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On Shimurian Generalizations of the Stack

BT1 ⊗ Fp

Vladimir Drinfeld
Let G be a smooth group scheme over Fp equipped with a Gm-action such

that all weights of Gm on Lie(G) are ≤ 1. Let DispG
n be Eike Lau’s stack

of n-truncated G-displays (this is an algebraic Fp-stack). In the case n = 1

we introduce an algebraic stack equipped with a morphism to DispG
1 . We

conjecture that if G = GL(d) then the new stack is canonically isomorphic
to the reduction modulo p of the stack of 1-truncated Barsotti–Tate groups
of height d and dimension d′, where d′ depends on the action of Gm on
GL(d).

We also discuss how to define an analog of the new stack for n > 1 and
how to replace Fp by Z/pmZ.
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1. Introduction

Once and for all, we fix a prime p. The words “algebraic stack” are understood
in the sense of [20] unless stated otherwise.

1.1. The goal. The notion of n-truncated Barsotti-Tate group was intro-
duced by Grothendieck [13]. It is reviewed in [14, 15, 22]. n-truncated Barsotti-
Tate groups of height d and dimension d′ ≤ d form an algebraic stack over Z,
denoted by BTd,d′

n . This stack is smooth by a deep theorem of Grothendieck,
whose proof is given in Illusie’s article [14].

The stack BTd,d′
n is related to the group G = GL(d); e.g., BTd,d′

n ⊗Z[p−1] is
the classifying stack of GL(d,Z/pnZ). Since there exist Shimura varieties of type
E7, it is natural to expect that the stacks BTd,d′

n ⊗Z/pmZ (and maybe the stacks
BTd,d′

n themselves) have interesting E7-analogs.
In the main body of this article we focus on the case n = m = 1. In this case

we give a rather elementary definition of the stack BTG
1,Fp

= BTG
1 ⊗Fp, where

G is any smooth affine group scheme over Fp equipped with a 1-bounded Gm-
action (1-boundedness means that the weights of Gm on Lie(G) are ≤ 1). Note
that a semisimple group of type E7 can be equipped with a nontrivial 1-bounded
Gm-action.

In Appendix C we suggest a definition of BTG
n,Z/pmZ for arbitrary n and m,

which uses the prismatic theory.1

© Vladimir Drinfeld, 2025
1In the case m = 1 one only needs the crystalline theory, and in the case n = m = 1 the de

Rham theory is enough. This is why in the case m = n = 1 an elementary approach is possible.
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We prove that the stack BTG
1,Fp

defined in §4.2 is algebraic (this is not an
immediate consequence of the definition). We conjecture that in the case G =

GL(d) one has BTG
1,Fp

= BTd,d′

1 ⊗Fp, where d′ depends on the action of Gm

on GL(d). The precise formulations of this result and conjecture are given in
§4.4-4.5.

1.2. Structure of the article. In §2 we recall some facts about group
schemes equipped with a Gm-action. We also introduce a (2,1)-category Shimn,
whose objects are smooth affine group schemes over Z/pnZ equipped with a 1-
bounded Gm-action.

In §3 we recall a certain Fp-stack DispG1 , G ∈ Shim1, which is called the
stack of 1-truncated displays (or the stack of F -zips). We also introduce in §3.3
a commutative group scheme over DispG1 denoted by LauG1 .

In §4 we define an Fp-stack BTG
1,Fp

, which depends functorially on G ∈ Shim1.
We also formulate the main theorems and a conjecture, see §4.4-4.5.

The proof of the main theorems is given in §5-6.

In Appendices A-B we discuss some material on algebraic stacks.

In Appendix C we suggest a definition of BTG
n,Z/pmZ for arbitrary n and m,

which uses the prismatic theory. We also formulate Conjecture C.3.1; it is moti-
vated by Corollary 4.4.3 and by Grothendieck’s smoothness theorem mentioned
at the beginning of §1.1.

In Appendix D we explain why the definition of BTG
1,Fp

given in Appendix C
is equivalent to the one from §4.

1.3. Status of the conjectures. As far as I understand, both conjectures
formulated in this article are proved in [12].

2. The (2,1)-category Shimn

2.1. 1-bounded Gm-actions. Let G be a smooth group scheme over Z/pnZ
and g := Lie(G). An action of Gm on G induces its action on g and therefore a
grading

g =
⊕
i∈Z

gi . (2.1)

Following E. Lau [19], we say that an action of Gm on G is 1-bounded if gi = 0
for i > 1.

Example 2.1.1. If G is reductive and connected then an action of Gm on G is
given by a cocharacter µ : Gm → Gad. In this case 1-boundedness implies that all
weights of Gm on Lie(G) belong to {−1, 0, 1}. Cocharacters µ with this property
are called minuscule2.

2This notion of minuscule cocharacter is slightly more general than that of Bourbaki (e.g.,
Bourbaki requires a minuscule cocharacter to be nonzero).
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2.2. The (2,1)-category Shimn. Let Shimn be the following (2,1)-
category: its objects are smooth affine group schemes over Z/pnZ equipped with
a 1-bounded Gm-action, and for G1, G2 ∈ Ob Shimn, the groupoid of morphisms
G1 → G2 is the quotient groupoid3 of HomGm(G1, G2) by the conjugation action
of GGm

2 (Z/pnZ). Here HomGm is the set of Gm-equivariant homomorphisms, and
GGm

2 ⊂ G2 is the group subscheme of Gm-fixed points.
The above (2,1)-category Shimn is not quite good from a certain viewpoint4,

but we work with it in this article.

