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Inscribed and Circumscribed Radius of

r-Convex Hypersurfaces in Hadamard
Manifolds
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Let P be a convex polygon in a Hadamard surface M with curvature K
satisfying —k3 > K > —k?. We give an upper bound of the circumradius of
P in terms of a lower bound of the curvature of P at its vertices.
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1. Introduction and main result

Let M be a complete m-dimensional Riemannian manifold. Given a domain
) C M, an inscribed ball or inball is a ball in M contained in 2 with maximum
radius, which is called the inradius of 2, and we denote it by r. A circumscribed
ball of 2 is a ball in M containing 2 with minimum radius, which is called the
circumradius, and we denote it by R.

In the book of Blaschke [2] it is proved that if " is a closed convex regular
curve in the FEuclidean plane that bounds a compact convex region ), and the
curvature k of I' is bounded from below by some constant kg > 0, then the

1
circumradius R of € is bounded from above by o
0

This result was extended by H. Karcher [8] for other space forms. Further
developments of the related Blaschke theorems were done by obtaining conditions
under which a convex set in R™ can be included in other [6,7,10].

In all these theorems, the hypothesis of strong convexity (k > kg > 0) is
necessary, the theorem is not true for £ > 0. Then it cannot be applied to closed
convex polygons. In [4], we used two definitions of curvature at the vertex of a
polygon which allowed us to obtain a version of the Blaschke theorem for polygons
in space forms. Here we use the same definitions to obtain a less precise upper
bound of the circumradius R for polygons in Hadamard surfaces with curvature
—k3 > K > —ki.

In order to do that, we use comparison theorems to bound the inradius r of a
domain and apply Theorem 3.1 from [5] to get an upper bound of R. Then we use
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this to obtain the upper bound of R for polygons. This is done by a combination
of the comparison theorems mentioned above with the comparison of the angles
given by the Toponogov theorem, which has to be done carefully because these
inequalities go in opposite sense.

Let us recall some known definitions and properties before giving precise state-
ments.

We shall work on an n-dimensional Hadamard manifold M™, that is, a simply
connected complete n-dimensional Riemannian manifold with sectional curvature
bounded from above by a constant —k% < 0). In such a manifold, we define

Definition 1.1. Let A > 0. An orientable smooth (C? or more) hypersurface
L of a Hadamard manifold M™ is called A-convex if there is a suitable selection
of the unit normal vector of L such that the normal curvatures ky of L satisfy
kEn > A

Definition 1.2. A domain €2 C M is called convex if each shortest path with
endpoints in € lies in €.

If © is convex in M, then 9 is a topological embedded hypersurface which
is smooth except for a set of zero measure.

Definition 1.3. A convex domain €2 of M is A-convex if for every point p €
0f) there is a smooth A-convex hypersurface L through p such that there is a
neighborhood of p in € contained in he convex side of L (that is, the side in M
where the unit normal vector to L points).

It is known that if 0 is smooth, then 2 is A-convex if and only if 9% is
A-convex.

Definition 1.4. A topological immersion f : P — M is called locally convex
at a point € P if x has a neighborhood U in P such that f(U) is part of the
boundary of a convex domain of M.

In [1,3], it was proved that

Theorem 1.5 ([1,3]). If P is a compact orientable locally conver and im-
mersed hypersurface of dimension n > 2 in a Hadamard manifold M, then P is
embedded, homeomorphic to the sphere and it is the boundary of a convex set ().

For n = 1, the above theorem is not true even when the immersion is C?.
In this paper, even for dimension 1, we consider only compact embedded convex
curves which are the boundary of a convex domain 2 C M, that is, for any
dimension, we adopt the following

Definition 1.6. A compact orientable locally convex hypersurface P in M
is A-convex if it is the boundary of a A-convex domain 2.

By the inradius and the circumradius of P we understand the inradius and
circumradius of 2.
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We remark that, with this general definition, P can be A-convex and, at the
same time, contain conical or rudge points, or points where P is only C', where
it is allowed to say that normal curvature is infinite in some directions.

In the next sections we prove the following:

Theorem 1.7. Let M be a Hadamard manifold with sectional curvature K
satisfying —k3 > K > —k?, ko, k1 > 0. Let P be a compact hypersurface of M
such that

P is ko coth(kap)-convex and ko coth(kep) > kq, (1.1)

then

1 k 1 k
r < — arccoth | =2 coth(kep) | and R < — arccoth = coth(kep) | + k1 1n2.
k1 k1 k1 k1

(1.2)

Definition 1.8. In a surface M, let P be a polygon. If A is a vertex of the
polygon, « the interior angle at A and #1, {2 the lengths of the sides of P that
meet at vertex A, then the curvature of P at A is defined by

