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Controllability Problems for the Heat
Equation on a Half-Plane Controlled by the

Neumann Boundary Condition with a
Point-Wise Control

Larissa Fardigola and Kateryna Khalina

In the paper, the problems of controllability and approximate controlla-
bility are studied for the control system w; = Aw, wy, (0,22,t) = u(t)d(z2),
x1 >0, 29 €R, ¢t € (0,T), where u € L>°(0,T) is a control. To this aid, it
is investigated the set Rr(0) C L?((0,+00) x R) of its end states which are
reachable from 0. It is established that a function f € Rp(0) can be repre-
sented in the form f(z) = g(|z|?) a.e. in (0, +00) x R where g € L?(0,400).
In fact, we reduce the problem dealing with functions from L?((0,+oc) x
R) to a problem dealing with functions from L?(0,+o00). Both a necessary
and sufficient condition for controllability and a sufficient condition for ap-
proximate controllability in a given time T under a control v bounded by a
given constant are obtained in terms of solvability of a Markov power mo-
ment problem. Using the Laguerre functions (forming an orthonormal basis
of L*(0,+00)), necessary and sufficient conditions for approximate control-
lability and numerical solutions to the approximate controllability problem
are obtained. It is also shown that there is no initial state that is null-
controllable in a given time T'. The results are illustrated by an example.
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1. Introduction

In the paper, the controllability problems for the heat equation are studied
on a half-plane. Note that these problems for the heat equation were studied
both in bounded and unbounded domains. However, most of the papers studying
these problems deal with domains bounded with respect to the spatial variables
(see some recent papers: [3,4,6,21,23,36,37,43], and the references therein). At
the same time, there are quite a few papers considering domains unbounded with
respect to the spatial variables [2,5,7-9,15-20,24,30-33, 35,39,40,42].

A point-wise control is a mathematical model of a source supported in a
domain of very small size with respect to the while domain. That is why studying
control problems under a point-wise control is an important issue in control theory
(see, e.g. [10,11,27,29,34] and others).
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In [32], the boundary controllability of the 2-d heat equation was studied
in a half-space. Using similarity variables and weighted Sobolev spaces and de-
veloping solutions in Fourier series reduce the control problem to a sequence of
one-dimensional controlled systems. The null-controllability properties of these
systems had been studied in [31]. It had been proved that no initial datum be-
longing to any Sobolev space of negative order may be driven to zero in finite
time. In [32], it was established that if all the corresponding 1-d problems are
null-controllable, then the multidimensional problem is null-controllable. How-
ever, it was also proved that if there exists at least one 1-d problem which is
not null-controllable, then the multi-dimensional problem is not null-controllable.
The results of the one-dimensional case was applied to obtain the corresponding
results for the multi-dimensional case.

The controllability problems for the heat equation on a half-plane controlled
by the Dirichlet boundary condition with a point-wise control were studied in [17].
Both necessary and sufficient conditions for controllability and sufficient condi-
tions for approximate controllability in a given time under a control bounded by
a given constant were obtained in terms of solvability of a Markov power mo-
ment problem. Orthogonal bases in special spaces of Sobolev type (consisting of
functions of two variables) were constructed by using the generalized Laguerre
polynomials. Applying these bases, necessary and sufficient conditions for approx-
imate controllability and numerical solutions to the approximate controllability
problem were obtained.

The boundary controllability of the wave equation on a half-plane z; > 0,
x2 € R with a pointwise control on the boundary was studied in [12-14].

Consider the following control system on a half-plane

wy = Aw, x1 >0, 2o €R, t € (0,7), (1.1)
wzl( ( )[2], ) = 5[2]U(t), xo ER, t € (O,T), (1.2)
w((')[l]» (')[2]70) = ’w07 x1 >0, 2 € R, (1.3)

where A = (9/0x1)* + (0/022)?, T > 0, u € L>(0,T) is a control, dj, is
the Dirac distribution with respect to z,,, m = 1,2. The subscripts [1] and [2]
associate with the variable numbers, e.g., (-)n; and (-)fg correspond to x1 and
T2, respectively, if we consider f(z), x € R?. This control system is considered in
spaces of Sobolev type (see details in Section 2). We treat equality (1.2) as the
value of the distribution w,, on the line x; = 0 (see Definition 2.3 below).

In Section 2, some notation and definitions are given.

In Section 3, control problem (1.1)—(1.3) is reduced to control problem (3.1),
(3.2) (see below) by using the even extension with respect to a1 for w(-, ) and w?,
t € [0,T]. It is proved that systems (1.1)—(1.3) and (3.1), (3.2) are equivalent so,
basing on this reason, we consider control system (3.1), (3.2) (dealing with func-
tions defined on R?) instead of control System (1.1)—(1.3) (dealing with functions
defined on [0, +00) x R). The set Ry(0) C L*(R?) of its states reachable from
0 (i.e. the set which is formed by the end states w(-,T") of control system (3.1),
(3.2) when controls u € L°°(0,7)) and the set RL(0) € Rp(0) € L?(R?) of its
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states reachable from 0 by using the controls u € L*(0,T) satisfying the restric-
tion [[ul| oo,y < L (where L > 0 is a given constant) are studied. In particular,
properties of the solutions (Theorem 3.4) and properties of the reachability sets
Rr(0) and RE(0) (Theorem 3.5) are proved for this system. It is also established
that a function f € Rp(0) can be represented in the form f(z) = g(|z[?) a.e.
in R? where g € L?(0,+00). Therefore, the functions g form the dual sets Ry
and RX for the sets R (0) and RE(0), respectively. In fact, the problem dealing
with functions from L2 (Rz) is reduced to a problem dealing with functions from
L?(0,4+00). To this aid, operators ¥ and ® are introduced and studied. The
results mentioned above are applied in Sections 3—6. In Section 3 the following
assertions are formulated for system (3.1), (3.2):

1) some additional properties of the set RE(0) (Theorems 3.6-3.9, 3.11, and
3.13);

2) mnecessary and sufficient conditions for controllability in a given time under
the control bounded by a given constant (Corollary 3.10);

3) sufficient conditions for approximate controllability in a given time under the
control bounded by a given constant (Corollary 3.12);

4) necessary and sufficient conditions for approximate controllability in a given
time (Theorem 3.14);

5) the lack of controllability to the origin (Theorem 3.15).

In Section 4, properties of the sets Ry and R% are established (Theorems 4.1,
4.2, 4.4-4.6, and 4.8). In the proof of Theorem 4.8, an algorithm for construction
of controls solving the approximate controllability problem for system (3.1), (3.2)
is given.

In Section 5, Theorem 3.14 is illustrated by an example.

The results of Section 4 are applied in the proofs of Theorems 3.6-3.9, 3.11,
and 3.13 in Section 6. In this section Theorems 3.4 and 3.15 are also proved.

The main results of the present paper are rather similar to those of [17]. How-
ever, the methods of obtaining them are essentially different in these two papers.
Roughly speaking, we deal with the two-dimensional case studying reachability
sets and constructing the solutions to controllability and approximate control-
lability problems in [17], but reducing the two-dimensional reachability sets to
the one-dimensional ones, we deal with the one-dimensional case studying these
problems and constructing their solutions in the present paper. In addition,
the methods used to study the one-dimensional reachability sets in this paper
principally differ from those used for two-dimensional sets in [17]. That is why
Theorems 3.9, 3.11 and Corollaries 3.10, 3.12 in the present paper also differ
from their analogues from [17]. Moreover, Theorems 3.6-3.8 have not analogues
in [17].

