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Generalized Fourier Quasicrystals, Almost
Periodic Sets, and Zeros of Dirichlet Series
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Let S be an absolutely convergent Dirichlet series with bounded spectrum
and a real zero set A, let p be the sum of the unit masses at the points of
the set A. The main result of the paper states that the Fourier transform
of 1 in the sense of distributions is a pure point measure. Conversely, given
a sequence A of real points, a sufficient condition on the Fourier transform
of p is found for A to be the zero set of an absolutely convergent Dirichlet
series with bounded spectrum, besides a criterion on the Fourier transform
of p is found for A to be the zero set of an almost periodic entire function
of exponential growth. These results are based on a new representation of
almost periodic sets.
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1. Introduction

A crystalline measure on R? is a complex measure p, which is a tempered
distribution, and both p and its distributional Fourier transform /i are measures
with discrete locally finite support. When, in addition, both |u| and |4| are
tempered distributions, u is called a Fourier quasicrystal.

Fourier quasicrystals can be considered as mathematical models for atomic
arrangement having a discrete diffraction pattern. There are a lot of papers
devoted to the study of properties of Fourier quasicrystals or, more generally,
crystalline measures. See, for example, papers [2, 19] and, in particular, the
fundamental paper [14].

Measures of the form

un= ZC)\(SA, cy €N, (1.1)
AEA

constitute the most important case of a Fourier quasicrystal. In [10], P. Kurasov
and P. Sarnak discovered the existence of nontrivial measures of the form 1.1 with
a uniformly discrete support, whose Fourier transform is an atomic measure with
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locally finite support. A complete description of these measures was given by
A. Olevsky and A. Ulanovsky in [17,18]. Namely, they showed that the supports
A of these measures are precisely the zero sets of exponential polynomials with
pure imaginary exponents and only real zeros with multiplicities c) at points A €
A. Conversely, zero sets of such exponential polynomials are the supports of some
Fourier quasicrystals of the form (1.1).

In this paper, using the same methods, we present similar results for measures
(1.1) with the distribution Fourier transform

i=>"bd,. (1.2)

~yel

where I' is an arbitrary countable set. In this case, the corresponding Poisson’s

formula
Z CAJE()‘) = Z by f(7)

A€A vyel

holds for every function f from Schwartz’ class. For the description of these
measures, we apply the concept of almost periodic sets due to M. Krein and
B. Levin [12, Appendix VI]. In modern notation (cf. [15,20]), a locally finite set
A with multiplicities ¢y at points A € A is almost periodic if the convolution of
measure (1.1) with every continuous function with compact support is an almost
periodic function. Therefore, almost periodic sets are in fact multisets. We write
an almost periodic set as a sequence A = {ay,}nez, where each point a, = A
occurs ¢y, times.

In Section 2, we give the original definition of almost periodic sets due to
Krein and Levin, which is equivalent to the above one. We also establish some
properties of almost periodic sets. In particular, we show that such sets have the
form {an + ¢(n)}nez with a > 0 and an almost periodic mapping ¢ : Z — R.

In Section 3, we consider an absolutely convergent Dirichlet series with
bounded spectrum and a real set of zeros A = {an}nez. We prove that the
Fourier transform fi4 of the corresponding measure g = ), dq, is always a
pure point measure. Notice that the zero set of any absolutely convergent Dirich-
let series (or, more generally, of any holomorphic function with almost periodic
modulus) is almost periodic (cf. [8]).

In Section 4, we study the inverse problem. Given a locally finite set A =
{an}tnez C R, let pa =, 04, of form (1.1) with the Fourier transform fi4 of
form (1.2). We show that the conditions

i) |f1a] is a tempered distribution, and
ii) fol s7214](0,8)ds < oo

imply that A is the zero set of an absolutely convergent Dirichlet series with
bounded spectrum.

By [5, Lemma 1], the first condition implies that the multiset A = {a,}nez,
where each point a, = A occurs ¢y times, is almost periodic. As it was proven
in [8], every almost periodic set A C R is exactly the zero set of some entire
almost periodic function. Every almost periodic function is bounded on the
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real line and, according to the Phragmen—Lindel6f principle, any almost periodic
entire function grows at least exponentially fast. In Section 4, we find a criterion
for A to be the zero set of an almost periodic entire function of the exponential
growth through I' and 3, from equality (1.2).

2. Almost periodic sets

Definition 2.1 (see [1,13]). A continuous function g(z) on the real line is
almost periodic if for any € > 0 the set of e-almost periods

E.={r€R:suplglx+71)—g(x)| <e}
z€ER

is relatively dense, i.e., E. N (z,z + L) # @ for all x € R and some L depending
on €.

