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Rigidity of Closed Convex Hypersurfaces in

Multidimensional Spaces of Constant

Curvature

Alexander A. Borisenko
In 1972, E.P. Sen’kin generalized the celebrated theorem of

A.V. Pogorelov on the unique determination of closed convex surfaces by
their intrinsic metrics in the Euclidean three-dimensional space E3 to higher
dimensional Euclidean spaces En+1 under a mild assumption on the smooth-
ness of hypersurfaces. In this paper, we remove that assumption and thereby
establish a rigidity result for arbitrary closed convex hypersurfaces in En+1,
n ≥ 3. We also prove similar results in other model spaces of constant
curvature.
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1. Introduction

In 1950, A.V. Pogorelov proved the following rigidity result for closed convex
surfaces in the Euclidean space E3.

Theorem A ([1]). Let F1 and F2 be a pair of closed convex surfaces in E3

isometric with respect to their intrinsic metrics. Then there exists an isometry
of the ambient Euclidean space E3 that maps the surface F1 onto the surface F2.

Notice that no regularity assumptions are required on the surfaces in the the-
orem above, only the convexity of surfaces is assumed. Under stronger regularity
assumptions, Theorem A was previously proven by S. Cohn-Vossen in 1924 [2] and
G. Herglotz in 1943 [3]. A.V. Pogorelov later extended Theorem A to general con-
vex surfaces in the spherical space S3. Building on the results of A.V. Pogorelov,
A.D. Alexandrov, and E.P. Sen’kin, A.D. Milka established analogous rigidity re-
sult in the hyperbolic (Lobachevsky) space H3. E.P. Sen’kin further generalized
Pogorelov’s theorem to Euclidean spaces of arbitrary dimension [5], but under
additional assumptions on the regularity of hypersurfaces.

Theorem 1.1 ([5]). Let F1, F2 be a pair of closed convex C1-smooth hyper-
surfaces in the Euclidean space En+1. If F1 and F2 are isometric with respect to
their intrinsic metrics, then there exists an isometry of the ambient space En+1

that maps one hypersurface onto the other.

In this paper, we prove Theorem 1.1 without any regularity assumption on
hypersurfaces. More precisely, our goal is to establish the following result.
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Theorem 1.1′. Let F1 and F2 be a pair of closed convex hypersurfaces in the
Euclidean space En+1, n ≥ 3. If F1 and F2 are isometric with respect to their
intrinsic metrics, then there exists a motion of En+1 that maps F1 onto F2.

The proof of this theorem proceeds through a sequence of steps based on the
lemmas below.

We say that a hypersurface F ⊂ En+1 is visible from a point Q ∈ En+1 \F if,
for every point P ∈ F , the ray QP intersects F only at P . Furthermore, a point
P is said to be visible from the inside if the ray QP forms an acute angle with
the outer normal to the supporting hyperplane of F at P .

We also say that a pair of hypersurfaces is congruent if there exists a motion
of En+1 that maps one hypersurface to the other one.

Lemma 1.2 ([5]). Let F1 and F2 be a pair of isometric convex hypersurfaces
in En+1. Suppose that they are visible from points Q1 and Q2. Let L1 and L2

be the boundaries of F1 and F2 (if the hypersurfaces are closed, then instead of
boundaries we use a pair of points X1 ∈ F1 and X2 ∈ F2 that correspond to each
other under the isometry). Assume there exist hyperplanes P1 through Q1 and P2

through Q2 such that for each i ∈ {1, 2} the hypersurface Fi lies entirely in one
half-space determined by Pi. If the distances from the points Q1 and Q2 to the
corresponding under the isometry points of the boundaries L1 and L2 are equal,
then either the hypersurfaces F1 and F2 are congruent, or there exists a motion
φ of En+1 such that

1. φ(X1) = X2 for some points X1 ∈ F1 and X2 ∈ F2 that correspond to each
other under the isometry of the hypersurfaces; we keep the notation F1 for
φ(F1);

2. there exits a point Q ∈ En+1 and neighborhoods Ui of Xi in Fi such that the
neighborhoods are visible from Q from the inside;

3. for every corresponding under the isometry points X ∈ U1 and X ∈ U2, we
have

r1(X) < r2(X),

where ri denotes the distance function from Q to the points of Ui.

