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The following estimates are obtained for the diameter DB(I) and the
width ∆B(I) of isoperimetrix in Minkowski space Mn
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where vn is a volume of the unit ball in n-dimensional Euclidean space Rn.
The first inequality turns into equality for a bicone, the last inequality turns
into equality for a cube.
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Main Part

Let B be a convex compact central-symmetric body with non-empty interior
in n-dimensional affine space An (n > 2) and point o be the center of symmetry
for B. For the point x ∈ An, x 6= o, we consider a ray from o through x. Suppose
x0 is the point of intersection of the ray and boundary of B.

Put g(x̄) = x̄
x̄0
, g(ō) = 0, where x̄ is a position-vector of point x. Function

g(x̄) is called Minkowski distance function [1, p. 26].
By using a distance function, G. Minkowski defined the distance ρB(x, y)

between the points x and y by

ρB(x, y) = g(ȳ − x̄).

G. Minkowski proved that ρB(x, y) is a metric on An [2, p. 114].
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Suppose An is affine space with the Minkowski metric ρB which is defined by
using B . Such a space is called an n-dimensional Minkowski spaceMn. The body
B is called a normalizing one for Mn [2, p. 114].

The distance from o to the points of B and only for these points is less or equal
to one, and the distance from o to the boundary of B is equal to one. The body
B is also called a unit ball of Mn.

Consider a coordinate system inMn choosing o as an origin. Using a positively
definite symmetric bilinear form we determine a scalar product onMn. Minkowski
space with such a scalar product is called a space with the auxiliary Euclidean
metric. In this paper by the convex body in Mn we mean a convex compact set
in Mn. An n-dimensional volume VB(A) for a convex body A in Mn is defined
by

VB(A) =
V (A)

V (B)
vn. (1)

Here V (A) and V (B) are n-dimensional volumes of A and B with respect to the
auxiliary Euclidean metric, vn is the volume of a unit ball in the n-dimensional
Euclidean space Rn [2, p. 278].

It follows from (1) that VB(B) = vn. If the auxiliary Euclidean metric satisfies

V (B) = vn, (2)

then the Euclidean volume V is the volume VB of Minkowski space, i.e., V (A) =
VB(A) for each convex body A in Mn.

Suppose that Mn is a Minkowski space with the auxiliary Euclidean metric
and the metric satisfies (2), ū ∈ Ω is a unit vector, Ω is a unit sphere with respect
to this metric centered at o. Denote by T (ū) a closed half-space in Mn that
contains o and is bounded by the hyperplane T (ū). Here T (ū) is perpendicular
to vector ū and is at the Euclidean distance

vn−1

Vn−1(B
⋂
To(ū))

from o. Here To(ū) is a hyperplane through o parallel to T (ū), Vn−1 is the (n−1)-
dimensional volume in the auxiliary Euclidean metric.

The body I =
⋂

ū∈Ω T (ū) is said to be the isoperimetrix of Mn. The body
I is a convex central-symmetric centered at o. The isoperimetrix depends only
on the unit ball B of Mn and does not depend on the auxiliary Euclidean metric
that satisfies (2) [2, p. 279].

It was shown in [2, p. 280] that for each ū ∈ Ω half-space T (ū) is a support half-
space for I in Mn. Hence the support function hI(ū), ū ∈ Ω of the isoperimetrix
in Mn is

hI(ū) =
vn−1

Vn−1(B
⋂
To(ū))

. (3)
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It was shown in [2, p. 282] that the area of surface SB(A) of the convex body
A in Mn can be written as

SB(A) = nV1(A, I).

Here V1(A, I) denotes the first mixed volumes ofA and I in the auxiliary Euclidean
metric that satisfies (2). Therefore the solution of isoperimetric problem within
a set of convex bodies in Mn is a body positively homothetic to the isoperimetrix
I [2, p. 282]. In general, the body that is positively homothetic to the unit ball
B does not give a solution to isoperimetric problem in Mn.

Let A be a convex body with nonempty interior in Mn. For each support
hyperplane TA for the body A we consider another support hyperplane T ′A, parallel
to TA. A set of points Q(TA) = TA ∩T ′A is called the support layer corresponding
to TA. Here TA denotes a closed support half-space for body A, bounded by TA.
The width of the support layer Q(TA) equals to 2q(Q(TA), B). Here q(Q(TA), B)
is the capacity coefficient, i.e., the maximum value of α such that the translation
of the body αB may be contained in the layer Q(TA). If there is an auxiliary
Euclidean metric on Mn we shall denote by QA(ū) the support layer Q(TA),
where ū ∈ Ω is a unit vector orthogonal to the hyperplanes TA and T ′A.

