
Journal of Mathematical Physics, Analysis, Geometry
2024, Vol. 20, No. 4, pp. 425–449

doi: https://doi.org/10.15407/mag20.04.02

Iossif Ostrovskii’s Work on Entire Functions

Alexandre Eremenko and Mikhail Sodin

The theory of entire functions and its applications were at the center of
Ostrovskii’s research interests throughout his entire career. He made lasting
contributions to several aspects of this theory, and many of his works had a
significant influence on subsequent research. In this note, we address some
of these works.

Key words: entire function, linear differential operator

Mathematical Subject Classification 2020: 30D20, 34L05

1. Growth of entire functions and their value distribution by
arguments

We start with Ostrovskii’s earliest results, included in his PhD thesis, in
which he extended and strengthened seminal results of Krein and Edrei. He
published announcements of these results along with sketches of the proofs in
a series of Doklady notes (1957-1960). A detailed exposition appeared in the
Izvestiya paper [64]. Most of them, in somewhat stronger versions, were included
in the Goldberg–Ostrovskii treatise [25, Sections VI.2, VI. 3].

In 1947, Krein introduced the class of entire functions f such that 1/f is
represented by an absolutely convergent series of simple fractions
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where a, b, and cλ are real, Λ ⊂ R, and
∑

Λ |cλ|/λ2 < ∞. We will denote this
class by K. Krein proved that

Functions of the class K have finite exponential type.

Moreover, Krein showed that functions from K have a bounded type in the upper
and lower half-planes, that is, in each of the half-planes they are represented
as a quotient of two bounded analytic functions. The latter property yields that
functions fromK belong to the Cartwright class, which consists of entire functions
f of exponential type with a growth bound on the real axis:∫

R

log+ |f(t)|
1 + t2

dt <∞.
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Functions of the Cartwright class possess a regularity of growth and of zero
distribution described in books by Levin [48, Lectures 14–17] and Koosis [39].

It is also important to mention that Krein proved his theorem under an as-
sumption weaker than Λ ⊂ R, namely that the zeros of f satisfy the Blaschke
condition in the upper and lower half-planes∑

λ∈Λ

∣∣Im(1/λ)
∣∣ <∞. (1.1)

Edrei’s theorem [19, Theorem 1] deals with meromorphic functions with three
radially distributed values, which is a seemingly different class of functions. We
will quote here only its special case pertaining to entire functions in which case
only two valued are needed (the third one is ∞):

If f is an entire function such that for some distinct a, b ∈ C all but finitely
many solutions to the equations

f(z) = a, f(z) = b

lie in a finite union of rays

D(α1 · · ·αN ) =
⋃

1≤j≤N
{z = reiαj : 0 ≤ r <∞}, 0 ≤ α1 < · · · < αN < 2π,

then f has a finite order of growth

ρf ≤ max
1≤j≤N

π

αj+1 − αj
, (1.2)

where αN+1 = 2π + α1.

In particular, if an entire function f has real ±1-points, then its order of
growth does not exceed one. We will return to this class of entire functions in
Section 3.

It should be mentioned that the bound (1.2) under the a priori assumption
that f has a finite order of growth is implicitly contained in the work of Bieber-
bach [13].

A remarkable joint feature of these theorems of Krein and Edrei is that both
of them do not have a priori assumptions on the growth of the entire function.
Their similarity, communicated to Ostrovskii by Goldberg, allowed Ostrovskii to
significantly extend both of them. Here, we will bring only special cases of his
results. The interested reader can find more general versions in [25, Section VI.2].

Following Ostrovskii, we say that a-points zk = rke
iθk of an entire function

f are very close to the system of rays D(α1 · · ·αN ), if they satisfy the Blaschke
condition in each of the complementary angles to these rays. That is, the N
series ∑

rk≥1,
θk∈(αj ,αj+1)

r
− π
αj+1−αj

k sin

[
π

αj+1 − αj
(θk − αj)

]
, j = 1, 2, . . . , N,

converge (in the case, when N = 2 and α1 = 0, α2 = π, this coincides with
condition (1.1)). Then, his extension of Krein’s theorem states the following:
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Suppose that f is an entire function such that 1/f is represented by an abso-
lutely convergent series of simple fractions with poles very close to a finite union
of rays D(α1 . . . αN ).

Then f has a finite order of growth satisfying (1.2) and has a bounded type
in each of the angles complementary to D(α1 . . . αN ).

We note that the fact that f has a bounded type in each of the complementary
angles yields regularity of growth and zero distribution similar to the ones which
are possessed by entire functions of the Cartwright class, see [25, Sections VI.2,
VI.3].

Ostrovskii’s strengthening of Edrei’s theorem is also quite natural:

Suppose that a, b are distinct values in C, and that D(α1 · · ·αN ) is a finite
union of rays. Let f be an entire function with a- and b-points lying very close
to D(α1 · · ·αN ).

Then f has a finite order of growth satisfying (1.2) and has a bounded type
in each of the complementary angles.

Both results have meromorphic counterparts also proven by Ostrovskii,
see [25, Section VI.2] and [64] for the case of meromorphic functions in the unit
disk. For the reader acquainted with basic notions of the Nevanlinna theory, we
mention that if the function f is meromorphic, then the same conclusion holds if
a- and b-points lie very close to D(α1 · · ·αN ), a, b ∈ C̄, a 6= b, and a value c ∈ C̄,
c 6= a, b, is Nevanlinna deficient. The proofs are based on a version of Nevanlinna
theory for meromorphic functions in an angle.

Edrei and Fuchs [20] considered meromorphic functions with all but finitely
many a- and b-points (a 6= b ∈ C) lying on N disjoint rectifiable curves Cj =
{z = reiαj(r), r0 ≤ r <∞}, where α1(r) < · · · < αN (r) < α1(r) + 2π = αN+1(r).
They assumed that, for some B > 0, the length of the portion of each curve lying
in any annulus {r1 ≤ |z| ≤ r2} is bounded by B(r2 − r1). They showed that if
f has relatively few poles (more precisely they assumed that ∞ is a Nevanlinna
deficient value of f), then f has a finite order of growth, which does not exceed

max
1≤j≤N

lim
r→∞

9πB2

αj+1(r)− αj(r)
.

If the curves are radial lines emanating from the origin, then B = 1, and their
bound is 9 times worse than the optimal one (1.2).

The interested reader will find other results (including Ostrovskii’s ones) on
the value-distribution of meromorphic functions in [25, Chapter VI] as well as in
the survey [24, § 10].