2. Notation and preliminary results

Let n € N. By | - |, we denote the Euclidean norm in R".
Let . (R™) be the Schwartz space of rapidly decreasing functions [38]. Put
< = Z(R). Let Z'(R™) (') be the dual space for .7 (R") (., respectively).
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Denote Ry = (0, 400). Let Z(R4) be the space of infinitely differentiable func-
tions on R whose supports are compact and they are contained in R .

Let D = (—i0/0x1,...,—i0/0xy,), D* = (—i(0/0x1)*, ..., —i(d/0x,)*"),
where a = (aq, ..., a,) € Njj is multi-index, |a| = a1+ +ap, ol = a1l ay],
No=NuU {0}

Consider the following Sobolev spaces [22, Chap. 1]

H¥R") = {p € L*(R") |Va e N} (Ja| <s= D% e L*(R"))}, s=0,2,

with the norm
1/2

s 2
lol* = { 3 —pamiar (1P%lian) | o€ R,

la|<s

We have H*(R") = (H*(R™))* with the norm ||-||~* associated with the strong
topology of the adjoint space. Evidently, H°(R") = L?(R") = (HO(R”))*.
For s =0, 2, denote

H@:{gpeL?(&xR)‘(vaeNg (a1 +az < 5 = D% € L*(R; x R) )
(Vk-Os—l DED (0, () g) = o)}

with the norm

1/2

B s! o 2 s
lelo={ > Gomrraymmen 1P leeas) | - ety

a1+a<s

and Hg® = (H@) with the norm ||-[|g associated with the strong topology of
*
the adjoint space. Obviously, H%): L?>(Ry xR) = (Hg))) .
Consider also the spaces [22, Chap. 1]
Hu(R") = {6 € IR ®") | (14 |02) v e L2®RM}, m =272,
with the norm

el = [ (1 4+ 1o?)

)" 4 ‘ b € Hyp(R™).

L2(R")’

Evidently, H_,,,(R") = (H,,(R"))*. It is easy to see that Ho(R") = H°(R").

By (f,¢), denote the value of a distribution f € .#/(R™) on a test function
p e S (R).

Let .# : /'(R") — %'(R™) be the Fourier transform operator with the do-
main ./(R™). This operator is an extension of the classical Fourier transform
operator and is given by the formula

(Fle)=(f,7 ), feS'R"), pc SR
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Due to [22, Chap. 1], the operator .% is an isometric isomorphism of H™(R")
and H,,(R"), m = —2,2.

In the spaces H,,(R?) and H™(R?), m = —2,2, we consider the following
inner products

(Fogm = (A +10P)"2 £ (1 +10P) " g) | f € Hu(B), g € Hu(B?),
(B p)"™ = (Fh, Fp)m, he H™(R?), pe H"(R?),

where (-, -)o is the inner product in L?(R?). Note that (-,-)? = (-, -)o.

A distribution f € .#/(R?) is said to be odd with respect to xy, if
<f (,0( [1] QF )> = <f gp( QL (-)[2])>, where ¢ € .7(R?). A distribution
f e (R?) is sald to be even with respect to x1, if <f,<p(( ) (g2 )> <f, (

(- )[1] ()2 )> where p € .7 (R?).

Let m = —2,2. By H™ (R?) (or H, (R?)), denote the subspace of all distri-
butions in H™ (Rz) (or Hp, (Rz), respectively) that are even with respect to x.
Evidently, H™ (R?) (or H,, (R?)) is a closed subspace of H™ (R?) (or Hy, (R?),
respectively).

Let f € L*(R?). Let also f(z) = g(|z[*), € R?, where g is a function defined
on R, . Setting x1 = \/rcos¢, xo = /rsing, r € Ry, ¢ € [0,27), we get

- (o)~ (o)
= (“/0 lg(r)|? dT)l/Q Vllgllzary)- (2.1)

Thus, if f € L?*(R?) and f(z) = g(|z[*), = € R?, for some g defined on R,
then g € L?(R,) and (2.1) holds; and vice versa: if g € L?(R, ), then for f(z) =
9(|z[*), € R?, we have f € L?(R?).

Taking this into account, we can introduce the space

H={feL?*R? |3geL*Ry) f(z)=g(z*)ae onR?} (2.2)
and the operator ¥ : 3 — L*(R) with the domain D(¥) = K for which
Uf=g& (f(z)= g(|z|?) a.e. on Rz), feD(¥) =%

One can see that ¥ is invertible, ¥~ : L2(Ry) — (, and (¥~ 'g)(z) = g(|z[?),
zeR?for ge D(¥Y) = L2(Ry).
Summarising, we obtain the following proposition.

Proposition 2.1. The following assertions hold:
(i) W is an isomorphism of H and L*(R,);
(ii) H is a subspace of HO° (]RQ) = H, (]RQ) cL? (]RQ);
(iii) 3 s a Hilbert space with respect to the inner product (-, -)2(wz2);
(iv) (f, h>L2(R2) =m(Vf, ‘I’h>L2(R+); J€XH, hel
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v) ¥l =1/vm;
(vi) FH =K.

Let feEH, F=%f,g=¥f, and G =VF. Then G = W.ZU g,

Let us introduce the operator ® : L2(R,) — L?(R,) with the domain D(®) =

L?(Ry) by the rule

dg=VFV g, ge D@ =L*Ry).

Since the operator ¥ is an isomorphism of H and L?(R,) (see Proposition 2.1)
and .Zf = .F1f for f € H, we conclude that ® is invertible and ®~! = ®, in

particular, ® is an isometric isomorphism of L?(R ).

Let us find a formula for calculating ®g if g € L?(R). Put G = ®g. Setting
x1 = \/rcos¢, xy = \/rsing, r € Ry, ¢ € [0,27), and 01 = (/pcosf, op =

Vpsind, p e Ry, 6 € [0,27), we get

G(p) = (‘gqj_lg)( — lim // x)e_i<xvo—> dx
\x|<N2

27T N—oo

[ —i.,/TpCos ¢
Lo [ /
1
= — lim g(r)Jo(y/rp) dr, p € Ry,
0

where Jj is the Bessel function of order 0. Here the relation

1 27 )
€)= o [ eEmtds gem
2 0
has been used.
Summarising, we obtain the following proposition.

Proposition 2.2. The following assertions hold:

(i) @ is invertible and ®~ ' = ®;
y I
(i) (®g)(p) =5 lim [ g(r)Jo(Vrp)dr, p € Ry, g € L*(Ry).

N—oo 0

(2.3)

With regard to Proposition 2.2 (ii), one can see that the transform providing
by the operator @ is a modification of the well-known Hankel transform of order 0.
Let g € H_4(R?), s = 0,2. By a similar reasoning to that of [17], we get
g(o1, (")) € H-s(R) for almost all o1 € R, and g((-)),02) € H_s(R) for almost

all o9 € R.
Let ¢ € Hs(R), s = 0,2. Denote

(9,9 (02) / (1+0}) " glor,02) (1 +07) Y(o1)dor, o2 €R,
OO.S S
(9,0)2)(01) / (1+ 0'2 (o1, 02) (1+ 0%) (02) doa, o1 € R.
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Then,
(9,9)1) € H-s(R) and (g,9)p) € H-s(R).
Let f € H*(R?), ¢ € H*(R), s = 0,2. Denote

(.00 = Zitswy (Famsof, Fod)) and (f,0)9) = Foitsny, (Fassof, Fo)pa)) -

Since the operator .# is an isometric isomorphism of H™(R") and H,,(R"),
m = —2,2, we get

(fio)y € HP(R) and  (f, ) € H*(R).

