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Existence Results for Some Anisotropic

Elliptic Problems Having Variable Exponent

and L1-data
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In this paper, we propose to study the existence of entropy solutions for
the strongly nonlinear anisotropic elliptic equation

Au+H(x, u,∇u) = f in Ω,

where f belongs to L1(Ω), A is a Leray–Lions operator and H is a nonlinear
lower order term with nonstandard growth with respect to |∇u| (i.e., such

that |H(x, s, ξ)| ≤ c(x) + b(|s|)
∑N

i=1 |ξi|pi(x)), but without assuming the
sign condition H(x, s, ξ)s ≥ 0. A concrete example is given to illustrate the
existence result.
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1. Introduction

This paper is devoted to the study of some classes of anisotropic elliptic
boundary value problems of the form{

Au+H(x, u,∇u) = f in Ω,

u = 0 on ∂Ω
(1.1)

in a bounded open domain Ω ∈ RN , (N ≥ 2). The interest in these problems
relies on the fact that they are strongly nonlinear and non-homogeneous. Here,
the anisotropic operator under considerarion is a differential operator involving
partial derivatives with different powers pi(x) > 1, that is,

Au = −
N∑
i=1

Diai(x, u,∇u),

where Di = ∂/∂xi, for i = 1, . . . , N . Therefore, in order to prove the existence re-
sults, we need to consider a different functional setting from the classical Sobolev
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space. Indeed, the appropriate space to capture such formulated problem is the

anisotropic variable exponent Sobolev space W
1,~p(·)
0 (Ω) recently introduced by

Mihalescu–Pucci–Raduslescu in [20].
Another relevant class of operators, for which a general and almost complete

theory is now available, is without a doubt one of the equations with the so-called
p(·)−growth, i.e., the p(·)-Laplacian equation

−div (|∇u|p(x)−2∇u) = f,

where p : Ω → (1,∞) is a bounded and continuous function. We recall some
papers (and references therein), in which this theory is developed: [3, 12,15,22].

We mention that partial differential equations and variational problems re-
lated to p(·)-growth conditions have been extensively studied in the last decades.
The reason is that they can model various phenomena arising from the study of
elastic mechanics, electrorheological fluids or image restoration.

The interest of considering anisotropic problems with variable exponents is
linked to a large scale of applications containing some non-homogeneous materials
that have different behaviors in different space directions. It was established
that for an appropriate treatment of these materials we can not rely on the
classical Sobolev space and that we have to allow the exponent to vary instead.
Furthermore, anisotropic fluids are widely applicable in the common life. Most
of the modern electronic displays are liquid crystal based. We can mention also
magnetorheological shock absorber of buildings or in the automotive industry,
magnetorheological damper and electrorheological clutch.

Let us note that the definition of the variable exponent Lebesgue spaces and
the variable exponent Sobolev spaces requires only the measurability of p(·), in
this work we do not need to use Sobolev and Poincaré inequalities. Moreover,
the sharp Sobolev inequality is proved for p(·) log-Hölder continuous, while the
Poincaré inequality requires only the continuity of p(·), (for more details, we refer
to [6, 13,17]).

It should be mentioned that in [1] Benboubker et al studied the following
problem which is quite close to (1.1):{

Au+H(x, u,∇u) + δ|u|p0(x)−2u = f in Ω,

u = 0 on ∂Ω,

where the nonlinear term H satisfies some growth condition without the sign
condition. In [1], the authors proved the existence of solutions in the convex

class Kψ = {u ∈ W
1,~p(·)
0 (Ω) | u ≥ ψ a.e. in Ω}, where ψ is a fixed obstacle

function such that ψ+ ∈W 1,~p(·)
0 (Ω) ∩ L∞(Ω).

The novelty of our work is in extending the results in [2] by taking into account
a more general type of operator, that is, the anisotropic operator, and prove a
new existence result without any sign condition on H.

The main difficulty in proving the existence of a solution stems from the
fact that H(x, u,∇u) does not assume the sign condition (i.e., H(x, s, ξ)s ≥
0). In other words, the term H(x, u,∇u) is said to be an absorption term. In
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this case, a detailed picture of what happens is available (see, e.g., [2, 5, 9–11]).
Secondly, we have to face the problem that the operator Au is not coercive in

the anisotropic variable exponent Sobolev space W
1,~p(·)
0 (Ω). For this reason we

try to overcome this difficulty by using a penalization term 1
n |u|

p0−2u in the
approximate problems.

Motivated by the ideas in [1,21], the method used here is to define approximate
problems, then to obtain a priori estimates for their solutions using suitable test
functions (exponential type) and finally to prove a new compactness property in
order to pass to the limit.

This paper is organized as follows. In Section 2, we present some necessary
preliminary knowledge on anisotropic variable exponent Sobolev spaces. In Sec-
tion 3, we state the problem and formulate the main result. We also present some
auxiliary results which will be used to prove the existence theorem in Section 4,
and finally we give a concrete example of our main result.

2. Preliminaries

In this section, we will introduce some definitions and properties concerning
the anisotropic variable exponent Sobolev space used for the study of our main
existence result.

Let Ω be a bounded open subset of RN (N ≥ 2). We denote

C+(Ω) = {measurable function p(·) : Ω 7−→ R such that 1 < p− ≤ p+ <∞},

where

p− = ess inf{p(x) | x ∈ Ω} and p+ = ess sup{p(x) | x ∈ Ω}.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all
measurable functions u : Ω 7→ R for which the convex modular

ρp(·)(u) :=

∫
Ω
|u|p(x)dx

is finite, and the expression

‖u‖p(·) = inf{λ > 0 | ρp(·)(u/λ) ≤ 1}

defines a norm in Lp(·)(Ω), called the Luxemburg norm. The space
(Lp(·)(Ω), ‖.‖p(·)) is a separable Banach space. Moreover, if 1 < p− ≤ p+ <

+∞, then Lp(·)(Ω) is uniformly convex, hence reflexive, and its dual space is iso-
morphic to Lp

′(·)(Ω), where 1
p(x) + 1

p′(x) = 1. Finally, we have the Hölder type
inequality ∣∣∣∣∫

Ω
uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖u‖p(·)‖v‖p′(·)

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).
An important role in manipulating the generalized Lebesgue spaces is played

by the modular ρp(·) of the space Lp(·)(Ω). We have the following result.