For example, every sum

Q(l') = ZQne2mana wn €R, g, €C, Z |Qn| < 00,
n

is an almost periodic function.
Spectrum of an almost periodic function g is the set

T
spg = {w eR: tlim / e 2T g (1) da # O} .

-T

It is easy to see that spQ(z) = {wn : ¢, # 0}. Notice that spectra of almost
periodic functions are at most countable set.

Definition 2.2 (see [1,13]). A continuous function g(z) on the strip
S={z=z+iy: —0<a<y<b<4o0}cCcC

is almost periodic if for any «, 8 such that [«, 5] C (a,b) and € > 0 the set of
e-almost periods

Eope={T€R: sup gz +7+1iy) —glx +iy)| < e}
z€R,a<y<p

is relatively dense, i.e., E, g .N(z, 2+ L) # @ for all z € R and some L depending
on e, q, .

The first definition of almost periodic sets due to M. Krein and B. Levin ap-
peared in [12]. Here we give this definition in a simplified form. The most general
definition, where the behavior of A near the boundary is taken into account, was
given by H. Tornehave in [21]. For the connection between almost periodic sets
of general form and zeros of holomorphic almost periodic functions in terms of
Chern cohomology, see [3].
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Definition 2.3 ([12, Appendix VI]). Let S be a horizontal strip of finite
width. A discrete locally finite multiset A = {an}nez C S is called almost
periodic if for any € > 0 there is L. < oo such that the set of its e-almost periods

E.={r€R:30:Z—Z oisabijection and sup|a, +7 — aspn)| < e} (2.1)
n

has a nonempty intersection with every interval (x,z + L.).

In our paper, we primarily consider the case of almost periodic sets on the
real line.

Set 14 =Y, 0a,. Clearly, the mass of p4 in any point « € R is equal to the
multiplicity of this point in the sequence {a, }nez.

It was proven in [8] that almost periodicity of A is equivalent to the almost
periodicity of the convolution pa % ¢ for every C*°-function p(x), x € R, with
compact support. It is easy to see that C'°°-functions can be replaced by con-
tinuous functions with compact support. Indeed, let us take a C'"*°-function ¢ >
0 such that p(z) =1 for 0 < = < 1. If uag * ¢ is almost periodic, then it is
uniformly bounded, hence palz,z + 1] < k; for all z € R with some constant k;.
For any continuous function 1 with support in (0,1) we can take ¢ € C'*° such
that sup,cp [¢¥(z) — ¢(x)| < e/k1. We obtain that every e-almost period of p14 *
© is the 2e¢-almost period of pg x .

In fact, we have proven the following proposition

Proposition 2.4 ([8]). For any almost periodic set there exists k1 € N such
that #AN [x,x + 1] < ky. In addition, #A N [x,x + h) < ki (h +1).

Here and below, #H means the number of points in the multiset H, taking
into account their multiplicities.

Proposition 2.5. For any almost periodic set there exists ko € N such that
for every h > 0 and every half-intervals [x1,x1 + h), [z2, 22 + h) we have

[#AN (1,21 +h) — #AN [22, 22 + h)| < ko
Also, for everyx € R, h >0, M € N,
[#AN [z, 4+ h) — (1/M)#AN [z, 2 + Mh)| < k.

Proof. Let Li, Ey be defined in (2.1), and 7 € Ey N [z1 — z2, L1 + 1 — x2).
Since
[x2, 29 + h) + 7 C [z1,21 + L1 + h),

we see that each a,, € [x9, 22 + h) can be associated with the point Ag(n) € [z1 —
1,21 + L1 + h + 1). Therefore,

#Aﬂ[m’g, l’Q-l-h) < #Aﬂ[a:l, $1+h)+#z4ﬂ[$1 -1, xl)—i—#Aﬁ[xl +h, 1‘1+h+L1+1).

By Proposition 2.4, the last two terms are bounded by ki 4+ (L1 + 2)k;. The
opposite inequality can be proved in a similar way.
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To prove the second statement we have to sum up all the inequalities
#AN[z,x+h) —ke <#AN[x+ (m—1)h,z +mh) < ks +#AN[x,x+ h)
form=1,2,..., M. O

Proposition 2.6. Let A be an almost periodic set. There is a strictly positive
density d such that for any n > 0 and any half-interval I with length [(I) > N,

we have 4ANT
M
—— —d .
‘ I ’ =
Proof. Let
I =z, 21+ h), Ip =[x, 22+ ho)

be two half-intervals such that hy/he = p/q, p,q € N. We have

#Aﬂ[li#Aﬂlg_#Aﬂlli#Aﬂqfl #ANqly
hl h2 h1 th th
B #ANpls n #ANpls B H#ANI

pha pha ho

Applying Proposition 2.5, we get

H#ANL B H#AN I
hq ho

ko ko ko 2 1
<24+ =4+ =2<k|—+—). 2.2
_h1+qh1+h2_2<h1+h2> (2.2)

For arbitrary hi, he take a half-interval I’ = [z1,21 + h/) such that h; < W/ <
hi + 1 and h'/hg rational. We have

< H#AN [l‘1+h1,$1+h,) " H#ANIL
- h' hih!