The following definition is given with regard to the definition of a distribu-
tion’s value at a point [1, Chap. 1] and to the definition of a distribution’s value
on a line [14].

Definition 2.3. Let s = 1,2. We say that a distribution f € H@s has the
value fo € H™%(R) on the line z; = 0, i.e. f(07, (-)[2}) = fo((-)p]), if for each
v € H*(R) and v € Z(Ry) we have

(@O, O Oy O, = (o eprv) | asa— 0%,
(2.4)
where (h(a(")),¥) = <h((~)), 1y (%>> for h € H=5(R).

Remark 2.4. Let ¢ € H, <5®, s =0,2. Let » be its even extension with respect
to x1, le., cﬁ(fvl,xg)A: o(x1,z2) if 1 > 0 and @(x1,x2) = p(—x1,x2) if 21 < 0,
2o € R. Then ¢ € H® (RQ), s = 0,2. The converse assertion is true for s = 0,1,
and it is not true for s = 2. That is why the even extension with respect to
of a distribution f € H @2 may not belong to H 2 (R2). However, the following
theorem holds.

Theorem 2.5. Let f € Hg() and there exist fy, (07, (-);g) € H '(R). Then

forz, € H@Q can be extended to a distribution F' € H2 (R2) such that F 1is even
with respect to x1. This distribution is given by the formula

F = fowy — 2f2,0%, (i) 05 (2.5)

where f is the even extension of f with respect to x1.

In the case f € Hé)/Q, corresponding theorem has been proved in [14]. The
proof of Theorem 2.5 is analogous to the proof of the mentioned theorem.

3. Problem formulation and main results

dt

Hcg)zs, s=0,1, w’ € H%)‘ We treat equality (1.2) as the value of the distribution
w at x1 = 0 with regard to Definition 2.3.

We consider control system (1.1)-(1.3) in H@l, 1=0,2,ie (L) w:[0,T] —
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Let w®, w(-,t) € H?@ t € [0,T]. Let WY and W(-,t) be the even extensions
of w® and w(-,t) with respect to x1, respectively, t € [0,T]. Consider the control
system

W, = AW — 20u(t), te (0,7),
W (s (D, 0) = WP, (3.2)

where (4)°W : [0,T] — H=? (R?), s = 0,1, W° € H°(R?), § is the Dirac
distribution in .’ (RQ).

Theorem 3.1.

1. Letuw’e Hg(). If w is a solution to control system (1.1)—(1.3), then W, its
even extension with respect to x1, is a solution to control system (3.1), (3.2).
2. Let W° € HY (R?). If W is a solution to control system (3.1), (3.2), then w,
its restriction to Ry x R x [0,T1], is a solution to control system (1.1)—(1.3).

Proof. 1. Let w be a solution to control system (1.1)—(1.3). According to
Theorem 2.5, W is a solution to control system (3.1), (3.2).

2. Let W be a solution to (3.1), (3.2). Let w® and w(-,t) be the restrictions
of W% and W(-,t) to Ry x R, respectively, t € [0,7]. According to Lemma 6.1
(see below),

Way (07, ()2 t) = dgu(t)  for almost all t € (0, 7). (3.3)
Therefore, w is a solution to (1.1)—(1.3). O

Due to Theorem 3.1, control systems (1.1)—(1.3) and (3.1), (3.2) are equiv-
alent. Therefore, basing on this reason, we will further consider control system
(3.1), (3.2) instead of original system (1.1)—(1.3).

Let T > 0, WY ¢ HO° (RQ). By Ry (WO), denote the set of all states W7 €

HO (]RQ) for which there exists a control u € L>°(0,T") such that there exists a
unique solution W to system (3.1), (3.2) such that W((')[l}’ e T) = wT,

Definition 3.2. A state W° € H° (Rz) is said to be controllable to a target
state WT € HO (RQ) in a given time T > 0 if W1 € Ry (WO).

In other words, a state W° ¢ HO° (RQ) is said to be controllable to a tar-

get state W1 ¢ HO (]R2) in a given time 7" > 0 if there exists a control u €
L*>(0,T) such that there exists a unique solution W to system (3.1), (3.2) and
W((pp, O T) =W

Definition 3.3. A state W° € H° (]RQ) is said to be approximately control-
lable to a target state W1 € H° (R?) in a given time T > 0 if WT € Ry (W),
where the closure is considered in the space H° (]RQ).
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In other words, a state W9 ¢ HO (RZ) is approximately controllable to a
target state W7 ¢ HY (R2) in a given time T > 0 if for each € > 0, there exists
a control u. € L*°(0,T) such that there exists a unique solution W, to system
(3.1), (3.2) with u = u. and |[We(()p, O, T) = WT° < e.

Using the Poisson integral (see, e.g., [41]), we obtain the unique solution to
system (3.1), (3.2)

Wz, t) = Wo(z,t) + Wy(z,t), = eR? tel0,T], (3.4)
where
1 x|?
Wo(z, t) = Tte—% « WO(2), z €R2 te0,T], (3.5)
T
1 [t1 _e=? 5
Wy (2, 1) = —/ L oSeut—ode,  zeRteT.  (3.6)
T Jo 2

Set Uk = {v e L>(0,T) | |vllz=(,r) < L} for L >0 and T > 0.
According to (3.4), we have

Ry (WO) :{WT € H° (R?) ‘ Jue L=20,T) WT =Wo(-,T) + Wu(-,T)} . (3.7)
in particular,
Ry (0) = {WT e H° (R?) ‘ Ju e L®(0,T) WT = Wu(-,T)} . (3.8)
Denote also
RE(WO) = {WT € H (R?) ’Eiu c UL WT =Wo(,T) + Wu(-,T)} (3.9
RE(0) = {WT € H (R?) ‘Elu cUL wT = Wu(.,T)} . (3.10)
We obtain the following properties of a solution to system (3.1), (3.2)
Theorem 3.4. Let u € L=(0,T), W° € H (R?). Then,
(i) Wo(t) € H'(R?), t € [0, T};
(i) Wo(-,t) € C®(R?), t € (0,T7;
(iii) if W9 € 3, then Wo(-,t) € 3, t € [0,T7;
(iv) Wl t) € 3 and [Wu (- 6)]° < Z(t+ Dlullz~or). t € [0,7].

The proof of the theorem is given in Section 6.
With regard to Theorem 3.4, we get the following properties of the sets Ry (g)
and RE(g).

Theorem 3.5. Let T >0, g € HO (RQ). We have

(i) Rr(0) = [ J REO0) c 7;
L>0
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(i) RE0) c RE(0), 0< L < L';
(iii) f € RL(0) & Lf € RE(0), L > 0;

1 [12

() f € Rbl) & (£ = e g) € REO), L >0

V) feRn(g) o <f _ ﬁe*% *g) € R (0).

