Estimates for Diameter and Width for the Isoperimetrix in Minkowski Geometry

V.I. Diskant
Cherkassky State Technology University 460 Shevchenko Blvd., Cherkassy, 18006, Ukraine
E-mail:diskant@chiti.uch.net
diskant@chstu.cherkassy.ua

Received November 25, 2005
The following estimates are obtained for the diameter $D_{B}(I)$ and the width $\Delta_{B}(I)$ of isoperimetrix in Minkowski space M^{n}

$$
\frac{4 v_{n-1}}{n v_{n}} \leqslant \Delta_{B}(I) \leqslant D_{B}(I) \leqslant \frac{4 v_{n-1}}{v_{n}}
$$

where v_{n} is a volume of the unit ball in n-dimensional Euclidean space R^{n}. The first inequality turns into equality for a bicone, the last inequality turns into equality for a cube.

Key words: isoperimetrix, Minkowski geometry, convex body, diameter, width.

Mathematics Subject Classification 2000: 52A38, 52A40.

Main Part

Let B be a convex compact central-symmetric body with non-empty interior in n-dimensional affine space $A^{n}(n \geqslant 2)$ and point o be the center of symmetry for B. For the point $x \in A^{n}, x \neq o$, we consider a ray from o through x. Suppose x_{0} is the point of intersection of the ray and boundary of B.

Put $g(\bar{x})=\frac{\bar{x}}{\overline{x_{0}}}, g(\bar{o})=0$, where \bar{x} is a position-vector of point x. Function $g(\bar{x})$ is called Minkowski distance function [1, p. 26].

By using a distance function, G. Minkowski defined the distance $\rho_{B}(x, y)$ between the points x and y by

$$
\rho_{B}(x, y)=g(\bar{y}-\bar{x})
$$

G. Minkowski proved that $\rho_{B}(x, y)$ is a metric on $A^{n}[2$, p. 114].

Suppose A^{n} is affine space with the Minkowski metric ρ_{B} which is defined by using B. Such a space is called an n-dimensional Minkowski space M^{n}. The body B is called a normalizing one for $M^{n}[2$, p. 114].

The distance from o to the points of B and only for these points is less or equal to one, and the distance from o to the boundary of B is equal to one. The body B is also called a unit ball of M^{n}.

Consider a coordinate system in M^{n} choosing o as an origin. Using a positively definite symmetric bilinear form we determine a scalar product on M^{n}. Minkowski space with such a scalar product is called a space with the auxiliary Euclidean metric. In this paper by the convex body in M^{n} we mean a convex compact set in M^{n}. An n-dimensional volume $V_{B}(A)$ for a convex body A in M^{n} is defined by

$$
\begin{equation*}
V_{B}(A)=\frac{V(A)}{V(B)} v_{n} . \tag{1}
\end{equation*}
$$

Here $V(A)$ and $V(B)$ are n-dimensional volumes of A and B with respect to the auxiliary Euclidean metric, v_{n} is the volume of a unit ball in the n-dimensional Euclidean space \mathbb{R}^{n} [2, p. 278].

It follows from (1) that $V_{B}(B)=v_{n}$. If the auxiliary Euclidean metric satisfies

$$
\begin{equation*}
V(B)=v_{n} \tag{2}
\end{equation*}
$$

then the Euclidean volume V is the volume V_{B} of Minkowski space, i.e., $V(A)=$ $V_{B}(A)$ for each convex body A in M^{n}.

Suppose that M^{n} is a Minkowski space with the auxiliary Euclidean metric and the metric satisfies (2), $\bar{u} \in \Omega$ is a unit vector, Ω is a unit sphere with respect to this metric centered at o. Denote by $\overline{T(\bar{u})}$ a closed half-space in M^{n} that contains o and is bounded by the hyperplane $T(\bar{u})$. Here $T(\bar{u})$ is perpendicular to vector \bar{u} and is at the Euclidean distance

$$
\frac{v_{n-1}}{V_{n-1}\left(B \bigcap T_{o}(\bar{u})\right)}
$$

from o. Here $T_{o}(\bar{u})$ is a hyperplane through o parallel to $T(\bar{u}), V_{n-1}$ is the $(n-1)$ dimensional volume in the auxiliary Euclidean metric.