For a general (not necessarily smooth) surface F ⊂ E3, we say that F has
non-positive curvature if for every point on F there exists a neighborhood in
which one cannot cut out a cup.

Lemma 1.3 ([1, Ch. IV, §2, p. 213]). Let F be a two-dimensional convex
surface in E3 given explicitly by

z = z(x, y),

where x, y, z are orthogonal Cartesian coordinates in E3. Denote by ξ(x, y) the
z-component of an infinitesimal bending field on F , and consider the surface Φ
given explicitly by

z = ξ(x, y).
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If F does not contain flat regions, then Φ has non-positive curvature every-
where. If F contains flat regions, then the curvature of Φ is non-positive every-
where except for these flat regions.

Let F be the hypersurface given by the position vector

R =
1

2
(r1 + r2), (1.1)

where r1 and r2 are the position vectors of F1 and F2 in Lemma 1.2. By this
lemma, for every X, the points r1(X) = P1 ∈ F1 and r2(X) = P2 ∈ F2 correspond
to each other under the isometry between F1 and F2, and r1(X0) = r2(X0) = P0

for some point P0 that satisfies Lemma 1.2.
Under the additional assumption that the hypersurfaces F1 and F2 are C1-

smooth, it was proved by Sen’kin that the hypersurface F with the position vector
R = 1

2(r1 + r2) is convex in some neighborhood of the point P0. Furthermore,
the following statement holds.

Lemma 1.4. The vector field σ := r1 − r2 is an infinitesimal bending field
on the hypersurface F . It is Lipshitz and satisfies the equation

〈dR, dσ〉 = 0 a.e. in the neighborhood of P0.

Lemma 1.4 generalizes Alexandrov’s theorem for convex surfaces in E3.
Let us define

E3 := span(e1, e2, n),

where e1, e2 are tangent vectors and n is the normal vector to F at P0. The
intersection F ∩E3 =: F 2 is a closed convex surface in E3. We will work now in
the subspace E3. In the neighborhood of P0 the surface F 2 is given explicitly by
z = z(x, y). Let z = ξ(x, y) be the z-component of an infinitesimal bending field
along F 2. The function z = ξ(x, y) assumes its minimum at P0. For sufficiently
small ε > 0, the plane z = ε cuts out a cap from the surface z = ξ(x, y). This
contradicts Pogorelov’s Lemma 1.3. Therefore, r1 = r2, and the hypersurfaces
F1 and F2 coincide. This completes the proof of Sen’kin’s Theorem 1.1.

Now we will show that the hypersurface F is convex. After that we will prove
Theorem 1.1′ in the same way as Theorem 1.1.

2. Convex combination of isometric hypersurfaces

In this section, we discuss some facts about convex combinations of convex
hypersurfaces in E4.

At every point of a convex hypersurface in E4 there exists a well-defined
tangent cone. This cone is a convex hypersurface as well. Let V n be a strongly
convex cone in the Euclidean space En+1; a convex cone is called strongly convex
if there exists a supporting hyperplane of the cone through its vertex O that
intersects the cone only at O.

It is well known that a tangent cone V 3 of a convex hypersurface F 3 ⊂ E4

has one of the following forms:
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1. V 3 is a strongly convex cone in E4;

2. V 3 = V 2 × E1 is the metric product of a strongly convex cone V 2 in E3 and
a Euclidean line E1;

3. V 3 = V 1 × E2 is the metric product of a strongly convex cone V 1 in E2 and
a Euclidean plane E2;

4. V 3 = E3 is a Euclidean space E3.

If points P1 ∈ F1 and P2 ∈ F2 correspond to each other under the isome-
try of isometric convex hypersurfaces F1 and F2, then the tangent cones of the
hypersurfaces at these points are isometric too.