Consider also the sets
Ry = URy(0) and RE = WR%(0), (3.11)

where Theorem 3.4 (iv) is taken into account. Put Y, (+,t) = W, (-,t), t € [0,T].
Then, we have

Yulr,t) = —% /Ot 21§e42u(t —&)d¢, reR,. (3.12)

With regard to (3.8) and (3.10), we obtain
Ry ={Y € L*(Ry) | ue L>(0,T) Y =Y,(,7T)}, (3.13)
Ry ={Y €L’ Ry) | ueUi Y =Y,(T)}. (3.14)

Since ¥ is an isomorphism of 3 and L?(R) (see Proposition 2.1 (i)), we have
Ry = URp(0) and RE = WRL(0). (3.15)

Properties of the sets Ry, Rr, R:%, and R7% are studied in Section 4. By
using these properties, we obtain the main results of the paper.

3.1. Controllability under controls bounded by a hard constant.
Let us find conditions under which an initial state W9 € HO (]R2) is controllable

to a target state W7 ¢ HO (Rz) in a given time T > 0.
First, consider necessary conditions for f € RE(0).

Theorem 3.6. Let L >0 and T > 0. If f € RE(0), then f € H and we have
L _=? AT
The proof of the theorem is given in Section 6.

Theorem 3.7. Let L >0 and T > 0. Let also f € RE(0), F =7 f and G =
WF. Then G can be extended to an entire function Ge of order < 1 and type <
T. Moreover, F' can be also extended to an entire function F, and

Fu.(s) = Ge(s] +53), s=(s1,s1)€C? (3.17)
and F, is of order < 2 and type < T'. In addition,

T|s|> _
Fu(s)] < |Gl + 3)| < f;e|8|21 seC2. (3.18)
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The proof of the theorem is given in Section 6.

According to Example 4.3 below, condition (3.16) is only necessary for f €
RL(0), but it is not sufficient. However, if f satisfies (3.16), its Fourier transform
can be extended to an entire function of order < 2 and type < T (cf. Theorem
3.7).

Theorem 3.8. Let L > 0, T > 0, f € H, and condition (3.16) hold for f.
Let also ' = % f and G = WF. Then G can be extended to an entire function
Ge of order < 1 and type < T. Moreover, F' can be also extended to an entire
function F,, the extension F, is given by (3.17), and F. is of order < 2 and type
<T.

The proof of the theorem is given in Section 6.

Thus, condition (3.16) is not sufficient for f € RL(0), but it guarantees the
necessary condition from Theorem 3.7 holds for .Z f.

Now, we consider a necessary and sufficient condition for controllability in a
given time T > 0 under controls bounded by a hard constant. Denote

W =wT —Wy(.,T). (3.19)

Theorem 3.9. Let L > 0, T > 0, W% € H° (R?), WT € H (R?). Let also
W € H, condition (3.16) hold for W{', and

/ / nWO X1, xg) dxrq d(L‘Q, n e No. (3.20)
Then WT € ZR% (WO) iff
T
Ju € Uk Vn € Ny / " u(T — €) dE = wy. (3.21)
0

The proof of the theorem is given in Section 6.
Taking into account Definition 3.2, we get

Corollary 3.10. Let L >0, T > 0, W° € H (R?), W” € H° (R?). Let also
W' € K, condition (3.16) hold for W', and {w,}22, be determined by (3.20).
Then the state W° € HO (R2) is controllable to the target state W' € HO (R2)
in a given time T > 0 iff (3.21) holds.

Now, we consider a sufficient condition for approximate controllability in a
given time 7" > 0 under controls bounded by a hard constant.

Theorem 3.11. Let L >0, T > 0, W° € H° (R?), WT e HO (R?), W] e
H, and condition (3.16) hold for W . Let {wn}22, be defined by (3.20). If for
each N € N there exists uny € U% such that

T
/ Pun(T — )dE = wn, 1 =0, N, (3.22)
0

then WT € RE (W0), where the closure is considered in HO (R?).



34 Larissa Fardigola and Kateryna Khalina

The proof of the theorem is given in Section 6.
Taking into account Definition 3.3, we get

Corollary 3.12. Let L > 0, T > 0, W9 ¢ HO (Rz), wT e HO (RQ), wi e
H, and condition (3.16) hold for W . Let {wn}22, be defined by (3.20). If for
each N € N there exists uy € Uk such that (3.22) holds, then the state W° €
HO° (RQ) is approzimately controllable to the target state W1 € HO (RQ) in a
given time T > 0.

We can see that the controllability problems were reduced to the Markov
power moment problems in Theorems 3.9 and 3.11. These Markov power moment
problems may be solved by using the algorithms given in [25,28]. Similar results
were obtained for controllability problems for the heat equation on a half-axis
[15,16] and on a half-plane [17]. However, the description of the set R% (W?) is
given in principally different way in the present paper (see Theorems 3.6, 3.7, 3.8).
As a result, the necessary condition (3.16) essentially differs from the necessary
conditions obtained in the mentioned papers: it is given in the form of an estimate
for a function belonging to TR% (WO) in contrast to the conditions in the form of
estimates for integrals with special weights of a such function in [15-17]. In
addition, as a consequence of the different necessary condition (3.16), the proofs
of Theorems 3.9 and 3.11 also differ from their analogues in the mentioned papers.

3.2. Approximate controllability. Consider the problem of approximate
controllability for system (3.1), (3.2) under controls from L*°(0,7") unlike Sub-
section 3.1, where we consider this system under controls bounded by a hard
constant. We have the following main theorem.

Theorem 3.13. Let T > 0. We have Rp(0) = H.
The proof of the theorem is given in Section 6. This theorem yields
Theorem 3.14. Let T > 0. A state W° € H° (RQ) s approximately control-

lable to a state WL € HO (]R2) in a given time T iff Wi € 3.

3.3. Lack of controllability to the origin. For W° ¢ HO (RQ) and W' ¢
HO (R?) we have WT € Rp(WY) iff W' € H according to Theorem 3.14. How-

ever, 0 ¢ Rp (Wo) for all nonzero WO € HY (R2), i.e. the following theorem
holds.

Theorem 3.15. If a state W° € HO (]RQ) is controllable to the state WT =
0 in a given time T > 0, then W° = 0.

The proof of the theorem is given in Section 6.
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4. Properties of the sets Ry and R%

First, consider necessary conditions for g € R%.

Theorem 4.1. LetT >0, L >0 and g € R%. Then

)

ey
In (1+%)

)

e4T g

n (1 + %> Lo°(Ry)

@

e L®(R,). (4.1)

In addition, we have

L
< —.
- 27

Proof. According to (3.14), there exists u € Uk such that

T
g(r)z—l/0 62; w(T —€)d¢, reR,.

Setting y = r/(4¢) and taking into account [26, 5.1.1, 5.1.20], we get

L [* ¥ L T L r 4T
<= ¢ dy=—"F (7)<77*1 1+=), r>o0,
lg(r)l = 2T /r/(4T) Y y 2 ! AT ) — 271'6 o n< + r ) "

where E1(§) = f;o (e7t/t) dt, & € R. Therefore, (4.1) holds and the estimate for
the norm is true. ]

We need the following formula
¢ <e_°‘(')) = ie_%, aeRy. (4.2)

To prove it, set a € Ry and ¢(r) = e™", r € R;. Expanding the Bessel function
into the power series, we get

L[> —ar 1 — (_1)mpm * m_,—ar
((I)q)(p)zz/o (& JO(W)dT:QZWA re d’l”, p€R+

m=0

Since

/ re” " dr = (=)™ (di) / e Y dr
0 0

m{ d\"1 m!

we get,

i.e. (4.2) holds.
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Theorem 4.2. LetT >0, L >0, g € R%, and G = ®g. Then G can be
extended to an entire function G, of order <1 and type < T and

LeTlzl -1
<z -

1Ge(2)] , zeC. (4.4)

LNEL

Proof. Since g € Rk, there is u € Uk such that g = Y,(-,T) according to
(3.14). With regard to (4.2), we get

1 T
Go) = | e our-gde, pery.
0
Hence G can be extended to the entire function G, by the formula
1 T
Ge(z) = _7r/ e (T — &) de, zeC. (4.5)
0
Evidently,
L (T LeTlel -1
1Ge(2)] < / felge =25 ""  ,ec.
™ Jo 0 |2|
The theorem is proved. O

Example 4.3. Let T > 0 and

(r) = 2 = >0
g(r) = 7rTe , r=0.