The body $I=\bigcap_{\bar{u} \in \Omega} \overline{T(\bar{u})}$ is said to be the isoperimetrix of M^{n}. The body I is a convex central-symmetric centered at o. The isoperimetrix depends only on the unit ball B of M^{n} and does not depend on the auxiliary Euclidean metric that satisfies (2) [2, p. 279].

It was shown in $[2$, p. 280] that for each $\bar{u} \in \Omega$ half-space $\overline{T(\bar{u})}$ is a support halfspace for I in M^{n}. Hence the support function $h_{I}(\bar{u}), \bar{u} \in \Omega$ of the isoperimetrix in M^{n} is

$$
\begin{equation*}
h_{I}(\bar{u})=\frac{v_{n-1}}{V_{n-1}\left(B \bigcap T_{o}(\bar{u})\right)} . \tag{3}
\end{equation*}
$$

It was shown in [2, p. 282] that the area of surface $S_{B}(A)$ of the convex body A in M^{n} can be written as

$$
S_{B}(A)=n V_{1}(A, I)
$$

Here $V_{1}(A, I)$ denotes the first mixed volumes of A and I in the auxiliary Euclidean metric that satisfies (2). Therefore the solution of isoperimetric problem within a set of convex bodies in M^{n} is a body positively homothetic to the isoperimetrix I [2, p. 282]. In general, the body that is positively homothetic to the unit ball B does not give a solution to isoperimetric problem in M^{n}.

Let A be a convex body with nonempty interior in M^{n}. For each support hyperplane T_{A} for the body A we consider another support hyperplane T_{A}^{\prime}, parallel to T_{A}. A set of points $Q\left(T_{A}\right)=\overline{T_{A}} \cap \overline{T_{A}^{\prime}}$ is called the support layer corresponding to T_{A}. Here $\overline{T_{A}}$ denotes a closed support half-space for body A, bounded by T_{A}. The width of the support layer $Q\left(T_{A}\right)$ equals to $2 q\left(Q\left(T_{A}\right), B\right)$. Here $q\left(Q\left(T_{A}\right), B\right)$ is the capacity coefficient, i.e., the maximum value of α such that the translation of the body αB may be contained in the layer $Q\left(T_{A}\right)$. If there is an auxiliary Euclidean metric on M^{n} we shall denote by $Q_{A}(\bar{u})$ the support layer $Q\left(T_{A}\right)$, where $\bar{u} \in \Omega$ is a unit vector orthogonal to the hyperplanes T_{A} and T_{A}^{\prime}.

Theorem 1. Suppose $\bar{u} \in \Omega$ is a unit vector in an auxiliary Euclidean metric on $M^{n}, Q_{A}(\bar{u})$ is a support layer for a body A that is bounded by the support hyperplanes orthogonal to \bar{u}. Then for the width of the support layer $Q_{A}(\bar{u})$ we have the following equality

$$
\begin{equation*}
2 q\left(Q\left(T_{A}\right), B\right)=2 \frac{h_{A}(\bar{u})+h_{A}(-\bar{u})}{h_{B}(\bar{u})+h_{B}(-\bar{u})}, \tag{4}
\end{equation*}
$$

where $h_{A}(\bar{u})$ is a support function of the body A in this auxiliary metric.
Remark1. In the Euclidean case the numerator of (4) $h_{A}(\bar{u})+h_{A}(\bar{u})$ is equal to the width of the body A in direction $\bar{u}[1, \mathrm{p} .62]$. The maximum value of the numerator when $\bar{u} \in \Omega$ is said to be a diameter D of the body A in R^{n}, and the minimum value is to be the width $\Delta[1, \mathrm{p} .62]$. It was shown that diameter of A in R^{n} coincides with the maximum of the distance between two points of A.

Since the numerator and the denominator of (4) are continuous functions of $\bar{u} \in \Omega$ and $h_{A}(\bar{u})+h_{A}(-\overline{-})>0$, there exist the maximum and minimum of the right-hand (4). The maximum of the right-hand side of (4) on Ω is called the diameter and is denoted by $D_{B}(A)$, and the minimum of the right-hand side of (4) on Ω, denoted by $\Delta_{B}(A)$, is called the width of A in M^{n}.

It was shown that $D_{B}(A)$ coincides with the maximum of the distance between points of A in M^{n} [3, p. 220].