Theorem 1. Suppose ū ∈ Ω is a unit vector in an auxiliary Euclidean metric
on Mn, QA(ū) is a support layer for a body A that is bounded by the support
hyperplanes orthogonal to ū. Then for the width of the support layer QA(ū) we
have the following equality

2q(Q(TA), B) = 2
hA(ū) + hA(−ū)

hB(ū) + hB(−ū)
, (4)

where hA(ū) is a support function of the body A in this auxiliary metric.

R e m a r k 1. In the Euclidean case the numerator of (4) hA(ū) + hA(ū) is
equal to the width of the body A in direction ū [1, p. 62]. The maximum value of
the numerator when ū ∈ Ω is said to be a diameter D of the body A in Rn, and
the minimum value is to be the width ∆ [1, p. 62]. It was shown that diameter
of A in Rn coincides with the maximum of the distance between two points of A.

Since the numerator and the denominator of (4) are continuous functions of
ū ∈ Ω and hA(ū) + hA(−̄u) > 0, there exist the maximum and minimum of the
right-hand (4). The maximum of the right-hand side of (4) on Ω is called the
diameter and is denoted by DB(A), and the minimum of the right-hand side of
(4) on Ω, denoted by ∆B(A), is called the width of A in Mn.

It was shown thatDB(A) coincides with the maximum of the distance between
points of A in Mn [3, p. 220].
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R e m a r k 2. In the case when A is a central symmetric convex body
and o is a common symmetry center for A and B we have hA(ū) = hA(−ū),
hB(ū) = hB(−ū) and (4) may be rewritten in the following form

2q(Q(TA), B) = 2
hA(ū)

hB(ū)
.

Since B and I are central-symmetric convex bodies and o is their common
center of symmetry, in any auxiliary Euclidean metric we have

2q(Q(TI), B) = 2
hI(ū)

hB(ū)
. (5)

Theorem 2. Suppose ū ∈ Ω is a unit vector in an auxiliary Euclidean met-
ric on Mn. Then for the width 2hI(ū)/hB(ū) of the support layer QI(ū) of the
isoperimetrix I in Mn we have the following estimates

4vn−1

nvn
6 2

hI(ū)

hB(ū)
6

4vn−1

vn
. (6)

These estimates are exact. For example, the left equality holds when B is
a bicone in Mn and the vector ū is orthogonal to the common base of the cones.
The right equality holds when B is a cube in Mn and the vector ū is orthogonal
to the face of the cube.

Theorem 3. For the width ∆B(I) and the diameter DB(I) of the isoperimetrix
I in Mn the following estimates hold

4vn−1

nvn
6 ∆B(I) 6 DB(I) 6

4vn−1

vn
. (7)

For example, a left-hand equality holds when B is a bicone inMn and a right-
hand equality holds when B is a cube in Mn.

R e m a r k 3. In [4, p. 14] the estimate DB(I) 6 d is proved, where d depends
on n and does not depend on B. But this inequality is not exact.

P r o o f o f T h e o r e m 1. Let TA and T ′A be different parallel support
hyperplanes for the body A, TB and T ′B be different support hyperplanes for the
body B that are parallel to TA and co-directional to the hyperplanes TA and T ′A
respectively. Note that TA is co-directional to TB if at least one of the support
half-spaces TA or TB lies in another one. Let o be the center of symmetry for
B and belong to a bisecting hyperplane of hyperplanes TA and T ′A. This can be
done by a parallel translation of B. Consider b ∈ TB ∩ B. Draw a ray l from

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4 391



V.I. Diskant

o through b. Denote a = l ∩ TA. Then the body tB, where t = oa/ob, has the
hyperplanes TA and T ′A as support hyperplanes. Therefore t = q(Q(TA), B) and
the width of the support layer A which corresponds to TA is equal to 2t. Now,
let l1 be a ray from o that intersects TB, b1 = l1 ∩ TB, a1 = l1 ∩ TA. Then the
triangles obb1 and oaa1 are similar. Hence, we get oa1/ob1 = t. Thus, for each
ray l1 satisfying l1∩TB 6= � the ratio 2oa1/ob1 equals to the width of the support
layer Q(TA).

