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Quasiconformal Extensions and Inner Radius

of Univalence by pre-Schwarzian Derivatives

of Analytic and Harmonic Mappings

Zhenyong Hu, Jinhua Fan, and Xiaoyuan Wang

In this paper, we study the criterion for univalence, quasiconformal ex-
tensions and inner radius of univalence for locally univalent analytic and
harmonic mappings in the complex plane. For locally univalent analytic
functions in the unit disk, we give a sufficient condition for univalence and
quasiconformal extensions by pre-Schwarzian derivatives, which generalizes
Becker’s result. For strongly spirallike domains, we consider the quasiconfor-
mal extension and obtain the lower bounds of the inner radius of univalence
by pre-Schwarzian derivatives and Schwarzian derivatives. Furthermore, for
harmonic mappings in a simply connected domain Ω, we prove that Ω is a
quasidisk if and only if the inner radius of univalence of the domain Ω by
pre-Schwarzian derivatives of harmonic mappings is positive, and we obtain
a general sufficient condition for univalence and quasiconformal extensions.
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1. Introduction

1.1. Quasiconformal extensions and inner radius of univalence by
pre-Schwarzian derivatives of locally univalent analytic functions. Let
D be the unit disk in the complex plane C and Ĉ = C ∪ {∞} be the extended
complex plane. We denote by R the real axis. Let φ be a locally univalent
analytic function. The Schwarzian derivative of φ is defined as

Sφ = (Pφ)′ − 1

2
P 2
φ ,

where Pφ = φ′′/φ′ denotes the pre-Schwarzian derivatives of φ. We call a complex
plane domain with more than one boundary point a hyperbolic domain. Let Ω be
a hyperbolic domain, the hyperbolic metric ρΩ(z) is induced by ρΩ(ϕ(z))|ϕ′(z)| =
ρD(z) = 1/(1 − |z|2), where ϕ : D → Ω is a covering mapping. The norms of
Schwarzian derivatives and pre-Schwarzian derivatives of φ in Ω are defined as

‖Sφ‖Ω = sup
z∈Ω
|Sφ(z)|ρ−2

Ω (z) and ‖Pφ‖Ω = sup
z∈Ω
|Pφ(z)|ρ−1

Ω (z).
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A homeomorphism F on D is K-quasiconformal if F has locally L2-derivatives
and satisfies

|∂F/∂z̄| ≤ k|∂F/∂z| a.e. z ∈ D,

where K = (1 + k)/(1 − k) ≥ 1. The Jordan curve is a quasicircle if it is an
image of the unit circle under a quasiconformal self-mapping of Ĉ. The domain
bounded by a quasicircle is called a quasidisk (see [18]). Let C be a Jordan curve
bounding the domains A1 and A2. A sense-reversing quasiconfromal mapping f
of the plane which maps A1 onto A2 is a quasiconformal reflection in C if f keeps
every point of C fixed (see [17]). It is well known that quasiconformal mappings
have the continuous extension of mappings to the boundary of the domain. Apart
from quasiconformal mappings, there are many studies related to the continuous
extension of mappings to the boundary of the domain (see [10,22–24,26]).

Becker [3] proved that if

‖Pφ‖D ≤ k < 1, (1.1)

then φ is not only univalent in D, but also has a continuous extension φ̃ to the
closed unit disk D. Using the Löwner chain, Becker [3] proved that φ has a qua-
siconformal extension to Ĉ if (1.1) holds. Constructing different Löwner chains,
one can establish different criteria of univalence and quasiconformal extension for
analytic functions (see [11,12]).

For locally univalent analytic functions in the unit disk, we give a sufficient
condition for univalence and quasiconformal extensions by the pre-Schwarzian
derivatives, which generalizes the criterion (1.1) as follows.

Theorem 1.1. Let φ1 and φ2 be locally univalent analytic in D, and α be a

constant with α ∈ [0, 1]. If the principal branch of (
φ′1(z)
φ′2(z)

)α is intended,

α|Pφ1(z)− Pφ2(z)|ρ−1
D (z) + |1− φ′1(z)1−αφ′2(z)α| ≤ k < 1, z ∈ D, (1.2)

and φ′1(z)1−αφ′2(z)α is analytic in D, then φ1 is univalent in D and has a quasi-

conformal extension to Ĉ.

Remark 1.2. When α = 1 and φ2 = z, the criterion (1.2) corresponds to the
criterion (1.1).

For some subclasses of univalent analytic functions in D, the quasiconformal
extensions of them have been studied, such as strongly starlike functions of order
α, α ∈ (0, 1) ( [8,25,29,30]). We denote by S the class of all analytic and univalent
functions f in D with f(0) = f ′(0) − 1 = 0. We say that f ∈ Sk (0 ≤ k < 1) if
f ∈ S and f has a k-quasiconformal extension in Ĉ. Let S∗(α) denote the class
of functions consisting of strongly starlike functions of order α in D, that is, of
functions f which satisfy f ∈ S and∣∣∣∣arg

zf ′(z)

f(z)

∣∣∣∣ ≤ πα

2
, z ∈ D, α ∈ (0, 1).
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Fait, Krzyż and Zygmunt [8] showed that if f ∈ S∗(α), then f ∈ Sk with k ≤
sin(απ/2). Sugawa [30] proposed an open question whether S∗(α) ⊂ Sα holds.
By constructing examples, Shen [25] gave a negative answer to this question.

Suppose that β ∈ (−πα/2, πα/2) and α ∈ (0, 1). Let Sβ(α) denote the class
of functions consisting of strongly β-spirallike functions of order α in D, that is,
of functions f which satisfy f ∈ S and∣∣∣∣arg

zf ′(z)

f(z)
− β

∣∣∣∣ ≤ πα

2
, z ∈ D, α ∈ (0, 1).