Lemma 2.1. Let F1 and F2 be a pair of isometric convex hypersurfaces in E4.

I. Suppose that the tangent cone K(P1) at a point P1 ∈ F1 has the form (1).
Then for the corresponding under the isometry point P2 ∈ F2 the tangent cone
K(P2) has the same form (1); and furthermore, the cones K(P1) and K(P2)
are congruent.

II. If the cone K(P1) has the form (2), i.e., K(P1) = V 2
1 × E1

1 , then K(P2) has
the same form K(P2) = V 2

2 × E1
2 ; and furthermore, the cones V 2

1 and V 2
2 are

isometric. The edges E1
1 , E1

2 correspond to each other under the isometry of
K(P1) and K(P2).

Proof. I. Suppose K(P2) has one of the forms (2), (3), (4). In each case, we
can choose a straight segment γ2 ⊂ K(P2) such that P2 lies in the interior of
γ2. Since K(P1) and K(P2) are isometric, for K(P1) there exists a corresponding
shortest line γ1 ⊂ K(P1) through P1. The curve γ1 is isometric to γ2. The point
P1 splits γ1 into two straight segments γ+1 and γ−1 with P1 being their common
boundary point.

Let E3 = span(γ+1 , γ
−
1 , `), where ` is a ray inside the cone K(P1) which does

not belong to the plane span(γ+1 , γ
−
1 ). The intersection K(P1) ∩E3 is a strongly

convex cone in E3. For this cone, γ1 is the shortest line in the cone, it passes
through P1, and this point lies in the interior of γ1. This contradicts to the fact
that on a strongly convex cone in E3 a shortest line cannot go through the vertex
of the cone.

Let us show that K(P1) and K(P2) are congruent, i.e., there exists a motion of
the Euclidean space E4 that maps one cone onto the other. Let S3

1 and S3
2 be the

unit spheres with the centers at the points P1 and P2, respectively. Then F̃ 2
i =

K(Pi) ∩ S3
i , i ∈ {1, 2}, are isometric closed convex surfaces in open hemispheres

of S3
1 , S3

2 . By moving the spheres, if necessary, we can assume that F̃ 2
1 and F̃2

belong to the same spherical space, and hence we can apply to them the following
theorem due to A.V. Pogorelov.

Theorem B ([1]). Closed isometric convex surfaces in the spherical space S3

are congruent.

This completes the proof of Part I of Lemma 2.1.

II. The proof of Part II is similar to that of Part I.
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Lemma 2.2. Let F1 and F2 be a pair of isometric convex hypersurfaces in E4.
Suppose the tangent cone at a point P1 ∈ F1 has the form (3) or (4). Then the
tangent cone K(P2) at the corresponding under the isometry point P2 ∈ F2 has
the same form (3) or (4) as well. Furthermore, the following three possibilities
can occur:

a) both tangent cones are dihedral angles, K(P1) = V 1
1 × E1

1 and K(P2) = V 1
2 ×

E1
2 ;

b) one tangent cone is a hyperplane, whereas the other one is a dihedral angle;

c) both tangent cones are hyperplanes.

Let G1, G2 be small neighborhoods of the points P1 ∈ F1 and P2 ∈ F2, P1 =
P2 = P0, which satisfy the assumptions of Lemma 1.2. Consider the tangent
cones K(P1) and K(P2). The following cases can occur:

I. K(P1) = V 3. Then the cones K(P1) and K(P2) coincide.

II. K(P1) = V 2
1 × E1

1 . Then the cones K(P1) and K(P2) coincide too. By
Lemma 1.2, we get V 2

1 ⊆ V 2
2 . By the isometry of V 2

1 and V 2
2 , V 2

1 = V 2
1 and

the lines E1
1 and E1

2 coincide.