Existence Results for Some Anisotropic Elliptic Problems 699

Proposition 2.1 (see [16, 23]). If un, u ∈ Lp(·)(Ω), then the following prop-
erties hold true:

(i) ‖u‖p(·) < 1 (resp.,= 1, > 1) ⇔ ρ(u) < 1 (resp.,= 1, > 1),

(ii) ‖u‖p(·) > 1⇒ ‖u‖p
−

p(·) ≤ ρ(u) ≤ ‖u‖p
+

p(·) and

‖u‖p(·) < 1⇒ ‖u‖p
+

p(·) ≤ ρ(u) ≤ ‖u‖p
−

p(·),

(iii) ‖un‖p(·) → 0 ⇔ ρ(un)→ 0 and ‖un‖p(·) →∞ ⇔ ρ(un)→∞.

We notice that the norm convergence and the modular convergence are equiv-
alent.
Now we define the variable exponent Sobolev space by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) | |∇u| ∈ Lp(·)(Ω)},

which is a Banach space equipped with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·), u ∈W 1,p(·)(Ω).

We denote by W
1,p(·)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(·)(Ω), and we define the

Sobolev exponent by

p∗(x) =

{
Np(x)
N−p(x) for p(x) < N,

∞ for p(x) ≥ N.

Proposition 2.2 (see [14]).

(i) Assuming 1 < p− ≤ p+ < ∞, the spaces W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are

separable and reflexive Banach spaces.

(ii) If q(·) ∈ C+(Ω) and q(x) < p∗(x) for a.e. x ∈ Ω, then the embedding

W
1,p(·)
0 (Ω) ↪→↪→ Lq(·)(Ω) is continuous and compact.

In order to study problem (1.1), let us introduce the functional spaces where
it will be discussed. We will give just a brief review of some basic concepts and
facts of the anisotropic variable exponent Sobolev spaces. For more details we
refer the readers to [20].

We now recall some facts on the anisotropic variable exponent Sobolev spaces
used in the present paper. Let p0(x), p1(x), . . . , pN (x) be N+1 variable exponents
in C+(Ω). We denote

~p(·) = {p0(·), . . . , pN (·)}, D0u = u, and Diu =
∂u

∂xi
for i = 1, . . . , N

and define
p = min(p−0 , p

−
1 , . . . , p

−
N ) then p > 1.

The anisotropic variable exponent Sobolev space W 1,~p(·)(Ω) is defined as follows:

W 1,~p(·)(Ω) = {u ∈ Lp0(·)(Ω) | Diu ∈ Lpi(·)(Ω) for i = 1, 2, . . . , N},
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endowed with the norm

‖u‖1,~p(·) =

N∑
i=0

‖Diu‖Lpi(·)(Ω). (2.1)

We define also W
1,~p(·)
0 (Ω) as the closure of C∞0 (Ω) in W 1,~p(·)(Ω) with respect to the

norm (2.1). The space
(
W

1,~p(·)
0 (Ω), ‖u‖1,~p(·)

)
is a separable and reflexive Banach

space (cf. [20]).

Lemma 2.3. We have the following continuous and compact embeddings:

• if p < N , then W
1,~p(·)
0 (Ω) ↪→↪→ Lq(Ω), for q ∈ [p, p∗[, where p∗ =

Np

N−p ;

• if p = N , then W
1,~p(·)
0 (Ω) ↪→↪→ Lq(Ω), for q ∈ [p,+∞[;

• if p > N , then W
1,~p(·)
0 (Ω) ↪→↪→ L∞(Ω) ∩ C0(Ω).

The proof of this lemma follows from the fact that the embedding

W
1,~p(·)
0 (Ω) ↪→ W

1,p

0 (Ω) is continuous, and in view of the compact embedding
theorem for Sobolev spaces.

The dual of W
1,~p(·)
0 (Ω) is denoted by W−1,~p ′(·)(Ω), where ~p ′(·) =

{p′0(·), . . . , p′N (·)} with 1
p′i(·)

+ 1
pi(·) = 1, (cf. [8] for the constant exponent case).

Proposition 2.4. For each F ∈W−1,~p ′(·)(Ω), there exists Fi ∈ Lp
′
i(·)(Ω) for

i = 0, 1, . . . , N such that F = F0 −
∑N

i=1 D
iFi. Moreover, for any u ∈W 1,~p(·)

0 (Ω),
we have

〈F, u〉 =

N∑
i=0

∫
Ω
FiD

iu dx.

We define a norm on the dual space by

‖F‖−1,~p ′(·) = inf
N∑
i=0

‖Fi‖p′i(·).

For any k > 0, we define the truncation function Tk(·) by : Tk(s) :=
max{−k,min{k, s}}. We set

T 1,~p(·)
0 (Ω) := {u : Ω 7→ R | u is measurable and Tk(u)∈W 1,~p(·)

0 (Ω) for any k>0}.

Proposition 2.5. Let u ∈ T 1,~p(·)
0 (Ω). For any i ∈ {1, . . . , N}, there exists a

unique measurable function vi : Ω 7→ R such that

∀k > 0 DiTk(u) = viχ{|u|<k} a.e. x ∈ Ω,

where χB denotes the characteristic function of a measurable set B. The func-
tions vi are called the weak partial derivatives of u and are still denoted by Diu.
Moreover, if u belongs to W 1,1

0 (Ω), then vi coincides with the standard distribu-
tional derivative of u, that is, vi = Diu.
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3. Statement of the problem and the main result

Let Ω be a bounded open subset of RN (N ≥ 2) and pi(·) ∈ C+(Ω) for i =
0, 1, . . . , N. We assume that

∀x ∈ Ω p0(x) ≥ max{pi(x) | i = 1, 2, . . . , N}. (3.1)

Here A is an operator of Leray–Lions type acting from W
1,~p(·)
0 (Ω) into its dual

W−1,~p ′(·)(Ω) defined by the formula

Au = −
N∑
i=1

Diai(x, u,∇u),

where ai : Ω × R × RN 7→ R is a Carathéodory function for i = 1, . . . , N (mea-
surable with respect to x in Ω for every (s, ξ) in R × RN , and continuous with
respect to (s, ξ) in R×RN for almost every x in Ω) which satisfies the following
conditions:

|ai(x, s, ξ)| ≤ β (Ki(x) + |s|pi(x)−1 + |ξi|pi(x)−1) for i = 1, . . . , N, (3.2)

ai(x, s, ξ)ξi ≥ α|ξi|pi(x) for i = 1, . . . , N, (3.3)

for all ξ = (ξ1, . . . , ξN ) and ξ′ = (ξ′1, . . . , ξ
′
N ), we have

(ai(x, s, ξ)− ai(x, s, ξ′))(ξi − ξ′i) > 0 with ξi 6= ξ′i, (3.4)

for a.e. x ∈ Ω and all (s, ξ) ∈ R× RN , with Ki(x) being a nonnegative function
lying in Lp

′
i(·)(Ω), and α, β > 0.