#ANL  #ANT
hy n

By Proposition 2.4, we get

@ kl(hl + 1)
- N hih/

#ANL #ANT
h1 h'

Applying (2.2) with I instead of I, for all I, I3, we obtain

) H#ANIT
d= lim

I(I)—=oo (1)
It is easy to check that the set A has nonempty intersection with every interval
of length 2 4+ L1, hence this limit is strictly positive. O

‘#Aﬂ[l . H#AN I
I(11) I(12)

Therefore the limit exists

This result was generalized to multidimensional Euclidean spaces in [7].
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Theorem 2.7. Let A = {a,} C R be an almost periodic set of density d such
that ay, < apyq for allm € Z. Then

an =n/d+ ¢(n) with an almost periodic mapping ¢ : Z — R. (2.3)

Proof. We can assume that ag < a1. It follows from Proposition 2.4 that
every interval of length 1 contains at least one subinterval of length 1/(2k;) that
does not intersect A. Take

e < min{1/(6k1), (a1 — ag)/3}.

Divide R into an infinite number of disjoint half-intervals I; = (¢,¢;41], j € Z
such that tj,1 —t; <2 and AN (t; — 2¢,t; + 2¢) = & for all j.

Let 7 be any number from E in (2.1), and o be the corresponding bijection.
Then p(j) € Z corresponds to any j such that o is the bijection of A N I; to
ANy Hence, #(AN1;) = #(ANI,;). Let oj be the monotone increasing
bijection of AN I; on ANI,;. Check that

an +7 —ag,(m)| <€ an € 1. (2.4)

Assume the opposite. Let ng be the minimal number such that (2.4) does not
satisty. If ap, +7+¢ < Qo (no)» then a, + 7+ ¢ < a;, for all n < ng and k >
0j(no), an € Ij, ap € I,;). Therefore, k # o(n) for these numbers, and o gives
a correspondence between points of the set {n < ng : a, € I;} and points of the
set {k < 0j(no) : ar € I,;)}. But, by the definition of o}, we have

#{n<ng:an€lj} =4#{k<oj(no): ar € Ip(j)}
=14+ #{k < O'j(n()) Lag € Ip(j)}-

We come to a contradiction.

If apy, + 7 > Ugi(ne) T € then a, + 7 > a; + ¢ for all n > ng and k <
0j(no), an € Ij, ai € I,;). Therefore, k # o(n) for these numbers, and o gives
a correspondence between points from the set {n > ng : a, € I;} and points of
the set {k > 0;(no) : ar € I,;)}. But, by the definition of o}, we have

#{n>no: an € I} = #{k > 0j(no) : ar € L)}
=1+ #{k > 0j(no) : ar € L)}

We also get a contradiction.

Since the numbers #(ANI;) and #(AN1,;)) coincide, we see that the differ-
ences between indices of the first elements in these sets coincide for all j. Hence,
there is a number h € Z such that inequality (2.1) satisfies for all n € N with
o(n) =n+h.

From the definition of 7 for all k € N and N € N it follows that

—e<agp —T—ag-np<e and — Ne<ayp— N7—apg < Ne.



Generalized Fourier Quasicrystals 285

Let I be the smallest segment containing ag and apyp,. The last inequality implies
that its length satisfies the inequality

N1 — Ne <I(I) < N7+ Ne.

On the other hand, taking into account that ends of I can be points A with
multiplicity no more than k1, we have

Nh—2(ky —1)<#ANIT < Nh+2(ky —1).
Therefore,

Nh—2(ki —1) _ #ANT _ Nh+2(ks — 1)
Nr+Ne — I(I) — Nr—Ne

Passing to the limit as N — oo and using Proposition 2.6, we obtain the inequality
T—e<h/d<T+e.

Set ¢(n) := a, —n/d. Then, for all n € Z, we get

¢(n+h) —o(n) = apyn — (n+h)/d—a, +n/d= aspn) — (an +7)+ (1 — h/d).