When β = 0, Sβ(α) = S∗(α). Sugawa [28] showed that if f ∈ Sβ(α), then f ∈
Sk with k ≤ sin(απ/2). Since S∗(α) ⊂ Sα is not true for all α > 0, it is natural
to consider whether there is a similar conclusion for Sβ(α) like S∗(α). In fact, by
an example, we show that Sβ(α) ⊂ Sα cos(β/α) is not true for all α > 0.

Theorem 1.3. Let β ∈ (−πα/2, πα/2) and α ∈ (0, 1). Then there ex-
ists a strongly β-spirallike function of order α that can not be extended to a
k-quasiconformal mapping with k ≤ α cos βα of Ĉ.

Remark 1.4. When β = 0, Theorem 1.3 further gives a negative answer to
the question by Sugawa [30] whether S∗(α) ⊂ Sα holds.

The inner radii of domains Ω by the pre-Schwarzian and Schwarzian deriva-
tives play an important role in the characterization of quasidisks (see [2, 9, 20]).
Recall that the inner radii of domains Ω by the pre-Schwarzian and Schwarzian
derivatives are defined by

σ1(Ω) = sup{c ≥ 0 : ‖Pφ‖Ω ≤ c⇒ φ is univalent in Ω},
σ(Ω) = sup{c ≥ 0 : ‖Sφ‖Ω ≤ c⇒ φ is univalent in Ω}.

Martio–Sarvas [20] and Astala–Gehring [2] proved the following result.

Theorem A ([2, 20]). A domail Ω is a quasidisk iff σ1(Ω) > 0.

Astala and Gehring [2] also showed a criterion of quasiconformal extension
for locally univalent analytic functions.

Theorem B ([2]). Let Ω be a quasidisk in Ĉ. If a locally univalent analytic
function φ in Ω satisfies ‖Pφ‖Ω ≤ b < σ1(Ω), then φ admits a quasiconformal

extension to Ĉ.

Using the inner radii of domains Ω by the Schwarzian derivatives, Ahlfors [1]
and Gehring [9] gave similar results to Theorem A and Theorem B. In [1], Ahlfors
gave a lower bound of σ(Ω) under ∂Ω that admits a continuously differentable
quasiconformal reflection. Sugawa [29] improved Ahlfors’ result by removing the
assumption of the continuously differentable quasiconformal reflection. Cheng [5]
considered the inner radius of univalence by the pre-Schwarzian derivatives.



784 Zhenyong Hu, Jinhua Fan, and Xiaoyuan Wang

Theorem C ( [5, 29]). Let Ω be a quasidisk and ∂Ω admit a continuously
differentable quasiconformal reflection λ. Then

σ(Ω) ≥ 2 ess inf
z∈Ω

|λz̄(z)| − |λz(z)|
|λ(z)− z|2ρ2

Ω(z)
, (1.3)

σ1(Ω) ≥ ess inf
z∈Ω

|λz̄(z)| − |λz(z)|
|λ(z)− z|ρΩ(z)

. (1.4)

The inequalities (1.3) and (1.4) are due to Sugawa [27] and Cheng [5], respec-
tively.

Applying (1.3) and (1.4), one can get the explicit lower bounds for σ(Ω) and
σ1(Ω) of special domains such as a unit disk, an upper half plane and an angular
domain [5, 17]. Sugawa [27] and Cheng [5] considered the inner radius of univa-
lence of strongly starlike domains of order α (a domain Ω is a strongly starlike
domain of order α if f : D → Ω satisfies f(0) = 0 and | arg(zf ′(z)/f(z))| ≤
πα/2, z ∈ D).

Theorem D ([5, 27]). A strongly starlike domain Ω of order α satisfies

σ(Ω) ≥ 2

M(α)2

cos(πα/2)

1 + sin(πα/2)
, (1.5)

σ1(Ω) ≥ 1

M(α)

cos(πα/2)

1 + sin(πα/2)
, (1.6)

where

M(α) = exp

[∫ 1

0

{(
1 + t

1− t

)α
− 1

}
dt

t

]
=

1

4
exp

{
−Γ′((1− α)/2)

Γ((1− α)/2)
− γ
}
,

Γ is the Euler gamma function and γ = 0.5772 . . . is the Euler constant.

The inequalities (1.5) and (1.6) are due to Sugawa [27] and Cheng [5], respec-
tively.

We say that the domain Ω is a strongly β-spirallike domain of order α if
f : D → Ω satisfies f(0) = 0 and | arg((zf ′(z)/f(z)) − β)| ≤ πα/2, z ∈ D. For
strongly spirallike domains of order α, we consider and obtain the lower bounds of
the inner radius of univalence by the pre-Schwarzian derivatives and Schwarzian
derivatives.

Theorem 1.5. Let β ∈ (−πα/2, πα/2) and α ∈ (0, 1). A strongly β-spirallike
domain Ω of order α satisfies

σ(Ω) ≥ 2

L2(β, α)

cos(πα/2)

1 + sin(πα/2)
,

σ1(Ω) ≥ 1

L(β, α)

cos(πα/2)

1 + sin(πα/2)
,

where

L(β, α) = sup
ζ∈D

|1− u2
β,α(ζ)|

(1− |ζ|2)|u′β,α(ζ)|
,
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uβ,α(ζ) =ζ exp

[∫ ζ

1

{(
1 + tei2β/α

1− t

)α
− 1

}
dt

t

]
. (1.7)

In particular,

L(0, α) = M(α) = exp

[∫ 1

0

{(
1 + t

1− t

)α
− 1

}
dt

t

]
.