As a consequence of (3.3) and the continuity of the function a(x, s, ·) with
respect to ξ, we have

a(x, s, 0) = 0.

The nonlinear term H(x, s, ξ) is a Carathéodory function which satisfies only the
growth condition

|H(x, s, ξ)| ≤ c(x) + b(|s|)
N∑
i=1

|ξi|pi(x), (3.5)

where b(·) : R 7→ R+ is a continuous positive function that belongs to L1(R) ∩
L∞(R), while c(·) ∈ L1(Ω) is a nonnegative function.

We consider the following strongly nonlinear ~p(·)−elliptic problem:{
Au+H(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,
(3.6)

where f ∈ L1(Ω).



702 Mohamed Badr Benboubker and Hassane Hjiaj

Definition 3.1. A function u is called an entropy solution of the strongly

nonlinear ~p(·)-elliptic problem (3.6) if u ∈ T 1,~p(·)
0 (Ω), H(x, u,∇u) ∈ L1(Ω) and

N∑
i=1

∫
Ω
ai(x, u,∇u)DiTk(u−v) dx+

∫
Ω
H(x, u,∇u)Tk(u−v) dx ≤

∫
Ω
fTk(u−v) dx

for every v ∈W 1,~p(·)
0 (Ω) ∩ L∞(Ω).

Theorem 3.2. Assuming that (3.2)–(3.5) hold and f ∈ L1(Ω), the problem
(3.6) has at least one entropy solution.

Remark 3.3. The assumption (3.1) is essential to ensure that ai(x, u,∇u)
belongs to Lp

′
i(·)(Ω). In the case of Au = −

∑N
i=1D

iai(x,∇u), the existence of
entropy solution is guaranteed without using this assumption.

To prove the existence theorem, we will need the following auxiliary results.

Lemma 3.4 (see [18, Theorem 13.47]). Let (un)n be a sequence in L1(Ω) and
u ∈ L1(Ω) such that

(i) un → u a.e. in Ω,

(ii) un ≥ 0 and u ≥ 0 a.e. in Ω,

(iii)

∫
Ω
un dx→

∫
Ω
u dx,

then un → u in L1(Ω).

Lemma 3.5 (see [4]). Let g ∈ Lp(·)(Ω) and gn ∈ Lp(·)(Ω) with ‖gn‖p(·) ≤
C for 1 < p(x) <∞.

If gn(x)→ g(x) a.e. on Ω, then gn ⇀ g in Lp(·)(Ω).

Lemma 3.6 (see [7]). Assuming that (3.2)–(3.4) hold, let (un)n∈N be a se-

quence in W
1,~p(·)
0 (Ω) such that un ⇀ u in W

1,~p(·)
0 (Ω) and∫

Ω
(|un|p0(x)−2un − |u|p0(x)−2u)(un − u) dx (3.7)

+

N∑
i=1

∫
Ω

(ai(x, un,∇un)− ai(x, un,∇u))(Diun −Diu) dx→ 0, (3.8)

then un −→ u in W
1,~p(·)
0 (Ω) for a subsequence.

4. Proof of Theorem 3.2

Step 1: Approximate problems. Let (fn)n∈N be a sequence of smooth
functions such that fn → f in L1(Ω) and |fn| ≤ |f |. We consider the approximate
problem Anun +Hn(x, un,∇un) +

1

n
|un|p0(x)−2un = fn

un ∈W 1,~p(·)
0 (Ω),

(4.1)



Existence Results for Some Anisotropic Elliptic Problems 703

with Anv = −
∑N

i=1
∂
∂xi
ai(x, Tn(v),∇v) and Hn(x, s, ξ) = Tn(H(x, s, ξ)). Notice

that
|Hn(x, s, ξ)| ≤ |H(x, s, ξ)| and |Hn(x, s, ξ)| ≤ n, n ∈ N∗.

We define the operator Rn : W
1,~p(·)
0 (Ω) 7→W−1,~p ′(·)(Ω) by

〈Rnu, v〉 =

∫
Ω
Hn(x, u,∇u)v dx+

1

n

∫
Ω
|u|p0(x)−2uv dx, u, v ∈W 1,~p(·)

0 (Ω).

Thanks to the generalized Hölder type inequality, for all u, v ∈ W
1,~p(·)
0 (Ω), we

have∣∣〈Rnu, v〉∣∣ =

∣∣∣∣ ∫
Ω
Hn(x, u,∇u)v dx+

1

n

∫
Ω
|u|p0(x)−2uv dx

∣∣∣∣
≤
(

1

p−0
+

1

(p′0)−

)(
‖Hn(x, u,∇u)

∥∥
p′0(·) +

1

n
‖|u|p0(x)−1‖p′0(x)

)
‖v‖p0(·)

≤ 2

((∫
Ω
np
′
0(x) dx+ 1

) 1
(p′0)
−

+
1

n

(∫
Ω
|u|p0(x) dx+ 1

) 1
(p′0)
−
)
‖v‖1,~p(·)

≤ 2

((
n(p′0)+ meas(Ω) + 1

) 1
(p′0)
−

+
1

n

(∫
Ω
|u|p0(x) dx+ 1

) 1
(p′0)
−
)
‖v‖1,~p(·)

≤ C0‖v‖1,~p(·). (4.2)

In view of Lemma A.1 (see Appendix) and the classical theorem of Lions (cf. [19,

Theorem 2.7, page 180]), there exists at least one solution un ∈W 1,~p(·)
0 (Ω) of the

problem (4.1).

Step 2: A priori estimates. Let n be large enough (n ≥ k). We define

B(s) =
1

α

∫ s

0
b(|τ |) dτ.

Note that since the function b(·) is integrable on R, then 0 ≤ B(∞) :=
1
α

∫ +∞
0 b(|t|) dt is finite. Thus, taking Tk(un)eB(|un|) as a test function in (4.1),

we get

1

α

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)Diunb(|un|)|Tk(un)|eB(|un|)dx

+
N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)DiTk(un)eB(|un|) dx

+

∫
Ω
Hn(x, un,∇un)Tk(un)eB(|un|) dx

+
1

n

∫
Ω
|un|p0(x)−1|Tk(un)|eB(|un|) dx =

∫
Ω
fnTk(un)eB(|un|) dx.