Using (2.1), we obtain |¢(n+ h) — ¢(n)| < 2e. Therefore, h is a 2e-almost period
of the function ¢. The set of e-almost periods 7 of A is relatively dense, therefore
the set of such integers h is also relatively dense. O

Remark 2.8. The proof of this theorem in [6] contains gaps.

Remark 2.9. The converse assertion is simple since for every e-almost period
T € Z of the mapping ¢(n) the number 7/d is an e-almost period of the almost
periodic set A = {n/d+ ¢(n)} with any d > 0 and bijections in (2.1) of the form
on)=n+r.

Corollary 2.10. For any almost periodic set A = {a,} such that 0 ¢ A there
is a finite limit
L:= lim Z 1/ay,.

N—o0
lan|<N

1 1 1
z—a0+z[z—an+z—a_n]

neN

Moreover, the sum

converges absolutely and uniformly on every disjoint with A compact set K.

Proof. Let A = {n/d + ¢(n)}nez. Since the numbers ¢(n) are uniformly
bounded, we see that the sums

1 1
2. momd D s

an
n€Z,|an|<N n€Z,|n|<dN
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differ for a uniformly bounded with respect to N number of terms, and each of
these terms tends to 0 as N — oco. Then

1
Z n/d+ ¢(n)

neZ,0<|n|<N
_ Z d(n) + ¢(—n)
p(n)¢(—n) +ng(—n)/d —ng(n)/d — (n/d)*

neN,0<n<N

The first assertion follows from the Cauchy criterion. The second one follows
from the absolutely convergence of the series

1 1 B 2z — ¢(—n) — ¢(n)
e 2 i oE e e

neN

O]

In [12, Appendix VI], M. Krein and B. Levin considered zero sets Z; of entire
almost periodic functions f of exponential growth. They proved that if Zy C R,
then zeros a, form an almost periodic set satisfying (2.3) and

sup Z nHo(n+7) — ¢(n)] < co. (2.5)
€L e\ {0}

On the other hand, they proved that any almost periodic set A C R satisfying
conditions (2.3) and (2.5) is the set of zeros of an entire almost periodic function
of exponential growth.

It follows from Theorem 2.7 that condition (2.3) can be omitted in the last
result.

Theorem 2.7 was generalized by W. Lawton [11] to almost periodic sets in
R™, m > 1, whose spectrum is contained in a finitely generated additive group.

3. Zeros of infinite exponential sums

By S(R), denote the Schwartz space of test functions ¢ € C*°(R) with the
finite norms

Ny () = supmax [(1 + ]:U|”)<p(k)(x) , n,m=0,1,2,...
R k<m

These norms generate the topology on S(R). Elements of the space S*(R) of
continuous linear functionals on S(R) are called tempered distributions.
The Fourier transform of a tempered distribution f is given by the equality

fl)=f(¢) forall e S(R),

where

b0 = [ eyt
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is the Fourier transform of the function ¢. The inverse Fourier transform of ¢
we denote by ¢ . The Fourier transform is a bijection of S(R) onto itself and a
bijection of S*(R) onto itself.

Let T be the class of exponential sums

f(@) = Y gue?ene, g5 e C\ {0}

with finite Wiener’s norm || f||w := ), |gn| and a bounded spectrum 2 := {w,} C
R.

Any function f(z) € T can be extended to the whole complex plane as an
entire almost periodic function f(z) of exponential type o = sup,, |wy|; the zero
set A = {a,} of f(z) lies in some horizontal strip of finite width if and only if
infQ € Q and supQ € Q (cf. [12, Chap. VI, Corollary 2]). Moreover, A is an
almost periodic set (cf. [12, Appendix VI, Lemma 1]).

If 0 ¢ A and a, = an + ¢(n) with ¢ : Z — R of the form

¢(n) = ije%ripjn, Pj € [07 1)7 Z ‘p]’ < 00, (31)
J J

then the function
(1= 2/a0) [] (1 = 2/an)(1 — 2/a_s)
neN
expands into an absolutely convergent exponential series (cf. [12, Appendix VI,
Th.9]) and hence belongs to <.

Theorem 3.1. Suppose that f € T has a zero set A ={a,} CR, and pus =
Y 1 0an- Then the Fourier transform fia is a pure point measure.