R e m a r k 2 . In the case when A is a central symmetric convex body and o is a common symmetry center for A and B we have $h_{A}(\bar{u})=h_{A}(-\bar{u})$, $h_{B}(\bar{u})=h_{B}(-\bar{u})$ and (4) may be rewritten in the following form

$$
2 q\left(Q\left(T_{A}\right), B\right)=2 \frac{h_{A}(\bar{u})}{h_{B}(\bar{u})}
$$

Since B and I are central-symmetric convex bodies and o is their common center of symmetry, in any auxiliary Euclidean metric we have

$$
\begin{equation*}
2 q\left(Q\left(T_{I}\right), B\right)=2 \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})} \tag{5}
\end{equation*}
$$

Theorem 2. Suppose $\bar{u} \in \Omega$ is a unit vector in an auxiliary Euclidean metric on M^{n}. Then for the width $2 h_{I}(\bar{u}) / h_{B}(\bar{u})$ of the support layer $Q_{I}(\bar{u})$ of the isoperimetrix I in M^{n} we have the following estimates

$$
\begin{equation*}
\frac{4 v_{n-1}}{n v_{n}} \leqslant 2 \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})} \leqslant \frac{4 v_{n-1}}{v_{n}} \tag{6}
\end{equation*}
$$

These estimates are exact. For example, the left equality holds when B is a bicone in M^{n} and the vector \bar{u} is orthogonal to the common base of the cones. The right equality holds when B is a cube in M^{n} and the vector \bar{u} is orthogonal to the face of the cube.

Theorem 3. For the width $\Delta_{B}(I)$ and the diameter $D_{B}(I)$ of the isoperimetrix I in M^{n} the following estimates hold

$$
\begin{equation*}
\frac{4 v_{n-1}}{n v_{n}} \leqslant \Delta_{B}(I) \leqslant D_{B}(I) \leqslant \frac{4 v_{n-1}}{v_{n}} \tag{7}
\end{equation*}
$$

For example, a left-hand equality holds when B is a bicone in M^{n} and a righthand equality holds when B is a cube in M^{n}.

R e mark 3. In $[4, \mathrm{p} .14]$ the estimate $D_{B}(I) \leqslant d$ is proved, where d depends on n and does not depend on B. But this inequality is not exact.

Proof of Th e orem 1 . Let T_{A} and T_{A}^{\prime} be different parallel support hyperplanes for the body A, T_{B} and T_{B}^{\prime} be different support hyperplanes for the body B that are parallel to T_{A} and co-directional to the hyperplanes T_{A} and T_{A}^{\prime} respectively. Note that T_{A} is co-directional to T_{B} if at least one of the support half-spaces \bar{T}_{A} or \bar{T}_{B} lies in another one. Let o be the center of symmetry for B and belong to a bisecting hyperplane of hyperplanes T_{A} and T_{A}^{\prime}. This can be done by a parallel translation of B. Consider $b \in T_{B} \cap B$. Draw a ray l from
o through b. Denote $a=l \cap T_{A}$. Then the body $t B$, where $t=\overline{o a} / \overline{o b}$, has the hyperplanes T_{A} and T_{A}^{\prime} as support hyperplanes. Therefore $t=q\left(Q\left(T_{A}\right), B\right)$ and the width of the support layer A which corresponds to T_{A} is equal to $2 t$. Now, let l_{1} be a ray from o that intersects $T_{B}, b_{1}=l_{1} \cap T_{B}, a_{1}=l_{1} \cap T_{A}$. Then the triangles $o b b_{1}$ and $o a a_{1}$ are similar. Hence, we get $\overline{o a_{1}} / \overline{o b_{1}}=t$. Thus, for each ray l_{1} satisfying $l_{1} \cap T_{B} \neq \varnothing$ the ratio $2 \overline{o a_{1}} / \overline{o b_{1}}$ equals to the width of the support layer $Q\left(T_{A}\right)$.