Using (3.3) and (3.5), we have∫
Ω
Hn(x, un,∇un)Tk(un)eB(|un|) dx
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≤
∫

Ω
c(x)|Tk(un)|eB(|un|) dx+

N∑
i=1

∫
Ω
b(|un|)|Diun|pi(x)|Tk(un)|eB(|un|) dx

≤ keB(∞)

∫
Ω
c(x) dx

+
1

α

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)Diunb(|un|)|Tk(un)|eB(|un|)dx.

As eB(|un|) ≥ 1 and 1
n

∫
Ω |un|

p0(x)−1|Tk(un)|eB(|un|) dx ≥ 0, it follows that there
exists a constant C1 that does not depend on n and k such that

N∑
i=1

∫
Ω
|DiTk(un)|pi(x) dx ≤ k

α
eB(∞)(‖f(x)‖1 + ‖c(x)‖1) ≤ C1k, (4.3)

and we obtain

N∑
i=0

∫
Ω
|DiTk(un)|pi(x) dx ≤ kC1 + kp

+
0 meas(Ω). (4.4)

Thus, the sequence (Tk(un))n is bounded in W
1,~p(·)
0 (Ω), and there exists a subse-

quence still denoted by (Tk(un))n and a function ηk ∈W
1,~p(·)
0 (Ω) such that{

Tk(un) ⇀ ηk in W
1,~p(·)
0 (Ω),

Tk(un)→ ηk in Lp(Ω) and a.e. in Ω.
(4.5)

On the other hand, we have

N∑
i=1

∫
Ω
|DiTk(un)|pi(x) dx ≥

N∑
i=1

∫
Ω

(|DiTk(un)|p − 1) dx = ‖∇Tk(un)‖pp −N |Ω|.

Thanks to (4.3), we deduce that there exists a constant C2 that does not depend
on k and n such that

‖∇Tk(un)‖p ≤ C2k
1
p for k ≥ 1.

By the Poincaré type inequality, we obtain

kmeas{|un| > k} =

∫
{|un|>k}

|Tk(un)| dx ≤
∫

Ω
|Tk(un)| dx

≤ C3‖Tk(un)‖p ≤ C4‖∇Tk(un)‖p ≤ C5k
1
p .

Then we can conclude that

meas
{
|un| > k

}
≤ C5

1

k
1− 1

p

→ 0 as k → +∞. (4.6)
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For all δ > 0, we have

meas{|un − um| > δ} ≤ meas{|un| > k}+ meas{|um| > k}
+ meas{|Tk(un)− Tk(um)| > δ}.

Letting ε > 0, by using (4.6), we can choose k = k(ε) large enough such that

meas{|un| > k} ≤ ε

3
and meas{|um| > k} ≤ ε

3
. (4.7)

On the other hand, due to (4.5), we can assume that (Tk(un))n∈N is a Cauchy
sequence in measure. Thus, for any k > 0 and δ, ε > 0, there exists n0 = n0(k, δ, ε)
such that

meas{|Tk(un)− Tk(um)| > δ} ≤ ε

3
for all m,n ≥ n0(δ, ε). (4.8)

In view of (4.7) and (4.8), we deduce that

∀δ > 0 ∀ε > 0 ∃n0 = n0(δ, ε) ∀n,m ≥ n0(δ, ε) meas{|un − um| > δ} ≤ ε,

which proves that the sequence (un)n is a Cauchy sequence in measure and then
converges almost everywhere to some measurable function u. Consequently, we
have

Tk(un) ⇀ Tk(u) in W
1,~p(·)
0 (Ω),

and in view of Lebesgue’s dominated convergence theorem, we obtain

Tk(un) −→ Tk(u) in Lp0(·)(Ω) and a.e. in Ω.

Step 3: Strong convergence of truncations. In the sequel, we will de-
note by εi(n), i = 1, 2, . . . various real-valued functions of real variables that
converge to 0 as n tends to infinity.

Taking h > k > 0 and M = 4k + h, we set bk := max{b(s) : |s| ≤ k}. Let

ϕk(s) = s exp(γs2), for γ =
(
bk
2α

)2
. It is clear that

ϕ′k(s)−
bk
α
|ϕk(s)| ≥

1

2
, s ∈ R.

For n large enough (n ≥M), we define

zn := un − Th(un) + Tk(un)− Tk(u) and ωn := T2k(zn).

By taking ϕk(ωn)eB(|un|) as a test function in (4.1), we obtain

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)Diωnϕ

′
k(ωn)eB(|un|) dx

+

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)Diun

b(|un|)
α

ϕk(ωn)sign(un)eB(|un|) dx
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+

∫
Ω
Hn(x, un,∇un)ϕk(ωn)eB(|un|) dx+

1

n

∫
Ω
|un|p0(x)−2unϕk(ωn)eB(|un|) dx

=

∫
Ω
fnϕk(ωn)eB(|un|) dx.

It is easy to check that ∇ωn = 0 on {|un| ≥ M} and that ϕk(ωn) has the same
sign as un on the set {|un| > k}. Then, in view of (3.5), we obtain

N∑
i=1

∫
{|un|≤M}

ai(x, Tn(un),∇un)Diωnϕ
′
k(ωn)eB(|un|) dx

−
N∑
i=1

∫
{|un|≤k}

ai(x, Tn(un),∇un)Diun
b(|un|)
α
|ϕk(ωn)|eB(|un|) dx

−
N∑
i=1

∫
{|un|≤k}

b(|un|)|Diun|pi(x)|ϕk(ωn)|eB(|un|) dx

+
1

n

∫
{|un|≤k}

|un|p0(x)−2unϕk(ωn)eB(|un|) dx

≤ eB(∞)

∫
Ω

(|fn|+ c(x))|ϕk(ωn)| dx.