Proof. It follows from Proposition 2.4 that the measure p 4 satisfies the con-
dition pa([—r,7]) = O(r) as r — oco. Hence the measure 4 and the distribution
14 are tempered distributions. To prove that ji4 is a measure, we check the
estimate

(A4, )| < C‘rﬁg o ()] (3.2)

for any T' < oo and any C'*°-function ¢ with support on the interval (=7,7). If

this is the case, the distribution £ has a unique expansion to a linear functional on

the space of continuous functions g on [T, T such that g(—T1") = g(T") = 0 with

bound (3.2). Since we can extend this functional to the space of all continuous

functions on [T, T] with bound (3.2), we see that ji4 is a complex measure.
Let ¢ be a C°°-function with support in (=7,7). Set

B(z) = /_ T p(t)e 2t gt

Clearly, ®(z) is an entire function that equals the Fourier transform of the func-
tion (t)e*™. Therefore, ®(x + iy) belongs to S(R) for each fixed y € R, and
for its inverse Fourier transform we have

D(w + iy) = p(w)e*™ Y, weR. (3.3)
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Let wy = inf Q, we = sup ). Then the corresponding coefficients q1, g2 do not
vanish. Taking into account that ), [g,| < oo, we can take a number M such
that

3 _al g (3.4)

2 mina], oo

and then s, s’ > 0 such that

Z eQw(wl—wn)s|qn/q1| <1/3, Z e?w(wn—wz)s”qn/q2| < 1/3. (3.5)
n<M,n#l n<M,n#2

Since f(z) is almost periodic, it follows from [12, Ch.6,L.1] that for every € > 0
there exists m = m(e) > 0 such that

|f(z)] >m for —s <Imz<sand z¢& A(e) := {z: dist(z, A) < €}.

By Proposition 2.4, for € small enough, each connected component of A(e) con-
tains no segment of length 1, hence its diameter is less than 1. Therefore, there
are two sequences Ry — +00, Rj. — —oo such that

z+iy)|>m forzr=R,orxz=R], —s <y<s.
Yy k Y

Consider the integrals of the function ®(2)f'(z)f 1(z) over the boundaries of
rectangles
Uy ={z=x+iy: R, <z <Ry, —s <y<s}h

Since ®(x £ iy) tends to zero as © = Ry — 400, * = R}, — —oo uniformly with
respect to —s’ <y < s, we get that these integrals tend to

/OO B(w + is) f'(x + is) f (@ + is) dr
+o00

+oo
+ / O(x —is)f'(x —is')f Hx —is)de =1, + I,. (3.6)

The Residue Theorem implies
I + Iy = 2mi Z Resy ®(2)f'(2) f1(2)
A f(A)=0
=2mi Y a(N®(\) = 27i(ua, P), (3.7)

Af(A)=0

where a(\) is the multiplicity of the zero of f(z) at the point A.
We have for z = x +is, s > 0,

M
f(,z) = q1€27ri(r+is)w1 <1 + Z(qn/ql)e2m(wn—wl)(m+is)

n=2

> <qn/q1>e2”<wﬂwl><w+is>> .

n>M
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Set

[e.e]

H(l‘) — Z(qn/ql) 27 (wn — wl)x 2m (w1 —wn)s Z h 27rz (wn—w1)z )

n=2

By (3.4) and (3.5), we have || H||w < 2/3. Since || - |lw is the norm in the algebra
of all absolutely convergent exponential sums, we get

oo 00
A+ H@) " =S (W H @), [0+ w <Y 15w <3 (38)
§=0 §=0
We have
f_l(x—i—is) Q -1 27rw1s€—2mw1x( —I—H(iL'))_l
f/(a: + ZS) _ Z 27[_Z~wnqn6727rwns€2ﬂ'iwnx
n=1
and

fl(x4is)f~H(x + is) Z Omiwn (qn/q1)e 2T @nmw)s2milwn—wi)T () 4 f ()7L
(3.9)
Rewrite f'f~! in the form

f(x+ z's)f (x +1is) Z Dy€ 2T Py = py(s) € C,
v€l

with some countable I'y € Ry U {0}. Since Q is bounded, we obtain from (3.8)
and (3.9),

S Apol = 17 atis) f (@tis)llw < 67 masc{ w270} Y g, /1] =: C.
yel'y n

The function ®(z + is) belongs to S(R) for s fixed, hence |z|>®(x + is) — 0
as |z| — oo. Changing the order of integration and summation and taking into
account (3.3), for the first integral in (3.6), we obtain

400
§ :p»y/ ZL’+ZS 27rw:vd$_ § :p’ye%ws
v€el'y vel'r

Since supp ¢ C (=T1,T), we get the bound

I| < Cre®™ T max
5] < e ma (o).

Similar reasoning shows that the second integral in (3.6) with the appropriate s’
has the same estimate.
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Since ¢(z) = ®(x), we obtain from (3.7) that
(1a, ) = (2mi) " (I + I).