III. a) If both tangent cones are dihedral angles, then it follows from Lemma 1.2
that the edges E2

1 , E
2
2 correspond to each other under the isometry and

coincide, and one dihedral angle lies inside the other one.

b) If both tangent cones are hyperplanes, then they coincide.

c) If one cone is a hyperplane and the other cone is a dihedral angle, then
the argument is similar to case a).
In every case, the linear combination of the cones at the point P0 is a

convex dihedral angle.

Let us treat the cases separately.

I. K(P1) = K(P2) = V 3.

I.1. Let (Xn
1 ) ⊂ F1 and (Xn

2 ) ⊂ F2 be sequences of the corresponding under
the isometry cone points such that Xn

1 → P0 and Xn
2 → P0 as n → ∞, and

K(Xn
1 ) = V 3

n . Denote by K0
1 and K0

2 the limit cones for the sequences K1(X
n
1 )

and K2(X
n
2 ). By the construction, K0

1 and K0
2 are isometric supporting cones to

F1 and F2 at P0.

By Lemma 2.1, for each n, we have

K1(X
n
1 ) = AnK2(X

n
2 ) + an,

where an is a vector and An is an orthogonal matrix. Then an → 0 and An → A0

as n → ∞, where A0 is an orthogonal matrix. Since K0
1 = K0

2 , we obtain K0
1 =

A0K
0
2 , and thus A0 = I is the identity matrix. For large n, the matrix I +An is

non-degenerate, and the convex combination of the cones K1(X
n
1 ) and K2(X

n
2 )

is the cone K(Xn) = (I + An) ·K2(X
n
2 ) + an. Thus, we obtain that K(Xn) is a

non-degenerate affine image of K(Xn
2 ), and hence it is convex.
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I.2. Let K1(X
n
1 ) = V 2

1 (n)+E1
1(n), K2(X

n
2 ) = V 2

2 (n)+E1
2(n). If K0

1 = V 2
1 ×

E1
1 and K0

2 = V 2
2 ×E1

2 , then the isometric directions `01 ∈ V 2
1 and `02 ∈ V 2

2 belong
to the tangent cones K(P1) = K(P2). Therefore we have K0

1 = K0
2 , V 2

1 = V 2
2 ,

E1
1 = E1

2 . The curvature of V 2
1 is greater than some α0 > 0. The angle between

any pair of isometric directions in the cones V 2
1 (n) and V 2

2 (n) is less than ε(n),
where ε(n)→ 0 as n→∞. The curvature at the vertices is at least θ0 > 0, and
a ball ω belongs to both cones. We will show now that for sufficiently large n
the convex combination of cones K1(X

n
1 ) and K2(X

n
2 ) is again a convex cone. To

this end, it suffices to show that the cone

K(Xn) = K1(X
n
1 ) +K2(X

n
2 )

is locally convex. Equivalently, we need to demonstrate that through every two-
dimensional generator t0 of K(Xn) it is possible to draw a hyperplane such that
all generators close to t0 lie in the half-space that contains the ball ω. Assume
the contrary, i.e., for each n, there exists a generator tn0 that does not satisfy
the locally convex condition. Let tn1 ∈ K1(X

n
1 ) be the corresponding generator

of K1(X
n
1 ). The sequence of generators tn1 converges to the generator t01 of the

convex cone K0
1 . The generators tn1 are the metric products of generators `n1 ∈

V 2
1 (n) with E1

1(n). For each n, let An
1 be the point on `n1 at distance 1 from the

vertex of the cone V 2
1 (n), and let Dn

1 be the tangent dihedral angle at the point
An

1 for the cone K1(X
n
1 ). Introduce the same elements tn2 , `n2 , An

2 , Dn
2 for the

cone K2(X
n
2 ). The two-dimensional edges of Dn

1 and Dn
2 are corresponding to

each other under the isometry. For sufficiently large n, the convex combination
of Dn

1 and Dn
2 is a dihedral angle Dn. By the construction, the ball ω lies inside

Dn. There exists a supporting hyperplane Π to Dn that passes through the edge
of Dn. Now, we follow Pogorelov’s proof of [1, Lemma 1, pp. 137–136].