Now, using (3.3) and the fact that ωn = Tk(un)− Tk(u) on {|un| ≤ k}, we get

N∑
i=1

∫
{|un|≤k}

ai(x, Tk(un),∇Tk(un))(DiTk(un)−DiTk(u))ϕ′k(ωn)eB(|un|) dx

+

N∑
i=1

∫
{k<|un|≤M}

ai(x, TM (un),∇TM (un))Diωnϕ
′
k(ωn)eB(|un|) dx

− 2bk
α

N∑
i=1

∫
{|un|≤k}

ai(x, Tk(un),∇Tk(un))DiTk(un)|ϕk(ωn)|eB(|un|) dx

+
1

n

∫
{|un|≤k}

|Tk(un)|p0(x)−2Tk(un)ϕk(ωn)eB(|un|) dx

≤ eB(∞)

∫
Ω

(|fn|+ c(x))|ϕk(ωn)| dx. (4.9)

Concerning the second term on the left-hand side of (4.9), we have

N∑
i=1

∫
{k<|un|≤M}

ai(x, TM (un),∇TM (un))Diωnϕ
′
k(ωn)eB(|un|) dx

=
N∑
i=1

∫
{k<|un|≤M}∩{|zn|≤2k}

(
ai(x, TM (un),∇TM (un))

×Di(un − Th(un) + Tk(un)− Tk(u))ϕ′k(ωn)eB(|un|)
)
dx
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≥ −eB(∞)ϕ′k(2k)
N∑
i=1

∫
{k<|un|≤M}

|ai(x, TM (un),∇TM (un))| |DiTk(u)| dx

since (|ai(x, TM (un),∇TM (un))|)n is bounded in Lp
′
i(·)(Ω). Then there exists φi ∈

Lp
′
i(·)(Ω) such that |ai(x, TM (un),∇TM (un))|⇀ φi in Lp

′
i(·)(Ω). Therefore,∫

{k<|un|≤M}
|ai(x, TM (un),∇TM (un))| |DiTk(u)| dx

→
∫
{k<|u|≤M}

φi |DiTk(u)| dx = 0. (4.10)

It follows that

N∑
i=1

∫
{k<|un|≤M}

ai(x, TM (un),∇TM (un))Diωnϕ
′
k(ωn)eB(|un|) dx ≥ ε1(n). (4.11)

Having in mind (4.9), we obtain

N∑
i=1

∫
{|un|≤k}

ai(x, Tk(un),∇Tk(un))(DiTk(un)−DiTk(u))ϕ′k(ωn)eB(|un|) dx

− 2bk
α

N∑
i=1

∫
{|un|≤k}

ai(x, Tk(un),∇Tk(un))DiTk(un)|ϕk(ωn)|eB(|un|) dx

+

∫
{|un|≤k}

1

n
|Tk(un)|p0(x)−2Tk(un)ϕk(ωn)eB(|un|) dx

≤ eB(∞)

∫
Ω

(|fn|+ c(x))|ϕk(ωn)| dx+ ε2(n). (4.12)

Now we will study each term on the left-hand side of (4.12).
First estimate: For the first term on the left-hand side of (4.12), we have

ai(x, s, 0) = 0. Then

N∑
i=1

∫
{|un|≤k}

ai(x, Tk(un),∇Tk(un))(DiTk(un)−DiTk(u))ϕ′k(ωn)eB(|un|) dx

=

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
× (DiTk(un)−DiTk(u))ϕ′k(ωn)eB(|un|) dx

+

N∑
i=1

∫
Ω
ai(x, Tk(un),∇Tk(u))(DiTk(un)−DiTk(u))ϕ′k(ωn)eB(|un|) dx. (4.13)

For the second term on the right-hand side of (4.13), we have

l

∣∣∣∣∫
Ω
ai(x, Tk(un),∇Tk(u))(DiTk(un)−DiTk(u))ϕ′k(ωn)eB(|un|) dx

∣∣∣∣
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≤ ϕ′k(2k)eB(∞)

∫
Ω
|ai(x, Tk(un),∇Tk(u))| |DiTk(un)−DiTk(u)| dx,

Applying the Lebesgue dominated convergence theorem, we have Tk(un)→ Tk(u)
in Lpi(·)(Ω). Then ai(x, Tk(un),∇Tk(u)) → ai(x, Tk(u),∇Tk(u)) in Lp

′
i(·)(Ω),

Since DiTk(un) ⇀ DiTk(u) in Lpi(·)(Ω), we deduce that

ε3(n) =

∫
Ω
ai(x, Tk(un),∇Tk(u))(DiTk(un)−DiTk(u))ϕ′k(ωn)eB(|un|) dx→ 0

as n→∞. (4.14)

It follows that

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
× (DiTk(un)−DiTk(u))ϕ′k(ωn)eB(|un|) dx

=
N∑
i=1

∫
{|un|≤k}

ai(x, Tk(un),∇Tk(un))

× (DiTk(un)−DiTk(u))ϕ′k(ωn)eB(|un|) dx+ ε4(n). (4.15)

Second estimate: For the second term on the left-hand side of (4.12), we
have

2bk
α

N∑
i=1

∫
{|un|≤k}

ai(x, Tk(un),∇Tk(un))DiTk(un)|ϕk(ωn)|eB(|un|) dx

=
2bk
α

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
×
(
DiTk(un)−DiTk(u)

)
|ϕk(ωn)|eB(|un|) dx

+
2bk
α

N∑
i=1

∫
Ω
ai(x, Tk(un),∇Tk(u))

(
DiTk(un)−DiTk(u)

)
|ϕk(ωn)|eB(|un|) dx

+
2bk
α

N∑
i=1

∫
Ω
ai(x, Tk(un),∇Tk(un))DiTk(u)|ϕk(ωn)|eB(|un|) dx. (4.16)

Similarly to (4.14), we prove that

ε5(n) =

∫
Ω
ai(x, Tk(un),∇Tk(u))

(
DiTk(un)−DiTk(u)

)
|ϕk(ωn)|eB(|un|) dx→ 0

as n→∞. (4.17)

For the last term on the right-hand side of (4.16), since the sequence
(ai(x, Tk(un),∇Tk(un)))n∈N is bounded in Lp

′
i(·)(Ω), then there exists ψi ∈

Lp
′
i(·)(Ω) such that ai(x, Tk(un),∇Tk(un)) ⇀ ψi in Lp

′
i(·)(Ω). Using the fact that

DiTk(u) |ϕk(ωn)| → DiTk(u) |ϕk(T2k(u− Th(u)))| in Lpi(·)(Ω),
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it follows that

ε6(n) =

∫
Ω
ai(x, Tk(un),∇Tk(un))DiTk(u)|ϕk(ωn)| dx

→
∫

Ω
ψiD

iTk(u)|ϕk(T2k(u− Th(u)))| dx = 0. (4.18)

By combining (4.16)–(4.18), we deduce that

2bk
α

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
×
(
DiTk(un)−DiTk(u)

)
|ϕk(ωn)|eB(|un|) dx

=
2bk
α

N∑
i=1

∫
{|un|≤k}

ai(x, Tk(un),∇Tk(un))DiTk(un)|ϕk(ωn)|eB(|un|) dx

+ ε7(n). (4.19)