Let us verify condition (4.1) for g. Put v(¢) = 2In(1 +1/€) —e™¢, € > 0. Then
V(€)= —2/(E+ &) +e € €>0. Since £+ €2 <2426+ €2 < 25, € >0, we
have v/(§) < 0, & > 0, i.e. v decreases on (0,400). We have v(§) = +o00 as £ —
0" and v(§) — 0 as & — +o0. Therefore, v(§) > 0, £ > 0, i.e.

65§2ln(1+2>, £>0.
Setting £ = r/(47T) and applying this estimate to g, we get
4 r 4T
lg(r)| < W—Te_ﬁ In <1 + 7") , r>0.

Therefore, condition (4.1) holds for g.
Let us try to find u € U{# such that

T
g(r) =Yu(z,T) = —1/0 2156_45U(T —&)ds, reRy.

™

Applying the operator ¢, we get

™

_2 2 _ (@9)(p) = _% /0 ' e SPu(T — €) de
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= —\| 2(FUr)(—ip), peRy, (4.6)

where
U(T—é_), 56 [O7T]a

Ur() = {o, £eR\[0,T].

Due to the Paley—Wiener theorem, .#Ur can be extended to an entire function.
Replacing p by ¢u, we obtain

\/Ze—iw — (FUr) (), neC. (47)

Therefore, Ur(&) = 26(§ —T'/2) is the unique solution to equation (4.7). Hence
u(§) = 20(¢ — T/2) is the unique solution to equation (4.6). But this function
u does not belong to L>(0,T). Therefore, g ¢ RE for any T > 0 and L > 0
although condition (4.1) holds for it.

Thus, condition (4.1) is only necessary for g € R%, but it is not sufficient.
However, if g satisfies (4.1), &g can be extended to an entire function of order <
1 and type < T (cf. Theorem 4.2).

Theorem 4.4. Let T >0, g € L*(R,), G = ®g, and condition (4.1) hold for
g. Then G can be extended to an entire function G, of order <1 and type <T.

Proof. According to Proposition 2.2 (ii), we have

N

-
Gp) = (®9)(p) = 5 Jim_ i g(r)Jo(y/rp) dr, p€Ry. (4.8)
Setting M = ’ ot /ln <1 + g) H we obtain from (4.1) that
g g Ol oo ry )’ .
_ AT e T
lg(r)] < Me™3T In <1+> §2\/2TM7, reRy, (4.9)
r r

where the estimate
In(1+3%) <V2y, yeRy, (4.10)

obtained from the obvious estimate
1+ <1+V2y+12<eV®, yeR,,
has been also used. It follows from (4.9) that

1

Ge(z) = B /000 g(r)Jo(v/rz)dr, z€C, (4.11)

is an entire function because Jy is an entire function. Due to (4.8), we have

Ge(r) = G(r), reER,. (4.12)
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Taking into account (4.9), we get

e <><@M/ [ m\ dr_2\/ﬁM/ o(uv/3)|e=r dy

f
/ e Y
< 2v2TM Z ' 222771 / meQ_ﬁ dy, S (C (413)
(m!) 0

Let us calculate the last integral. We have

OOmeade:_lm dm/oo 7ay2d:(_1)m im E
/0 v y=(1) <da 0 ¢ Y 2 do o

V7 (2m — 1)
= 7W7 O[eR+, meNO, (414)

where we set (—1)!! = 1. Setting a = 1/(47) and continuing (4.13), we obtain

Ie ()|<2\/7TMZ (AT)™|z|™ (2m — 1)!!

ml22m (2m)!!

< 2V2rTM Z g worme™, 2 ec.
m=0

Thus, G, is an entire function of order < 1 and type < T, and condition (4.12)
holds for it. ]

Thus, condition (4.1) is not sufficient for ¢ € RL, but it guarantees the
necessary condition from Theorem 4.2 holds for ®g.

Theorem 4.5. Let L >0, T > 0, g € L*(R,), and condition (4.1) hold for
g. Let also

™ R
= 22Mn'/o Fg(r)dr, n €N, (4.15)
Then g € R% iff
T
Ju € UL ¥n e Ny / (T — €) dE = . (4.16)
0

Proof. Due to (3.14), we have
geRE & BueUf g=Y.(.1)). (4.17)

Put G = ®g, G, (-,T) = ®Y,(-,T). According to Theorem 4.2, G can be extended
to an entire function G.. Taking into account (4.11), we obtain

Gulz) = /0 " g (V) dr

oo
'Yn
52 o 22%/ g ﬁz 2 zeC. (418)

n=0

— N
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Taking into account (3.12) and (4.2), we get

T
(BYu( T))(2) = - /0 e Eu(T - £)dt

s
1 > (_1)nzn T n
__ﬂggnjlggu@—gmg z eC. (4.19)
It follows from (4.17)—(4.19) that g € R iff (4.16) holds. O

Theorem 4.6. Let L > 0, T > 0, g € L?>(R,), condition (4.1) hold for g,
and {7, }52 be defined by (4.15). If for each N € N there exists uy € UL such
that

T
| g =9de =5, n=0F, (4:20)

then g € Riin, where the closure is considered in L*(R).

Proof. Let N € N. Set gn = Yu,y (-, 1), G = &g, and Gy = Pgn. According
to Theorem 4.4, we have G can be extended to an entire function G, of order <
1 and type < T'. In addition, (4.18) holds for it. Setting

T
W= [ eun - i nem. (121)
0
and taking into account (4.19), we get
1 T
Gn(z) =~ / e uy (T — ) dg
T Jo
1 (=1 Y
:—fE:Q—%llyz z€C. (4.22)
et ol

It follows from (4.18), (4.20), and (4.22) that

Ge(2) —Gn(z) = 1 Z (—nll)" (Y — 'yflv)z", z e C. (4.23)
n=N+1

Let € > 0 be fixed. Then there exists A. > 0 such that

[ 166) - Gxipdp < 22 (4.20)
With regard to (4.23), we get
1 &1 Nl n
o)~ Cr < = Y - ad[A pe (0.4l (4.25)
n=N+1

Now, let us estimate 7, and 2. It follows from (4.1) that

r 4T
lg(r)| < Me™aT In (1 + ) , reRy,
T
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for some M > 0. Taking into account (4.10) and (4.15), we get

M?T o0 _ T 4T
"}/n| < W/O re” 4T In <1+7"> dr

< V2I'Mm > —p dr_ V2TMm
D 2T T I A W/ T o

Taking into account (4.14), we obtain

Mn3/% (2n — 1)

[l < 92n+1/2 (2n)!! (4T)n+1 < M(QW)S/QTnH n € No.

