘po(x)—l’Tk(un)yeB(luTbl) de:/fnTk(un)eB““"l) de.
n.Jjo Q
Using (3.3) and (3.5), we have

Q
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N
< /Q c(@)| T (un) 1V dar + 7 /Q ([t ) [ Dt [P0 [T () | B0
=1
< keB) / o(z) da
Q
N
1 )
+ aZ/Qai(xaTn(un),Vun)DZunb(’unD|Tk(un)‘63(|un|)dx.
i=1

As eBun) > 1 and L |2, [PO@) 1 T, () |€BUvnD) dzz > 0, it follows that there
exists a constant C that does not depend on n and k such that

N
> [ DT de < 2P @)l + o)) < Cuk, (@43)
i=1

and we obtain

N
> / | D' Ty (un)|P®) d < kCy + kPO meas(€Q). (4.4)
i=0 7/

Thus, the sequence (T} (up))n is bounded in VVO1 P (')(Q), and there exists a subse-
quence still denoted by (T} (un))n and a function 7y € ng P (')(Q) such that

{Tk(un) — e in W), (5)

Ty (up) = . in LB(Q) and a.e. in Q.

On the other hand, we have

N N
3 /Q DTy ()P dr > 3 /Q (1D T ()2 — 1) da = |V Ty () |2 — N9.
=1 =1

Thanks to (4.3), we deduce that there exists a constant Cy that does not depend
on k and n such that

1
VT (un)llp < Cokt  for k > 1.

By the Poincaré type inequality, we obtain

kmeas{|u,| > k} = | Ty (up)| dzx < / | T (un,)| dx
{lun|>k} Q

1
< Gs|[Th(un)lp < Cal[ VT (un)llp < Csk2.

Then we can conclude that

meas { |up| > k} < Cs —7 — 0 as k— 4o (4.6)
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For all 6 > 0, we have

meas{|up — Uy| > 0} < meas{|uy| > k} + meas{|uy,| > k}
+ meas{|Ty(un) — Ti(um)| > 0}.

Letting € > 0, by using (4.6), we can choose k = k(e) large enough such that

and  meas{|um| > k} < © (4.7)

meas{|up| > k} < <3

Wl M

On the other hand, due to (4.5), we can assume that (T (un))nen is a Cauchy
sequence in measure. Thus, for any k > 0 and §,e > 0, there exists ng = ng(k, 0, )
such that

measq{|Tj(upn) — Tk (um)| > 0} < for all m,n > ng(d, €). (4.8)

| ™

In view of (4.7) and (4.8), we deduce that
Vo > 0 Ve >0 Ing =ng(d,e) Vn,m > ng(d,e) meas{|u, — upy| >0} <e,

which proves that the sequence (u,,), is a Cauchy sequence in measure and then
converges almost everywhere to some measurable function u. Consequently, we
have .

Ty(tn) = Ti(w) in WP (),

and in view of Lebesgue’s dominated convergence theorem, we obtain
Ti(un) — Ti(u) in LP°O)(Q) and a.e. in Q.

Step 3: Strong convergence of truncations. In the sequel, we will de-
note by g;(n), i = 1,2,... various real-valued functions of real variables that
converge to 0 as n tends to infinity.

Taking h > k > 0 and M = 4k + h, we set by, := max{b(s) : |s| < k}. Let
or(s) = sexp(ys?), for v = (3—‘;)2. It is clear that

For n large enough (n > M), we define
Zn = Up — Th(up) + Tk (un) — Tx(u)  and  wy = Tox(2n).
By taking o (wp)eB(UnD) as a test function in (4.1), we obtain
N .
Z/ ai(az,Tn(un),Vun)D’wncpfk(wn)eB(‘""') dz
=178

b(|un|)

N
—i—Z/Qai(x,Tn(un),Vun)D’un
i=1
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+/ Hy (@, tn, Vi) pp(wn)eP D da + 711/ [t [ 2 g (w )P0 i
Q

It is easy to check that Vw, = 0 on {|u,| > M} and that yp(wy,) has the same
sign as u, on the set {|u,| > k}. Then, in view of (3.5), we obtain

Z/ T (u ),Vun)Diwncp;(wn)eB(\unl)dx
|un|<M}

3 )
—Z/ a; (2, T (tn ), Vg ) D'ty ——2 o (wp ) [P0l da:
{lun|<k} a

Z/ Bt DD P i )P0

{lun|<k}

sl () de
{lun|<k}

< eB(oo)/Q(\fn] + o(2)) | (wn)| da.