Concluding this section, it is worth noting that the Goldberg–Ostrovskii trea-
tise [25], written in the late 1960s, remains one of the primary sources in one-
dimensional Nevanlinna theory. Its English translation includes a brief survey of
results obtained after 1970. A less direct but still important impact of Ostrovskii
on value-distribution theory may be found in works of Petrenko, who completed
his Ph.D. thesis under Ostrovskii’s supervision. Many of Petrenko’s findings were
summarized in his books [68,69].
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2. Conjectures of Pólya and Wiman

The class of all real polynomials with all zeros real is closed under differentia-
tion. A simple proof of this statement uses Rolle’s theorem and degree counting.
The second part of the argument, degree counting, breaks down when one tries
to extend this result to entire functions. The entire function zez

2
has only real

zeros while the derivative (1 + 2z2)ez
2

has two non-real zeros. This justifies the
definition of the Laguerre–Pólya class of entire functions: f ∈ LP if f is a limit
(uniform on compact subsets of the plane) of real polynomials with all zeros real.
It immediately follows that this class is closed under differentiation. Laguerre
and Pólya obtained a remarkable parametric description of this class: f ∈ LP if
and only if f(z) = e−az

2
g(z), where a ≥ 0 and g is a real entire function (i.e.

having real Taylor coefficients) of genus one with real zeros. That is,

f(z) = zme−az
2+bz+c

∏
k

(
1− z

zk

)
ez/zk ,

where b, c and zk are real,
∑

k |zk|−2 <∞, and a ≥ 0. This class plays a central
role in the “algebraic theory of entire functions” launched by Laguerre, Pólya,
and Schur, and has a variety of applications.

In 1914, Pólya [71] stated the following conjecture:

P1. Suppose f is a real entire function with all derivatives having only real zeros.
Then f ∈ LP.

In [71] (a more detailed exposition appeared in [72]) Pólya proved this for real
entire functions of the form f = PeQ, where P and Q are polynomials. In [72]
Pólya gave a stronger version of this conjecture which includes non-real functions:

P2. Suppose f is an entire function with all derivatives having only real zeros.
Then either f has the form

f(z) = ceaz or f(z) = c(eibz − eid),

with complex c and a, and real b and d, or f ∈ LP.

In [6, 7] Ålander claimed the proofs of Conjectures P1 and P2 for entire
functions of finite order. Subsequent researchers expressed doubts about the
justification of certain steps in his proofs, see [27, p. 228].

According to Ålander [4], Wiman conjectured a stronger version of Conjec-
ture P1 in his Uppsala lectures of 1911:

W1. Suppose f is a real entire function with f and f ′′ having only real zeros.
Then f ∈ LP.

Furthermore, according to Ålander, Wiman also gave a quantitative version of
this conjecture for entire functions of finite order of growth. To state it we define
the class V2p consisting of all entire functions of the form f(z) = e−az

2p+2
g(z),

where a ≥ 0, and g is a real entire function of genus not exceeding 2p+ 1 having
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only real zeros. Then, we set W0 = V0, and W2p = V2p\V2p−2, so that LP = W0,
and the set of all entire functions of finite order with only real zeros is a disjoint
union of classes W2p for all p ≥ 0.

W2. For f ∈W2p, f
′′ has at least 2p non-real zeros.

In other words, if f is a real entire functions with only real zeros and f ′′ has
at most 2p non-real zeros, then f ∈ V2p. In particular, for p = 0, this coincides
with Conjecture W1 for a special case of entire functions of finite order. In [4],
Ålander [4] proved Conjecture W2 for functions of genera 2 and 3, and in his
later paper [5] for functions of genera not exceeding 5.

To see the difficulty of these conjectures, consider the case f = eQ with a
real polynomial Q and let P = Q′. Conjecture W1 yields that for every real
polynomial P of degree n > 1, P 2 + P ′ has non-real zeros. Moreover, if degP =
n, then the genus of f equals n + 1 and f ∈ W2p, where p is the least integer
greater or equal to n/2. Then, by Conjecture W2, the polynomial P 2 + P ′ of
degree 2n should have at least 2p non-real zeros. This is known for polynomials
P having only real zeros, see Pólya–Szegő [77, Chapter 5, 182], but a general,
even a non-quantitative, question remained open for about 60 years. But more
on that later.

In the paper [74] Pólya was concerned with “a very bold argument” by which
Fourier tried to prove that all zeros of the Bessel function J0 are real and positive.
Fourier applied a rule proven only for polynomials, to a transcendental entire
function, while Cauchy and Poisson expressed doubts about Fourier’s reasoning.
In [74] Pólya proved a theorem which justifies Fourier’s argument and stated
hypothetical theorems which would allow one to broadly apply Fourier’s algebraic
argument. We will refer to these two hypothetical theorems, which we will state
shortly, as the Fourier–Pólya conjectures.

Let f be a real entire function. We assume for simplicity that neither f nor
any of its derivatives f ′, f ′′, . . . has multiple zeros. We say that a point ξ ∈ R is
de Gua-critical if, for some n ∈ N,

f (n)(ξ) = 0, f (n−1)(ξ)f (n+1)(ξ) > 0.

Counting de Gua-critical points, we take them into account as many times as
this occurs for different values of n. That is, we count all positive minima and
negative maxima of f and all its derivatives. The de Gua rule (1741) states that
the number of complex conjugate pairs of zeros of a real polynomial equals the
number of its de Gua-critical points. This rule is not difficult to justify using,
for instance, the idea of the Budan-Fourier rule, while Fourier applied it to a real
transcendental function, justifying this by the fact that this function is a limit of
real polynomials.

FP1. A real entire function of genus 0 has just as many de Gua critical points
as pairs of non-real zeros.

To state the second conjecture, we extend the Laguerre–Pólya class allowing
the functions to have finitely many non-real zeros, and denote by LP∗ the class
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of entire functions of the form f = pg, where p is a real polynomial, and g ∈ LP.

FP2. An entire function of class LP∗ has just as many de Gua critical points as
pairs of non-real zeros.

In the same paper Pólya shows that the second conjecture is equivalent to an-
other one, to which we refer as to a PW conjecture, since, according to Ålander [8],
Wiman stated it to him in 1916.

PW. If f ∈ LP∗, then its derivatives from a certain one onward, have no non-real
zeros at all (that is, belong to LP).