Therefore,

(a4, p)| = [(a, @)l < C(f,T) sup [p(y)l,
ly|<T

and [i4 is a measure. Since p4 is almost periodic, Theorem 5.5 from [16] implies
that fi4 is a pure point measure. ]

4. Entire functions with given almost periodic zero sets

In this section, we assume that a measure p of form (1.1) is a tempered
distribution, its Fourier transform i is a pure point measure of form (1.2), the
measure |fi] is a tempered distribution, and A = {ay, }nez is a multiset in which
each point a, = A € supp p occurs c) times. In what follows, we will assume that
0¢ A CR. By [5, Lemma 1], p is an almost periodic measure and A is an almost
periodic set. Since [ is also a measure, Theorem 5.5 from [16] implies that every
number b, from (1.2) equals the corresponding Fourier coefficient of the measure
W, i.e.

b = i 1 4 —2mivx d
In particular, b_, = l_)7 and by > 0. Moreover, by coincides with the density d of
the set A. Also, it can be checked (cf. [4]) that the condition || € S*(R) implies

|| (=r,r) = Z lby| =O(") as r— o0 (4.1)
Iyl<r

with some kK < oc.
From Proposition 2.4 and Corollary 2.10 it follows that the set A satisfies the
conditions

na(r) == #(AN(=r,r)) =0(r) (r—o0),
and
Z 1/an| is bounded in 7 > 1.
n:lan|<r
By Lindel6f’s Theorem (see [9]), the product

o0

F(z):== [ (1=z/an)e”/*™

n=—oo

is an entire function of exponential growth. Taking Corollary 2.10 into account
again, we see that the function

f(z) = (L= 2/a0) [T(1 = z/an)(1 = z/a_p) = e F () (4.2)

neN
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is also a well-defined entire function of exponential growth with the zero set A.
It should be noticed that f(z) = f(z). Introduce the notation

R+::{x€R:x>0}, R_I:—R+, (C+::{z€(C:Imz>O}, C_Z:—C+.

Proposition 4.1. For all z =z + 1y € C,,

flz) _ 1 +Z[ r ! ]:_2m' D> by — rid, (4.3)

f(2) z—ay fxlz—an z—a TR,

and for all z =x +iy € C_,

fllz) _ 1 +Z[ LI ]zgm' > byt mid,  (44)

f(Z) Z—ag neN Z— Gn Z = G-n yel'NR_

where d is the density of the almost periodic set A.
The function f'(2)/f(2) is almost periodic on each line y = yo # 0.

Proof. Set

—omie?™itz if ¢t > () 2mie?™tz if t < ()
t) = , z € Cy, t) = , z€C_.
&(t) {o ift <0 o &) {0 ift>0

It is not hard to check that in the sense of distributions £,(\) = 1/(z — A) for z €
CiucC._.

Let ¢(t) be an even nonnegative C'°°-function such that supp ¢ C (—1,1) and
[o@)dt = 1. Set @.(t) = e 'p(t/e) for € > 0. Fix z = z + iy € C;4. The
functions & (£)  ¢.(t) and &, (A)@-(A) belong to S(R). Therefore,

(£, 65 % (1) = (1, E2(N)Pe(N)).
Then, for any Ty < oo, we have

7 0
(), £ % pe(t)) = d /

27 e

+ Z b’ye%m'yz/ 6_27”;82805(8)615

e<y<Top

. . v .
e—27rzszgos (S) ds + Z b7€27rwz / 6_27”82(,05(8) ds

0<|vy|<e €

Z b 62””’2/ e 2% (s)ds = Ig+ I + I + Is.
v2To

Thus, we have

g(B&) = Y bye®™T D byePTT 4 Y 0T = 5+ Sy 4 8.

0<y<e e<y<Ty v>To
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Set m(s) =3 . er.0<y<s [by|- Then
o0 o0
Z [ :/ e 2™Ym(ds) < lim m(T)e_QTFTy—FQWy/ e 2™Ym(s) ds.
T T—o0 T
v=To 0 0

(4.5)
Property (4.1) implies that I3 and S are less than a given n > 0 for Tj large

enough. Taking into account that >° .. 7, [by| < oo, we get

I()—>d/2, I, — 0, S1—>0,

15
I, — Sy = E bve%”'z/ (e72™%% _ 1)p.(s)ds — 0 as e — 0,
—&

e<y<Ty

and

lim (1, € (N @ (V) = (1, &.() — 2mid/2 = —2mi 3 b, — rid,
e—0
’YermR+

On the other hand, we have

(1 E:(N)pe (1)) = 2E) 4 3 [95(5““) N WS“”] | (4.6)

zZ —ag Z—ap Z—a_np

ne

The function ¢(t) tends to 1 as ¢ — 0 and |p(¢)| < 1. We have

f(fa;) + f(faa__”ﬁ = p(ea—n) L _lan + - _1a_n] +- _1% [p(ean)—p(ea_p)].