Now, using (3.3) and the fact that wy, = Ti(u,) — Tk (u) on {|u,| < k}, we get
Z/ (@, Ty (un), VT (1)) (D T () = DTy (u)) g, (wn )P0 dr
IUn|<k}

+Z/ (, T (), Vs () D'wnpl (wn)ePUen D) da
k<\un|<M}

2
«

+1/ ‘Tk(un)’pO(x)_QTk(un)@k<wn)€B(‘u"|) da:
{lun|<k}

/{I 0400 Tu(un), 9T DT ) o
un|<k

569 [ (1ful + cla)lpu(en)] do 49)

Concerning the second term on the left-hand side of (4.9), we have

k<\un|<M}

/ (as(w, Tas (un), Vs (1)
=7 Jih<lunl 003020 <20}

X D (1, — T (tn) + Ti(un) = T (w) i (wn)e ") de
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N
> Oy [ oo D), VT ) |00 ds
<|un

since (|a;(z, Ths (tn), Vs (un))])n is bounded in LPi()(€2). Then there exists ¢; €
LPi0)(Q) such that |a; (@, Tar(un), VI (un))] = ¢; in LPiO)(Q). Therefore,

/ a3 Ta (un), VTar (un))| | DT ()|
{k<|un|<M}
—>/ ¢i | DTy, (u)| dz = 0. (4.10)
{k<|u|<M}

It follows that

Z/ (2, Tag (un), Vs (1)) D'wngly (wi)eBUn) dz > ey (n). (4.11)
k<|un\<M}

Having in mind (4.9), we obtain

Z/l |<k} (@, Ti (un), VT (un)) (D' Ty (un) — DT (w)) @ (wn)eBlunD) dg

N Z/ (z, T (un), VT (un)) D" T (un) | or (w )\e (lunl) g2

IUn\<k}

+/ *!Tk(un)lm @)=27 (u ) (w ) ePUunD) da
{lun|<k} 7

< GB(‘X’)/Q(!fnl+C(x))|90k(wn)!d$+62(n)- (4.12)

Now we will study each term on the left-hand side of (4.12).
First estimate: For the first term on the left-hand side of (4.12), we have
a;(x,s,0) = 0. Then

3 T VT (D)~ DT )0
IUn|<k}
- Z / (ai(@, Thi(un), VTi(un)) — ai(@, T(un), VTi(u)))

=179

X (DiTk(un) — DiTk(u))¢§€(wn)eB(|“"‘) dx

+> / ai(x, Ty (un), VI3 (0)) (DT (tn) — D'Th (1))@ (wn )P D) da. (4.13)
— Ja
For the second term on the right-hand side of (4.13), we have

l

/Qai(x, T (un), VT3 (w)) (DT (un) — DTy (1)) (wp )B4 da:
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< o (2k)eP) / s 2, Te(tn), VT(w)| | D Te(utn) — DiTi(w)] dr,
Q
Applying the Lebesgue dominated convergence theorem, we have T (u,) — Tj(u)
in LPi)(Q). Then a;(z, Ty(un), VIk(u)) — ai(x, Tp(u), VT (u)) in LPiO(Q),
Since DT, (up) — DTy (u) in LP¢0)(Q), we deduce that

ez(n) = /Qai(x,Tk(un), VT (w))(D'Ti(un) — DTy (1))@} (wn)eB D de — 0
asn — oo. (4.14)

It follows that

N
i=1 7

X (D' () — D'Tjy (1))@l (wn )P4 dg
N
= a;(x, Tk (un), VI (uy,
S [ e T, Vi)

X (D'Tj () — DT (1))@l (wn )P D da 4+ e4(n).  (4.15)

Second estimate: For the second term on the left-hand side of (4.12), we
have

2b N

o Z/ ai(@, T (tn), V() — i, Th (), VT3 (1))