2 (mr—a)
= —". 1.3
A 01+ ¥y ( )
Theorem 1.9. Let M be a Hadamard surface with Gauss curvature K sat-
isfying —k3 > K > —k?, ko, k1 > 0. Let P be a polygon with sides of lengths ¢;
k
and vertices A;. If ka, > gkl coth(kip) and coth(kap) > k—l, then the inradius r
2
of P satisfy
k1 coth(kir) > ko coth(kap), (1.4)
that is,

1 k 1 k
r < — arccoth | —= coth(kap) | and R < — arccoth 2 coth(kap) | + k11n 2.
k1 k1 k1 k1

2. Proof of Theorem 1.7
We use the following result:

Lemma 2.1 ([5, Theorem 3.1]). Let M be a Hadamard manifold with sec-
tional curvature K satisfying 0 > K > —k2. If ) is a compact ki -conver domain,
then

1 2
R—rgkllnM <kiln2, (2.1)
1+71

where T = tanh(k17/2). Moreover, this bound is sharp.

Proof. Let S be the geodesic sphere of M which is the boundary of an inball of
P. From standard comparison theory (see [9]), we have that the normal curvature
of S at any point satisfies

ko coth(kor) < k% < ky coth(kyr). (2.2)
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Let Qo € SN P. Since P = 0N, which is ko coth(kop)-convex, there is a smooth
ko coth(kap)-convex hypersurface L through @ leaving a neighbourhood of @ in
Q (and then in S) in the convex side of L, then S and L are tangent at @) and

kX (Qo) = ki (Qo) > ka coth(kap), (2.3)

where k% (Qo) is the normal curvature of L at Qp. From (2.2) and (2.3), we
obtain that
ko coth(kap) < kX (Qo) < ki coth(kyr), (2.4)

from which we obtain the first inequality of (1.2). Now, by using the hypothesis
(1.1), we have that P is kj-convex. Then we can apply Lemma 2.1 to obtain the
second inequality of (1.2). O

3. Proof of Theorem 1.9

Let £;, £;11 be the lengths of the sides having A; as a common vertex. As in
the case of constant curvature (see [4]), we consider the segments of circles C;
from A;_1 to A; of radius p; and center O; and C;11 from A; to A;11 of radius
pi+1 and center O;11. Now, on the Hyperbolic space Mi of constant sectional
curvature A = —k:%, we consider the geodesic triangles O;A;_1A;, O;41A; A1
with sides with the same lengths as those of the corresponding triangles O; A;_1 A;,
O;+14;A;+1 in M. From the Toponogov comparison theorem on the angles of a
triangle, we have that interior angles of the triangles in M are bigger than the
corresponding ones in Mi

We want the curve, obtained by the union of the segments of circle Cj, to be
convex. This may happen if and only if the angle OlHA O; € [0, 7], but this
occurs if and only if

A 1 A0 + Oi+mi+1 > Az‘—1/x4i\x4z‘+1~ (3.1)

If 0 = 5 — Ai_/lA\iOi and §;41 = § — Oi+1/AZT4¢+1, we can use the definition (1.3)
to write inequality (3.1) in the form

§i4 011 < — Ay 1A A = ka, (b + Lig1) /2. (3.2)

On the other hand, we have §; —77/2— i 1AO < m/2— A 1AO = 0; ,

dit1 =7/2 — 041 4A; AZ+1) <m/2-— OZHA Ai11=:6;11. Then inequality (3.2) is
satisfied if o
0i +0it1 < ka,(li + Liv1)/2 (3.3)

is satisfied. Now we are going to check that the hypothesis on the lower bound
of k4, implies (3.3).

From hyperbolic trigonometry applied to the triangles O;A;_1A;, O;114;A; 11
one has that tanh(k¢; /2) = tanh(k1p;) sin(d;) for i and for i + 1.

Since §; € [0,7/2], §; < m/2sin(5;). Moreover, we take p; = p. Then we have

= = T, . = .= /2
d; + 5i+1 < E(sm 0; + sin 5i+1) = ’M{klp)(tanh(h&ﬂ) + tanh(klle/Q))
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7T/2 tanh(kl&/2) + tanh(k1€i+1/2)

= i+ 2
tanh (k1 p) (0i + Ciy1)/2 (b + tia)/
tanh(kl&/Z) + tanh(k1€i+1/2) 7T/2
= (i + 4 2
(4 + £i+1)/2 tanh(klp)/iAi A (6 + liya)/

< tanh(k14;/2) + tanh(k14i41/2)
B k1l + Liy1)/2
< K4, (51 + €i+1)/2, (34)

Ka,(li +4iy1)/2

which is the desired condition.