Since ¢ is even, we get with bounded 6(n) and ¢(n),

P(ean) — p(ea—n) = p(en/d+ep(n)) — ¢(—en/d +ed(—n))
= ¢'(en/d + £0(n))e[¢(n) + ¢(—n)].

Since ¢(t) belongs to the Schwartz space, we see that ¢'(t) = O(1/|t|) as t — oo.
Hence, for ¢|n/d + 6(n)| > 1,

lel@'(en/d + £6(n))]| < Cln| ™

with a constant C' < oco. The same estimate (with another constant C) is valid
for eln/d+ 6(n)| < 1. Then for all n € N and £ > 0,

|¢(ean) = Glea—n)l < (C/n)2sup|¢(n)].

Hence the right-hand side of (4.6) for all £ > 0 is majorized by the sum

1 c’
_ 4.
\z—ao\+z +Zn[z—an] (4.7)

neN neN

1 1

+
Z—a, Z—a_p
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By Theorem 2.7, we have 1/(z—ay,) = O(1/n). Taking into account also Corollary
2.10, we get the convergence of both sums in (4.7). Therefore, we can pass to the
limit in (4.6) as € — 0 and obtain (4.3).

By (4.5), for yo > 0,

> lbyle?™ <00, > by < o0

y>1 0<vy<1

Therefore the series in the right-hand side of (4.3) converges absolutely and uni-
formly for Imz > o > 0, and f/(z)/f(z) is almost periodic on the line y =
Yo-
In the case yp < 0, we apply (4.3) to the function f(z) and obtain (4.4). O
Theorem 4.2. If
1
/ s 2|114](0,5) ds < oo, (4.8)
0

then the function f from (4.2) with the zero set A can be rewritten in the form

= Z qwe2m'wz qu € C \ {0}7 w € R, Z "Jw| < 00,

we weN

where the countable bounded set ) satisfies the conditions sup ) € 0, inf Q) € Q).

Proof. The sum in the right-hand side of (4.3) converges absolutely and uni-
formly in x € R and y > « > 0. Changing the order of summation and integra-
tion, we get for z = x + iy € C,

f/ €27ri'yz _ 6727r'y

- 3 b —idnz—nd. (4.9)

yel'MR v

log f(z) —1log f(7)

It is easy to check that the convergence of the integral in (4.8) implies (in fact,
is equivalent to) the convergence of the series

1
S byl = / s 1dl(0, ),
0<y<1 0

and (4.5) implies
Z by |y te 2™ < oo,

v=>1
Therefore,
log f(z +14) + idmrx = — Z (b /y)e"2mYe2mie Z(b,y/’y)ef%we%iw + G
0<y<1 ~4>1

(4.10)
with some constant Cy € C, and ||log f(x + i) + idmx|jw < oo. Since ||FG|w <
| Fllw|Glw, we obtain

f($+ Z zdﬂz _ pr 27mwx

weN
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Z ‘pw| _ Hf(x _i_,i)eidmc”w < e||logf(:c+i)+id7ra:HW < oo,
weN

with p,, € C and a countable spectrum £ C Ry U{0}. The entire function f(z+
i)e'™ has exponential growth, therefore, by [12, § 1, Chap. VI], Q is bounded.

Hence the function
_ Z D eﬂ(2w7d)e7ri(2wfd)z
- w
weN

is also a Dirichlet series and | f|lw < oo. Moreover, all zeros of f are real,
therefore, by [12, Chap. VI, Corollary 2|, we have supQ € Q, inf Q € Q. O

Set A
627rwz -1

oz)= > b

yel',0<y<1 v

Since the sum ) | is bounded and

> 2mz
Z DI G

k=1 ! ~eTl,0<y<1

vel',0<y<1 |b

we see that g(z) is a well-defined entire function. Then, for z € C; UR,

1_627ri'yz
|g<z>|g[ DS “7

vel',0<y<e ~veley<l

2
<dmlz| Y bl + = > byl (4.11)

0<vy<e e<y<1

L

The sum » |, . |by] is arbitrary small for small €, therefore, |g(z)| = o(|z|) as
|z| = o0, z € C4 UR. Moreover, in every strip {z: [Imz| < M},

. e 2myy _
e UL oo, (4.12)
v

g(z) —g@) < > byl

yel',0<y<1

Theorem 4.3. If g(2) is uniformly bounded for z = x € R, then the function
(4.2) with the zero set A is almost periodic of exponential type md.