Let n̄ be the normal to Π. When translated to a point An
i , the vector n̄ is

directed inside the cone Ki(X
n
i ) for every i ∈ {1, 2}. Connect the point An

1 by
the shortest line γn1 to a point Bn

1 ∈ V 2
1 (n) near An

1 . Let r1(s) be the position
vector of γn1 , where s is the arc-length parameter on γn1 chosen such that s = 0
at the point An

1 . Similarly, let r2(s) be the position vector of the corresponding
under the isometry shortest line γn2 ⊂ V 2

2 (n). At s = 0, we get the following:

d

ds
〈r1 + r2, n̄〉 ≥ 0. (2.1)

By Liberman’s theorem [1, p. 58], inequality (2.1) holds true for all s along
the shortest line γn1 . Furthermore, by integrating this inequality, we obtain that
all points of the cone K(Xn) close to the image of the point An

1 lie on one side of
the supporting hyperplane with the inner normal n̄. This implies that the cone
K(Xn) is locally convex.

Take small neighborhoods of the point P0 = P1 = P2 in the hypersurfaces
F1 and F2. Let F be the convex combination of F1 and F2. The position vector
of F is r = (r1 + r2)/2, where ri is the position vector of Fi. It follows from
the discussion above that there exists a neighborhood of P0 ∈ F such that F is
a convex hypersurface. The vector field σ = r1 − r2 is an infinitesimal bending
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vector field of F , i.e., one has 〈dr, dσ〉 = 0. We then proceed as in Sen’kin’s
original proof, and this completes the proof of the desired uniqueness theorem
for closed convex hypersurfaces in the Euclidean space E4.

I.3. Let

a) K1(X
n
1 ) = V 1

1 (n)× E2
1(n), K2(X

n
2 ) = V 1

2 (n)× E2
1(n).

b) K1(X
n
1 ) = V 1

1 (n)× E2
1(n), K2(X

n
2 ) = E3(n).

c) K1(X
n
1 ) = E3

1(n), K2(X
n
2 ) = E3

2(n).

In these cases, the dihedral angles or supporting hyperplanes are equal. The
convex combination of the cones K1(X

n
1 ) and K2(X

n
2 ) has the following form,

respectively:

a) a hyperplane,

b) a dihedral angle,

c) a convex cone.

In the same way as proved above, there exist neighborhoods of the point
P0 in F1 and F2 such that the convex combination of F1 and F2 within these
neighborhoods is a convex hypersurface F .

II. K1(P1) = K2(P2) = V2 × E1.

III. a) If K1(P1) = E3 and K2(P2) = E3, then K0
1 and K0

2 coincide with
the tangent hyperplane.

b) If K1(P1) = V 1
1 × E2

1 and K2(P2) = V 1
2 × E2

2 , then the edges E2
1 and E2

2

coincide and correspond to each other under the isometry of the cones. Further-
more, one dihedral angle lies inside the other one. In this case, the cones K0

1 and
K0

2 are contained inside the cones K1(P1) and K2(P2). Similarly to the case I,
we can prove that there exist neighborhoods of the points P1 ∈ F1 and P2 ∈ F2

such that the convex combination of F1 and F2 is a convex surface F .

3. Proof of Theorem 1.1′

In this section, we will prove the uniqueness theorem for isometric closed
convex hypersurfaces in En without any regularity assumption (Theorem 1.1′).

