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Rigidity of Closed Convex Hypersurfaces in
Multidimensional Spaces of Constant
Curvature

Alexander A. Borisenko

In 1972, E.P. Sen’kin generalized the celebrated theorem of
A.V. Pogorelov on the unique determination of closed convex surfaces by
their intrinsic metrics in the Euclidean three-dimensional space E3 to higher
dimensional Euclidean spaces E™*! under a mild assumption on the smooth-
ness of hypersurfaces. In this paper, we remove that assumption and thereby
establish a rigidity result for arbitrary closed convex hypersurfaces in E**1,
n > 3. We also prove similar results in other model spaces of constant
curvature.
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1. Introduction

In 1950, A.V. Pogorelov proved the following rigidity result for closed convex
surfaces in the Euclidean space E3.

Theorem A ([1]). Let Fy and Fy be a pair of closed convex surfaces in E3
isometric with respect to their intrinsic metrics. Then there exists an isometry
of the ambient Euclidean space E* that maps the surface Fy onto the surface Fy.

Notice that no regularity assumptions are required on the surfaces in the the-
orem above, only the convexity of surfaces is assumed. Under stronger regularity
assumptions, Theorem A was previously proven by S. Cohn-Vossen in 1924 [2] and
G. Herglotz in 1943 [3]. A.V. Pogorelov later extended Theorem A to general con-
vex surfaces in the spherical space S3. Building on the results of A.V. Pogorelov,
A.D. Alexandrov, and E.P. Sen’kin, A.D. Milka established analogous rigidity re-
sult in the hyperbolic (Lobachevsky) space H®. E.P. Sen’kin further generalized
Pogorelov’s theorem to Euclidean spaces of arbitrary dimension [5], but under
additional assumptions on the regularity of hypersurfaces.

Theorem 1.1 ([5]). Let Fy, Fy be a pair of closed convex C*-smooth hyper-
surfaces in the FEuclidean space E™TY. If Fy and Fy are isometric with respect to
their intrinsic metrics, then there exists an isometry of the ambient space E™*1
that maps one hypersurface onto the other.

In this paper, we prove Theorem 1.1 without any regularity assumption on
hypersurfaces. More precisely, our goal is to establish the following result.
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Theorem 1.1'. Let F and F» be a pair of closed convex hypersurfaces in the
FEuclidean space E"', n > 3. If Fi and F» are isometric with respect to their
intrinsic metrics, then there exists a motion of E™1 that maps Fy onto Fs.

The proof of this theorem proceeds through a sequence of steps based on the
lemmas below.

We say that a hypersurface F' C E"*! is visible from a point Q € E"T!\ F if,
for every point P € F, the ray QP intersects F only at P. Furthermore, a point
P is said to be visible from the inside if the ray QP forms an acute angle with
the outer normal to the supporting hyperplane of F' at P.

We also say that a pair of hypersurfaces is congruent if there exists a motion
of E™*1 that maps one hypersurface to the other one.

Lemma 1.2 ([5]). Let Fy and F5 be a pair of isometric convex hypersurfaces
in E"tL. Suppose that they are visible from points Q1 and Qo. Let Ly and Lo
be the boundaries of Fy and Fy (if the hypersurfaces are closed, then instead of
boundaries we use a pair of points X1 € F1 and Xo € Fy that correspond to each
other under the isometry). Assume there exist hyperplanes Py through Q1 and P
through Q2 such that for each i € {1,2} the hypersurface F; lies entirely in one
half-space determined by P;. If the distances from the points Q1 and Q2 to the
corresponding under the isometry points of the boundaries L1 and Lo are equal,
then either the hypersurfaces F1 and Fs are congruent, or there exists a motion
¢ of E™! such that

1. ¢(X1) = Xy for some points X1 € Fy and X9 € Fy that correspond to each
other under the isometry of the hypersurfaces; we keep the notation Fy for

(b(Fl);
2. there exits a point Q € E™ and neighborhoods U; of X; in F; such that the
neighborhoods are visible from Q) from the inside;

3. for every corresponding under the isometry points X € Uy and X € Us, we
have
ri(X) <r(X),

where r; denotes the distance function from @ to the points of U;.

For a general (not necessarily smooth) surface F C E3, we say that F has
non-positive curvature if for every point on F there exists a neighborhood in
which one cannot cut out a cup.