Now, let there be an auxiliary Euclidean metric on M^{n} and $Q\left(T_{A}\right)=Q_{A}(\bar{u})$, where \bar{u} is a unit normal vector to T_{A}. Draw a ray l_{1} from o which is orthogonal to the hyperplane T_{A} and co-directional to \bar{u}. Since the support function $h_{A}(\bar{u})$ is equal to the distance from o to T_{A}, we get

$$
t=\frac{\left|\overline{o a_{1}}\right|}{\left|\overline{o b_{1}}\right|}=\frac{h_{A}(\bar{u})}{h_{B}(\bar{u})} .
$$

The point o is the center of symmetry of the body B, moreover o belongs to the bisecting hyperplane of the layer $Q_{A}(\bar{u})$. Hence $h_{A}(\bar{u})=h_{A}(-\bar{u}), h_{B}(\bar{u})=$ $h_{B}(-\bar{u})$. Thus the width of the support layer $Q_{A}(\bar{u})$ corresponding to \bar{u} is equal to

$$
2 q\left(Q_{A}(\bar{u}), B\right)=2 \frac{h_{A}(\bar{u})}{h_{B}(\bar{u})}=2 \frac{h_{A}(\bar{u})+h_{A}(-\overline{-})}{h_{B}(\bar{u})+h_{B}(-\overline{-u})} .
$$

If we choose a new origin in the auxiliary Euclidean metric, then the values $h_{A}(\bar{u})+h_{A}(-\bar{u}), h_{B}(\bar{u})+h_{B}(-\bar{u})$ will not change. This completes the proof of Theorem 1.

To prove Theorem 2 we need two lemmas. In these lemmas we use arbitrary auxiliary Euclidean metric on M^{n}.

Lemma 1. If T_{0} is a hyperplane in M^{n} containing the origin, then T_{0} divides the unit ball B into parts of equal volumes. Sections of B by hyperplanes that are parallel to T_{0} and are at the same distance from T_{0} have equal $(n-1)$-dimensional volumes.

Proof of Lemma 1. It follows from central symmetry of B.
Let turn from the base of auxiliary Euclidean metric to the orthonormal base this Euclidean metric. Suppose that coordinate system $o x_{1} x_{2} \ldots x_{n}$ created by the orthonormal base, the hyperplane T_{0} coincide with hyperplane $x_{n}=0$, segment $[-b ; b], b>0$, is a projection of the body B on the axis $o x_{n}$.

Lemma 2. $V_{n-1}\left(B \cap\left(x_{n}=a\right)\right) \leqslant V_{n-1}\left(B \cap\left(x_{n}=0\right)\right), 0 \leqslant a \leqslant b$. Here V_{n-1} denotes ($n-1$)-dimensional volume in an auxiliary Euclidean metric.

Proof of Lemma2. Let \tilde{B} be a result of Schwarz symmetrization [2, p. 224] with respect to the axis $o x_{n}$. Then the projection of \tilde{B} on $o x_{n}$ is the segment $[-\mathrm{b} ; \mathrm{b}]$ and section $\tilde{B} \cap\left(x_{n}=c\right),-b \leqslant c \leqslant b$ is the $(n-1)$-dimensional ball with the center in point c on $o x_{n}$. This section has the ($n-1$)-dimensional volume $V_{n-1}\left(\tilde{B} \cap\left(x_{n}=c\right)\right)=V_{n-1}\left(B \cap\left(x_{n}=c\right)\right)$. It follows from Lemma 1 that the radii of the balls $\tilde{B} \cap\left(x_{n}=a\right)$ and $\tilde{B} \cap\left(x_{n}=-a\right)$ are equal. Since the body \tilde{B} is convex [2, p. 227], the radius of the ball $\tilde{B} \cap\left(x_{n}=0\right)$ is not less than the radius of the ball $\tilde{B} \cap\left(x_{n}=a\right)$. Thus, $V_{n-1}\left(B \cap\left(x_{n}=a\right)\right)=V_{n-1}\left(\tilde{B} \cap\left(x_{n}=\right.\right.$ $a)) \leqslant V_{n-1}\left(\tilde{B} \cap\left(x_{n}=0\right)\right)=V_{n-1}\left(B \cap\left(x_{n}=0\right)\right)$, where $0 \leqslant a \leqslant b$.

Later on we consider an auxiliary Euclidean metrics on M^{n} that satisfies condition (2).