Remark 1.6. When β = 0, we refer to [27, Lemma 2] and obtain L(0, α) =
M(α), where M(α) is defined in Theorem D. It follows that Theorem 1.5 corre-
sponds to Theorem D when β = 0.

1.2. Quasiconformal extensions and inner radius of univalence by
the pre-Schwarzian derivatives of harmonic mappings. It is well known
that complex-valued harmonic mappings are generalizations of analytic functions
and have been researched widely (see [6]). Recall that a C2 complex-valued
function f in a simply connected domain Ω is harmonic if ∆f = 4fzz = 0. Such
f has a canonical representation f = h + ḡ in Ω, where h and g are analytic in
Ω. Lewy [19] proved that a harmonic mapping f is locally univalent if and only
if its Jacobian Jf 6= 0. If Jf > 0, then f is sense-preserving. Let ω = g′/h′ be the
second complex dilatation of f = h + ḡ. Hernández and Mart́ın [15] proposed a
definition of the pre-Schwarzian derivatives Pf for all sense-preserving harmonic
mappings as

Pf =
∂

∂z
log Jf = Ph −

ωω′

1− |ω|2
.

For details about the pre-Schwarzian derivatives of harmonic mappings, we refer
to [4, 13–16].

Let f = h+ ḡ be a sense-preserving harmonic mapping in a simply connected
domain Ω with the second complex diliatation ω. Similarly to the definition of
the inner radius of univalence of the simply connected domain Ω by the pre-
Schwarzian derivatives, we define the inner radius of univalence of the simply
connected domain Ω by the pre-Schwarzian derivatives of harmonic mappings as

σH(Ω) = sup {c ≥ 0 : ‖Pf‖Ω ≤ c⇒ f is univalent in Ω} ,

where

‖Pf‖Ω = sup
z∈Ω

{(
|Pf |+ |ω′(z)|

1− |ω(z)|2

)
ρ−1

Ω (z)

}
.

Noting that every locally univalent analytic function is harmonic, we have
σH(Ω) ≤ σ1(Ω). However, it is worth considering whether σH(Ω) = σ1(Ω) holds.
We will give an affirmative answer to this question in Theorem 1.7.

Using the pre-Schwarzian derivatives of harmonic mappings, Hernández and
Mart́ın [14] obtained a harmonic mapping version of the criterion (1.1).

Theorem E ([14]). Let f = h + ḡ be a sense-preserving harmonic mapping
in D with ‖ω‖∞ < 1. If ‖Pf‖D ≤ k < 1, then f has a quasiconformal extension
to Ĉ.
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In light of Theorems A, B, and E, it makes sense to ask whether there might
be the corresponding version of harmonic mappings in a quasidisk. Motivated
by this, for harmonic mappings in a simply connected domain Ω, we prove that
Ω is a quasidisk if and only if the inner radius of univalence of the domain Ω by
the pre-Schwarzian derivatives of harmonic mappings is positive, and we obtain
a general sufficient condition for univalence and quasiconformal extensions. Now
we state our results as follows.

Theorem 1.7. A domain Ω is a quasidisk iff σH(Ω) = σ1(Ω) > 0.

Theorem 1.8. Let f = h + ḡ be a sense-preserving harmonic mapping in a
quasidisk Ω with ‖ω‖∞ < 1. If

‖Pf‖Ω ≤ b < σH(Ω), (1.8)

then f is univalent in Ω and admits a quasiconformal extension to Ĉ.

Remark 1.9. When g = 0, Theorem 1.7 and Theorem 1.8 correspond to
Theorem A and Theorem B, respectively. When Ω = D, Theorem 1.8 corresponds
to Theorem E.

In general, the norm of the pre-Schwarzian derivatives of harmonic mappings
is defined as

‖Pf‖Ω = sup
z∈Ω
|Pf |ρ−1

Ω (z).

However, instead of ‖Pf‖Ω by ‖Pf‖Ω, we do not know whether Theorem E,
Theorem 1.7 and Theorem 1.8 hold.

Efraimidis [7] got similar results to Theorem 1.7 and Theorem 1.8 by us-
ing harmonic mapping Schwarzian radius of injectivity of the simply connected
domain.

2. A criterion for univalence and quasiconformal extensions for
locally univalent analytic functions

In this section, we prove our results. By some lemmas, we prove Theorem 1.1.
Let

ft(z) = f(z, t) = etz +

∞∑
n=2

an(t)zn on D× [0,∞).

The function f(z, t) is said to be a Löwner chain if f(z, t) is univalent analytic in D
for any fixed t ∈ [0,∞) and fs(D) ⊆ ft(D) for 0 ≤ s ≤ t <∞. Pommerenke [21]
proved the following result.

Lemma 2.1 ([21]). Let 0 < r0 ≤ 1 and Dr0 = {z : |z| < r0}. The function
f(z, t) = etz+

∑∞
n=2 an(t)zn defined on D× [0,∞) is a Löwner chain if and only

if the following two conditions hold:

(i) f(z, t) is analytic in z ∈ Dr0, for each t ∈ [0,∞), absolutely continuous in
t for each z ∈ Dr0 and satisfies |f(z, t)| ≤ K0e

t (z ∈ Dr0 , t ∈ [0,∞)) for
some positive constant K0.
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(ii) There exists a function p(z, t) analytic in z ∈ D and measurable in t ∈ [0,∞)
satisfying Re p(z, t) > 0 such that

∂f(z, t)

∂t
= z

∂f(z, t)

∂z
p(z, t) (z ∈ Dr0 , a.e. t ∈ [0,∞)). (2.1)

The following result is due to Becker [3].