(DTk(un)—DTk( ) lin(wn) e dae

2b
kZ/%$ﬂ%JWWMWEXWM)kW“W (1.16)
Similarly to (4.14), we prove that

e5(n) = /Qai(x,Tk(un), VT () (D'Ty (un) — DTy (w))|pr(wn)[eBUD dz — 0
asn — o0o. (4.17)

For the last term on the right-hand side of (4.16), since the sequence
(ai(z, Tp(un), VTi(tn)))nen is bounded in LPi()(Q), then there exists ; €
LPi0)(Q) such that a;(x, T (), VI (un)) — ¥ in LPi0)(Q). Using the fact that

D'Ty,(w) |@r(wn)| = D'Tii(w) [on(Tox (u = Ta(w))|  in LPO(Q),
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it follows that
gg(n) = /Qai(m,Tk(un), VTk(un))DiTk(u)|<pk(wn)| dx
— / Vi DTy (u) | op (Tor(u — Ty (u)))| dz = 0. (4.18)
Q

By combining (4.16)—(4.18), we deduce that

2 Z / ai (2, Ti(tn), V(1)) — i, T (), V(1))

x (D'Ty(up) — D'T(u)) g (wn ) [eBUnD) dg

2()
20y, Z/Iunl<k} 2, T (un), VI (un ) DT (1) |0 (wn ) |51 D da

+e7(n (4.19)

Third estimate: Concerning the third term on the left-hand side of (4.12),
we have T}, (un) — Ty (u) in LP0O)(Q). Tt follows that

1
eg(n) = ‘/ |Tk(un)|p0(m)_2Tk(Un)(,pk(wn)eBﬂunl)d:l?
1S {Jun| <k}

1
<~ exp(y)e?®) [ [Tyun) P T () - Tiw)]dz 0
Q
asn — oo. (4.20)

Relations (4.15), (4.19) and (4.20), and the fact that eZ(u») > 1 allow us to
write

N

S [ (@i6e Telun). V()  as(o. Tulun), VTu(a)
i=1 78
< (D'Ti(un) ~ DIT(w) (hleon) — 2 fgelaon)])
< P / (1ful + (@) ok (@n)] da + 2 (n). (4.21)
Q

As f, — fin L}(Q) and ¢ (w,) — 0 weak-x in L>°(12), then
/(‘fn| + c(x))|¢k(wn)|dz — 0 as n,h — oo. (4.22)
Q

Therefore, by letting n and h tend to infinity on the right-hand side of (4.21), we
deduce that

N
tim 3 /Q (a3 2, To(un), VT (n)) — a5(@, T (wn), VT (1))

n—00 4
=
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X (DT (up) — DTy (u)) dz = 0.

Since Tj(un) — Ti(u) in L) (), we obtain

lim Z/ ai(x, Ti(un), VIk(up)) — ai(z, Ti(uy), VI (u)))

n—oo

X (D'Ty(upn) — DTy (u)) dz
() P02 ) = 1T 2T )
X (T (up) — Tk(u)) dx = 0. (4.23)
In view of Lemma 3.6, we conclude that

{Tk(un) — Tj(u) strongly in Wol’ﬁ(')(ﬂ), (4.24)

Diu, — D'u ae. inQfori=1,...,N.

Step 4: The equi-integrability of the terms (H,(x,u,, Vu,)), and
(L|up[Po@=2y,),,. In order to pass to the limit in the approximate equation,
we will show that

1
H,(z,upn, Vu,) — H(z,u,Vu) and E|un|p°(m)_2un — 0 strongly in L*(Q).

(4.25)
By using Vitali’s theorem, it suffices to prove that (H,(z,u,,Vu,)), and
(L|up[Po@®=2y,),, are uniformly equi-integrable. Firstly, we define the function

mg=243wwm

o

By taking (Thi1(un) — Th(un))eBUunD) as a test function in (4.1), we have
N ‘ B
> / ai (¢, T (tn), Vi) DY(Thi1 (un) — Th(uy))eB 040D da
i=1 7%

N
2 ' 7
+QEQ/MLEWMwa%anmMWM—nmm9me
/H T, U,y V) (Thi1(un) — Thiug)) eBlunl) gy
/ [t [P 2 (T2 () — T () )P 10D e