We need a concept of the Pogorelov map [1]. Let F1 and F2 be isometric
closed convex hypersurfaces in the open hemisphere of the spherical space Sn ⊂
En+1. Let x0, x1, . . . , xn be the Cartesian orthogonal coordinates in En+1, and
let Sn be a sphere centered at the origin. We assume that F1 and F2 have the
same orientation and belong to the same hemisphere x0 > 0. Let r1 and r2 be
the position vectors of F1 and F2 parameterized such that points corresponding
under the isometry have the same coordinates. Finally, let Φ1 and Φ2 be the
hypersurfaces in En defined by the position vectors

R1 :=
r1 − e0 〈r1, e0〉
〈e0, r1 + r2〉

, R2 :=
r2 − e0 〈r2, e0〉
〈e0, r1 + r2〉

,

where e0 is the unit coordinate vector corresponding to x0. For n = 4,
A.V. Pogorelov proved that Φ1 and Φ2 are isometric closed convex hypersur-
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faces in E4. Notice that this result is true for any n and the proof is similar to
that of Pogorelov for n = 4. Thus, the uniqueness theorem in S4 follows from
the uniqueness theorem in E4.

Now we prove Theorem 1.1′ in the hyperbolic space Hn, n = 4. In 1980,
A.D. Milka proved Theorem 1.1′ in the case of H3 [4]. He used E.P. Sen’kin’s
idea of the proof of Theorem 1.1. Specifically, it is possible to move the surfaces
F1 and F2 in such a way that they satisfy Lemma 1.2. For hyperbolic spaces,
this means that for some point O the surfaces F1 and F2 are visible from the
different sides. Then their images under Pogorelov’s map in Euclidean space
satisfy Lemma 1.2. Do Carmo and Warner proved the uniqueness of closed regular
convex hypersurfaces in Sn [6]. Gorsij generalized this theorem to isometric closed
convex C1-smooth hypersurfaces in Sn [7]. It was also proved that the images
of isometric convex hypersurfaces in Sn under the Pogorelov map are convex
hypersurfaces in the Euclidean space En if the hypersurfaces in the sphere can
be seen from the convexity side [1]. Milka proved a similar result for isometric
closed convex hypersurfaces in the hyperbolic space.

Proof of Theorem 1.1′. The proof proceeds by induction on the dimension n.
Suppose the statement holds true for En, Sn, Hn. Let us show how to prove it
for En+1, Sn+1, Hn+1.

For convex hypersurfaces Fn
s ⊂ En+1, s ∈ {1, 2}, their tangent convex cones

have the form

K = V n−i × Ei, i ∈ {0, . . . , n},

where V n−i is a strongly convex cone in En−i+1.
1) Let K1 = V n−i

1 × Ei
1 (i ≤ n− 3) be a convex cone in En+1, and let K2 be

an isometric convex cone in En+1. Then K2 = V n−i
2 × Ei

2 is congruent to K1.
In the proof we follow the same steps as those of Lemma 2.1, and we use the
uniqueness of isometric closed convex hypersurfaces in En−1, Sn−1.

2) Let K1 = V 2
1 × E

n−2
1 , and let K2 be an isometric convex cone in En+1.

Then K2 = V 2
2 × E

n−2
2 . The cones K1,K2 ⊂ E3 are isometric convex cones.

3) Let K1 = V 1
1 × E

n−1
1 . Then K2 = V 1

2 × E
n−1
2 or K2 = En.

We prove Theorem 1.1′ similarly to the case of E4, S4,H4 by induction.
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Однозначна визначенiсть замкнутих опуклих
гiперповерхонь в багатомiрних просторах сталої

кривини
Alexander A. Borisenko

У 1972 роцi Є.П. Сенькiн узагальнив знамениту теорему О.В. По-
горєлова про однозначну визначенiсть замкнутих опуклих поверхонь їх
внутрiшньою метрикою в тримiрному евклiдовому просторi E3 на ви-
падок багатомiрного евклiдового простору En+1 за деяких додаткових
умов щодо гладкостi гiперповерхонь. У цiй статтi ми позбавляємось зга-
даних умов i встановлюємо теорему про однозначну визначенiсть для
довiльних замкнутих опуклих гiперповерхонь в En+1, n ≥ 3. Аналогi-
чнi результати також одержанi i в iнших модельних просторах сталої
кривини.

Ключовi слова: однозначна визначенiсть, опукла гiперповерхня, про-
стiр сталої кривини
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