Lemma 2.2 ([3]). Suppose that f(z, t) is a Löwner chain and

λ(z, t) =
p(z, t)− 1

p(z, t) + 1
, z ∈ D, t ≥ 0,

where p(z, t) is given in Lemma 2.1. If |λ(z, t)| ≤ k < 1 for all z ∈ D and t ≥ 0,
then f(z, t) admits a continuous extension to D for any t ≥ 0 and the function
F (z, z), defined by the formula

F (z, z) =

{
f(z, 0), |z| < 1,

f(z/|z|, log |z|), |z| ≥ 1,

is a quasiconformal extension of f(z, 0) to Ĉ.

Proof of Theorem 1.1. Without loss of generality, we suppose that

φ1(z) = z + a2z
2 + · · · and φ2(z) = z + b2z

2 + · · · .

Now we construct a function φ1(z, t): D× [0,+∞)→ C by

φ1(z, t) = φ1(e−tz) + (et − e−t)z
(
φ′1(e−tz)

φ′2(e−tz)

)α
.

Calculations yield

φ′1(z, t) = e−tφ′1(e−tz) + (et − e−t)
(
φ′1(e−tz)

φ′2(e−tz)

)α
− α(1− e−2t)z

(
φ′1(e−tz)

φ′2(e−tz)

)α(
φ′′2(e−tz)

φ′2(e−tz)
− φ′′1(e−tz)

φ′1(e−tz)

)
, (2.2)

∂φ1(z, t)

∂t
= −ze−tφ′1(e−tz) + (et + e−t)z

(
φ′1(e−tz)

φ′2(e−tz)

)α
+ α(1− e−2t)z2

(
φ′1(e−tz)

φ′2(e−tz)

)α(
φ′′2(e−tz)

φ′2(e−tz)
− φ′′1(e−tz)

φ′1(e−tz)

)
. (2.3)

We first prove that φ1(z, t) satisfies the conditions (i) in Lemma 2.1. Since
φ′1(0)
φ′2(0)

=

1, there exists a disk Dr1 , 0 < r1 ≤ 1, in which
φ′1(e−tz)
φ′2(e−tz) 6= 0 for all t ≥ 0. Then we

can choose a uniform branch of
(
φ′1(e−tz)
φ′2(e−tz)

)α
analytic in Dr1 . We fix the principal

branch, it follows that

φ1(z, t) = φ1(e−tz) + (et − e−t)z
(
φ′1(e−tz)

φ′2(e−tz)

)α
= etz + · · · .
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Hence the function φ1(z, t) is analytic in Dr1 . By

e−tφ1(z, t) = e−tφ1(e−tz) + (1− e−2t)z

(
φ′1(e−tz)

φ′2(e−tz)

)α
= z + · · · ,

we obtain
lim

t→+∞
e−tφ1(z, t) = z,

locally uniformly in z-variable, which implies that {e−tφ1(z, t)}t≥0 is a normal
family in Dr1 by Montel’s theorem. Therefore there exists a positive constant K0

such that |φ1(z, t)| ≤ K0e
t for all z ∈ Dr1 and t ∈ [0,+∞). From the analyticity

of ∂φ1(z,t)
∂t for all fixed numbers T > 0 and r2, 0 < r2 < r1, and a constant K1

such that ∣∣∣∣∂φ1(z, t)

∂t

∣∣∣∣ < K1, z ∈ Dr2 , t ∈ [0, T ]

it follows that φ1(z, t) is locally absolutely continuous in t ∈ [0,+∞), locally
uniform with respect to Dr2 .

Now we show that Lemma 2.1 (ii) holds. To prove that there exists a mea-
surable p(z, t) with respect to t such that Re p(z, t) > 0 and equation (2.1) holds,
we suppose that

λ(z, t) =
∂φ1(z,t)

∂t − zφ′1(z, t)
∂φ1(z,t)

∂t + zφ′1(z, t)
. (2.4)

By (2.2)–(2.4), a short calculation yields that

λ(z, t) = e−2t(1− φ′1(e−tz)1−αφ′2(e−tz)α)

+ zα
1− e−2t

et

(
φ′′2(e−tz)

φ′2(e−tz)
− φ′′1(e−tz)

φ′1(e−tz)

)
.

Notice that |e−tz|2 < e−2t for z ∈ D. Using z to represent e−tz, by (1.2), we have

|λ(z, t)| ≤ |1− φ′1(e−tz)1−αφ′2(e−tz)α|

+ |αze−t|(1− e−2t)

∣∣∣∣φ′′2(e−tz)

φ′2(e−tz)
− φ′′1(e−tz)

φ′1(e−tz)

∣∣∣∣
≤ |1− φ′1(z)1−αφ′2(z)α|+ α(1− |z|2)

∣∣∣∣φ′′2(z)

φ′2(z)
− φ′′1(z)

φ′1(z)

∣∣∣∣ ≤ k < 1. (2.5)

Combining (2.5) and

p(z, t) =
∂φ1(z,t)

∂t

zφ′1(z, t)
=

1 + λ(z, t)

1− λ(z, t)
,

we obtain Rep(z, t) > 0. Moreover, p(z, t) is analytic in D for t ∈ [0,+∞) since
|λ(z, t)| < 1 and φ′1(z)1−αφ′2(z)α is analytic in D. Hence, φ1(z, t) is a Löwner chain
from above analysis. Thus, for each t ≥ 0, the functions φ1(z, t) are univalent in
D, it follows that φ1(z) is univalent in D. Furthermore, by Lemma 2.2, we yield
that φ1(z) admits a quasiconformal extension onto Ĉ.
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3. On quasiconformal extensions and inner radius of univalence
of strongly spirallike domains

For a univalent analytic function

f(z) = z +
∞∑
n=2

anz
n in D,

its Grunsky coefficients αmn are determined from the expression

log
f(z)− f(ζ)

z − ζ
=

∞∑
m+n=1

αmnz
mζn.

