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Three-Dimensional Almost Contact Metric
Manifolds with a New Approach
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We prove that starting by a global unit vector field on a three-dimensional
Riemannian manifold, one can construct an almost contact metric structure.
Furthermore, the knowledge of the nature of these structures is achieved
through a relationship linking the components of this vector field and the
components of the Levi-Civita connection. The illustrative examples are
given.
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1. Introduction

The geometrical objects, smooth functions, vector fields, 1-forms, and, in
general, tensors on any manifold have an important role in differential geometry,
especially in the construction of structures on manifolds.

The notion of almost contact structure was introduced by Boothby and
Wang [7]. These manifolds were studied as an odd-dimensional counterpart of al-
most complex manifolds and warped product are used to give examples of almost
contact metric manifolds.

In [12], D. Chinea and C. Gonzalez classified almost contact metric manifolds
studying the space that possesses the same symmetries as the covariant derivative
of the fundamental 2-form. This space is decomposed into twelve irreducible
components C1,...,C1o.

In dimension 3, the classes C; reduce to the following classes: Cy class of
cosymplectic manifolds, C5 class of S-Kenmotsu manifolds, Cg class of a-Sasakian
manifolds, Cy-manifolds and C7s-manifolds.

Many works have focused on three-dimensional almost contact metric struc-
tures, either by studying and classifying them or by employing them for studying
various geometric topics. For example, see [1,4,6,11,13,14,16,17,20]

Recently, in [4], the author presented an interesting expression that generalizes
the five classes of 3-dimensional almost contact metric structures and introduced
a general approach to classify invariant almost contact metric structures on 3-
dimensional Lie algebras.

Our aim in this manuscript is to construct all almost contact metric structures
on a 3-dimensional Riemannian manifold. We define an interesting method to
construct them starting from a unit vector field £. That is why £ is called the
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characteristic vector field or the structure vector field. By this approach, we
discuss the nature of 3-dimensional almost contact metric manifolds. Moreover,
these techniques made the classification simpler and more transparent.

First of all, we introduce the basic concepts that we need in this research with
new main results.

2. Almost contact metric manifold

An odd-dimensional Riemannian manifold (M?", g) is said to be an almost
contact metric manifold if on M there exists a (1, 1)-tensor field ¢, a vector field
¢ and a 1-form 7 such that

n§) =1,
0*(X) = =X +n(X)¢, (2.1)
g(pX,9Y) = g(X,Y) —n(X)n(Y)

for any vector fields X, Y on M.
In particular, in an almost contact metric manifold, we also have

pE=0 and mnop=0.
The fundamental 2-form ¢ is defined by
H(X,Y) = g(X, V).
The almost contact structure (¢, &, n) is said to be normal if and only if
NO(X,Y) = Ny(X,Y) +2dn(X,Y)E =0 (2.2)
for any X, Y on M, where N, denotes the Nijenhuis torsion of ¢ given by
No(X,Y) = @*[X, Y] + [pX, 0Y] = [pX, Y] — o[ X, pY]. (2.3)

In [14], the author proved that for an arbitrary 3-dimensional almost contact
metric manifold (M3, ¢, &, 7, g), we have

(Vxp)Y = g(oVxEY)E —n(Y)pVxE, :
do = (div€)n A ¢, (2.5)

dn=n A (Ven) + 5 (trg ()6 (2.6

Moreover, an almost contact metric 3-dimensional manifold M is normal if and
only if it satisfies the condition

Vox& = pVxE. (2.7)
The following equation is equivalent to (2.7),
Vxé = —apX — fg°X, (2.8)

where 2a = try(pVE) and 283 = divé.
It is well known that an almost contact metric 3-dimensional manifold is:
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(i) Cosymplectic if and only if dp = d¢ = 0 and NV = 0,

(ii) «-Sasaki if and only if dyn = a¢, d¢ =0 and NO =,

(iii) B-Kenmotsu if and only if dyp =0, d¢ =28 A ¢ and NV =0,
or, equivalently,

(1) Cosymplectic if and only if Vx& =0,

(2) «a-Sasaki if and only if Vx& = —apX,

(3) B-Kenmotsu if and only if Vx¢ = —B¢?X.