Proof of Theorem 2. Without loss of generality, we can assume that the orthonormal system $o x_{1} x_{2} \ldots x_{n}$ has vector $\bar{u} \in \Omega$ as a direction vector for the axis $o x_{n}$. Let $h_{B}(\bar{u})=b$. It follows from (3) that

$$
h_{I}(\bar{u})=\frac{v_{n-1}}{V_{n-1}\left(B \cap\left(x_{n}=0\right)\right)} .
$$

Then the width of the support layer $Q_{I}(\bar{u})$ for the isoperimetrix I can be written in the following form:

$$
\begin{equation*}
2 \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})}=\frac{2 v_{n-1}}{b V_{n-1}\left(B \cap\left(x_{n}=0\right)\right)} . \tag{8}
\end{equation*}
$$

Let us find an upper and lower bounds for the denominator of the right-hand side of (8) that depend only on n. To do this we consider bodies B_{1}, \tilde{B}_{1}, K, and Π. Here $B_{1}=B \cap\left(x_{n} \geq 0\right), \tilde{B}_{1}=\tilde{B} \cap\left(x_{n} \geq 0\right), K$ is a ball cone with the vertex in the point b on $o x_{n}$ and the base $\tilde{B}_{1} \cap\left(x_{n}=0\right)$. The base is a ball with the center in o. Denote by Π a right ball cylinder with the base $\tilde{B}_{1} \cap\left(x_{n}=0\right)$ that has the segment $[0 ; b]$ as a height.

The segment $[-b ; b]$ is a projection of the body B on the axis $o x_{n}$, the segment $[0 ; b]$ is a projection of the bodies B_{1}, \tilde{B}_{1}, K, and Π on the same axis. Consequently, the hyperplane $x_{n}=b$ is a support hyperplane with a unit outward normal vector \bar{u} for the bodies $B, B_{1}, \tilde{B}_{1}, K$, and Π. Since the origin o belongs to all these bodies, we have

$$
h_{B}(\bar{u})=h_{B_{1}}(\bar{u})=h_{\tilde{B}_{1}}(\bar{u})=h_{K}(\bar{u})=h_{\Pi}(\bar{u})=b .
$$

From the definition of B_{1} it follows that $V_{n-1}\left(B \cap\left(x_{n}=0\right)\right)=V_{n-1}\left(B_{1} \cap\left(x_{n}=\right.\right.$ $0)$). By the definition of Schwarz symmetrization with respect to a line we obtain $V_{n-1}\left(B \cap\left(x_{n}=0\right)\right)=V_{n-1}\left(B_{1} \cap\left(x_{n}=0\right)\right)=V_{n-1}\left(\tilde{B}_{1} \cap\left(x_{n}=0\right)\right)$. From the definition of K and Π it follows that $V_{n-1}\left(\tilde{B}_{1} \cap\left(x_{n}=0\right)\right)=V_{n-1}\left(K \cap\left(x_{n}=\right.\right.$ $0))=V_{n-1}\left(\Pi \cap\left(x_{n}=0\right)\right)$.

By assumption, the auxiliary Euclidean metric on M^{n} satisfies the condition $V(B)=v_{n}$. Then Lemma 1 implies $V\left(B_{1}\right)=v_{n} / 2$. Since \tilde{B}_{1} is the result of Schwarz symmetrization B with respect to the axis $o x_{n}$, we get $V\left(\tilde{B}_{1}\right)=V\left(B_{1}\right)=$ $v_{n} / 2$. The volume of the cone K equals

$$
V(K)=\frac{1}{n} b V_{n-1}\left(\tilde{B}_{1} \cap\left(x_{n}=0\right)\right)=\frac{1}{n} b V_{n-1}\left(B \cap\left(x_{n}=0\right)\right) .
$$

The volume of the cylinder Π equals

$$
V(\Pi)=b V_{n-1}\left(\tilde{B}_{1} \cap\left(x_{n}=0\right)\right)=b V_{n-1}\left(B \cap\left(x_{n}=0\right)\right) .
$$

The body \tilde{B}_{1} contains the vertex of the cone K. The base of the cone K is the ball $\tilde{B}_{1} \cap\left(x_{n}=0\right)$ and this ball belongs to \tilde{B}_{1}. Hence, we have $K \subset \tilde{B}_{1}$. It follows from Lem. 2 that $\tilde{B}_{1} \subset \Pi$. Then from the chain of inclusions

$$
K \subset \tilde{B}_{1} \subset \Pi
$$

we get

$$
V(K) \leqslant V\left(\tilde{B}_{1}\right) \leqslant V(\Pi)
$$

or

$$
\frac{1}{n} b V_{n-1}\left(B \cap\left(x_{n}=0\right)\right) \leqslant v_{n} / 2 \leqslant b V_{n-1}\left(B \cap\left(x_{n}=0\right)\right) .
$$