Define the Grunsky functional g(f) of f ∈ Sk as

g(f) = sup
‖x‖=1

∣∣∣ ∞∑
m,n=1

√
mnαmnxmxn

∣∣∣
(see [25]). Let k(f) = min{k : f ∈ Sk}. To prove Theorem 1.3, we need the
following result.

Lemma 3.1 ([25]). Let g(f) denote the Grunsky functional for f ∈ Sk. For
any function f ∈ Sk one has |Sf (0)| ≤ 6g(f) and the equality holds if and only if
the Schwarzian derivative of f is of the form

Sf (z) =
Sf (0)

(1 + Sf (0)z2/6)2 , (3.1)

and in this case, k(f) = g(f) = |Sf (0)| /6.

Proof of Theorem 1.3. For β ∈ (−πα/2, πα/2) and α ∈ (0, 1), let

fα,β(z) =z exp

[∫ z

0

{(
1 + t2ei2β/α

1− t2

)α
− 1

}
dt

t

]
.

It is easy to calculate that

zf ′α,β(z)

fα,β(z)
=

(
1 + z2e2iβ/α

1− z2

)α
. (3.2)

It follows that fα,β is a strongly β-spirallike function of order α. By [28, Theorem
1], we know that fα,β ∈ Sk, where k ≤ sin πα

2 . By (3.2), we obtain

log z + log f ′α,β(z)− log fα,β(z) = α
[
log
(

1 + z2e2iβ/α
)
− log

(
1− z2

)]
.

After differentiation of the above identity, we get

1

z
+
f ′′α,β(z)

f ′α,β(z)
−
f ′α,β(z)

fα,β(z)
=

2α(1 + e2iβ/α)z

(1 + z2e2iβ/α)(1− z2)
. (3.3)
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From (3.2) and (3.3), we obtain

f ′′α,β(z)

f ′α,β(z)
=

1

z

[(
1 + z2e2iβ/α

1− z2

)α
− 1

]
+

2α(1 + e2iβ/α)z

(1 + z2e2iβ/α)(1− z2)
.

Calculations lead to

Sfα,β (z) =
2α(1 + e2iβ/α)

(
2e2iβ/αz4 − α(1 + e2iβ/α)z2 + 2

)
(1 + z2e2iβ/α)2(1− z2)2

− 1

2z2

(1 + z2e2iβ/α

1− z2

)2α

− 1

 .
Then we get Sfα,β (0) = 3α(1 + e2iβ/α). Notice that Sfα,β (z) is not of the form
(3.1). Hence, using Lemma 3.1, we have

g (fα,β) >

∣∣Sfα,β (0)
∣∣

6
= α cos

β

α
.

This means that the proof is completed.

Let β ∈ (−πα/2, πα/2) and α ∈ (0, 1). In [28], Sugawa constructed the
quasiconformal reflection in the boundary of a strongly β-spirallike domain. Let
Ω be a strongly β-spirallike domain of order α with respect to the origin and let
Rβ(θ) = sup{r > 0 : [0, Pβ(r, θ)]β ⊂ Ω} be its radius function, where θ ∈ R and
Pβ(r, θ) = rei(θ+tanβ log r) ∈ Ω. Then a quasiconformal reflection λ in ∂Ω is given
by

λ(Pβ(r, θ)) =
Rβ(θ)2

r
e
i

(
tanβ log

Rβ(θ)2

r
+θ

)

= e

(
(1+i tanβ) log

Rβ(θ)2

r
+iθ

)
, θ ∈ R, r ∈ (0,∞). (3.4)

To prove Theorem 1.5, we need the following results obtained by Sugawa [28].

Lemma 3.2 ([28]). Let β and α be real numbers with |β| < πα/2 < π/2. For
a domain Ω in C with 0 ∈ Ω, the following are equivalent:

(1) There exists a strongly β-spirallike function f of order α such that Ω =
f(D).

(2) The radius function Rβ(θ) of Ω with respect to β-spirals is bounded, abso-
lutely continuous on [0, 2π] and satisfies∣∣∣∣∣R′β(θ)

Rβ(θ)
+ sinβ cosβ

∣∣∣∣∣ ≤ cos2 β tan(πα/2) (3.5)

for almost every θ.
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(3) wUβ,α ⊂ Ω whenever w ∈ ∂Ω; wUβ,α ⊂ Ω whenever w ∈ Ω, where

Uβ,α =
{

exp((1 + i tanβ)t+ iθ) : θ ∈ [0, 2π),

t < max{− cos2 β(tan(πα/2) + tanβ)θ,

− cos2 β(tan(πα/2)− tanβ)(2π − θ)}
}
∪ {0}.

Lemma 3.3 ([28]). The function defined by (1.7) maps D conformally onto
Uβ,α in such a way that uβ,α(0) = uβ,α(1)− 1 = 0.

We also need the following result.