It follows from (4.21) that

n+1
m\q/ grdc=1—, neN.

According to (4.26) and (4.27), we get

A (M(27r)3/2 - ni

n 1) T < 7CT™, neNp,

where C' = T'(M(27)*/? + L/(n +1)). With regard to (4.25), we have

0 N n
G —axpl <0 3 _¢ <eTAa s (Tzl‘))

n=N+1 n=0
C TA: (TA )N+1
(N+1)17

because
oY — yn IM
(N + 1)

n!
n=0

N e N,

according to the Taylor formula. Therefore,

A, 1/2
(/0 |G<p>—GN<p>|2dp) < oy/mera LA N+1

Taking into account (4.24), we conclude that

N+1

) N—oo

19 = 9nllr2@,) = IG = GNll2@,) = O

N—o0

Therefore, g € Riiﬁ

Put

en(p) = pnepr’ peRy, n € No,

00 2
/ e i dr, n e N.
0

(4.26)

(4.27)

€ (0, Ac],

(4.28)
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l . ep/l 1 n+1
on(p)=ple P | —— , peR,, n € N, leN. (4.29)

First we consider the system {y,}72 . It is well-known that it is complete in
L*(Ry).

The following lemma describes the relation between the systems {p,, }°° , and
{‘1051 n=o> L € N.

Lemma 4.7. Let n € Ny and l > (n+1)/T. Then

H‘Pn (P"HL2(]R+) < ont5/2] T—(n+t 1)/[)”+3/2 ljoo 0 (4.30)
Proof. Let | > ”TH, n € Ny. Since
1+ =1 < (n+ Dy(1+y)", y ERy,
1
65—1—€§§€265 and ef —1 < &ef, e Ry,
we have
n+1
eP/t — 1 T
en(p) — en(p)| = —1|ple?
jont bt = ( (27
erlt —1\" [erl —1
<(n+1 —1 | pre TP
(n+1) ( P/l ) ( p/l
1
< %anrlef(Tf(nJrl)/l)p’ pER,.
Therefore,
00 1/2
! n+1 2(n+1) —2(T—(n+1)/1
HSOn - @nHL2(R+) < 91 (/0 pPr e 2=t /e gy
n+1 (2n +2)!
— on+5/2] (T _ (n + 1)/l)n+3/2 l—_>>oo 0, n & No,
that was to be proved. ]

Theorem 4.8. Let T > 0. We have Ry = L*(R.).

To prove the theorem, we need to construct controls {u,}>> from L0, T
such that
Yu (T) — g in L*(Ry) (4.31)
—00

n

for a given g € L2(R,).
To this aid, we need an appropriate basis in L?(R,). Consider the Laguerre
polynomials [26, pp. 773-775, 22.1.1, 22.1.2, 22.2.13]:

k=0

L,(z)=
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It is well-known that the system {e, }>°, is an orthonormal basis in L?(R ) where
en(z) = Ly(z)e /% x € R,. Put

1 -
wn(r) = \/?Ln (%) C_ﬁ, re R+, n c NO, (433)
Un(p) = (—1)"V2T L, (2T p)e "7, peR,, n € Ny. (4.34)

Evidently, each of the systems {1}, and {Q/Jn} ° o is an orthonormal basis in
L?*(R4). In addition, we have

72}\71 = ®9Y,, n € Ny. (4.35)

Let us prove this formula. Let n € Ng. With regard to Theorem 2.2 (ii) and
(4.3), we obtain

1 o0 T _r
(q)wn) (p) = W/ JO(\/TP)LN (ﬁ) e ar dr
l)k e (_1)mpm o0 mik
2\/ﬁz< > k(2T)F Z (mh2z22m J, " Temar dr

0
_ \/ﬁz< > 1)k2k i (=)™(Tp)™ (m + k)! pER,. (4.36)

Due to (4.32), we have for the series with £ = T'p that

=) k), (A ()",
me.g (czfé“)z()m!£+k

m=0

dg

Taking this into account and continuing (4.36), we obtain

k
:<d>(&aq:mmgpf,geR

(1) (p) = V2T Z( > Yok L (Tp)e™ TP, peR,.

By using multiple argument formula (see [26, p. 785, 22.12.7]):

n

Lol = 3 ()i =i M a9), we, sk

k=0
with g =2 and £ = T'p, we get (4.34).

Proof of Theorem 4.8. Let g € L*(R;). Put G = ®g. Hence, G € L*(R,).
Set gn = (9, ¥n) 12, ), 7 € No. We have

)
g = Z nn
n=0
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and

o0 o0
G:Zgn¢n:GN+ Z InVn,
n=0 n=N-+1
where N € N and

N o~
N = Zgnwn
n=0
Then
oo 1/2
16 =G o,y = ( > Ign|2> VL0 (4.37)

n=N+1
With regard to (4.34), we get

S S (MY EDE ke (CDE ey
V2T " ga(=1)"D (2T)* o, = V2T (21)"dy; o,
n=0

k) k! k!
k=0 k=0
where
N n
dy = —1)"g,, k=0,N. 4.38
; <k)< g (4.38)
Put
\/2T dlN o, 1eN. (4.39)

Taking into account Lemma 4.7, we conclude that for [ > (N +1)/T, we have

= (2 )k
HGN—GfVHLz( < r ‘de‘ng_go’“HLQ(RJr)

\F NoThRk+2) k41
< 1=
= 4] Z —(k+1 /l)k+3/2 k! ‘dk ‘ ljoo 0. (4.40)

Let gi¥ = ®71GN. We have

lg =i HL2 (Ry) — HG_GlNHm(Rg

<|[|G =G| o,y G —GF (4.41)

2. -

With regard to (4.37) and (4.40), we conclude that for all € > 0, we can choose
appropriate N € N and [ > (N + 1)/T such that

lg - gljv“LQ(R+) <é& (4.42)

Let us prove that glN € Rr. Put

_1\n—j (n\n+1 j j+1 s
um):{é G EZEO?’:L})’J‘O’”, LeN, meNy (443
) T
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Note that u}' 2 (—=1)"6™ in H-'(R) for each n € Ny. Taking into account
—00
(4.19) and (4.43), it is easy to obtain @Y,z (-, T) = —1¢!. Due to (4.39), we have

N o \k
o = —vae Y Corpady (1) (1), ()
k=0 )
where
S G ) PR
WY () = —vV2Tr ) o D) g w(€), € € Ry (4.45)
k=0 '

In addition, due to (4.37), (4.40), and (4.41), we obtain

- 1/2
< 2
my) S ( > ol )

n=N+1

lg - glNHLQ(RJr) = Hg - yu;V(',T)‘

+@N TF 2k +2)  k+1
T—(k+ 1)/)32 Kl

N+1
|y :

, NeN, > (4.46)

4l

Evidently, WY € L°°(0,T). Thus, with regard to (3.8) and (4.44), we can see that
g € Ry. Since we have considered an arbitrary ¢ > 0 in (4.42), we conclude
that g € Rr. O

5. Example

In this section, we give an example illustrating Theorem 3.14.

Example 5.1. Let

Consider the problem of approximate controllability for system (3.1), (3.2) with
WO =w® and W7 = w”.