Special cases of this conjecture were proven by Ålander [8], Pólya [74,75], and
Wiman [86, 87], so it was established for entire functions of order at most 4/3,
and for entire functions of the form f(z) = e−αz

2
g(z), where α ≥ 0 and g has

genus 0.
In an enthralling survey [76], Pólya briefly returned to this circle of problems

and stated yet another conjecture, which concludes this list:

P3. If the order of a real entire function f(z) is greater than 2, and f(z) has
only a finite number of non-real zeros, then the number of non-real zeros of
f (n) tends to infinity as n→∞.

All these conjectures were completely settled much later, the most difficult
ones only in the 21st Century, through the combined efforts of many mathemati-
cians. The first substantial progress was made in the paper [50] by Levin and
Ostrovskii. Most of the subsequent work on the conjectures built upon this pa-
per, where Levin and Ostrovskii introduced several crucial ideas to the subject.
The first one was the connection between the logarithmic derivatives of entire
functions with all zeros real and the class of meromorphic functions with positive
real part in the upper half-plane.

Levin–Ostrovskii representation: Let f be a real entire function with all
zeros real. Then

f ′

f
= Pg,

where P is real entire and g is a real meromorphic function with non-negative
imaginary part in the upper half-plane. If f is of finite order, then P is a poly-
nomial.

This lemma gives a control of the behavior of f ′/f since g has nice properties.
One obtains especially good control for functions of finite order, in which case
the representation can be made more precise [10,28].

Then, following Edrei [19], Levin and Ostrovski consider the function F =
f/f ′ and argued as follows. Suppose that ff ′′ has no zeros in the upper half-
plane. Then F omits 0 and F ′ omits 1 in the upper half-plane. Indeed,

F ′ − 1 =
f ′2 − ff ′′

(f ′)2
− 1 = − ff ′′

(f ′)2
.
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This observation immediately points at Hayman’s generalization of Picard’s the-
orem [26, § 3.3]:

If a meromorphic function in the plane omits one finite value and its derivative
omits a non-zero value, then this function is constant.

Applied to the function F = f/f ′, Hayman’s theorem yields that if ff ′′ has
no zeros in C, then f is the exponential function eAz+B. There is a general
philosophy, usually called Bloch’s Principle, that if a condition imposed on a
function meromorphic in the plane implies that this function is constant, then
the same condition imposed on a function in an arbitrary domain must imply
some universal estimate of this function.

Hayman’s proof relies on Nevanlinna theory, and to apply it to a function in a
half-plane required an appropriate generalization of Nevanlinna theory. Versions
of Nevanlinna characteristics adapted for functions in a half-plane were intro-
duced by Nevanlinna, and by Levin and Tsuji. The formulation with Levin–Tsuji
characteristics is especially suitable, since for them a full analogue of the main
technical tool of Nevanlinna theory (the Lemma on the logarithmic derivative)
holds. Using both Nevanlinna characteristics for a half-plane and Levin–Tsuji
characteristics, Levin and Ostrovskii proved the following:

If f is a real entire function such that ff ′′ has only real zeros, then

log logM(r, f) = O(r log r). (2.1)

Here M(r, f) = max{|f(z)| : |z| ≤ r}.

A weaker estimate of the same type under the stronger condition that ff ′f ′′

has only real zeros was earlier obtained by Edrei [19, Theorem 3]. It is worth
mentioning that Levin and Ostrovskii proved (2.1) requiring that zeros of f are
real while zeros of f ′′ satisfy Blaschke’s condition (1.1) in the upper and lower
half-planes. Shen [79] proved that (2.1) holds provided that f is real, and zeros
of f and f ′′ satisfy (1.1).

Below we list the main milestones on the subsequent way to the complete
proof of the conjectures of Pólya and Wiman.

In 1971 Hellerstein and Yang [30] extended the Levin–Ostrovskii theorem to
higher derivatives, that is, if ff (k) has only real zeros for some k ≥ 2, then (2.1)
holds.

In 1977, Hellerstein and Williamson [27, 28] proved that if ff ′f ′′ has only
real zeros then f ∈ LP . This proves Pólya’s conjecture P1, even in a stronger
version, and yields that the Laguerre-Pólya class LP is the only class of real entire
functions closed under differentiation, but this result is still weaker than Wiman’s
conjecture W1. One down, six to go!

In the same work they also gave a detailed proof of Pólya’s conjecture P2 for
entire functions of finite order [27, Theorem 2]. Their proof essentially followed
Ålander’s very sketchy outline [7].

In 1983, Hellerstein, Shen, and Williamson [29] proved P2 in full generality,
describing entire functions f with ff ′f ′′ having real zeros only. In addition to
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two families of non-real entire functions with real zeros of all derivatives, they
singled out two families of non-real entire function of infinite order with ff ′f ′′

having only real zeros:

f(z) = C exp
[
ei(az+b)

]
, f(z) = C exp

[
K(i(az + b)− ei(az+b))

]
,

where C is a complex constant, a and b are real numbers, and −∞ < K ≤ 1/4.
For the functions of these two families, f ′′′ must have non-real zeros. This work
significantly used the ideas of Levin and Ostrovskii.

In 1987, Craven, Czordas, and Smith [16] proved a result which is only slightly
weaker than the Pólya–Wiman conjecture PW: if f is of order less than 2 and
has finitely many non-real zeros, then all sufficiently high derivatives belong to LP
(actually, in [76] Pólya formulated Conjecture PW in this weaker form). Then,
in [17], they extended this result to entire functions of order 2 and minimal type.

In 1990, Kim [36] completed their result and settled the Pólya–Wiman conjec-
ture PW (and therefore, also the second Fourier–Pólya conjecture FP2, which
is equivalent to PW).

In 2000, Ki and Kim [37] settled the first Fourier–Pólya conjecture FP1 and
gave a simpler proof of the Pólya–Wiman conjecture PW.

In 1989, Sheil–Small [78] proved the second Wiman’s conjecture W2, and
therefore the first Wiman conjecture for entire functions of finite order. As a
special case, this result resolves a long-standing puzzle: if P is a real polynomial
of degree n > 1, then P 2 + P ′ should have at least p complex conjugate pairs
of zeros, where p is the least integer bigger than or equal to n/2. For the first
Wiman’s conjecture W1, a gap between finite order and (2.1) remained.