Lemma 3.4. Let β ∈ (−π/2, π/2) and α ∈ (0, 1). The function ϕ(x) :=√
x2 + cos4 β − x is decreasing and

ϕ(x) ≥ ϕ(cos2 β tan(πα/2))

= cos2 β
cos(πα/2)

1 + sin(πα/2)
, x ∈ [0, cos2 β tan(πα/2)]. (3.6)

Proof. Let ϕ(x) =
√
x2 + cos4 β − x. It is easy to see that

ϕ′(x) =
x√

x2 + cos4 β
− 1 < 0, x ∈ [0, cos2 β tan(πα/2)].

It follows that (3.6) holds. The proof is completed.

Proof of Theorem 1.5. According to Theorem C, our proof consists of four
steps.

Step 1. We estimate λz and λz̄. Let w = λ(z), where λ(z) is defined by
(3.4). We use the logarithmic coordinates Z = X+iY = log z, z = rei(θ+tanβ log r),
W = U + iV = logw. Using (3.4) and the relation θ = Y −X tanβ, we have

W = 2 logRβ(θ)(Y −X tanβ)−X + i[(Y −X tanβ)

+ (2 logRβ(θ)(Y −X tanβ)−X) tanβ].

Short computations lead to the following:

WX = −2(1 + i tanβ)
R′β(θ)

Rβ(θ)
tanβ − (1 + 2i tanβ),

WY = 2(1 + i tanβ)
R′β(θ)

Rβ(θ)
+ i,

WZ =
WX − iWY

2
= −i

(
R′β(θ)

Rβ(θ)
(1 + tan2 β) + tanβ

)
,

WZ̄ =
WX + iWY

2
= ie2iβ

(
R′β(θ)

Rβ(θ)
+ sinβ cosβ + i cos2 β

)
(1 + tan2 β).



792 Zhenyong Hu, Jinhua Fan, and Xiaoyuan Wang

Then combining (3.5) and Lemma 3.4, we get that

|λz̄| − |λz| = |Wz̄λ| − |Wzλ| =
∣∣∣∣WZ̄

1

r
λ

∣∣∣∣− ∣∣∣∣WZ
1

r
λ

∣∣∣∣
=
R2
β(θ)

r2
(1 + tan2 β)

[√√√√∣∣∣∣∣R′β(θ)

Rβ(θ)
+ sinβ cosβ

∣∣∣∣∣
2

+ cos4 β

−

∣∣∣∣∣R′β(θ)

Rβ(θ)
+ sinβ cosβ

∣∣∣∣∣
]

≥
R2
β(θ)

r2
(1 + tan2 β) cos2 β

cos(πα/2)

1 + sin(πα/2)

=
R2
β(θ)

r2

cos(πα/2)

1 + sin(πα/2)
. (3.7)

Step 2. We calculate

|λ(z)− z| =

∣∣∣∣∣R2
β(θ)

r
ei tanβ log

R2
β(θ)

r − rei tanβ log r

∣∣∣∣∣
=

∣∣∣∣1r
(
r2 −R2

β(θ)ei2 tanβ log
Rβ(θ)

r

)∣∣∣∣ (3.8)

for all z = rei(θ+tanβ log r) ∈ Ω.

Step 3. We estimate ρΩ(z). For fixed z = rei(θ+tanβ log r) and z0 =
Rβ(θ)ei(θ+tanβ logRβ(θ)). By Lemma 3.2, we have N = z0Uβ,α ⊂ Ω. Due to
the monotonicity of the Poincaré metric, we get ρΩ(z) ≤ ρN (z). Then ρN (z) =
ρUβ,α(z/z0)/|z0|, which implies that

ρΩ(z) ≤ ρN (z) = ρUβ,α

(
r

Rβ(θ)
e
i tanβ log r

Rβ(θ)

)
/Rβ(θ). (3.9)

Since uβ,α(ζ) defined by (1.7): D→ Uβ,α is conformal by Lemma 3.3, we have

ρUβ,α (uβ,α(ζ)) =
1

(1− |ζ|2)|u′β,α(ζ)|
, ζ ∈ D. (3.10)

It is easy to see that uβ,α(ζ) maps ζ to r
Rβ(θ)e

i tanβ log r
Rβ(θ) . However, u0,α(ζ)

maps (0, 1) onto (0, 1).

Step 4. We calculate the lower bounds for σ(Ω) and σ1(Ω). By (3.7)–(3.10),
we have

σ(Ω) ≥ 2 ess inf
z∈Ω

|λz̄(z)| − |λz(z)|
|λ(z)− z|2ρ2

Ω(z)

≥
2 cos(πα/2)

1+sin(πα/2)∣∣∣∣1− ( r
Rβ(θ)e

i tanβ log r
Rβ(θ)

)2
∣∣∣∣2 ρ2

Uβ,α

(
r

Rβ(θ)e
i tanβ log r

Rβ(θ)

)
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≥ 2

L2(β, α)

cos(πα/2)

1 + sin(πα/2)
,

σ1(Ω) ≥ ess inf
z∈Ω

|λz̄(z)| − |λz(z)|
|λ(z)− z|ρΩ(z)

≥ 1

L(β, α)

cos(πα/2)

1 + sin(πα/2)
,

where

L(β, α) = sup
ζ∈D

|1− u2
β,α(ζ)|

(1− |ζ|2)|u′β,α(ζ)|

and uβ,α(ζ) is defined by (1.7). In particular, if u0,α(ζ) maps (0, 1) onto (0, 1),
then

L(0, α) = M(α) = exp

[∫ 1

0

{(
1 + t

1− t

)α
− 1

}
dt

t

]
by [27, Lemma 2]. The proof is completed.

When β = 0, we denote Uβ,α by U0,α. Sugawa [27] proved that σ(U0,α) ≤
2(1 − α)2 for α ∈ (0, 1). It is natural to consider the upper bound for σ1(U0,α).
In fact, we obtain the following result.