We have W0 € HO (RQ) and W1 € HO (Rg). Moreover, W° € 3 and W ¢
H. With regard to (3.5) and (3.19), it is easy to see that

Wo(z,T) = 36_% + ie_% x € R?
R T 14 ’ ’
T 3 = 2
Wy (%T):—TO@_ITTa z € R?.

Evidently, Wg e H.

According to Theorem 3.14, the initial state W9 is approximately controllable
to the target state W7 in the given time 7. Note that condition (3.16) does not
hold for W{.
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To construct controls solving the approximate controllability problem for con-
trol system (3.1), (3.2), we use the method given in the proof of Theorem 4.8.
Put g = YW{. Then

With regard to (4.3), we get

n (_1)k o ko Ir
n = <9,"¢n>L2(R+) = _10\/ﬁ f k:!(QT)k ; r®e 20T dr
7

Therefore,
o0 1/2 o0 3\ 2042 1/2
2 — —
(Z |gn|> —m( > (3) )
n=N-+1 n=N-+1

3\ N+2 1 1/2 3\/? 3\ N+l
o7 (2 SENLIN . Y NeN (5.1
(7) <1—9/49> 2V 5 (7)  NeN G

Due to (4.38), we have

e IO

n=~k

0,N.

It follows from (4.45) that

_ 2T7TZZ ( ) (3>n+1 (_kll)k@T)kuf. (5.2)

k=0n=~k

Taking into account (4.46) and (5.1), we obain

3 /T /3 N+1
o= - Dllse < 3y 5 (3)

N n+1
T T+ /OE+2) k41 N+1
t2! kA §(Z)(3>  NEN, I> ;

2\@l k:o k: 41 /Z)k+3/2 k! 7

Mz

n=~k
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a31: """"" T A
T byd - —
o o
| : | \
1 ! 1
N -
VRN he— | t
a40-————:—————:—————\_| T P A S S—
I | 0 1r 2 3, 4, 35
: : 60 : 60 : 601 60 60
| 1 ! ! : :
| | ! ! | |
: : b4q>——--:-———:————|_l
A ¢ — — — — ] by & - - - b
(a)N:3,l:20, (b)N=4,l=60,
a1 ~ 4171487.587754723, b1 & 12268766670.45946,
az ~ —11985246.36814925, by &~ —48230066041.31739,
as ~ 11476859.47814512, bs =~ 71097757825.27233,
aq ~ —3662827.493025041. by &~ —46580177228.79937,

bs ~ 11443719610.35109.

Fig. 5.1: The controls U defined by (5.2).

Fig. 5.2: The influence of the controls U}¥ on the difference W7 — <W0(-, T) + Wy (- T))
with T = 3.

We have WulN(',T) = \Il_l‘aulzv(-,T) and W = U~lg. Taking into account
Proposition 2.1 (iv), we get

W7 = (Wo(, T) + Wy (D) || = IW5 = Wy (- T)I°

N +1
T

- \/7_1'”9 B 1du{\]('?CT)||LQ(]R+)7 NeN, [>

The plots of the controls U{V are given in Fig. 5.1 for T'= 3 with the cases of
N =3,1=20and N =4, =60. Figs. 5.2 and 5.3 describe the influence of the

control UY¥ on the difference W7 — (WO(-, T)+ Wu{\r(-, T)) with 7' = 3.
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0.01 0.01

1 — —
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R AVAON R A g

-0.01 -0.01
-0.015 -0.015
-0.02 -0.02
0 2 4 6 8 10 12 14 16 -15 -10 -5 0 5 10 15
x1 x2
(a) 1) N =3,1=120;2) N =4, =60. (b) 1) N =3,1=20;2) N =4, | = 60.

Fig. 5.3: The influence of the controls U} on the difference W7 — (Wo(-, T) + Wy (- T))

with T'= 3 (vertical section for x5 = 0 and horizontal section for z; = 0).

6. Proofs of theorems and auxiliary statements

Proof of Theorem 3.4. We prove the theorem using similar reasoning to those
of the corresponding theorem in [17]. Put VO = FWY Vo(-,t) = FusoWo (-, 1),
V(s t) = Fusse Wa (-, t), t € [0, T]. Evidently,

Vo(o,t) = e 1PV 0(a), o eR? telo,T) (6.1)
1 t
V(o 1) = —/ €7yt — €) de, o eR2, te0,T]. (6.2)
™ Jo
Hence,
[Wo (- D)II° = Vol D)llo < [VOllo = IWP°I°, ¢ €[0,T]. (6.3)

Thus, (i) is proved.
Let a = (o, a2) € N3. Then

1+ |o (1+]el)/2
a 0 _ o\« . t
Wl 0 = [ vt < ()

. (11 ]a))/2
§6t< HO") W10, e (0,T). (6.4)

V-1

2te

Here we have used the following estimates:

1+l —2tjof? [VO(o)[?
1+ of?’
§meﬁ5§<7ﬁn> : meN, B>0, £>0,
[
Vo1 < [VOlo = WO °.

001052V (0,8)]> < (1 + |o]?) oceR? tel0,T]

Thus, (ii) is proved.
Suppose W0 € H. Since Wy(-,t) = .Z,; L, Vo(-,t), with regard to (6.1), we get
Wo(-,t) € H, t € [0,T]. Thus, (iii) holds.
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It remains to prove (iv). Put

t
g(r,t) :/ e & u(t — €)de, >0, tel0,T)
0
Taking into account, that

_ —tr2
L—e ™ _2(t+1)

2 S I r>0,1t>0,
we obtain
i
901 < im0 -5 < [l 222, 750, 4> 0.
Hence,
5 00 1/2
901 = 190l =2 ([l rar

14172

2 © ordr \'* 2
< -+ Do (/ ()2) = e+ Dl t€ 0.7

This completes the proof. ]

Lemma 6.1. Let W° € H° (R?), t € [0,T]. Let W be a solution to (3.1),
(3.2). Then (3.3) holds.

Proof. We have from (3.4)

0 0 n 0 n
Oy W( (')[2]7t) = aileO(O ’ (')[Q]at) + TMW“(O ’ (')[Q]at)7 te (Oa T] (65)
According to Theorem 3.4 (ii), %Wo( -, t) is continuous on R? for each t € (0, T].
Moreover, %Wo(-, t) is odd with respect to x1, t € [0,7]. Hence,

0

5o Wo0F, (i) =0, tE (0.7, (6.6)

For 895 W (07, (1)), 1), t € (0,T] we have

2 o) 2
iV\?u(a:,t) = :El/ yenyU t— ﬂ dy, ze€R? te (0,T7.
oy 7 |x)? Jzl

t

Let ¢ € H'(R), ¥ € D(R;), and o > 0. With regard to Definition 2.3, we
consider (2.4) for f = %Wu(-,t), t € (0,T], changing additionally the variable
x; to the new variable ax; in the integral with respect to z;, j = 1,2. We have
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2 2
I oorx\2/ i (’““ 4562’)dyﬂ%)dww(mdmb

€(0,7). (6.7)

L, olz|2 - 1
! <t - 4‘ 2| )‘dy < HUHLOO(O,T)/ ye ¥ dy = Sllull e o.r)
Y 0 2

/Oo /OO |p(ew2)| doy [1h(21)| dos

oo |22
<sup]<p ]/ x1\¢x1|/

= 7 sup |e(p |/ P(x1)| dry < 00,
peR

we can apply Lebesgue’s dominated convergence theorem to (6.7) as o — 07

<<£1wu<<~>m, OO v (C2) >m
B [ [ ot

ut)o(0) [ o) [ e = u(0o(0) [ (e

1
T
< 5[2] QO>[2] )1/}>[ 1] , te (OvT]>

821W ( (-)m,t) = u(t)5[2], t e (O,T]. (6.8)