In 2003, this gap was closed by Bergweiler, Eremenko, and Langley. They
proved in [9] that, for functions of infinite order with all zeros real, f ′′ has infinitely
many non-real zeros, thus completing the proof of Wiman’s conjecture W1. This
work makes a substantial use of the ideas of Levin and Ostrovski [50] and Sheil–
Small [78].

Pólya’s conjecture P3 turned out to be most difficult. We mention two partial
results.

In 2002, Edwards and Hellerstein [15] generalized Sheil-Small’s theorem. They
introduced the class W∗2p consisting of entire functions f = pg, were g ∈W2p, and
p is a real polynomial, and showed that

If f ∈W∗2p, then any derivative f (k), k ≥ 2, has at least 2p non-real zeros.

In 1993, Bergweiler and Fuchs [12] proved the following:

If f is a zero free real entire function of infinite order, then f ′′ has infinitely
many non-real zeros.

In 2005, Langley [47] complemented the result of [9] and proved that

For any real entire function f of infinite order with all zeros real, any derivative
f (k), k ≥ 3 has infinitely many non-real zeros.
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This is probably the most difficult result in the area, building on the technique
developed in [9].

In 2006, the final step in the proof of Pólya’s conjecture P3 was made in [10]:

For a real entire function of finite order which does not belong to LP∗, the
number of non-real zeros of f (k) tends to infinity as k →∞.

By combining the aforementioned results, one arrives to the following neat
statement:

For an arbitrary real entire function f one of the following possibilities hold:
either zeros of f (k) are all real for sufficiently large k, or the number of non-real
zeros of f (k) tends to infinity as k →∞.

Thus the paper [50] had a lasting influence on the subsequent research which
eventually led to a complete proof of conjectures of Pólya and Wiman. Levin
and Ostrovskii did not prove these conjectures themselves but they showed the
correct path towards the proofs, which was followed by many mathematicians
who eventually completed the project. Other results related to this range of
questions can be found in [25, Section VI.5].

The machinery of Levin–Tsuji characteristics has found additional applica-
tions in the theory of meromorphic functions, see, for example, Bergweiler–
Eremenko [11]. Matsaev, Ostrovskii, and Sodin [59, 60] used Levin–Tsuji char-
acteristics for estimates of logarithmic determinants and the Hilbert transform.
Khabibullin [38] applied them to find conditions for existence of certain subhar-
monic minorants.

We conclude this part with a question closely related to the Pólya and Wiman
problems, raised by Levin and Ostrovskii in [50] and apparently still open. Let
P be the class of entire functions of the form f(z) = e−αz

2
g(z), where α ≥ 0,

and g is an entire function of genus 1, having no zeros in the upper half-plane
H. By Obreshkov’s theorem [48, Theorem VIII.4], P coincides with the locally
uniform closure of H-polynomials, that is, polynomials having no zeros in H, so
many properties of H-polynomials persist for functions of class P. In particular,
it is also closed under differentiation, similarly to the Laguerre–Pólya class LP.
Levin and Ostrovskii stated the following conjecture:

LO. Suppose f and all its derivatives have no zeros in the upper half-plane. Then
either f ∈ P, or f coincides with one of the exceptional non-real functions
in Pólya’s conjecture P2.

We should note that presumably due to an oversight, Levin and Ostrovskii
did not mention these exceptional functions when asking this question.

3. Comb functions

Consider the class F of real entire functions with real ±1-points. The func-
tions of this class appear as Hill discriminants/Lyapunov functions of the second
order periodic linear ODE. In this capacity, they appear already in Lyapunov’s
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work [53]. Then this class was identified by Krein [46] in connection with the
spectral theory of Krein’s strings. He also pointed out connections with other
problems of analysis (functional Pell’s equation, periodic continued fractions).
This class also arises in Chebyshev-type extremal problems.

Recall that, by Edrei’s theorem, the functions of class F have finite exponen-
tial type. However, in applications, this non-trivial result is usually not used; the
needed growth estimates follow from the specifics of the question under consid-
eration.

Parametrization of class F. In [57], Marchenko and Ostrovskii discovered
a remarkable parametrization of class F by conformal mappings of the upper
half-plane on a comb domain, allowing them to find sets of free parameters that
describe the spectrum of Hill operators, and periodic and anti-periodic inverse
spectral problems for the Sturm–Liouville operators. Since then, the Marchenko–
Ostrovskii parametrization has became indispensable in several areas of analysis.

Theorem 3.1. Class F consists of all entire functions represented in the form

u(z) = cos θ(z), (3.1)

where θ is a conformal mapping of the upper half-plane onto a comb domain of
the form

C = {z : Im z > 0, p < Re z < q }\
⋃

p<k<q

[kπ, kπ + ihk], with some hk ≥ 0,

(3.2)
where −∞ ≤ p < q ≤ +∞, θ(∞) =∞, and θ is extended to the lower half-plane
by symmetry, θ(z) = θ(z̄).

In the case −∞ < p < q < +∞, the set Λ of ±1-points of the function u is
finite, and u is a polynomial of degree q − p. If only one of the numbers p and q
is infinite, then the set Λ is bounded from one direction, either above or below.
Let, for instance, min Λ > −∞, and set µ = min Λ. Then the function u((z −
µ)2) has real ±1-points, and therefore, has a finite exponential type. So, in this
case, u has order 1/2 and finite type.

The idea of the proof of Theorem 3.1 is elegant and not very difficult. Consider
the case when the set Λ is unbounded both from below and from above. By Edrei’s
theorem, the functions u± 1 belong to the Laguerre–Pólya class. Hence, by the
Laguerre theorem, u′ has only real zeros, which interlace both with +1- and with
−1-points of u. So we can enumerate solutions to the equations u2 = 1 and u′ =
0 so that

. . . < ak ≤ ck ≤ bk < ak+1 ≤ ck+1 ≤ bk+1 < · · · ,

where u(ak) = u(bk) = (−1)k, and u′(ck) = 0. Consider the meromorphic func-
tion

[(arccosu)′]2 =
(u′)2

1− u2
.
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Its zeros and poles coincide with the ones of the convergent infinite product∏
k

(1− z/ck)2

(1− z/ak)(1− z/bk)
.

Applying growth considerations, it is not difficult to see that

(u′(z))2

1− u(z)2
= C

∏
k

(1− z/ck)2

(1− z/ak)(1− z/bk)
,

with some C > 0, whence

(arccosu(z))′ = D
∏
k

1− z/ck√
(1− z/ak)(1− z/bk)

,

with D > 0, and an appropriate choice of the branches of the square roots. By
the Schwarz–Christoffel theorem, the functions

θn(z) =

∫ z

0

∏
|k|≤n

(1− ζ/ck)√
(1− ζ/ak)(1− ζ/bk)

dζ

are conformal maps of the upper half-plane onto comb domains, and their n→∞
limit θ is also univalent in the upper-half plane and maps it onto a comb domain.