Theorem 3.5. σ1(U0,α) ≤ 2(1− α) for α ∈ (0, 1).

Proof. We consider the analytic function f0 = log(1 − w) on the domain
C\[1,+∞). Although f0 is univalent, f0(U0,α) has an outward pointing cusp.
This means that f0(U0,α) is not a quasidisk. Thus, by Theorem B, we get
σ1(U0,α) ≤ ‖Pf0‖U0,α . Now we will estimate ‖Pf0‖U0,α . Since U0,α ⊂ V = {w :
| arg(1−w)| < (1−α)π/2}, we have ρV (w) ≤ ρU0,α(w). Then ‖Pf0‖U0,α ≤ ‖Pf0‖V .
It should be noticed that (1 − w)

1
1−α conformally maps V onto the right plane.

Then, by the uniformization theorem, we deduce

ρV (w) =
|1− w|

α
1−α

2(1− α)Re
[
(1− w)

1
1−α
] .

Therefore we have ‖Pf0‖V = supw∈V |Pf0 |ρV (w)−1 = 2(1−α), which implies that
σ1(U0,α) ≤ 2(1− α) for α ∈ (0, 1). The proof is completed.

4. Inner univalence for a quasidisk involving harmonic map-
pings

In this section, we prove Theorems 1.7 and 1.8.

Proof of Theorem 1.7. It is obvious that if σH(Ω) = σ1(Ω) > 0, by using
Theorem A, we know that Ω is a quasidisk. Hence, we only need to prove that if
Ω is a quasidisk, then σ1(Ω) = σH(Ω) > 0. For a ∈ D, we consider the functions
fa = f + af . It is easy to see that the dilatation of fa satisfies

ωa =
a+ ω

1 + āω
and

|zω′a|
1− |ωa|2

=
|zω′|

1− |ω|2
.
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Furthermore, by Pfa = Pf and the triangle inequality, we can get that

|Ph+ag(z)| ≤ |Pf(z)|+ |ω′(z)|
1− |ω(z)|2

.

Therefore,

|Ph+ag(z)|λ−1
Ω (z) ≤

(
|Pf(z)|+ |ω′(z)|

1− |ω(z)|2

)
λ−1

Ω (z), z ∈ Ω.

According to the definition of σ1(Ω) and σ1(Ω) > 0, we know that if

|Ph+ag(z)|λ−1
Ω (z) ≤

(
|Pf(z)|+ |ω′(z)|

1− |ω(z)|2

)
λ−1

Ω (z) ≤ σ1(Ω), z ∈ Ω,

then we deduce that ha = h + ag is univalent in Ω for all |a| < 1. By Huritz’s
theorem, for τ ∈ ∂D, hτ = h+τg is either univalent or constant. Notice that any
sense-preserving harmonic mapping satisfies |g′(0)| < |h′(0)|. That is to say, hτ
must be univalent in Ω, where τ ∈ ∂D. In conclusion, we obtain that ha = h +
ag (|a| ≤ 1) is univalent in Ω. Furthermore, using the proof method from [14],
we can easily prove that f is univalent in Ω. By the definition of σH(Ω), we get
that σH(Ω) ≥ σ1(Ω). Combining the fact that σH(Ω) ≤ σ1(Ω), we have σH(Ω) =
σ1(Ω). We complete the proof.

Proof of Theorem 1.8. Let ϕ : D → Ω be a Riemann map of Ω and Ωr =
ϕ({|z| < r}) for r < 1. We set γr = ∂Ωr. Ω is a K0-quasidisk which means that
γr is a K0-quasicircle. Considering the dilations Γr = f(γr) for r < 1, we will
prove that f(γr) is K-quasiconformal and K does not depend on r. Once we
prove this, we can consider λr and Λr to be K0 and K-quaisconformal reflections
across γr and Γr. Also, we construct

f̃r(z) =

{
f̃(z), z ∈ Ωr,

Λr ◦ f ◦ λr(z), z ∈ Ĉ\Ωr,

which is a quasiconformal mapping in Ĉ. Let r → 1. Using Theorem 5.3 from [18],
we will complete the proof. Our proof consists of four steps.

Step 1. Using the same method as in the proof of Theorem 1.7, we can also
prove that h(Ω) is a quasidisk. Hence, by [1], for ξi ∈ ∂Ωr (i = 1, 2, 3, 4), we get∣∣(h(rξ1), h(rξ2), h(rξ3), h(rξ4))

∣∣ =

∣∣∣∣h(rξ1)− h(rξ3)

h(rξ1)− h(rξ4)

h(rξ2)− h(rξ4)

h(rξ2)− h(rξ3)

∣∣∣∣ ≤M
for 0 < r < 1, where M is a positive constant.