:/ﬁmmWMJMMWWWmm
Q

According to (3.3) and (3.5), we obtain

az / | Dty [P®) Bllunl) g

h<|un\<h+1}
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h<\Un|}

1 —
ta / |Un|p0(x)_1€B(|u"|) |Thi1(un) — Th(un)| de
n {h<]un|}

= / (1 fal + e(z))eBlunD gy
{h<|un\}
+Z / | Dy [P | T () — T () || )P D .
h<|un\}

Then

S 1
Z/ (|un|)|D2u |Pz dl’+ / ’un|p0(z)—1 d.fL'
=1/ {hri<]unl} " J {ht 1< unl}

< B(9) / (f] + clx)) da
{h<|unl}

Thus, for all > 0, there exists h(n) > 1 such that

1
Z / (a1 ) o+ [ P21 d
{h(n)<|un|}

(4.26)
{h(n)<|unl}

1\3\3

On the other hand, for any measurable subset F C €2, we have
N 1
Z/ b(|tn|)| Dy [P da + / |t [PO@) 1 e
i1 JE nJe
N ' 1
<3, Uit DN Ta ) o+ [ Ty a2

+z/

From (4.24), there exists §(n) > 0 such that for any £ C  with meas(E) <
B(n), we have

b1t Dt d + - / PP g, (4.27)
n)<|un|} T J{h(n)<|un|}

Z/ (T () )| D Ty oy () [P die + = /|Th ) [P 1dx§g.

(4.28)
Finally, by combining (4.26), (4.27) and (4.28), one easily has

N

: 1
E:/ (1t ])| D1 P4 d:c+/ P da < g
i=17F nJE

for all E such that meas(E) < (7). (4.29)
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By using (3.5), we deduce that (Hy,(x, un, Vt,))n and (Ju, [PP®)~24,),, are equi-
integrable, and in view of Vitali’s theorem, we conclude that

1
H,(z,upn, Vuy,) — H(z,u,Vu) and ﬁ]un]po(“”)_Qun — 0in LY(Q).  (4.30)

Step 5: Passage to the limit. Let ¢ € Wol’ﬁ(')(Q) NL>®(Q)and M =k +
ll¢||loo- By taking Ty (u, — ¢) as a test function in (4.1), we get

N
Z/ ai(z, Ty (un), V) D Ty (up, — ) da + / Hy(z,up, Vup) Tk (u, — @) dx
i=1 79 Q
1
+ / ‘un‘po(x)72unTk(un - @) de = / fnTk(un - 90> de. (4'31)
n.Jjo Q
On the one hand, we have {|u, — ¢| < k} C {|un| < M}. Then
/ ai(z, Ty (un), V) D' Ti (up, — @) da
Q
= /Qa,-(:r, Tar (un), VIar (un)) (D Tar (un) = D*O)X fjup— gl <k} 4

— / (ai @ Tos (), Vo (un)) — as(, Tas (un), Vo))
Q
X (DiTM(Un) - Digp)X{‘un*WSk} dx
4 /Q i (2, Tt (n), V0) (DTt (1) — D)X —o{ iy .

According to Fatou’s lemma, we conclude that

n—oo 4

N
lim inf Z/ ai(z, Ty (un), Vi) D' Ty (up, — ) da
=17

N
>3 [ Ths (), 9Ths () = as(a, Tar (), V)
=1

X (DzTM(U) — Di@)X{\u—ﬂSk} dx

n—00 4

N
+ lim Z/Qai(%TM(Un),VSO)(DiTM(Un) — D'O)X{jup—p| <k} A
=1

M= 114

/Q i (2, Ty (), VT () (D Tar (1) — D¥@)X gy it

/ ai(z,u, Vu) D' Ty, (u — ) da.
1 /9

7

On the other hand, Ty (u, — @) = Tk(u — @) being weak-x in L>°(2), thanks to
(4.30), we deduce that

/ H, (z,upn, Vup)Ti(uy, — @) de — / H(xz,u,Vu) Ti(u — ¢) dz, (4.32)
Q Q



Existence Results for Some Anisotropic Elliptic Problems 713

711/ \un\po(x)_2unTk(un —@)dr — 0, (4.33)
Q
and
[ it = ydo = [ f Tiu = o) da. (4.34)
Q Q

Hence, putting all the terms together, we conclude the proof of Theorem 3.2.