Spectrum of Hill’s operator. Consider Hill’s equation

Ly = −y′′ + q(x)y = λy (3.3)

with a real periodic potential q ∈ L2(0, π), q(x) = q(x+π). The main problem is
to determine stability intervals that consist of values of λ for which all solutions
to (3.3) are uniformly bounded on the real axis. It is known that the closure of the
union of stability intervals coincides with the spectrum of Hill’s operator L acting
in L2(R) (see, for instance, Glazman [23, Section 56] or Lukić [52, Section 11.16]),
so, in the spectral theory language, the problem is to describe the spectra of Hill’s
operators.

Let us start with a brief reminder of a fragment of Floquet’s classical theory.
Let c(x, λ) and s(x, λ) be the fundamental solutions to (3.3) with initial conditions

s(0, λ) = c′(0, λ) = 0, c(0, λ) = s′(0, λ) = 1.

Then c and s are entire functions of λ. For large complex λ, they are close to
cos(x

√
λ) and sin(x

√
λ)/
√
λ, respectively. In particular, both of them have order

1/2, mean type, see, for instance, Levitan–Sargsjan [51, Chapter 1, §2]. For an
arbitrary solution y to (3.3), we have

y(x) = y(0)c(x, λ) + y′(0)s(x, λ),

whence (
y(π)
y′(π)

)
= T (λ)

(
y(0)
y′(0)

)
, (3.4)
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where

T (λ) =

(
c(π, λ) s(π, λ)
c′(π, λ) s′(π, λ)

)
is the monodromy matrix of Hill’s equation. Thus, the problem of determining
stability intervals boils down to finding the eigenvalues of the matrix T (λ), which
we denote by ρ1, ρ2.

The determinant of T (λ) identically equals 1 (since it is the Wronskian of the
functions c and s, and equation (3.3) contains no term with y′). So ρ1ρ2 = 1,
and

ρ1 + ρ2 = traceT (λ) = c(π, λ) + s′(π, λ).

We consider 1/2 of this trace, which is called the Lyapunov function (or the Hill
discriminant),

u(λ) = (c(π, λ) + s′(π, λ))/2.

This is a real entire function of order 1/2, mean type. The key observation,
known already to Lyapunov [53], is that all ±1-points of u are real. Indeed, if
u(λ) = 1, then, ρ1 = ρ2 = 1, and, by (3.4), Hill’s equation has a periodic solution,
that is, λ belongs to the spectrum of the periodic boundary values problem for
Hill’s operator. Similarly, if u(λ) = −1, then ρ1 = ρ2 = −1, and λ belongs to the
spectrum of the anti-periodic boundary values problem. Both boundary values
problems are self-adjoint, so, in both cases, λ must be real. We also note that,
u(λ)→ +∞ as λ→ −∞; this follows from an asymptotic analysis of solutions c
and s, see, for instance, [51, Ch. I, §2]. So the set of ±1-points of u is bounded
from below.

Then, by a straightforward inspection, the stability set contains intervals of
the real axis, where |u| < 1, in which case, ρ1 6= ρ2, and both are unimodular,
while the instability set contains intervals where |u| > 1, in which case ρ1 6=
ρ2, and both are real. At the points λ, where u(λ) = ±1, we have ρ1 = ρ2,
and the answer depends on whether the derivative du/dλ vanishes at this point
or not. If du/dλ 6= 0, then λ belongs to the instability set. If du/dλ = 0
(i.e., two neighbouring stability intervals stick together), then λ belongs to the
stability set. All this was known by the end of the 19th century, in particular, to
Lyapunov. The absent piece was a parametric description of Lyapunov functions
corresponding to Hill equations.

Representation of the Lyapunov function in the form (3.1) combined with
accurate estimates of the solutions c and s allowed Marchenko and Ostrovskii to
use the well-developed theory of distortion under conformal maps and to obtain
complete characterization of Lyapunov’s functions, and hence a characterization
of the spectra, of Hill’s operators with real potentials q in the Sobolev space
W̃n

2 [0, π] of π-periodic functions, which consists of functions v on [0, π] satisfying

n∑
k=0

∫ π

0
|v(k)(x)|2 dx <∞

and continued π-periodically on R.
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Theorem 3.2. If a real potential q belongs to W̃n
2 [0, π] with n ≥ 0, then the

Lyapunov function u has the form (3.1) with p > −∞, θ(x(1 + i)) ∼ π
√
x, x →

+∞, and
∞∑

k=p+1

(kn+1hk)
2 <∞. (3.5)

Conversely, for every conformal map θ of the upper half-plane onto a comb do-
main that satisfies these conditions, the function u, as defined in (3.1), is the

Lyapunov function of Hill’s operator with real potential in W̃n
2 [0, π].

Theorem 3.2 has several remarkable consequences in spectral theory, see [55,
§4, Chapter 3]. Probably, the most outstanding one is the identification of the
moduli space of Hill’s operators with potentials in the Sobolev space (that is,
independent spectral data, which allow one to uniquely recover the potential)
with the following set of data:

(i) a comb domain C with slits satisfying (3.5);

(ii) a marked point on each slit (if a slit degenerates, i.e., hk = 0, then the point
πk is marked);

(iii) a sign attached to each marked point, not lying on the base of the slit.

Let us sketch the main idea behind this identification, see [57] and [55, Chapter
3 §4] for the details (cf. Stankevich [83]). Suppose that we know the comb-
domain C, that is, the Lyapunov function u of Hill’s equation (3.3). Zero sets of
the functions s and s′ are eigenvalues of Hill’s operator with boundary conditions
y(0) = y(π) = 0, and y′(0) = 1, y(π) = 0. Classical methods of the inverse
spectral theory recover the potential q by these two spectra. Suppose that we
know zeros of s. At these points, by unimodularity of the matrix T , c(λ)s′(λ) =
1, and therefore, |u(λ)| = |c(λ) + s′(λ)|/2 ≥ 1. Thus, zeros of s lie on the slits of
C, and each slit contains exactly one zero of s. The θ-images of zeros of s are the
marked points from item (ii).