Lemma 1.3 ([1, Ch. IV, §2, p. 213]). Let F' be a two-dimensional convex
surface in E> given explicitly by

z = z(x,y),

where x,y,z are orthogonal Cartesian coordinates in E®. Denote by &(x,y) the
z-component of an infinitesimal bending field on F', and consider the surface ®
given explicitly by

z= §($, y)
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If F' does not contain flat regions, then ® has non-positive curvature every-
where. If F' contains flat regions, then the curvature of ® is non-positive every-
where except for these flat regions.

Let F' be the hypersurface given by the position vector

R = %(T’l—k’l"g), (1.1)

where 1 and 79 are the position vectors of F; and F5 in Lemma 1.2. By this
lemma, for every X, the points r1(X) = P} € F} and ro(X) = P, € F; correspond
to each other under the isometry between F} and Fy, and r1(Xy) = r2(Xo) = Py
for some point Py that satisfies Lemma 1.2.

Under the additional assumption that the hypersurfaces Fy and F5 are C'-
smooth, it was proved by Sen’kin that the hypersurface F' with the position vector
R = %(rl + r9) is convex in some neighborhood of the point Py. Furthermore,
the following statement holds.

Lemma 1.4. The vector field o := r1 — ro is an infinitesimal bending field
on the hypersurface F. It is Lipshitz and satisfies the equation

(dR,do) =0 a.e. in the neighborhood of Py.

Lemma 1.4 generalizes Alexandrov’s theorem for convex surfaces in E3.
Let us define
E3 :=span(ey, ez,n),

where e1, ey are tangent vectors and n is the normal vector to F' at Fy. The
intersection F'N E3 =: F? is a closed convex surface in E3. We will work now in
the subspace E3. In the neighborhood of Py the surface F? is given explicitly by
z = z(x,y). Let z = £(x,y) be the z-component of an infinitesimal bending field
along F2. The function z = £(z,y) assumes its minimum at Py. For sufficiently
small € > 0, the plane z = € cuts out a cap from the surface z = £(z,y). This
contradicts Pogorelov’s Lemma 1.3. Therefore, r1 = 79, and the hypersurfaces
F1 and F5 coincide. This completes the proof of Sen’kin’s Theorem 1.1.

Now we will show that the hypersurface F' is convex. After that we will prove
Theorem 1.1" in the same way as Theorem 1.1.

2. Convex combination of isometric hypersurfaces

In this section, we discuss some facts about convex combinations of convex
hypersurfaces in E*.

At every point of a convex hypersurface in E* there exists a well-defined
tangent cone. This cone is a convex hypersurface as well. Let V™ be a strongly
convex cone in the Euclidean space E™t!; a convex cone is called strongly convex
if there exists a supporting hyperplane of the cone through its vertex O that
intersects the cone only at O.

It is well known that a tangent cone V3 of a convex hypersurface F3 C E*
has one of the following forms:
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1. V3 is a strongly convex cone in E*;

2. V3 =V? x E' is the metric product of a strongly convex cone V? in E3 and
a Euclidean line E';

3. V3 = V! x E? is the metric product of a strongly convex cone V! in E? and
a Euclidean plane E?;

4. V3 = E? is a Euclidean space E®.

If points P, € I} and P> € F5 correspond to each other under the isome-
try of isometric convex hypersurfaces F; and Fb, then the tangent cones of the
hypersurfaces at these points are isometric too.

Lemma 2.1. Let F} and F» be a pair of isometric convex hypersurfaces in E*.

I. Suppose that the tangent cone K(P1) at a point Py € Fi has the form (1).
Then for the corresponding under the isometry point Py € Fy the tangent cone
K (P,) has the same form (1); and furthermore, the cones K(P;) and K(P»)
are congruent.

I1. If the cone K(P1) has the form (2), i.e., K(Py) = V{2 x E}, then K(P) has
the same form K(P2) = Vi x Ei; and furthermore, the cones V2 and Vi are

isometric. The edges Ei, E3 correspond to each other under the isometry of
K(Py) and K(Ps).

Proof. 1. Suppose K (P3) has one of the forms (2), (3), (4). In each case, we
can choose a straight segment vo C K(P,) such that P, lies in the interior of
v2. Since K(Py) and K (P,) are isometric, for K (P;) there exists a corresponding
shortest line v; C K(P;) through P;. The curve ~; is isometric to v2. The point
P splits v, into two straight segments 'yfr and v, with P, being their common
boundary point.

Let E3 = span(v;",7; , ), where £ is a ray inside the cone K (P;) which does
not belong to the plane span(’yfr .71 )- The intersection K (Py) N E? is a strongly
convex cone in E3. For this cone, 7 is the shortest line in the cone, it passes
through Pj, and this point lies in the interior of «;. This contradicts to the fact
that on a strongly convex cone in E® a shortest line cannot go through the vertex
of the cone.