The inequalities obtained above lead to the following estimates, depending only on n, for the denominator (8).

$$
v_{n} / 2 \leqslant b V_{n-1}\left(B \cap\left(x_{n}=0\right)\right) \leqslant n v_{n} / 2 .
$$

By using these estimates in (8) we get the estimates (6) for $2 h_{I}(\bar{u}) / h_{B}(\bar{u})$ in the statement of Th. 2.

Remark 4. Let B be a bicone in M^{n}, o the center of B, T_{0} a hyperplane that passes through o and has a common base of the cones. Consider the half-space where a unit vector \bar{u} is orthogonal to T_{0} and directed inside. Denote by b the height of the cone B_{1} that lies in this half-space. Since $v_{n} / 2=b V_{n-1}\left(B \cap T_{0}\right) / n$, we get $h_{B}(\bar{u})=b, h_{I}(\bar{u})=v_{n-1} / V_{n-1}\left(B \bigcap T_{o}\right)$ and

$$
\frac{h_{I}(\bar{u})}{h_{B}(\bar{u})}=\frac{2 v_{n-1}}{n v_{n}} .
$$

This implies that the left-hand estimate for $2 h_{I}(\bar{u}) / h_{B}(\bar{u})$ in the statement of Th. 2 is exact.

Let B be a cube in M^{n} and o the center of B. Denote by T_{0} a hyperplane through o parallel to the face of B with the outward normal vector \bar{u}, let a be the edge of B. Since $a^{n}=v_{n}$, we obtain

$$
h_{B}(\bar{u})=a / 2, \quad h_{I}(\bar{u})=\frac{v_{n-1}}{a^{n-1}}, \quad \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})}=\frac{2 v_{n-1}}{v_{n}} .
$$

Thus the right-hand estimate in the statement of Th. 2 is exact.
Proof of Theorem 3. It follows from Remark 1 and (5) that

$$
D_{B}(I)=\max _{\bar{u} \in \Omega} 2 \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})}, \Delta_{B}(I)=\min _{\bar{u} \in \Omega} 2 \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})} .
$$

Then using the inequalities (6) we obtain

$$
\frac{4 v_{n-1}}{n v_{n}} \leqslant \min _{\bar{u} \in \Omega} 2 \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})} \leqslant \max _{\bar{u} \in \Omega} 2 \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})} \leqslant \frac{4 v_{n-1}}{v_{n}} .
$$

These estimates and estimates (7) are equivalent. This completes the proof.
Remark 5. Let B be a bicone from Remark $4, \bar{u}$ be a unit vector that orthogonal to the common base of the cones. Then

$$
2 \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})}=\frac{4 v_{n-1}}{n v_{n}} .
$$

Now, by (7), this quantity equals $\Delta_{B}(I)$. Thus, the left-hand estimate in (7) for $\Delta_{B}(I)$ is exact.

Let B be a cube from Remark 4, \bar{u} an outward unit normal vector to one of the hyperplanes containing the face of the cube. Then

$$
2 \frac{h_{I}(\bar{u})}{h_{B}(\bar{u})}=\frac{4 v_{n-1}}{v_{n}} .
$$

Now, by (7), this quantity equals to $D_{B}(I)$. Thus, the right-hand estimate in (7) for $D_{B}(I)$ is exact.

References

[1] T. Bonnesen and V. Fenchel, Theorie of Convex Bodies. Fazis, Moscow, 2002, XIV +210 p . (Russian)
[2] K. Leichtveis, Convex Sets. Nauka, Moscow, 1985. (Russian)
[3] V.I. Diskant, Improvement of the Isodiametral Inequality in the Minkowski Geometry. - Mat. fiz., analiz, geom., 1 (1994), 216-226. (Russian)
[4] V.I. Diskant., Estimates for Diameter, Volume and Surface Area for the Isoperimetrix in the Minkowski Geometry. - Proc. Ukr. Congr. Math. (2001), Kyiv, Inst. Math. NASU, 2003, 12-17. (Russian)