Step 2. We will prove that ha = h+ag is univalent in Ω for all |a| < δ (δ >
1). In Theorem 1.7, we have proved that ha = h + ag is univalent in Ω for all
|a| ≤ 1. Thus we only need to prove that ha = h + ag is univalent in Ω for all
1 < |a| < δ. Notice that

f ′′a
f ′a

=

(
h′′

h′
+

aω′

1 + aω

)
= Pf +

ω′

1− |ω|2
ω + a

1 + aω
. (4.1)
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By (1.8), we see that ∣∣∣∣ ω′

ρΩ(z)(1− |ω|2)

∣∣∣∣ ≤ b < σH(Ω) (4.2)

for all z ∈ Ω. According to (1.8), (4.1) and (4.2), it follows that

|Pha |ρ−1
Ω (z) ≤ |Pf |ρ−1

Ω (z) +

∣∣∣∣ ω′

ρΩ(z)(1− |ω|2)

ω + a

1 + aω

∣∣∣∣
= |Pf |ρ−1

Ω (z) +

∣∣∣∣ ω′

ρΩ(z)(1− |ω|2)

∣∣∣∣ ∣∣∣∣ ω + a

1 + aω

∣∣∣∣
≤ |Pf |ρ−1

Ω (z) +

∣∣∣∣ ω′

ρΩ(z)(1− |ω|2)

∣∣∣∣ |a| − ‖ω‖∞1− ‖ω‖∞|a|

< b−
∣∣∣∣ ω′

ρΩ(z)(1− |ω|2)

∣∣∣∣+

∣∣∣∣ ω′

ρΩ(z)(1− |ω|2)

∣∣∣∣ |a| − ‖ω‖∞1− ‖ω‖∞|a|

= b+

∣∣∣∣ ω′

ρΩ(z)(1− |ω|2)

∣∣∣∣ ( |a| − ‖ω‖∞1− ‖ω‖∞|a|
− 1

)
≤ b |a| − ‖ω‖∞

1− ‖ω‖∞|a|
< σH(Ω) = σ1(Ω)

if

|a| < δ =
σ1(Ω) + b‖ω‖∞
b+ σ1(Ω)‖ω‖∞

.

It is easy to see that
1

‖ω‖∞
≥ σ1(Ω) + b‖ω‖∞
b+ σ1(Ω)‖ω‖∞

> 1.

Hence, by Theorem B, we conclude that fa = h+ ag is univalent in Ω for all

1 < |a| < σ1(Ω) + b‖ω‖∞
b+ σ1(Ω)‖ω‖∞

≤ 1

‖ω‖∞
.

Step 3. We estimate the upper bound of
∣∣∣ g(α)−g(β)
h(α)−h(β)

∣∣∣ for α, β ∈ Ω if we

suppose that h and g are analytic in Ω. Notice that h is univalent in Ω by Step 1.
For fixing β ∈ Ω, we define a function

ϕβ(α) =


g(α)− g(β)

h(α)− h(β)
, α 6= β,

ω(α), α = β,

where α ∈ Ω and ω represents the second complex dilatation of f . Obviously,
ϕβ(α) is continuous for α ∈ Ω. It follows that there exists α0 ∈ Ω such that
supα∈Ω |ϕβ(α)| = |ϕβ(α0)|.

If α0 = β, then sup∈Ω |ϕβ(α)| = |ϕβ(α0)| = |ω(α0)| ≤ ‖ω‖∞. By δ ≤ 1
‖ω‖∞ ,

it follows that supα∈Ω |ϕβ(α)| = |ϕβ(α0)| ≤ 1
δ . If α0 6= β, here we suppose that

supα∈Ω |ϕβ(α)| > 1
δ , then there exist ε > 0 and |µ| = 1 such that

g(α1)− g(β)

h(α1)− h(β)
=

1 + ε

δµ
,
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where α1 ∈ Ω. Therefore, we deduce that h− µδ
1+εg is not univalent in Ω, which

contradicts Step 2. So, if α0 6= β, we have supα∈Ω |ϕβ(α)| = |ϕβ(α0)| ≤ 1
δ . It

follows that

| g(α)− g(β)

h(α)− h(β)
| ≤ 1

δ

for all α, β ∈ Ω.

Step 4. We will prove that

|(w1, w2, w3, w4)| =
∣∣∣∣w1 − w3

w1 − w4

w2 − w4

w2 − w3

∣∣∣∣
is uniformly bounded, where wi = fr(ξi) = hi + ḡi ∈ Γr = fr(∂Ω) = f(∂Ωr) (i =
1, 2, 3, 4). From Steps 1–3, for ξi ∈ ∂Ωr (i = 1, 2, 3, 4), we have

|(w1, w2, w3, w4)| ≤M
(

1 + 1/δ

1− 1/δ

)2

.

Letting r → 1, and using Theorem 5.3 from [18], we complete the proof.
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Квазiконформнi продовження та внутрiшнiй радiус
унiвалентностi вiдносно перед-шварцових похiдних

аналiтичного i гармонiчного вiдображення
Zhenyong Hu, Jinhua Fan, and Xiaoyuan Wang

У роботi ми вивчаємо критерiй унiвалентностi квазiконформних про-
довжень i внутрiшнiй радiус унiвалентностi для локально унiвален-
тних аналiтичних i гармонiчних вiдображень. Для локально унiвален-
тних аналiтичних функцiй на одиничному диску ми надаємо достатнi
умови унiвалентностi i квазiконформнi продовження вiдносно перед-
шварцових похiдних, якi узагальнюють результат Беккера. Для сильно
спiралеподiбних областей ми розглядаємо квазiконформне продовження
i одержуємо нижнi оцiнки внутрiшнiх радiусiв унiвалентностi вiдносно
перед-шварцових i шварцових похiдних. Крiм того, для гармонiчних вiд-
ображень в однозв’язнiй областi Ω, ми доводимо, що Ω є квазiдиском в
тому i лише тому випадку, коли внутрiшнiй радiус унiвалентностi обла-
стi Ω вiдносно перед-шварцових похiдних гармонiчного вiдображення є
додатним та одержуємо загальну достатню умову унiвалентностi i ква-
зiконформнi продовження.

Ключовi слова: квазiконформне продовження, квазiдиск, внутрiшнiй
радiус унiвалентностi, сильно спiралеподiбна функцiя, гармонiчне вiд-
ображення
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