Recently, in [3,8], the authors studied the 3-dimensional Cya-structures. They
are integrable, non-normal (i.e., N, = 0 and N() # 0) and are characterized by

dn=nAw, d¢ =0, and N,=0,
where w = V¢n. This is equivalent to
Vx& =n(X)Vet. (2.9)

Moreover, in [4], it is proved that a 3-dimensional almost contact metric manifold
is of class Cy if and only if

dp=0, dp=0 NW£0, and N, #0.
These conditions are equivalent to

Vx€=¢Vex¢. (2.10)

We can see that a C9-manifold is only a proper almost cosymplectic manifold.

We know that in dimension three, there are structures that belong to the sum
of two or more classes (the structures in the intersection of two classes are only
the cosymplectic ones). We mention, for example, that trans-Sasakian structures
are in the class C5 @ Cg [16] and generalized Cjo-structures are in the class C5 @
Ci2 (see [2,10]). So, next, we introduce an expression to characterize all almost
contact metric structures, i.e., the class C5 @ Cg ® Co & C1a.

First of all, we establish a fundamental formula for an almost contact metric
structure with the covariant derivative of structure tensor .

Theorem 2.1. For a 3-dimensional almost contact metric structure
(p,€,m,9) on M, the covariant derivative of ¢ is given by

(Vxp)Y =2a(g(X,Y)E —n(Y)X) 4+ 28(g(pX,Y)E —n(Y)eX)
— (X)) ((Ven) (@Y )€ +n(Y)pVel)
—9(Vuox§,Y)E+n(Y)Vex€. (2.11)

Proof. Let (M, p,&,n,g) be a 3-dimensional almost contact metric manifold.
As proved in Lemma 6.1 of [5], for any almost contact metric structure one has

29((Vx@)Y, Z) = 3d¢(X, Y, pZ) — 3d¢(X, Y, Z)
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+g(NO(Y, 2),0X) + NO(Y, Z)n(X)
+ 2dn(eY, X)n(Z) — 2dn(eZ, X )n(Y). (2.12)
We have ( [5], p. 81),
NOY, Z) = (Loyn)(Z) — (Lozn) (V)
= oY (1(2)) = (Y, Z2]) = Z(n(Y)) +n([¢Z,Y])
= 2dn(pY, Z) — 2dn(¢Z,Y), (2.13)

where Lx denotes the Lie derivative with respect to the vector field X. Also, we
know that

Np(Y,Z) = (¢V 29 = Vyuzp)Y — (¢Vyp — Vuyp)Z.
Thus, using (2.4), we get

No(Y, Z) = =2dn(¢Y, 9Z)§ +0(Y) (V€ + ©Vpz8) —1(Z)(Vy €+ oVey§).
(2.14)
From (2.5) and (2.6), one can get
3do(X,Y,Z) =68(n A o) (X,Y, Z)
=26n(X)g(Y,0Z) 4+ 26n(Y)g(Z, o X) + 26n(Z)g(X, ¢Y) (2.15)
and
2dn(X,Y) =2(n A Ven + ag)(X,Y)
=n(X)g(Ve&, Y) = n(Y)g(Ve€, X) + 2ag9(X, ). (2.16)
The proof is direct, just replacing formulas (2.2), (2.5), (2.6) and (2.13)-(2.15) in
(2.12) with a long but simple computation, we get the formula
2(Vxe)Y =2a(g(X,Y)§ - n(Y)X) +28(9(¢X,Y)E — n(Y)pX)
—n(X)((Vem)(9Y )€ +n(Y)pVef)
+9(P(VxE+9Vex€), Y)E —n(Y)p(VxE + ¢Vex€).  (2.17)
Now, subtracting (2.4) from (2.17), we find our formula. O
In the following, we present a nice and simple equivalent condition to (2.11)
in term of V&.

Theorem 2.2. Any 3-dimensional almost contact metric structure (p,&,n, g)
on M satisfies the following formula:

Vx& = 200X — 280°X +n(X)Vel + pVx&. (2.18)
Proof. Let (M, ¢,&,n,g) be a 3-dimensional almost contact metric manifold.

Setting Y = ¢ in (2.11), we obtain

—pVx€ = 200°X = 280X — 1(X)pVe€ + Vox¢,
and hence

Vx& = 200X — 280°X +n(X)Vel + pVpxé. (2.19)
Conversely, by substituting (2.18) in (2.4), we get (2.11). This completes the
proof. O
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3. Construction of 3-dimensional almost contact metric mani-

folds

Almost contact metric structures in dimension three are quite special. In fact,
there are several key facts which make their handling easier.