Third estimate: Concerning the third term on the left-hand side of (4.12),
we have Tk(un)→ Tk(u) in Lp0(·)(Ω). It follows that

ε8(n) =
1

n

∣∣∣ ∫
{|un|≤k}

|Tk(un)|p0(x)−2Tk(un)ϕk(ωn)eB(|un|) dx
∣∣∣

≤ 1

n
exp(4γk)eB(∞)

∫
Ω
|Tk(un)|p0(x)−1|Tk(un)− Tk(u)| dx→ 0

as n→∞. (4.20)

Relations (4.15), (4.19) and (4.20), and the fact that eB(|un|) ≥ 1, allow us to
write

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
×
(
DiTk(un)−DiTk(u)

)(
ϕ′k(ωn)− 2bk

α
|ϕk(ωn)|

)
dx

≤ eB(∞)

∫
Ω

(|fn|+ c(x))|ϕk(ωn)| dx+ ε9(n). (4.21)

As fn → f in L1(Ω) and ϕk(ωn) ⇀ 0 weak-? in L∞(Ω), then∫
Ω

(|fn|+ c(x))|ϕk(ωn)| dx −→ 0 as n, h→∞. (4.22)

Therefore, by letting n and h tend to infinity on the right-hand side of (4.21), we
deduce that

lim
n→∞

N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u)))
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×(DiTk(un)−DiTk(u)) dx = 0.

Since Tk(un)→ Tk(u) in Lp0(·)(Ω), we obtain

lim
n→∞

N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u)))

× (DiTk(un)−DiTk(u)) dx

+

∫
Ω

(|Tk(un)|p0(x)−2Tk(un)− |Tk(u)|p0(x)−2Tk(u))

× (Tk(un)− Tk(u)) dx = 0. (4.23)

In view of Lemma 3.6, we conclude that{
Tk(un)→ Tk(u) strongly in W

1,~p(·)
0 (Ω),

Diun → Diu a.e. in Ω for i = 1, . . . , N.
(4.24)

Step 4: The equi-integrability of the terms (Hn(x, un,∇un))n and
( 1
n |un|

p0(x)−2un)n. In order to pass to the limit in the approximate equation,
we will show that

Hn(x, un,∇un)→ H(x, u,∇u) and
1

n
|un|p0(x)−2un → 0 strongly in L1(Ω).

(4.25)
By using Vitali’s theorem, it suffices to prove that (Hn(x, un,∇un))n and
( 1
n |un|

p0(x)−2un)n are uniformly equi-integrable. Firstly, we define the function

B(s) =
2

α

∫ s

0
b(|τ |) dτ.

By taking (Th+1(un)− Th(un))eB(|un|) as a test function in (4.1), we have

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)Di(Th+1(un)− Th(un))eB(|un|) dx

+
2

α

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)Diunb(|un|)|Th+1(un)− Th(un)|eB(|un|)dx

+

∫
Ω
Hn(x, un,∇un)(Th+1(un)− Th(un))eB(|un|) dx

+
1

n

∫
Ω
|un|p0(x)−2un(Th+1(un)− Th(un))eB(|un|) dx

=

∫
Ω
fn(Th+1(un)− Th(un))eB(|un|) dx.

According to (3.3) and (3.5), we obtain

α

N∑
i=1

∫
{h<|un|≤h+1}

|Diun|pi(x)eB(|un|) dx
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+ 2
N∑
i=1

∫
{h<|un|}

|Diun|pi(x)b(|un|)|Th+1(un)− Th(un)|eB(|un|)dx

+
1

n

∫
{h<|un|}

|un|p0(x)−1eB(|un|)|Th+1(un)− Th(un)| dx

≤
∫
{h<|un|}

(|fn|+ c(x))eB(|un|) dx

+

N∑
i=1

∫
{h<|un|}

|Diun|pi(x)|Th+1(un)− Th(un)|b(|un|)eB(|un|)dx.

Then

N∑
i=1

∫
{h+1<|un|}

b(|un|)|Diun|pi(x)dx+
1

n

∫
{h+1<|un|}

|un|p0(x)−1 dx

≤ eB(∞)

∫
{h<|un|}

(|f |+ c(x)) dx.

Thus, for all η > 0, there exists h(η) > 1 such that

N∑
i=1

∫
{h(η)<|un|}

b(|un|)|Diun|pi(x) dx+
1

n

∫
{h(η)<|un|}

|un|p0(x)−1 dx ≤ η

2
. (4.26)

On the other hand, for any measurable subset E ⊆ Ω, we have

N∑
i=1

∫
E
b(|un|)|Diun|pi(x) dx+

1

n

∫
E
|un|p0(x)−1 dx

≤
N∑
i=1

∫
E
b(|Th(η)(un)|)|DiTh(η)(un)|pi(x) dx+

1

n

∫
E
|Th(η)(un)|p0(x)−1 dx

+

N∑
i=1

∫
{h(η)<|un|}

b(|un|)|Diun|pi(x) dx+
1

n

∫
{h(η)<|un|}

|un|p0(x)−1 dx. (4.27)

From (4.24), there exists β(η) > 0 such that for any E ⊂ Ω with meas(E) ≤
β(η), we have

N∑
i=1

∫
E
b(|Th(η)(un)|)|DiTh(η)(un)|pi(x) dx+

1

n

∫
E
|Th(η)(un)|p0(x)−1 dx ≤ η

2
.

(4.28)
Finally, by combining (4.26), (4.27) and (4.28), one easily has

N∑
i=1

∫
E
b(|un|)|Diun|pi(x) dx+

1

n

∫
E
|un|p0(x)−1 dx ≤ η

for all E such that meas(E) ≤ β(η). (4.29)
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By using (3.5), we deduce that (Hn(x, un,∇un))n and (|un|p0(x)−2un)n are equi-
integrable, and in view of Vitali’s theorem, we conclude that

Hn(x, un,∇un)→ H(x, u,∇u) and
1

n
|un|p0(x)−2un → 0 in L1(Ω). (4.30)

Step 5: Passage to the limit. Let ϕ ∈W 1,~p(·)
0 (Ω)∩L∞(Ω) and M = k+

‖ϕ‖∞. By taking Tk(un − ϕ) as a test function in (4.1), we get

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)DiTk(un − ϕ) dx+

∫
Ω
Hn(x, un,∇un)Tk(un − ϕ) dx

+
1

n

∫
Ω
|un|p0(x)−2unTk(un − ϕ) dx =

∫
Ω
fnTk(un − ϕ) dx. (4.31)

On the one hand, we have {|un − ϕ| ≤ k} ⊆ {|un| ≤M}. Then∫
Ω
ai(x, Tn(un),∇un)DiTk(un − ϕ) dx

=

∫
Ω
ai(x, TM (un),∇TM (un))(DiTM (un)−Diϕ)χ{|un−ϕ|≤k} dx

=

∫
Ω

(ai(x, TM (un),∇TM (un))− ai(x, TM (un),∇ϕ))

× (DiTM (un)−Diϕ)χ{|un−ϕ|≤k} dx

+

∫
Ω
ai(x, TM (un),∇ϕ)(DiTM (un)−Diϕ)χ{|un−ϕ|≤k} dx.