Example 4.1. We consider the following functions:

N
H(z,u,Vu) = —e P Z | DiuPi@),
i=1
ai(z,u, Vu) = |D'ufP'® 2Dy fori=1,...,N
with fj';o e=*" ds = /7. It is clear that a;(z,u, Vu) and H(z,u, Vu) verify the

assumptions (3.2) — (3.5). Thanks to Theorem 3.2, the anisotropic quasilinear
elliptic problem

N N

_ Z Di(|Diu|pi(I)—2Diu) = f4+ ol Z |Diu|pi($) in Q,
i=1 i=1

u=20 on 0,

has at least one entropy solution u € Tol’ﬁ(')(Q) for any f e LY(Q).

A. Appendix

Lemma A.1. The operator G, = A, + Ry, from Wol’ﬁ(')(Q) into W1 ()(Q)
is pseudo-monotone. Moreover, G, is coercive in the following sense:

(Gpv,v)

— 400 if vl = 0o for ve WP (Q),
vl

Proof. Using the Holder’s inequality and the growth condition (3.2), we can
show that the operator A, is bounded, and by (4.2), we conclude that G,, is

bounded. For the coercivity, for all u € WO1 P (')(Q), we have

N
(Gpu,u) = Z/ ai(z, Ty (u), Vu) Duda
i=1 7%

1
+/Hn(w,u,Vu)ud:U+/ ’u‘PO(x) dx
Q n Jo

N
>0¢Z/ | D [Pi(®) dw—n/ |u| dx
i=0 /¢ L

> o ullf ) — SV + 1) = Calully g,
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with o = min(a, 2). It follows that

(Gru,u)
5 — 00 as ”qu,ﬁ(J — +00.
w1 5.

It remains to show that G,, is pseudo-monotone. Let (ug)r be a sequence in
Wol’p(')(Q) such that

Up —u in I/Vol’ﬁ(')(Q)7
Gnug — Xn in W_l’ﬁ/(')(ﬂ), (A1)
lim sup(Goti, 1) < (s ).

k—o0

We will prove that
Xn=Gpu and (Gpug,ur) — (Xn,u) ask — +oo.

Firstly, since W, LA )(Q) —<— LE(Q), then

up — u in L2(Q) for a subsequence denoted again by (ug)ken.

As (ug)ren is a bounded sequence in Wolﬁ(')(Q), then, by the growth condition
(ai(x, Ty (ug), Vug))ken is bounded in LPi0)(Q), and there exists a function ¢, €
LPi0)(Q) such that

ai(x, Tn(ug), Vug) = @i in LAO(Q) as k — oo (A.2)

and 1 !
—Jug [PO@) 20y, — = |u[Po@) =2y, in LPOO)(QQ). (A.3)
n n

Similarly, we have that an(:c,uk, Vug))een is bounded in L¥ (Q). Then there
exists a function 1, € LZ (Q) such that

H,(z,up, Vug) — b, in  LZ(Q) as k — . (A.4)

Clearly, for all v € Wol’ﬁ(’)(ﬂ), we have
{Xn,v) = lim Z/ ai(z, Ty (uy), Vug,)D'v de + lim H (, ug, Vug)v dx

k—o0

+klim / g [P0 ®) 200 da:
—oo N JO

N
; 1
:Z/ Pin Dzvdm’—i—/wnvdm—i-/ |ulPo@) 2y d. (A.5)
i1 /% Q nJa

From relations (A.1) and (A.5), we have

k—o0 k—o0

lim sup(Gy,(ug), u) = lim sup { Z/ ai(x, Tn(ug), Vug)D'uy, d
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1
+/Hn(33,uk,Vuk)ukd:U+/ |uk|po(ac) dx}
Q n Jo