To begin with, 2-forms and vector fields are in one-to-one correspondence.
In fact, let (M3, g) be a 3D oriented Riemannian manifold with volume form
and consider a differential 2-form ® on M. The Hodge star operator x acts on
® to produce the 1-form § = x®, and the g-equivalent (dual) vector field V' =
6% is well defined by g(V, X) = 6(X) for any vector field X on M. The reverse
assignation works in the same way: given a vector field V on M, consider its
g-dual 1-form 6 = V?. Apply the Hodge star operator to get x@ which is a 2-form
in a 3D manifold. Now, the interior contraction iy (which is defined by means of
(ivQ)(X,Y) = Q(V, X,Y) allows us to write it as x0 = iyyQ2 = ®. Thus we have
a one-to-one map between 2-forms and vector fields.

Based on these facts, our problem can be solved by taking £ =V, n =6, and
¢ = &, and knowing that ¢(X,Y) = ¢g(X,¢Y), the tensor ¢ can be obtained.
Thus, we have constructed an almost contact metric structure (¢, &,n,g) on M.

However, in this paper, we are aimed to present another way of constructing
an almost contact metric structure. It is simple and practical, based on linear
algebra and basic definitions of structural elements.

Let us first recall the following well-known standard topological result (see,
for example, [15, p. 149] or [18, pp. 11-30, 11-51])

Lemma 3.1. For a connected orientable manifold M™ the following assertions
are equivalent:
1) There is a non-vanishing vector field on M™.

2) M™ is either non-compact or compact and has the Euler number x(M™) = 0.

Now, let (M, g) be a 3-dimensional oriented Riemmannian manifold. For
every local orthonormal frame {e;}i1<i<3, we define a unit vector field £ by

3

=) Ee, (3.1)

=1

where ¢ € C®°(M) and Y?_ (¢9)? = 1. Consequently, the g-dual of ¢ is the
differential 1-form 7 given by

3
n=) &0 (3:2)
i=1

where {0%}1<i<3 is the dual coframe.

Note: we will use the convention of Einstein. (Whenever an index is re-
peated, it is a dummy index), i.e.,

£==¢%; and n=¢e.
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Now let us start looking for the ¢. We put

pe; = Z @fej, (3.3)
J

where gog are functions on M. Using relationships (2.1), i.e.,
g(eeiej) = —glei, wej) and  g(pei, pej) = g(ei, e5) — nlei)n(e;),
we get the system
{SOZ a SO] ] (34)
PiPj =0y — ¢,
By noting that ¢ and j are fixed, from this system one easily obtains
Pi=0, ¢fpl=1-(£)? and ¢fp]=—€¢ fori#].

For every i,j,k € {1,2,3} with i # j, ¢ # k, and j # k, the first two equations
above give the following:

(W) + (p)2 =1— (&)?
(P52 + ()2 =1 (¢)?
(@) + (o) =1 - (65

Subtracting the second equation from the first one, taking into account that gpg =
—¢j, we find

() = (¢5)? = (&)* = (£ (3:5)
From the third equation in the above system, we have
(e1)” = (@) = 1= (€5 = (&)
So, (3.5) becomes
20 =14+ (&) = (") = (€ =1+ () - (1-(&)) =2¢),
which gives
of = e, (3.6)

where € = £1. Notice that ¢ is completely defined with &.
Based on these facts, we give the following theorem:

Theorem 3.2 ([8]). Let (M3,g) be a 3-dimensional oriented Riemannian
manifold. If € is a global unit vector field written in the form & = &'e;, where
{ei}1<i<s is an orthonormal basis on M, then there exist almost contact metric
structures (p,&,n,9), where

0 _§3 62
Y =€ 53 0 _51 )
- ¢ 0

with ¢ = +1 and n being the g-dual of €.
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Proof. The necessity was observed above. For the sufficiency, it is easy to
check the conditions (2.1). O

Regarding this theorem, we can ask the following question: “Can 3-
dimensional almost contact metric manifolds be classified according to the com-
ponents of £7” This is what we are to study in the next section.