Now, let there be an auxiliary Euclidean metric on Mn and Q(TA) = QA(ū),
where ū is a unit normal vector to TA. Draw a ray l1 from o which is orthogonal
to the hyperplane TA and co-directional to ū. Since the support function hA(ū)
is equal to the distance from o to TA, we get

t =
|oa1|
|ob1|

=
hA(ū)

hB(ū)
.

The point o is the center of symmetry of the body B, moreover o belongs to
the bisecting hyperplane of the layer QA(ū). Hence hA(ū) = hA(−ū), hB(ū) =
hB(−ū). Thus the width of the support layer QA(ū) corresponding to ū is equal
to

2q(QA(ū), B) = 2
hA(ū)

hB(ū)
= 2

hA(ū) + hA(−̄u)

hB(ū) + hB(−̄u)
.

If we choose a new origin in the auxiliary Euclidean metric, then the values
hA(ū) + hA(−ū), hB(ū) + hB(−ū) will not change. This completes the proof of
Theorem 1.

To prove Theorem 2 we need two lemmas. In these lemmas we use arbitrary
auxiliary Euclidean metric on Mn.

Lemma 1. If T0 is a hyperplane in Mn containing the origin, then T0 divides
the unit ball B into parts of equal volumes. Sections of B by hyperplanes that are
parallel to T0 and are at the same distance from T0 have equal (n−1)-dimensional
volumes.

P r o o f o f L e m m a 1. It follows from central symmetry of B.
Let turn from the base of auxiliary Euclidean metric to the orthonormal base

this Euclidean metric. Suppose that coordinate system ox1x2 . . . xn created by the
orthonormal base, the hyperplane T0 coincide with hyperplane xn = 0, segment
[−b; b], b > 0, is a projection of the body B on the axis oxn.

Lemma 2. Vn−1(B ∩ (xn = a)) 6 Vn−1(B ∩ (xn = 0)), 0 6 a 6 b. Here Vn−1

denotes (n− 1)-dimensional volume in an auxiliary Euclidean metric.
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P r o o f o f L e m m a 2. Let B̃ be a result of Schwarz symmetrization
[2, p. 224] with respect to the axis oxn. Then the projection of B̃ on oxn is the
segment [-b;b] and section B̃ ∩ (xn = c), −b 6 c 6 b is the (n − 1)-dimensional
ball with the center in point c on oxn. This section has the (n − 1)-dimensional
volume Vn−1(B̃ ∩ (xn = c)) = Vn−1(B ∩ (xn = c)). It follows from Lemma 1 that
the radii of the balls B̃ ∩ (xn = a) and B̃ ∩ (xn = −a) are equal. Since the body
B̃ is convex [2, p. 227], the radius of the ball B̃ ∩ (xn = 0) is not less than the
radius of the ball B̃ ∩ (xn = a). Thus, Vn−1(B ∩ (xn = a)) = Vn−1(B̃ ∩ (xn =
a)) 6 Vn−1(B̃ ∩ (xn = 0)) = Vn−1(B ∩ (xn = 0)), where 0 6 a 6 b.

Later on we consider an auxiliary Euclidean metrics on Mn that satisfies
condition (2).

P r o o f o f T h e o r e m 2. Without loss of generality, we can assume
that the orthonormal system ox1x2 . . . xn has vector ū ∈ Ω as a direction vector
for the axis oxn. Let hB(ū) = b. It follows from (3) that

hI(ū) =
vn−1

Vn−1(B ∩ (xn = 0))
.

Then the width of the support layer QI(ū) for the isoperimetrix I can be written
in the following form:

2
hI(ū)

hB(ū)
=

2vn−1

bVn−1(B ∩ (xn = 0))
. (8)

Let us find an upper and lower bounds for the denominator of the right-hand side
of (8) that depend only on n. To do this we consider bodies B1, B̃1, K, and Π.
Here B1 = B ∩ (xn ≥ 0), B̃1 = B̃ ∩ (xn ≥ 0), K is a ball cone with the vertex in
the point b on oxn and the base B̃1 ∩ (xn = 0). The base is a ball with the center
in o. Denote by Π a right ball cylinder with the base B̃1 ∩ (xn = 0) that has the
segment [0; b] as a height.

The segment [−b; b] is a projection of the body B on the axis oxn, the segment
[0; b] is a projection of the bodies B1, B̃1, K, and Π on the same axis. Conse-
quently, the hyperplane xn = b is a support hyperplane with a unit outward
normal vector ū for the bodies B, B1, B̃1, K, and Π. Since the origin o belongs
to all these bodies, we have

hB(ū) = hB1(ū) = hB̃1
(ū) = hK(ū) = hΠ(ū) = b.