Since s is an entire function of order 1/2, we can recover s up to a multiplica-
tive constant as an infinite product of genus zero. The constant can be found
from the asymptotics s(λ) ∼ sin(π

√
λ)/
√
λ, λ→ −∞. Consider the function v =

(c− s′)/2. Having v, we recover s′ = (u+ v)/2, and hence, zeros of s′. Thus, the
problem boils down to recovery of v.

The next step is to expand the meromorphic function v/s into a series of
simple fractions. Such an expansion yields that v can be recovered by knowledge
of it at zeros of s. Using again that cs′ = 1 at zeros of s, we see that u2 − v2 =
1 therein, and therefore, v(λ) = [sgn v(λ)]

√
u2(λ)− 1, provided that s(λ) = 0.

Thus, knowing signs of v(λ) at zeros of s, we can recover the values of v at these
points, and then v itself.

The Marchenko–Ostrovskii theory generated a very large body of literature
which is impossible to survey here. So we mention only a few developments
stemming from [57].

Related spectral problems. Korotyaev [40] extended Theorem 3.2 to a
wider class of potentials, real distributions of the form {q = v′ : v ∈ L2(0, π)}
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continued with period π on R.

Tkachenko [82] obtained a parametrization of spectra of Hill’s operators whose
potential q is not necessarily real, so these operators are not self-adjoint. In this
case comb representation is not available, and one has to work directly with the
Riemann surface of u−1 spread over the plane.

Already in 1953 Krein [46] studied spectral properties of solutions to the
integral equation

y′(x) + λ

∫ x

0
y(t) dM(t) = const,

with a non-decreasing function M , M(x + 1) −M(x) = const. This equation
describes the amplitude y(x) of small vibrations of a string with periodic distri-
bution of mass. Krein stated that an entire function u normalized by u(0) =
1 is Lyapunov’s function for a periodic string equation if and only it has only
non-negative ±1-points. Actually, Krein imposed an extra condition that u is
represented by convergent Hadamard product of genus zero with positive zeros,
but in view of Edrei’s theorem, this condition is redundant. Combining Krein’s
theorem with Theorem 3.1, one gets a description of spectra of periodic Krein’s
string.

Mikhailova [62] used the Marchenko–Ostrovskii map to parameterise mon-
odromy matrices of two-dimensional canonical systems with a periodic Hamilto-
nian, and gave a constructive procedure of recovery of the monodromy matrix.

Finite-band potentials and their closure. It is a natural hope to ex-
tend the Marchenko–Ostrovskii theory from periodic potentials to more general
classes of functions invariant with respect to action of the real axis by transla-
tions. Usual suspects are almost-periodic and, more generally, random ergodic
potentials. There are only a few classes of such potentials for which this dream
has been fully realized.

Given a real potential q, we denote by L the Schrödinger self-adjoint operator

L = − d2

dx2
+ q

acting in L2(R). By σ(L) we denote its spectrum.

First, we consider the class of finite-band potentials which we define shortly. A
concise introduction to their theory can be found in Moser lectures [63]. See also
Akhiezer [2] and Dubrovin, Matveev, and Novikov [18, Chapter 2]. An interesting
discussion of the history is in the article by Matveev [61]. These potentials have
a finite-band spectrum

σ(L) = [λ0, λ1] ∪ [λ2, λ3] ∪ · · · ∪ [λ2N ,∞), λ0 < λ1 < λ2 < · · · < λ2N , (3.6)

and are singled out by a resolvent condition. The resolvent R(λ) = (L− λ)−1. is
an integral operator with the kernel G(x, y, λ) called Green’s function of L. Its
diagonal G(x, x, λ) belongs to the Nevanlinna class N of functions f , analytic in
{Imλ 6= 0}, and satisfying f(λ̄) = f(λ), and Im f(λ)/ Imλ > 0.
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The potential with spectrum (3.6) is called finite-band if its Green function
G(x, x, λ) takes purely imaginary limiting values on the interiors of the bands.
Then it is not difficult to show that G(x, x, λ) can be continued to a meromorphic
function of λ on the hyperelliptic Riemann surface X of the function[ ∏

0≤j≤2N

(λ− λj)

]1/2

.

A remarkable consequence is that, for finite-band potentials, the direct and in-
verse problems of spectral theory can be explicitly solved by classical methods
of the theory of Riemann surfaces. The full set of spectral data of finite-band
potentials is realized as divisor on X, which consists of N points chosen so that
each closed gap [λ2j−1, λ2j ] has a point lying over it. The potential q is recov-
ered using theta-functions (or hyperelliptic integrals), and is quasi-periodic (recall
that a function f is called quasi-periodic if f(x) = F (x, . . . , x), with a continuous
function F (x1, . . . , xn) that is periodic in x1, . . . , xn. Quasi-periodic functions are
uniformly almost-periodic).

Alternatively, one can define the spectral data using comb-domains. In this
case, a function θ maps the upper half-plane onto a quater-plane with N slits
having arbitrary bases. Then, as in the Marchenko–Ostrovskii theory, the com-
plete set of spectral invariants of the operator L is given by location and lengths
of slits, collection of N points on these slits, and collection of signs attached to
each point unless the point lies on the base of a slit.

If the bases of the slits lie in a subset of an arithmetic progression, then the
finite-band potential is periodic and we arrive at a special case of the Marchenko–
Ostrovskii theory with Lyapunov function u having finitely many simple ±1-
points, the rest of them having multiplicity two. Using Theorem 3.2, Marchenko
and Ostrovskii showed that such finite-band periodic potentials are dense in the
W̃n

2 [0, π]-metric in the space of all real periodic potentials [58] and [55, Theo-
rem 3.4.3].

Comb domains also occur for some classes of almost-periodic potentials with
Cantor-type spectrum when the bases of the slits are everywhere dense, see Pastur
and Tkachenko [66], and Sodin and Yuditskii [81] (the latter work contained
a gap, which was fixed in Gesztesy and Yuditskii [32]). In these works, the
authors obtained a complete description of independent spectral data needed for
the recovery of the potential.