Note: Through the rest of this paper, (M, ¢,&,n, g) always denotes the 3-
dimensional almost contact metric manifolds defined above, where & = £%e; and
{ei}1<i<3 is an orthonormal basis with respect to g.

4. Classification of 3-dimensional almost contact metric mani-
folds

Based on the classification of D. Chinea and C. Gonzalez [12], the five ele-
mentary 3-dimensional almost contact metric structures are characterized by

Class | Condition

Co Ve, & =0.

Cs vezf = _BSOQQ
Cs Ve, & = —ape;.
C’9 velf = ‘Pvgaezf-
Ciz | Ve, =n(ei) Vel

Here, 200 = trg(pVE) and 28 = div€. First of all, we prepare
Vel = Ve,(e)) = i(§))ej + & Vere;.
Putting Ve; = ijek, where ij = g(Veiej, ek), we get
Vel = ei()ej + & Cliey.
With a change of indices, we obtain
Veik = (ei(€") + € C)ex (4.1)

It should be noticed that ij = —C’ijk and C’Zj] = 0. Consequently,

Vel = €V, 6 = & (ei(€F) + ECE ey (4.2)
200 = —g(Ve, &, pe;)

= —9<(€i(€k) +ECF)er, @é@) = —of (eil€") + E1CF). (4.3)

28 = g(Ve,l 1) = g((ei(ﬁk) +CE)er, ei) — e;(€) + L. (4.4)

Based on these facts, we obtain the following results.
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4.1. Cy-manifolds. This class is a class of cosymplectic manifolds. It is
characterized by the formula

Ve, & =0. (4.5)
Using (4.1), directly we get

Proposition 4.1. (M, ¢,£,n,9) is a cosymplectic manifold if and only if the
following system holds:

ei(F) +¢Cl =0. (4.6)

4.2. (Cs-manifolds. This class is also known as S-Kenmotsu manifolds. It
is characterized by the formula

Vel = —Bp%e:. (4.7)
Notice that by(3.4), we have
pei = p(per) = p(pier) = pivker = —igfe = (£€' = du)er (4.8)
Substituting (4.1) and (4.8) into (4.7), we find
(ei(€") + ECh)er = B0a — E'€er.
As a consequence, we have the following proposition.
Proposition 4.2. (M, p,£,n,9) is a B-Kenmotsu manifold if and only if
ei(6") = 0] + B0 — €'€") (4.9)
with B given in (4.4).

4.3. Cg-manifolds. This class is a class of a-Sasaki manifolds. It is charac-
terized by the formula

Ve, & = —ape;. (4.10)
Using (3.3) and (4.1), we obtain
(ei(Ek) —l—{ijj)ek = —apjes.
As a consequence, we have the following proposition.
Proposition 4.3. (M, p,&,n,9) is a Cg-manifold if and only if
¢i(6") = 0], — apt (4.11)

with o given in (4.3).
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4.4. Cy-manifolds. This class is characterized by the formula
Ve.£ = Ve, (4.12)
Using (3.3) and (4.1), we obtain
PVpe& = 9V i, €= 0] (e(€") + €O, ) per = (¢ (6%) +€°CF.) prer.
So, (4.12) gives us
(ei(€") +€Ch)er = (e (65) + £CF) el eher.
Hence we have the following proposition.
Proposition 4.4. (M, p,£,n,g) is a Co-manifold if and only if
ei(€h) + & Cl = (e (&%) + €°CL) ¢l (4.13)
4.5. Cio-manifolds. This class is characterized by
Vi = nlen) Vet (1.14)
Using (4.1) and (4.2), we obtain
(ei(€") + € Cf)er = €€ (er(€”) + €T er.
Thus, we state the following proposition.