Conversely, if A is the zero set of an entire almost periodic function of expo-
nential growth, then the function g(z) is uniformly bounded on R.

Proof. By (4.5), the sums

1— —27y
ORI o
>1 0<~<1
are finite. Hence we can rewrite (4.9) as
27rwz -1 27rwz
log f(z Z by - Z b —idmz + const. (4.13)

0<y<1 y>1
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Here the second sum is uniformly bounded in every half-plane Imz > o > 0. If
the function g(z) is uniformly bounded on R, then, by (4.12), the first sum in
(4.13) is bounded on every line Im z = M > 0. Therefore the functions log |f(z)]
and f(z) are bounded on this line, and f(z) is also bounded on every line Im z =
—M < 0 as well. Since the function f(z) has exponential growth, the Phragmen—
Lindel6f Theorem implies that f is bounded in every horizontal strip of bounded
width.

Furthermore, combining (4.13) and (4.11), we get

. 1 .
Jm y™" log | f(iy)| = md.
The function f(z) is bounded on the real line, therefore the Phragmen—Lindelof
Theorem implies that |f(z)] < Me¥™ for all z € C,. Also, |f(z)] < Me Y™ for
all z € C_, therefore f(z) has the exponential type 7d.

Further, the function log f(z) + idwz is bounded on the line Imz = 1. Its
derivative (log f(z + 7))’ + idm is almost periodic, hence, by Bohr’s Theorem
(cf. [13, Theorem 1.2.1}), the functions log f(x + i) +idmx and f(z+1i) are almost
periodic in the variable x. By [13, Theorem 1.2.3], the function f(z) is almost
periodic in every strip where it is bounded, and hence it is almost periodic in C.

Now, let G(z) be an entire almost periodic function of exponential growth
with a zero set A. Clearly, G(z) = Kje2?*f(z) with K, Ko € C. Taking into
account that the second sum in (4.13) is bounded on the line Im z = 1, we obtain

logG(z +1i) = Kox — g(z +1i) —idrz + O(1) as x — oc.

Since G(x + i) is almost periodic, we get infg |G(z + ¢)| > 0 and log G(x + i) =
iwx + O(1), where w is the mean motion ([13], Chap. 2). Then (4.12) implies

Kox — g(x) — idmx — iwz = O(1).

By (4.11), g(z) = o(|x]|), therefore, Ky = imd + iw and g(x) is bounded. O
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¥Y3araabpHeHi kBazikpucraau Pyp’e, maiike nepioauani
MHOXKWHU Ta HYJIi pazaiB lipixie

Sergii Favorov

Hexait S € abcosorao 3612kHNM psiziom [lipixiie 3 0OMEXKEeHUM CIEKTPOM
i AifCHOIO HYJILOBOIO MHOXKHUHOIO A, a i € CYMOIO OJMHUYHUX MacC y TO-
gykax MHOXKWHA A. OCHOBHUIT Pe3yJbTAT CTATTI CTBEPIKYE, IO TIEPETBO-
peuns Pyp’e p y ceHCl pPO3MOAITIIB € YUCTO TOYKOBOIO Mipoio. I HaBmakwy,
JUIST 3aJIaHOT TTOCJIIOBHOCTI A JIfiCHMX TOYOK 3HalIeHO JIOCTATHIO YMOBY Ha
neperBopentst Pyp’e p s Toro, mobd A Oysia HyJIBOBOI MHOXKHUHOKO abCco-
JIIOTHO 3612kHOTO psimy ipixie 3 0OMeKeHNM CIIEKTPOM; OKPIM TOTO, JIJIst
neperBopents Oyp’e p 3HARTEHO KpUTEPiit TOrO, MO A € HYJHOBOIO MHOYKH-
HOIO Maff’kKe MepioauTHOl M0l PYHKINI eKCIIOHEHIiaabHOro 3pocTants. [1i
pe3ysibTaTu 6a3yl0ThCsl Ha HOBOMY ITOJIaHHI Maii?Ke IMepioIMIHIX MHOXKUH.

Kirouosi ciosa: kBasikpucran @yp’e, nepersopennst Pyp’e B cenci pos-
ITO/IUTIB, YMCTO TOYKOBA Mipa, Maiike mepiognvHa 1ijga QyHKIS, Majike 1me-
pioguvHa MHOXKWHA, HY/JIH0BA MHOXKUHA IMiI01 PYHKITIT
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