Let us show that K (P;) and K (P,) are congruent, i.e., there exists a motion of
the Euclidean space E* that maps one cone onto the other. Let S§ and S3 be the
unit spheres with the centers at the points P; and P», respectively. Then FZ-Q =
K(P)NS3, i€ {1,2}, are isometric closed convex surfaces in open hemispheres
of S$, S3. By moving the spheres, if necessary, we can assume that Ff and Fh
belong to the same spherical space, and hence we can apply to them the following
theorem due to A.V. Pogorelov.

Theorem B ([1]). Closed isometric convex surfaces in the spherical space S3
are congruent.

This completes the proof of Part I of Lemma 2.1.
II. The proof of Part II is similar to that of Part 1. O
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Lemma 2.2. Let F} and F5 be a pair of isometric convex hypersurfaces in E*.
Suppose the tangent cone at a point P; € Fy has the form (3) or (4). Then the
tangent cone K(Ps) at the corresponding under the isometry point Py € Fy has
the same form (3) or (4) as well. Furthermore, the following three possibilities
can occur:

a) both tangent cones are dihedral angles, K(P)) = V! x E} and K(P) = V3 x
Ey;

b) one tangent cone is a hyperplane, whereas the other one is a dihedral angle;

c) both tangent cones are hyperplanes.

Let G1, G2 be small neighborhoods of the points P, € F} and P, € Iy, P| =
P, = Py, which satisfy the assumptions of Lemma 1.2. Consider the tangent
cones K (P;) and K(P,). The following cases can occur:

I.  K(P;) = V3. Then the cones K(P;) and K(P,) coincide.

II. K(P)) = V2 x E}. Then the cones K(P;) and K(P,) coincide too. By
Lemma 1.2, we get V2 C V2. By the isometry of V2 and Vi, V2 = V2 and
the lines F{ and E3J coincide.

ITI. a) If both tangent cones are dihedral angles, then it follows from Lemma 1.2

that the edges E?, F2 correspond to each other under the isometry and
coincide, and one dihedral angle lies inside the other one.

b) If both tangent cones are hyperplanes, then they coincide.

c¢) If one cone is a hyperplane and the other cone is a dihedral angle, then
the argument is similar to case a).
In every case, the linear combination of the cones at the point P is a
convex dihedral angle.

Let us treat the cases separately.
I. K(P)=K(P)=V3.

I.1. Let (X]) C Fy and (X%) C F, be sequences of the corresponding under
the isometry cone points such that X{" — Fy and X3 — Py as n — oo, and
K(XT) = V3. Denote by K? and K3 the limit cones for the sequences Kj(X?)
and K5(X%). By the construction, Ky and K9 are isometric supporting cones to
F1 and FQ at P().

By Lemma 2.1, for each n, we have

K1(XT) = Ay K2 (X)) + an,

where a,, is a vector and A,, is an orthogonal matrix. Then a,, — 0 and 4,, — Ay
as n — 0o, where Ay is an orthogonal matrix. Since K = K9, we obtain K¢ =
ApKY, and thus Ag = I is the identity matrix. For large n, the matrix I + A,, is
non-degenerate, and the convex combination of the cones K;(X7") and K2(X%)
is the cone K(X™) = (I + A,) - K2(X%) + ay. Thus, we obtain that K(X") is a
non-degenerate affine image of K (X4), and hence it is convex.



272 Alexander A. Borisenko

I.2. Let K1(X7) = VZ(n)+Ei(n), Ko(X3) = VE(n)+ Ei(n). If KY = V2 x
E} and K§ = Vi x E}, then the isometric directions £ € V2 and 9 € ViZ belong
to the tangent cones K (P;) = K(P,). Therefore we have K¢ = K9, V2 = V2,
E} = E}. The curvature of V2 is greater than some ap > 0. The angle between
any pair of isometric directions in the cones Vi?(n) and Vi2(n) is less than e(n),
where €(n) — 0 as n — oo. The curvature at the vertices is at least 6y > 0, and
a ball w belongs to both cones. We will show now that for sufficiently large n
the convex combination of cones K;(X7) and K2(X¥) is again a convex cone. To
this end, it suffices to show that the cone