Proposition 4.5. (M, p,£,n,9) is a Cia-manifold if and only if
ci(€") + & 0f = ¢ (a(eh) + ECF).
5. A class of examples

We denote the Cartesian coordinates in a 3-dimensional Euclidean space R?
by (z1,x2,x3) and define a symmetric tensor field g by

p2+72 0 -7
g=e*| 0 p* 0|,

—T 0 1

where 0,7 and p are functions on R3, where p # 0 everywhere. One can check

that
1 p \0Ox; dxs ) 2T p Oz’ 5 0x3

is an orthonormal basis with respect to g. For the non-zero Lie brackets of e;, we
have

—0

le1, ea] = F((pm + p2)er — (po1 + p1 + Tpos + Tps)es — T2€3),
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—0

e
[e1,e3] = 7((pag + p3)er — (o1 + 103 + 7'3)63),

e—O'

lea, e3] = 7(0261 — (pos + ps3)es — oes),

where o; = da: , Pi = ap and 7; = 77 Using Koszul’s formula for the metric g,

QQ(VXK Z) = Xg(Y, Z) —I—Yg(Z,X) - Zg(X,Y)
- Q(Xv [Y’ Z]) +9(Y7 [Z7X]) —|—g(Z, [Xa Y]a

we get
2Czk] = 2g(v6ieja ek’) = _g(eia [Ej, ek]) + g(ej7 [ek‘a el]) + g(eka [eia ej])

Then the components C’fj are given by

e [0 poa + p2 p(pos + ps)
Cij:—2 0 —(po1+ p1+ pro3+ Tp3) —%2 ’
P~ \o -z —p(T03 + 73+ 01)
, e —(po2 + p2) 0 5]
Cii=— | por+p+pros+7ps 0 plpos+ps) |,
p z 0 —po2
, o —p(pos + p3) -3 0
P p(Tos + 13+ 01) po2 0

Let us take £ = e3. From Theorem 3.2, (R, ¢, &, 7, g) is an almost contact metric
manifold with pe; = eeq, pes = —eey, wes =0 and n = e (dxg — Tdx1).

We will now define the five classes studied above by discussing the parameters
p, T, and o.

Cy-manifolds: By Proposition 4.1, we have

o0 =T19=0
(") +ECE =0 Clh=0e ¢ pos+p3=0
To3+ 01+ 713 =0.

Cs-manifolds: By Proposition 4.2, we have

L k 3 = _657,1
ei(€F) = &CY, + B — £'¢F) & CF, = B(EE" — o)
12 - BézQ
C =—p e ?
" Cg,l _ Cg,l -0 - B = (p03 + p3)
Co=-p 02_72_0’

0132203220 To3+ 01+ 713 =0.
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Cs-manifolds: By Proposition 4.3, we have

el(gk) §JC] - Ot(,OZ g 013 - a(pz

C;l = 0 o = —€2p2 er
PN 0113 = —€ex PN o9 = 0
023_6()‘2 pos+p3 =0
1
C33=C3% =0 To3+01+713=0

Cy-manifolds: By Proposition 4.4, we have

ei(€) + 0L = (ej(€%) + €508 plyl, & Cfy = Chplel = 0,

because C?3 = g(Ve,e3,e3) = 0. Hence, there exists no Co-structure (see Co-
manifolds).

1]

2]

C'2-manifolds: By Proposition 4.5, we have

ei(§") +ECY = ¢ () + €CF) & Cfy = €105,

Ci3 =0 po3+p3 =0
= . = .
023:0 7—220

B. Bayour and G. Beldjilali, Ricci solitons on 3-dimensional C14-manifolds, Balkan
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TpuBumipHi Maii2ke KOHTAKTHI METPUIHI MHOTOBU/IA 3
HOBHUM IIi/IXOJ/I0M

Gherici Beldjilali

Mu noBOAMMO, IO, BUXOISIYU 3 IJIODAJBHOTO OJUHUYHOTO BEKTOPHOI'O
T0JIsT Ha TPUBUMIPHOMY PIMAHOBOMY MHOTOBH/Ii, MOYKHA TIOOYIyBaTH MaiizKe
KOHTaKTHY METPUYHY CTPYKTYpPY. KpiM TOTr0, po3yMiHHS IPUPOIM [IUX CTPY-
KTYP JOCATAETHCS Yepe3 CIIBBITHOIIEHHSI, 0 MOB’s3y€ KOMIIOHEHTH I[HOTO
BEKTOPHOI'O moJisi Ta KomioHenTH 3B’a3HocTi Jlei-Hisitu. Haseneno isio-
CTPaTUBHI IPUKJIAIH.

KirrodoBi ciioBa: Maiizke KOHTAKTHA METPUIHA CTPYKTYpa, cTpyKTypa Ca-
caki, cTpykTypa Kenmorry, KOCUMIIZIEKTUYIHA CTPYKTYPa, KyTOBa CTPYKTYypa
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