Now, let us take C., which is parallel to C' at distance . C. is the union of
segments of circles C/ of radius p+¢ and center O; and circles of radius e centered
at A;, then it is C*! and its normal curvature ky satisfies ko coth(kee) < kny <
k1 coth(kie) at points of C. at distance ¢ from the vertices A; and ks coth(kap +
g) < kn < kjcoth(kip + ¢) for others. Then, for every e, ks coth(kep; +¢) <
kn, and we can apply Theorem 1.7 to conclude k; coth(kir) > ko coth(ka(p+¢))
for C., then for P, because the domain bounded by P is included in the domain
bounded by C.. Taking ¢ — 0, we obtain kj coth(kir) > ko coth(kep), which
is (1.4). O

4. Remarks

4.1. Bounds for Theorem 1.7 in terms of only k;. We stated Theorem

1.7 under a form that has a direct application for the proof of Theorem 1.9. This
1 k

form implies some restrictions for the number p | p < ™ arccoth (;) , which

2 2
appears in the lower bound of the normal curvatures of the hypersurface P. The

same arguments as for the proof of Theorem 1.7 allow us to obtain another upper
bound for r with hypotheses that impose no restriction on p. The statement of
this other result is:

Theorem 4.1. Let M be a Hadamard manifold with sectional curvature K
satisfying 0 > K > —k?, ky > 0. Let P be a compact ki coth(kyp)-convex hyper-
surface of M, then

r<p and R<p+k In2 (4.1)

4.2. The theorems when ks = 0. In this case, in the hypotheses, the lower
bounds for ky or kg, should be 1/p instead of ka coth(kap), and p has to satisfy
1/p > k1. Then the statement of the theorems, under similar proof that the ones
given before, is

Theorem 4.2. Let M be a Hadamard manifold with sectional curvature K
satisfying 0 > K > —k?, ki > 0. Let P be a compact hypersurface of M such
that

o1
P is —-convexr and

1
= >k, (4.2)
p p
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then

1 1 1 1
r < — arccoth [ —— and R < —arccoth| — ) + k11In2. 4.3
ky (/ﬁ P) k1 <k1 P) ' (43)

Theorem 4.3. Let M be a Hadamard surface with Gauss curvature K sat-
isfying 0 > K > —k?, ky > 0. Let P be a polygon with n sides of lengths ¢; and
vertices A;. If kK, > Tkicoth(kip) and % > ki, then the inradius r of P satisfy

ky COth(kl’l”) >

Y

D=

that is,

1 1 1 1
r < — arccoth [ — and R < —arccoth| — | +k11n2.
k1 (kflp) 3} <k1p> !

4.3. Theorem 1.9 with the other definition of k4. In [4], another
definition of the curvature of a polygon in a surface of constant sectional curvature
is given. It coincides with (1.3), but in spaces of constant sectional curvature —k?
it takes the form

fia = (r = 01) . (4.4)
kf tanh(k1€1/2) + ]{:7 tanh(k1€2/2)
1 1

Taking this definition for surfaces with 0 > K > —k% seems as natural as
taking definition (1.3). With the computations that we have done, the result is
again Theorem 1.9. The reason is that in the last inequality of (3.4), we have
bounded

tanh(k1£;/2) + tanh(k14;41/2)
ki(€i + Liv1)/2

by 1/ki, but with the new definition of k4,, inequality (3.3) changes to d; +

— 1
dit1 < Ka, k: (tanh(¢;/2) + tanh(¢;4+1)/2 ), and the above quotient is 1/ky, i.e.,

1
the same value of the bound that we took.

4.4. The theorems when ky = k;. For Theorem 1.7, the hypothesis is
only that P is kol coth(kyp)-convex and, as a result, r < p and R < p+ k1 In2.
If we compare this with the corresponding theorem by Karcher when P is C?,
then, with the same hypothesis, we obtain R < p. We can see that our bound is
not the best one: we bounded r for which there should be a bound of R. Thus
our bound is far from being the best one.

Similar remarks on Theorem 1.9: The hypothesis is “the same ”, and the
conclusion is r < p. In [4], with the same hypothesis, we obtained R < p, again
the same difference than with Theorem 1.7.
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Briucanwmii i onucanmii pagiyc k-OmyKJImx
rineprnoBepxoHb y MHOTOBu i Aamapa

Alexander Borisenko and Vicente Miquel

Hexait P € omykiauMm 6araToKyTHUKOM Ha moBepxHi Amamapa M 3 kpu-
puHOI0 K, siKa 3a/10BOJIbHAE HepisHocTi —k5 > K > —k2. JloBeJeHO OIiHKY
3BepXy pajiycy ommcaHoro Kosa P depe3 ominky 3un3y KpuBunu P B #0ro
BepIINHAX.

Kuro4oBi cyioBa: onyKJia rineproBepxHsi, MHOMOBHIA AaMapa, TeopeMa
Bnamke, Bimcannii i onucanuit pajiyc
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