K(X") = Ki(X7) + Ka(X3)

is locally convex. Equivalently, we need to demonstrate that through every two-
dimensional generator ¢y of K(X™) it is possible to draw a hyperplane such that
all generators close to ty lie in the half-space that contains the ball w. Assume
the contrary, i.e., for each n, there exists a generator ¢; that does not satisfy
the locally convex condition. Let ¢} € K;(X7{") be the corresponding generator
of K1(X?). The sequence of generators ¢} converges to the generator tJ of the
convex cone K. The generators ¢ are the metric products of generators ¢} €
VZ(n) with E{(n). For each n, let A7 be the point on ¢} at distance 1 from the
vertex of the cone V#(n), and let D} be the tangent dihedral angle at the point
A7 for the cone K;(X7). Introduce the same elements t3, 5, Ay, Df for the
cone Ky(X?%). The two-dimensional edges of D} and D are corresponding to
each other under the isometry. For sufficiently large n, the convex combination
of D' and DY is a dihedral angle D". By the construction, the ball w lies inside
D™. There exists a supporting hyperplane II to D" that passes through the edge
of D". Now, we follow Pogorelov’s proof of [1, Lemma 1, pp. 137-136].

Let n be the normal to II. When translated to a point A7, the vector n is
directed inside the cone K;(X]') for every ¢ € {1,2}. Connect the point A} by
the shortest line 4 to a point B} € VZ(n) near A7. Let r1(s) be the position
vector of 71", where s is the arc-length parameter on 7' chosen such that s = 0
at the point AY. Similarly, let r2(s) be the position vector of the corresponding
under the isometry shortest line v C VZ(n). At s = 0, we get the following:

% <T1 + T‘2,ﬁ> > 0. (2.1)

By Liberman’s theorem [1, p. 58], inequality (2.1) holds true for all s along
the shortest line 7{'. Furthermore, by integrating this inequality, we obtain that
all points of the cone K (X™) close to the image of the point A} lie on one side of
the supporting hyperplane with the inner normal 7. This implies that the cone
K(X™) is locally convex.

Take small neighborhoods of the point Py = P, = P, in the hypersurfaces
F1 and Fy. Let F' be the convex combination of F} and Fy. The position vector
of F'is r = (r; 4+ r2)/2, where r; is the position vector of F;. It follows from
the discussion above that there exists a neighborhood of Py € F such that F' is
a convex hypersurface. The vector field ¢ = r{ — 19 is an infinitesimal bending
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vector field of F, i.e., one has (dr,do) = 0. We then proceed as in Sen’kin’s
original proof, and this completes the proof of the desired uniqueness theorem
for closed convex hypersurfaces in the Euclidean space E*.

1.3. Let
a) Ki(X7) = Vi'(n) x Ef(n), K2(X}) = V4 (n) x E{(n).
b) K1(X7) = V{'(n) x Ef(n), K2(X3) = E*(n).
c) Ki(X7) = Ef(n), K2(X3) = E3(n).

In these cases, the dihedral angles or supporting hyperplanes are equal. The
convex combination of the cones K;(X]") and K3(X%) has the following form,
respectively:

a) a hyperplane,
b) a dihedral angle,
c) a convex cone.

In the same way as proved above, there exist neighborhoods of the point
Py in F; and F5 such that the convex combination of F; and F5 within these
neighborhoods is a convex hypersurface F'.

I1. Kl(Pl) = KQ(PQ) = Vé X El.

III. a) If K1(Py) = E® and Ko(P,) = E3, then KY and K coincide with
the tangent hyperplane.

b) If K1(Py) = V! x E? and Ko(P,) = Vit x E3, then the edges E? and E3
coincide and correspond to each other under the isometry of the cones. Further-
more, one dihedral angle lies inside the other one. In this case, the cones K9 and
K9 are contained inside the cones Ki(P;) and Ka(P,). Similarly to the case I,
we can prove that there exist neighborhoods of the points Py € F} and P> € F>
such that the convex combination of F; and F5 is a convex surface F'.

3. Proof of Theorem 1.1’

In this section, we will prove the uniqueness theorem for isometric closed
convex hypersurfaces in E" without any regularity assumption (Theorem 1.1").