Almost-periodic and random ergodic potentials. For general almost
periodic and random ergodic potentials the classical Floquet theory ceases to
work, and the Lyapunov function u does not exist. Johnson and Moser [33]
found an extension of the Floquet theory for almost-periodic potentials, and
Kotani [41–43] extended it to random ergodic potentials defined as follows. Let
R (regarded as an additive group) act on a probability space (Ω,F ,P) by measure
preserving transformations Tx, x ∈ R, let the action be ergodic, and let q : Ω →
R be a random variable with a finite second moment. Then one considers Hill’s
operators, whose potentials are the random functions x 7→ q(Tx ω).
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We will briefly explain the approach developed by Johnson–Moser and Kotani.
If the potential q is either uniformly almost periodic, or, more generally, random
ergodic potential q, then the Green’s function x 7→ G(x, x;λ), as well as its inverse
x 7→ 1/G(x, x;λ), are also almost-periodic/random ergodic. Set

w(λ)
def
= −1

2
lim

b−a→∞

1

b− a

∫ b

a

dx

G(x, x;λ)
. (3.7)

In the random case the limit exists almost surely, and, by ergodicity, coincides
with −1

2 E
[
G−1(x, x;λ)

]
. The function w is holomorphic in {Imλ 6= 0} and

satisfies

w,
dw

dλ
, −iw ∈ N,

where N is the Nevanlinna class introduced above. This yields that w is univa-
lent in the upper half-plane, and the image w(C+) lies in the second quadrant.
Generally speaking, w(C+) is not a comb domain, but still, if λ ∈ w(C+), then,
for any τ > 0, λ− τ ∈ ω(C+), as well.

To describe the boundary of the image w(C+), one needs to know the bound-
ary values of w on the real axis. They are equal to −γ + iπk, where γ is the
Lyapunov exponent, and k is the integrated density of states. The Lyapunov
exponent γ(λ) measures the exponential growth of solutions

γ(λ) = lim
x→±∞

1

|x|
log ‖T (x, λ)‖, (3.8)

where T is the fundamental matrix,

T (x, λ) =

(
c(x, λ) s(x, λ)
s′(x, λ) c′(x, λ)

)
.

The integrated density of states is defined as

k(λ) = lim
b−a→∞

ν(a, b;λ)

b− a
,

where ν(a, b;λ) is the number of the eigenvalues of the Dirichlet eigenvalue prob-
lem on the interval [a, b], which are less or equal to λ. If the potential q is periodic
with period π, then w = iθ where θ is the Marchenko–Ostrovskii conformal map.
In the case of random Jacobi matrices, the conformal map ew was thoroughly
studied by Hur and Remling [31].

The Lyapunov exponent and integrated density of states contain important
spectral information about Schrödinger operators with almost-periodic and ran-
dom ergodic potentials, see the Pastur–Figotin treatise [67, Chapter V]. For
instance, the spectrum of L coincides with the closed support of the measure dk,
while the support of the absolutely continuous spectrum of L coincides with the
essential closure of the set {γ = 0} with respect to the Lebesgue measure (that is,
with the set of points x ∈ R such that any neighbourhood of x has an intersection
of positive Lebesgue measure with {γ = 0}). It is worth mentioning that γ is
a non-negative subharmonic function in C with the Riesz measure dk, and that
dw/dλ is the Hilbert transform of dk.
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Chebyhsev-type extremal problems. Comb functions of the form (3.1),
both polynomial and transcendental, naturally appear as extremal functions in
various Chebyshev-type problems. They were introduced by Akhizer and Levin
in [3]. Using comb functions, Akhiezer and Levin obtained far reaching general-
izations of Bernstein’s inequality for entire functions of exponential type. Note
that Akhiezer and Levin considered a more general class of comb domains, for
which bases of the slit do not have to be a subset of an arithmetic progression.
In that case, the functions of the form (3.1) are analytic in the plane with cuts
along θ−1R. These functions also play an important role in Levin’s theory of
subharmonic majorants [49].

Employing comb functions, Eremenko [21] found the upper envelope M(x),
x ∈ R, of absolute values of entire functions f of a given exponential type, such
that

|f(x)| ≤

{
A, x < 0;

B, x ≥ 0.

Note that, for complex values z, the exact value of the majorant M(z) is not
known (Hayman’s question).

A rather general result connecting Chebyshev-type extremal problems for
entire functions with comb domains can be found in the Sodin–Yuditskii survey
paper [80, Theorem 7.5].

Pell’s equation. Chebyshev and his pupils reduced many polynomial ex-
tremal problems to polynomial analogues of Pell’s equation,

X2 + TY 2 = 1, (3.9)

see [80]. Krein [46] found a relation between entire functions, which appear in
the spectral theory of Krein’s string, and Pell’s equation for entire functions.
Akhiezer [1] demonstrated an approach to construction of finite-band potentials
via functional Pell’s equations. So it is not too surprising that comb polynomials
and entire functions are related to Pell’s equation in entire functions. This relation
was clarified by Marchenko and Ostrovskii in [57, Theorem 6.1].

Denote by C the class of real entire functions of Cartwright class (defined in
the beginning of Section 1) with real zeros.

Theorem 3.3. Let T ∈ C, and T (0) > 0. Then Pell’s equation (3.9) has
a solution X,Y ∈ C iff and only if there exists an entire function Φ ∈ C and a
constant b such that the function

θ(z) =

∫ z

0

Φ(ζ)√
T (ζ)

dζ + b

maps conformally the upper half plane onto a comb domain C.
Furthermore, a general form of solutions X,Y ∈ C is

X(z) = cos θ(z), Y (z) =
sin θ(z)√
T (z)

,

where θ maps the upper half-plane onto a comb domain C.
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In the polynomial case, the solvability of Pell’s equation is equivalent to ex-
istence of a special factorization 1 = (X + i

√
TY )(X − i

√
TY ) of the function

identically equal to 1 on the hyperelliptic Riemann surface of
√
T . In the tran-

scendental case, we arrive at the same factorization on a hyperelliptic Riemann
surface of infinite genus.

Entire functions of Krein’s class. In [65], Ostrovskii found a parametric
description of Krein’s class K (we defined it in the very beginning of Section 1).
Note that, since functions from Krein’s class belong to the Cartwright class and
are real, they have representation

f(z) = Cz` lim
R→∞

∏
Λ∩[−R,R]

(
1− z

λ

)
,

where ` = 0 or 1 and Λ is the zero set of f . Hence, functions from Krein’s class
are defined by their zeros up to a constant factor and, for description of the class
K, it suffices to describe the sets E ⊂ R that are zero sets of functions from K.

Let us say that a sequence E of real numbers λk, −∞ ≤ p < k < q ≤ ∞
satisfies an R-condition if there is a function θ as in Theorem 3.1, for which λk ∈
[ak, bk] where [ak, bk] is the θ-preimage of the k-th “tooth” [πk, πk + ihk].