According to Fatou’s lemma, we conclude that

lim inf
n→∞

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)DiTk(un − ϕ) dx

≥
N∑
i=1

∫
Ω

(ai(x, TM (u),∇TM (u))− ai(x, TM (u),∇ϕ))

× (DiTM (u)−Diϕ)χ{|u−ϕ|≤k} dx

+ lim
n→∞

N∑
i=1

∫
Ω
ai(x, TM (un),∇ϕ)(DiTM (un)−Diϕ)χ{|un−ϕ|≤k} dx

=
N∑
i=1

∫
Ω
ai(x, TM (u),∇TM (u))(DiTM (u)−Diϕ)χ{|u−ϕ|≤k} dx

=

N∑
i=1

∫
Ω
ai(x, u,∇u)DiTk(u− ϕ) dx.

On the other hand, Tk(un − ϕ) ⇀ Tk(u − ϕ) being weak-? in L∞(Ω), thanks to
(4.30), we deduce that∫

Ω
Hn(x, un,∇un)Tk(un − ϕ) dx→

∫
Ω
H(x, u,∇u) Tk(u− ϕ) dx, (4.32)
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1

n

∫
Ω
|un|p0(x)−2unTk(un − ϕ) dx→ 0, (4.33)

and ∫
Ω
fnTk(un − ϕ) dx→

∫
Ω
f Tk(u− ϕ) dx. (4.34)

Hence, putting all the terms together, we conclude the proof of Theorem 3.2.

Example 4.1. We consider the following functions:

H(x, u,∇u) = −e−|u|2
N∑
i=1

|Diu|pi(x),

ai(x, u,∇u) = |Diu|pi(x)−2Diu for i = 1, . . . , N

with
∫ +∞
−∞ e−s

2
ds =

√
π. It is clear that ai(x, u,∇u) and H(x, u,∇u) verify the

assumptions (3.2) − (3.5). Thanks to Theorem 3.2, the anisotropic quasilinear
elliptic problem

−
N∑
i=1

Di
(
|Diu|pi(x)−2Diu

)
= f + e−|u|

2
N∑
i=1

|Diu|pi(x) in Ω,

u = 0 on ∂Ω,

has at least one entropy solution u ∈ T 1,~p(·)
0 (Ω) for any f ∈ L1(Ω).

A. Appendix

Lemma A.1. The operator Gn = An+Rn from W
1,~p(·)
0 (Ω) into W−1,~p ′(·)(Ω)

is pseudo-monotone. Moreover, Gn is coercive in the following sense:

〈Gnv, v〉
‖v‖1,~p(·)

→ +∞ if ‖v‖1,~p(·) → +∞ for v ∈W 1,~p(·)
0 (Ω).

Proof. Using the Hölder’s inequality and the growth condition (3.2), we can
show that the operator An is bounded, and by (4.2), we conclude that Gn is

bounded. For the coercivity, for all u ∈W 1,~p(·)
0 (Ω), we have

〈Gnu, u〉 =
N∑
i=1

∫
Ω
ai(x, Tn(u),∇u) Diu dx

+

∫
Ω
Hn(x, u,∇u)u dx+

1

n

∫
Ω
|u|p0(x) dx

≥ α
N∑
i=0

∫
Ω
|Diu|pi(x) dx− n

∫
Ω
|u| dx

≥ α ‖u‖p1,~p(·) − δ(N + 1)− C4‖u‖1,~p(·),
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with α = min(α, 1
n). It follows that

〈Gnu, u〉
‖u‖1,~p(·)

−→ +∞ as ‖u‖1,~p(·) −→ +∞.

It remains to show that Gn is pseudo-monotone. Let (uk)k be a sequence in

W
1,~p(·)
0 (Ω) such that

uk ⇀ u in W
1,~p(·)
0 (Ω),

Gnuk ⇀ χn in W−1,~p ′(·)(Ω),

lim sup
k→∞

〈Gnuk, uk〉 ≤ 〈χn, u〉.
(A.1)

We will prove that

χn = Gnu and 〈Gnuk, uk〉 −→ 〈χn, u〉 as k → +∞.

Firstly, since W
1,~p(·)
0 (Ω) ↪→↪→ Lp(Ω), then

uk → u in Lp(Ω) for a subsequence denoted again by (uk)k∈N.

As (uk)k∈N is a bounded sequence in W
1,~p(·)
0 (Ω), then, by the growth condition

(ai(x, Tn(uk),∇uk))k∈N is bounded in Lp
′
i(·)(Ω), and there exists a function ϕi,n ∈

Lp
′
i(·)(Ω) such that

ai(x, Tn(uk),∇uk) ⇀ ϕi,n in Lp
′
i(·)(Ω) as k →∞ (A.2)

and
1

n
|uk|p0(x)−2uk ⇀

1

n
|u|p0(x)−2u in Lp

′
0(·)(Ω). (A.3)

Similarly, we have that (Hn(x, uk,∇uk))k∈N is bounded in Lp
′
(Ω). Then there

exists a function ψn ∈ Lp
′
(Ω) such that

Hn(x, uk,∇uk) ⇀ ψn in Lp
′
(Ω) as k →∞. (A.4)

Clearly, for all v ∈W 1,~p(·)
0 (Ω), we have

〈χn, v〉 = lim
k→∞

N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Div dx+ lim

k→∞

∫
Ω
Hn(x, uk,∇uk)v dx

+ lim
k→∞

1

n

∫
Ω
|uk|p0(x)−2ukv dx

=
N∑
i=1

∫
Ω
ϕi,n D

iv dx+

∫
Ω
ψnv dx+

1

n

∫
Ω
|u|p0(x)−2uv dx. (A.5)

From relations (A.1) and (A.5), we have

lim sup
k→∞

〈Gn(uk), uk〉 = lim sup
k→∞

{
N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diuk dx
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+