With regard to (6.5), (6.6), and (6.8), we conclude that (3.3) holds. O

Proof of Theorem 3.6. According to Theorem 3.4 (iv), we have f € H. There-
fore, F = .# f € H (see Theorem 2.1 (vi)). Set g = Uf and G = VF. It follows
from Theorem 4.1 and (3.11) that Theorem 3.6 is true. O

Proof of Theorem 3.7. According to Theorem 3.4 (iv), we have f € H (see
Theorem 2.1 (vi)). Therefore, F = .7 f € H. Set g = ¥ f and G = VF. It follows
from Theorem 4.2 and (3.11) that Theorem 3.7 is true. O

Proof of Theorem 3.8. Set ¢ = Wf and G = WF. It follows from Theorem
4.4 that Theorem 3.8 is true. O
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Proof of Theorem 3.9. Set g = WW{. Let us prove that for {w,}3, defined
by (3.20) and {y,}22 defined by (4.15), we have

Wn = Yn, n € Ny. (6.9)

Let n € Np. Setting x1 = \/rcos¢ and x2 = /rsing, r € Ry, ¢ € [0,27), we

have
1 n' / / ) 1 n! /2“ ) o0
= mpwd( da:—— — cos"¢d¢>/
R2 0 4 (2n)! 0

Since

1 0s? _2n—1 [ dy
- n b d _ vy
4A vdo = /‘ o m ) T

2n—1)”/°° dy _w(@n-DI (2n)!
el Jo 1+42 2 (@)l 2enti(ph)2’

we have

“n 7T22n+1(n!)2 @n)! J, rg(r)dr Pt inl J, r"g(r) dr = yp,

i.e. (6.9) holds. It follows from Theorems 4.5 and 3.5 (iv), (3.11), and (6.9) that
Theorem 3.9 is true. O

Proof of Theorem 3.11. Set g = YW{. For {w,}22, defined by (3.20) and
{m}22, defined by (4.15), it follows from Theorems 3.5 (iv) and 4.6, (3.11),
(3.15), and (6.9) that Theorem 3.11 is true. O

Proof of Theorem 3.13. It follows from Theorems 2.1 (i) and 4.8, (3.11), (3.15)
that Theorem 3.13 is true. U

Prof of Theorem 3.15. Let a state W° € H® (RQ) be controllable to the state
WT = 0. Then there exists a control u € L>(0,T) such that there exists a unique
solution W to system (3.1), (3.2) under this control and W (-,T") = 0. It follows
from (3.4) that

(FWO)(0) = 1 /OT flolu(e) de, o e R

™

Evidently, ZW° € 3. Setting G = W.Z WY, we obtain

1 T
Glo) =+ [ ruleyas, pere. (6.10)
0
Let T* > T. Put
V5 (p) = (—1)"V2T*L,(2T*p)e” TP, pe Ry, n € Ny, (6.11)

an = (G, ¥p) 12(R,) n € Ny, (6.12)
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Bn(§) = %<ef<'>,z$:;>m+), ¢ e€0,7), n € No. (6.13)

Obviously, the system {1}}°% is an orthonormal basis in L2(R.) (cf. (4.34)).
Then, due to (6.10), we have

oo N o T .
S oy =) < | e d&) o
n=0 n=0 0
Hence,
/ Bn(§u(§) d = ay,  n € No. (6.14)

Let n € Ny be fixed. Taking into account (4.32), we get

e [0, 7). (6.15)

According to (6.14), we obtain

_VeT T +&\" u(€) Verx (B o eT =1\ eTdr
Qp /( >T* d¢€ = - /0 e u(T ),

— —¢ e"+1/) e +1

where g*fg =¢e", T =1In ?if? Set
N s . e’ er—1
o, = ﬁan, n e Ny, u*(r)= e (T eT+1) , T€[0,T].
Then,
T
/ e"Tut(T)dr = o), n € Np. (6.16)
0
With regard to (6.12), we get
T
‘Oé:;‘ < \/WHG”L2(R+)7 ne NU'

Therefore, for all § > 0, there exists Cs > 0 such that

lak| < Cse™,  n e N. (6.17)
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Obviously,

1/2
el omy) = (1* / )P df) " ( T*)m lilpmor - (618)
! 2T J, o :

Taking into account (6.16)—(6.18), we conclude that all assertions of [31, Theo-
rem 3.1, b)] hold. Thus, due to this theorem, o = 0, n € Ny. Hence, G = 0.
Therefore, W° = 0. O
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IIpobGyieMu KepoBaHOCTI AJis PiBHAHHS
TEeIJIONPOBITHOCTI Ha MHiBILIOIIMHI, KEPOBAHOTO
KpaiioBoio ymoBoio HoiimMmaHa 3 TOYKOBUM KepyBaHHAM

Larissa Fardigola and Kateryna Khalina

Y pobori mociimkeno npobiieMr KepOBAHOCTI Ta HAOJINKEHOI KEPOBAHO-
CcTi Jyist KEPOBAHOI CHCTEMH Wy = AW, Wy, (0, x2,t) = u(t)d(x2), x1 > 0, x2 €
R, t € (0,T), ne u € L*>(0,T) € kepyBantsam. JLjist 1IbOro JOCIiZKEHO MHO-
xuny Ry (0) C L2((0,4+00) x R) iT xinnesux cramnis, axi € gocsxuumu 3 0.
Yeranosieno, mo byukuia f € Rp(0) moxe 6yTu nogana y surisii f(x) =
g(]z]?) m.c. B (0,+00) x R, ne g € L*(0,+00). PaKTHIHO, MI 3BOIUMO 32~
nmaay mrs bynkmiit 3 L2((0,4+00) x R) 1o samadi mia dymxmiit 3 L2(0, +00).
Heobximmy i mocTaTHIO YMOBY KEPOBAHOCTI Ta, JOCTATHIO yMOBY HaOJIMKe-
HOI KEPOBAHOCTI 3a 3amanuii gac T 3a JOMOMOIOI KEPYBaHb U, OOMEXKEHUX
3aJaHOI0 CTaJIOI0, OJEP:KAHO B TEPMIHAX PO3B’SIBHOCTI CTEIeHeBOl mpobJre-
mu MoMmenTiB Mapkosa. 3acrocoByioun dhyukuil Jlareppa (ski yTBOPIOIOTH
opronopmosanmit 6azuc B L2(0, +00)), ogeprkano HeobxiaHi i mocTaTHi yMo-
BU HaAOJIMKEHOI KEPOBAHOCTI Ta YHCJIOBI PO3B’sI3KU MPOOJIEMHU HADIMKEHOT
kepoBanocTi. TakoxK HoKa3aHo, IO He iCHYE HEHYIHOBOTO MOYATKOBOI'O CTa~
Hy CHCTeMHU, sikuit OyB OM HyJib KepoBaHUM 3a 3amaHuil yac 1. PesyabraTu
POLTIOCTPOBAHO IPUKJIAIAMH.

KirrowoBi cjioBa: piBHAHHS TEILJIOMPOBIIHOCTI, KEPOBAHICTH, HAOIUKEHA
KEPOBaHICTD, ITiBILJIONIITHA,
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