We need a concept of the Pogorelov map [1]. Let F; and Fy be isometric
closed convex hypersurfaces in the open hemisphere of the spherical space S™ C
E™1 Let 2% 2!, ... 2" be the Cartesian orthogonal coordinates in E™*!, and
let S™ be a sphere centered at the origin. We assume that F; and F5 have the
same orientation and belong to the same hemisphere 20 > 0. Let 71 and ry be
the position vectors of F} and F, parameterized such that points corresponding
under the isometry have the same coordinates. Finally, let ®; and ®, be the
hypersurfaces in E" defined by the position vectors

__r1—ep(r1,en) T2 —eg(r2,€0)
Ry = ————", ===
(e0,T1 +732) (€0, 1 +12)
where eg is the unit coordinate vector corresponding to zV. For n = 4,

A.V. Pogorelov proved that ®; and ®2 are isometric closed convex hypersur-
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faces in E*. Notice that this result is true for any n and the proof is similar to
that of Pogorelov for n = 4. Thus, the uniqueness theorem in S* follows from
the uniqueness theorem in E*.

Now we prove Theorem 1.1" in the hyperbolic space H", n = 4. In 1980,
A.D. Milka proved Theorem 1.1' in the case of H? [4]. He used E.P. Sen’kin’s
idea of the proof of Theorem 1.1. Specifically, it is possible to move the surfaces
F1 and F, in such a way that they satisfy Lemma 1.2. For hyperbolic spaces,
this means that for some point O the surfaces F; and Fy are visible from the
different sides. Then their images under Pogorelov’s map in Euclidean space
satisfy Lemma 1.2. Do Carmo and Warner proved the uniqueness of closed regular
convex hypersurfaces in S™ [6]. Gorsij generalized this theorem to isometric closed
convex C'l-smooth hypersurfaces in S™ [7]. It was also proved that the images
of isometric convex hypersurfaces in S” under the Pogorelov map are convex
hypersurfaces in the Euclidean space E™ if the hypersurfaces in the sphere can
be seen from the convexity side [1]. Milka proved a similar result for isometric
closed convex hypersurfaces in the hyperbolic space.

Proof of Theorem 1.1'. The proof proceeds by induction on the dimension n.
Suppose the statement holds true for E™, S™, H". Let us show how to prove it
for Entl, gntl HrHL

For convex hypersurfaces F C E"!, s € {1,2}, their tangent convex cones
have the form

K=V""xE i¢c{0,...,n},

where V"~ is a strongly convex cone in E" 1,

1) Let K1 = V" x E} (i <n —3) be a convex cone in E"*! and let K be
an isometric convex cone in E"T1. Then Ky = V{“i X E% is congruent to Kj.
In the proof we follow the same steps as those of Lemma 2.1, and we use the
uniqueness of isometric closed convex hypersurfaces in E7~1, §7~1,

2) Let K7 = V12 X EI‘_Q, and let K5 be an isometric convex cone in E"t1,
Then Ky = V22 X ES*Q. The cones K1, Ky C E? are isometric convex cones.

3) Let K1 = V' x E}"!. Then Ko = Vi x E3 ! or Ky = E™.

We prove Theorem 1.1’ similarly to the case of E4,S* H* by induction. [
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O1HO3HaYHA BU3HAYEHICTh 3aMKHYTUX OMYKJIMX
rinepnoBepXxoHb B 0araToOMipHUX HMPOCTOpPaxX CTaJIOl
KPUBUHU

Alexander A. Borisenko

Y 1972 pori €.I1. Cenbkin ysarampaus 3uamenuty Teopemy O.B. Ilo-
TOPEJIOBA TIPO OJHO3HAYHY BU3HAYECHICTH 3aMKHYTUX OIYKJ/IMX IIOBEPXOHb 1X
BHYTPIIIHLOI0 METPHKOIO0 B TPUMIPHOMY €BKJIiZoBoMy mpocTopi E° ma BH-
HaJ0K 6araTOMIpHOro eBKIimoBoro mpoctopy E™T! 3a mesxmx momaTkosmx
YMOB IIO/I0 TVIAIKOCTI MIIepHIoOBEPXOHD. ¥ IIilf CTATTI MU MO30aBISIEMOCH 3ra~
JIAHUX YMOB i BCTAHOBJIIOEMO TEOPEMY IIPO OJHO3HAYHY BU3HAYEHICTH JJIfA
JIOBIIBHIX 3aMKHYTHX OIYKJIHX Tileprosepxonb B E"11, n > 3. Amasori-
YHI pe3y/JbTaTH TAKOXK OJIEpKaHi 1 B iHIMUX MOJEIBHHUX MPOCTOPAX CTAJIOl
KPUBUHU.

KirrowoBi cjtoBa: 0HO3HAYMHA BU3HAYEHICTh, OMYKJIa TiIepHOBEePXHS, TIPO-
CTip cTaJIOl KPUBUHU
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