∫
Ω
Hn(x, uk,∇uk)uk dx+

1

n

∫
Ω
|uk|p0(x) dx

}

≤
N∑
i=1

∫
Ω
ϕi,n D

iu dx+

∫
Ω
ψnu dx+

1

n

∫
Ω
|u|p0(x) dx. (A.6)

Thanks to (A.4), we obtain∫
Ω
Hn(x, uk,∇uk)uk dx→

∫
Ω
ψnu dx. (A.7)

Therefore,

lim sup
k→∞

(
N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diuk dx+

1

n

∫
Ω
|uk|p0(x) dx

)

≤
N∑
i=1

∫
Ω
ϕi,n D

iu dx+
1

n

∫
Ω
|u|p0(x) dx. (A.8)

On the other hand, by (3.4) we get

N∑
i=1

∫
Ω

(ai(x, Tn(uk),∇uk)− ai(x, Tn(uk),∇u))(Diuk −Diu) dx

+
1

n

∫
Ω

(|uk|p0(x)−2uk − |u|p0(x)−2u)(uk − u) dx ≥ 0. (A.9)

Then

N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diuk dx+

1

n

∫
Ω
|uk|p0(x) dx

≥
N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diu dx+

1

n

∫
Ω
|uk|p0(x)−2uku dx

+

N∑
i=1

∫
Ω
ai(x, Tn(uk),∇u)(Diuk −Diu) dx+

1

n

∫
Ω
|u|p0(x)−2u(uk − u) dx.

In view of the Lebesgue dominated convergence theorem, we have Tn(uk) →
Tn(u) in Lpi(·)(Ω). Then ai(x, Tn(uk),∇u) → ai(x, Tn(u),∇u) in Lp

′
i(·)(Ω). By

using (A.2)− (A.3), we get

lim inf
k→∞

( N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diuk dx+

1

n

∫
Ω
|uk|p0(x) dx

)
≥

N∑
i=1

∫
Ω
ϕi,n D

iu dx+
1

n

∫
Ω
|u|p0(x) dx.
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This implies by using (A.8) that

lim
k→∞

(
N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diuk dx+

1

n

∫
Ω
|uk|p0(x) dx

)

=

N∑
i=1

∫
Ω
ϕi,n D

iu dx+
1

n

∫
Ω
|u|p0(x) dx. (A.10)

Relations (A.5), (A.7) and (A.10), give

〈Gnuk, uk〉 → 〈χn, u〉 as k → +∞.

Now, having in mind (A.10), we can prove that

lim
k→+∞

( N∑
i=1

∫
Ω

(ai(x, Tn(uk),∇uk)− ai(x, Tn(uk),∇u))(Diuk −Diu) dx

+

∫
Ω

(|uk|p0(x)−2uk − |u|p0(x)−2u)(uk − u) dx
)

= 0.

Thus, by virtue of Lemma 3.6, we get

uk → u in W
1,~p(·)
0 (Ω) and Diuk → Diu a.e. in Ω.

Then

ai(x, Tn(uk),∇uk) ⇀ ai(x, Tn(u),∇u) in Lp
′
i(·)(Ω) for i = 1, . . . , N

and

Hn(x, uk,∇uk) ⇀ Hn(x, u,∇u) in Lp
′
0(·)(Ω),

which implies that χn = Gnu.

References

[1] E. Azroul, M.B. Benboubker, H. Hjiaj, and C. Yazough, Existence of solutions for
a class of obstacle problems with L1-data and without sign condition, Afr. Mat.
(2015), 1–19.

[2] E. Azroul, M.B. Benboubker, and M. Rhoudaf, Entropy solution for some p(x)-
Quasilinear problems with right-hand side measure, Afr. diaspora J. Math. Vol., 13
(2012), 23–44 .

[3] E. Azroul, M.B. Benboubker, and M. Rhoudaf, On some p(x)-quasilinear problem
with right-hand side measure, Math. Comput. Simul. 102 (2014), 117–130.

[4] M.B. Benboubker, E. Azroul, and A. Barbara, Quasilinear elliptic problems with
nonstandard growths, Electronic J. Diff. Equ. 62 (2011), 1–16.

[5] M.B. Benboubker, H. Chrayteh, M. El Moumni, and H. Hjiaj, Entropy and renor-
malized solutions for nonlinear elliptic problem involving variable exponent and
measure data, Acta Math. Sin. (Engl. Ser.) 31 (2015), 151–169.



Existence Results for Some Anisotropic Elliptic Problems 717

[6] M.B. Benboubker, H. Chrayteh, H. Hjiaj, and C. Yazough, Existence of solutions
in the sense of distributions of anisotropic nonlinear elliptic equations with variable
exponent, Topol. Methods Nonlinear Anal. 46 (2015), 665–693.

[7] M.B. Benboubker, H. Hjiaj, and S. Ouaro, Entropy solutions to nonlinear elliptic
anisotropic problem with variable exponent, J. Appl. Anal. Comput. 4 (2014), no.
3, 245–270.

[8] M. Bendahmane, M. Chrif, and S. El Manouni, An Approximation Result in Gen-
eralized Anisotropic Sobolev Spaces and Application, Z. Anal. Anwend. 30 (2011),
341–353.

[9] L. Boccardo, Some nonlinear Dirichlet problem in L1 involving lower order terms
in divergence form, Progress in elliptic and parabolic partial differential equations
(Capri, 1994), Pitman Res. Notes Math. Ser., 350,, Longman, Harlow, 1996, 43–57.
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Iснування розв’язкiв деякої анiзотропної елiптичної
задачi зi змiнними показниками i L1-даними

Mohamed Badr Benboubker and Hassane Hjiaj

У роботi ми вивчаємо iснування ентропiйних розв’язкiв для сильно
нелiнiйного анiзотропного елiптичного рiвняння

Au+H(x, u,∇u) = f in Ω,

де f належить L1(Ω), A є оператором Лере–Лiонса, i H є нелiнiй-
ним членом нижчого порядку зростання вiдносно |∇u| (тобто таким,
що |H(x, s, ξ)| ≤ c(x) + b(|s|)

∑N
i=1 |ξi|pi(x)), але без припущення, що

H(x, s, ξ)s ≥ 0. Наведено конкретний приклад, що iлюструє результат
iснування розв’язкiв.

Ключовi слова: анiзотропний, змiнний показник, простiр Соболєва,
нелiнiйна елiптична проблема, метод штрафних функцiй, ентропiйнi
розв’язки
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