N
; 1
< Z Gin Dude + [ Ypude+ = [ |uff°® dz. (A.6)
i=1 7% Q nJa

Thanks to (A.4), we obtain

/Hn(x,uk,Vuk)ukdx—)/d)nudfc. (A.7)
Q Q
Therefore,
N ‘ )
lim sup Z/ai(fEaTn(“k)7vuk)Dzukd$+/ |uk|p0(z) dx
k—o0 179 n Jo
Y 1
< Pin Diuda:%—/ ulP®) da. A8
>, At (A8)

On the other hand, by (3.4) we get

N

Z / (ai(z, Ty (ug), Vug) — ai(z, T (ug), Vu) ) (D'uy, — Diu) dx

=179

+ = / (Jug 0@ =20, — Ju|PO @) =20 (uy, — u) dz > 0. (A.9)
nJo

Then
N ‘ 1
Z/ai(x,Tn(uk),Vuk)Dzukdx—l—/ |ug |P0@) daz
=179 nJe
N ' 1
> Z/Qai(x,Tn(uk),Vuk)D’udx—i—n/ﬂ]uk]po(x)2ukuda:
i=1

N
. . 1
+ E ai(x, Ty (ug), Vu) (D'ug, — D'u)de + = [ JuP°@~2u(uy, — u) da.
i=1 Q n Jo

In view of the Lebesgue dominated convergence theorem, we have T, (ur) —
To(u) in LPO(Q). Then ai(x, Ty (ug), Vu) = a;(x, T, (u), Vu) in LP0)(Q). By
using (A.2) — (A.3), we get

N
; 1
hmmf /ai J}’Tn U ,VUk DZdeJU—I—/ Uk, po(a:) de'
(Z RECR AR o el dr)

k—o0
N ' )
> Z/ Pin Dludx—i—/ Ju[Po®) dg:.
=179 nJa
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This implies by using (A.8) that

N
. i 1 )
lim <§ :/Qai(x,Tn(uk),Vuk)D up dz + n/Q|uk|po< >d$>
i=1

k—o0
N ‘ )
:Z/ Pin Dzudaz—k/ lu[Po®) dg:. (A.10)
i—1 /0 nJo

Relations (A.5), (A.7) and (A.10), give

(Gpug,ug) — (Xn,u) ask — +oo.

Now, having in mind (A.10), we can prove that

N
tim (S / (as(@, T (g ), V) — ag(z, To (), Vi) )(Dig — Dis) dae
i=1 79

k—+o00

T / (a2, — o)) (uy, — w)dr) = 0.
Q

Thus, by virtue of Lemma 3.6, we get

up — u in Wol’ﬁ(')(Q) and D'uj, — D'u a.e. in Q.

Then

ai(x, Ty (ug), Vug) = ai(z, Ty(w), V) in LFO(Q) fori=1,...,N

and
H,(z,u, Vug) — Hy(z,u,Vu) in Lpf)(')(Q),
which implies that x, = Ghu. ]
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IcuyBaHHsT pO3B’A3KiB JIeIKOI aHI30TPOITHOI €JIiNTUYHOL
3as1a4i 3i 3MiHHNMHE noKa3HUKamu i L'-maAumn

Mohamed Badr Benboubker and Hassane Hjiaj

Y poboTi MU BUBYAEMO iCHYBaHHS €HTPOMINHUX PO3B’SI3KiB I CUILHO
HEJIHIfTHOTO aHI30TPOITHOTO EJIINTUYIHOIO PiBHIHHSI

Au+ H(z,u,Vu) = f in Q,

ne f mamexxurn L1(Q), A e omeparopom Jlepe-Jlionca, i H € memniniii-
HUM 9JIEHOM HHYKYOIO HOPSJIKY 3POCTaHHs BifHOCHO |Vu| (TOOTO TarmM,
wo |H(z,s,8)| < @) + b(ls) SN, 6|7 ™), ane Ge3 npuuymenns, mo
H(z,s,£)s > 0. HaBeseHo KOHKpeTHUI NPHUKJIAJ, MO LIIOCTPYE Pe3ysbrar
icHyBaHHSI PO3B’A3KiB.

Krro4oBi cjioBa: aHI30TpOIHMIA, 3MIHHUI mokasHuK, mpoctip Coboesa,
HesiHifiHA eyinTudHA pobseMa, meTon mrpadHuX (GYHKINNE, eHTpOmiitHi
pPO3B’I3KH!
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