Theorem 3.4. A set E coincides with the zero set of some function of class
K if and only if it satisfies the R-condition.

The importance of this theorem lies in the fact that, as shown by Krein
in [45], functions from class K describe the entries of entire Nevanlinna matrices.
A unimodular entire matrix-function(

A(z) B(z)
C(z) D(z)

)
is called a Nevanlinna matrix if its entries are real entire functions, and, for all
real values t, the function

z 7→ A(z)t+B(z)

C(z)t+D(z)

has positive imaginary part in the upper half-plane. These matrices play a fun-
damental role in the description of solutions of many problems in analysis, which
include the Hamburger moment problem, the spectral theory of Schrödinger-type
linear differential equations, Krein’s problem on continuation of positive definite
functions from an interval, and de Branges theory. The monodromy matrices T ,
which we dealt with above, are also Nevanlinna matrices.

In the same paper [65], Ostrovskii showed that F ( K (recall that the class
F consists of real entire functions with real ±1-points), and that every function
of the Krein’s class can be represented as a sum of two comb functions from F.
The latter result was improved by Katznelson [35]. He showed that every real
entire function f of Cartwright class can be represented as a sum of two comb-
entire functions: f = u1 + u2, u1, u2 ∈ F. Moreover, the exponential types of the
functions u1, u2 coincide with that of f .
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Vinberg combs. Pólya functions. Another useful comb representation
of entire functions was introduced by Vinberg [84]. Given −∞ ≤ p < q ≤ +∞,
let (ck)p<k<q be a sequence of real numbers. Consider the region

V = {z : πp < Im z < πq}
∖ ⋃

p<k<q

{
iπk + t : −∞ < t < log |ck|

}
. (3.10)

Such regions are called Vinberg’s combs. Let θ be a conformal map of the upper
half-plane onto a Vinberg’s comb normalized by lim

y→+∞
θ(iy) = +∞. Then by the

Symmetry Principle the function

f = exp θ (3.11)

extends to an entire function. This entire function is real on the real line, has
critical values ±ck, and possibly one asymptotic value 0.

Theorem 3.5. The class of functions (3.11) coincides with the Laguarre–
Pólya class.

As a corollary Vinberg obtains a parametrization of the Laguerre-Pólya class
by sequences of critical values. Comb functions of Marchenko and Ostrovskii
correspond to the subset with |ck| ≥ 1, and for them we have both representations
(3.1) and (3.11). Using his comb representation, Vinberg obtained a simple purely
topological proof of the results of MacLane [54] on real entire functions with real
critical points. See the survey [22] for details and examples.

In [14, Chapter I], de Branges noticed that the theory of entire functions of
the Laguerre-Pólya class can be built starting with the following observation: if
p is a polynomial without zeros in the upper half-plane, then, for any x ∈ R, the
function y 7→ |p(x + iy)| increases with y, which, in turn, yields that p′/p has
negative imaginary part in the upper half-plane.

We take this property as a starting point and say that a function f analytic in
the upper half-plane C+ belongs to the Pólya class P if the function y 7→ |f(x+
iy)| does not decrease, as y increases. Clearly, LP ( P ( P (the class P was
introduced in the very end of Section 2). In a sense, these classes are not too far
from each other. If f ∈ P, then the “mirror continuation” of log |f | defined as

v(z) =


log |f(z)|, Im z > 0,

log |f(x+ i0)|, x ∈ R,
log |f(z̄)|, Im z < 0,

is subharmonic in C. Informally speaking, v belongs to a subharmonic counter-
part of the Laguerre–Pólya class LP.

The functions of Pólya class were independently introduced and studied
by Kargaev and Korotyaev [34] and Weitz [85]. One of their results was a
parametrization of class P by conformal maps onto domains Ω such that if ζ ∈
Ω, then, for any t > 0, ζ + t ∈ Ω.
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Theorem 3.6. f ∈ P if and only if log f is a conformal map from the upper
half plane onto a domain Ω such that limy→+∞Re log f(iy) = +∞.

The key step in proving Theorem 3.6 is the following observation: f ∈ P if
and only if either Im f ′/f < 0 in the upper half-plane, or f(z) = eaz+b with a ∈
R.

Theorem 3.6 contains as a special case Vinberg’s Theorem 3.5. It also contains
the results of Levin [49]. In connection with his theory of subharmonic majorants,
Levin considered the case when P lies in the right half-plane. We also note that
if w is a function introduced by Johnson–Moser and Kotani and defined in (3.7),
then w = − log f , with f ∈ P.
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[45] M.G. Krein, On an indefinite case of the Sturm–Liouville problem on the interval
[0,∞), Izv. Acad. Sci. USSR 16 (1952), 293–324 (Russian); Selected Works, 3, Inst.
Mat., Kiev, 1997.

[46] M.G. Krein, On inverse problems of the theory of filters and λ-zones of stability,
Doklady Akad. Nauk SSSR (N.S.) 93 (1953), 767–770 (Russian); Selected works, 3,
Inst. Mat., Kiev, 1997; Engl. transl.: Morris D. Friedman, Two Pine Street, West
Concord, Mass., 1955.



Iossif Ostrovskii’s Work on Entire Functions 447

[47] J. Langley, Non-real zeros of higher derivatives of real entire functions of infinite
order, J. Anal. Math. 97 (2005), 357–396.

[48] B.Ya. Levin, Lectures on Entire Functions, Translations of Mathematical Mono-
graphs, 150, Amer. Math. Soc., Providence, RI, 1996.

[49] B.Ya. Levin, Majorants in classes of subharmonic functions, I, Teor. Funktsĭı Funk-
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[75] G. Pólya, Über die Realität der Nullstellen fast aller Ableitungen gewisser ganzer
Funktionen, Math. Ann. 114 (1937), 622–634; Collected Papers, II, The MIT Press,
1974.
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Працi Йосипа Островського про цiлi функцiї
Alexandre Eremenko and Mikhail Sodin

Теорiя цiлих функцiй та її застосування були в центрi уваги
Й.В. Островського протягом усiєї його кар’єри. Вiн зробив важливий
внесок у декiлька галузей цiєї теорiї, i багато з його праць мали ва-
жливий вплив на подальшi дослiдження. У цiй статтi ми розглядаємо
декiлька з його досягнень.

Ключовi слова: цiла функцiя, лiнiйний диференцiальний оператор
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