From the definition of B1 it follows that Vn−1(B∩(xn = 0)) = Vn−1(B1∩(xn =
0)). By the definition of Schwarz symmetrization with respect to a line we obtain
Vn−1(B ∩ (xn = 0)) = Vn−1(B1 ∩ (xn = 0)) = Vn−1(B̃1 ∩ (xn = 0)). From the
definition of K and Π it follows that Vn−1(B̃1 ∩ (xn = 0)) = Vn−1(K ∩ (xn =
0)) = Vn−1(Π ∩ (xn = 0)).
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By assumption, the auxiliary Euclidean metric on Mn satisfies the condition
V (B) = vn. Then Lemma 1 implies V (B1) = vn/2. Since B̃1 is the result of
Schwarz symmetrization B with respect to the axis oxn, we get V (B̃1) = V (B1) =
vn/2. The volume of the cone K equals

V (K) =
1

n
bVn−1(B̃1 ∩ (xn = 0)) =

1

n
bVn−1(B ∩ (xn = 0)).

The volume of the cylinder Π equals

V (Π) = bVn−1(B̃1 ∩ (xn = 0)) = bVn−1(B ∩ (xn = 0)).

The body B̃1 contains the vertex of the cone K. The base of the cone K is the
ball B̃1∩(xn = 0) and this ball belongs to B̃1. Hence, we have K ⊂ B̃1. It follows
from Lem. 2 that B̃1 ⊂ Π. Then from the chain of inclusions

K ⊂ B̃1 ⊂ Π

we get
V (K) 6 V (B̃1) 6 V (Π)

or
1

n
bVn−1(B ∩ (xn = 0)) 6 vn/2 6 bVn−1(B ∩ (xn = 0)).

The inequalities obtained above lead to the following estimates, depending only
on n, for the denominator (8).

vn/2 6 bVn−1(B ∩ (xn = 0)) 6 nvn/2.

By using these estimates in (8) we get the estimates (6) for 2hI(ū)/hB(ū) in the
statement of Th. 2.

R e m a r k 4. Let B be a bicone in Mn, o the center of B, T0 a hyperplane
that passes through o and has a common base of the cones. Consider the half-space
where a unit vector ū is orthogonal to T0 and directed inside. Denote by b the
height of the cone B1 that lies in this half-space. Since vn/2 = bVn−1(B ∩ T0)/n,
we get hB(ū) = b, hI(ū) = vn−1/Vn−1(B

⋂
To) and

hI(ū)

hB(ū)
=

2vn−1

nvn
.

This implies that the left-hand estimate for 2hI(ū)/hB(ū) in the statement of
Th. 2 is exact.

Let B be a cube in Mn and o the center of B. Denote by T0 a hyperplane
through o parallel to the face of B with the outward normal vector ū, let a be the
edge of B. Since an = vn, we obtain

hB(ū) = a/2, hI(ū) =
vn−1

an−1
,

hI(ū)

hB(ū)
=

2vn−1

vn
.
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Thus the right-hand estimate in the statement of Th. 2 is exact.
P r o o f o f T h e o r e m 3. It follows from Remark 1 and (5) that

DB(I) = max
ū∈Ω

2
hI(ū)

hB(ū)
,∆B(I) = min

ū∈Ω
2
hI(ū)

hB(ū)
.

Then using the inequalities (6) we obtain

4vn−1

nvn
6 min

ū∈Ω
2
hI(ū)

hB(ū)
6 max

ū∈Ω
2
hI(ū)

hB(ū)
6

4vn−1

vn
.

These estimates and estimates (7) are equivalent. This completes the proof.
R e m a r k 5. Let B be a bicone from Remark 4, ū be a unit vector that

orthogonal to the common base of the cones. Then

2
hI(ū)

hB(ū)
=

4vn−1

nvn
.

Now, by (7), this quantity equals ∆B(I). Thus, the left-hand estimate in (7) for
∆B(I) is exact.

Let B be a cube from Remark 4, ū an outward unit normal vector to one of
the hyperplanes containing the face of the cube. Then

2
hI(ū)

hB(ū)
=

4vn−1

vn
.

Now, by (7), this quantity equals to DB(I). Thus, the right-hand estimate in (7)
for DB(I) is exact.
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