2.3. The subgroups M , P±, U±

2.3.1. Recollections from [8]. Let k be a ring and G a smooth affine
group k-scheme equipped with a Gm-action, i.e., a homomorphism µ : Gm →
AutG. Let M := GGm , i.e., M ⊂ G is the subgroup of Gm-fixed points. Let P+

be the attractor for µ, i.e., P+ ⊂ G is the maximal closed subscheme such that
the action map Gm×P+ → G extends to a morphism of schemes A1×P+ → G.
Restricting the latter to {0} × P+ ⊂ A1 × P+, we get a retraction P+ → M ⊂
P+. Let P− ⊂ G be the attractor for µ−1; we have a retraction P− → M ⊂
P−. Let U± be the preimage of 1 with respect to the map P± → M . The next
lemma is well known if G is reductive and connected (in this case P+ and P−

are parabolics, and M is a Levi).

Lemma 2.3.2.

(i) P± and U± are group subschemes of G. The maps P± → M are group
homomorphisms. One has P± = M n U±.

(ii) P+ ∩ P− = M .

(iii) P±, U±, and M are smooth. In terms of the grading (2.1), one has

Lie(M) = g0, Lie(P+) = g≥0, Lie(P−) = g≤0,

Lie(U+) = g>0, Lie(U−) = g<0,

where g≥0 :=
⊕
i≥0

gi and g≤0, g>0, g<0 are defined similarly.

(iv) The multiplication map U− ×M × U+ → G is an open immersion.

(v) The fibers of U± over Spec k are connected. If the fibers of G over Spec k
are connected then the same holds for P± and M .

Proof. Apply the results from [8, p. 48-56] (especially [8, Prop. 2.1.8]) to the
semidirect product Gm nG.

2.3.3. The 1-bounded case. Now assume that gi = 0 for i > 1. Then
g1 is abelian. Moreover, by [19, Lemma 6.3.2], there is a unique Gm-equivariant
isomorphism of group schemes

f : U+ ∼−→ g1 (2.2)

3If a group Γ acts on a set X then the quotient groupoid is defined as follows: the set of
objects is X, a morphism x → x′ is an element γ ∈ Γ such that γx = x′, and the composition
of morphisms is given by multiplication in G.

4See §9.1.4 of version 1 of [12].
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such that Lie(f) = idg1 . If the ring k is local then the projective k-module g1
is free, so the isomorphism (2.2) implies that U+ is isomorphic to a product of
several copies of Ga.

If k is an Fp-algebra then g is equipped with a p-operation x 7→ x(p). By (2.2),
if g is 1-bounded then

x(p) = 0 for x ∈ g1 . (2.3)

Another way to prove (2.3) is to note that more generally, the p-operation takes
gi to gpi. This follows from the fact that for any k-algebra k̃ and any a ∈ k̃× the
action of a on g⊗k k̃ preserves the structure of restricted Lie algebra on g⊗k k̃.

3. Recollections on the stacks DispG1

3.1. Plan of this section. For any n ∈ N and a smooth group scheme
G over Z/pnZ equipped with a Gm-action, one has the Fp-stack of n-truncated
displays DispGn defined5 in [19].

In §3.2 we recall the stack DispG1 . Assuming that G ∈ Shim1, we define in
§3.3 a commutative group scheme on DispG1 ; we denote it by LauG1 (because it is
conjecturally related to E. Lau’s work [18], see §4.5 below).

The stack BTG
1,Fp

, which will be defined in §4 assuming that G ∈ Shim1, will

be equipped with a map to DispG1 , which makes it into a gerbe over DispG1 banded
by LauG1 .

Let us make some historical remarks related to DispG1 . First, as noted in
Example 3.7.5 of [19], DispG1 is the same as the stack of F -zips in the sense
of [23, 25]. Second, the projective limit of DispGn is the reduction modulo p of a
stack over Spf Zp, which was defined in [5] (at least, assuming that G is reductive
and the cocharacter µ : Gm → Gad is minuscule) following the ideas of Thomas
Zink. The articles [5, 23,25] preceded [19].

3.2. The Fp-stack DispG1 .

3.2.1. Definition of the stack DispG1 . Let G be a smooth group scheme
over Fp equipped with a Gm-action. Let M and P± be as in §2.3. Let S be an
Fp-scheme. Then DispG1 (S) is the groupoid of the following data:

(i) a P±-torsor F± on S;

(ii) an isomorphism between the G-torsors corresponding to F+ and F−;

(iii) an isomorphism F+
M

∼−→ Fr∗S F
−
M , where F±M is the M -torsor corresponding

to F±.

3.2.2. DispG1 as a quotient stack. As noted in [25], the stack DispG1 has
an explicit realization as a quotient, which shows that DispG1 is a quasi-compact
smooth alegbraic stack over Fp of pure dimension 0 with affine diagonal. To get
this realization, note that the combination of data (i) and (iii) is the same as a
principal K-bundle E → S, where K ⊂ G×G is the following subgroup:

K := {(g, h) ∈ P+ × P− | gM = Fr(hM )}, (3.1)

5We are talking about the particular case of a general construction of [19] corresponding to
the “n-truncated Witt frame” in the sense of [19, Example 2.1.6].
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(here gM , hM are the images of g, h in M). Moreover, data (ii) is the same as a
K-equivariant morphism E → G, where (g, h) ∈ K acts on G by

x 7→ hxg−1. (3.2)

Thus DispG1 identifies with the quotient of the scheme G by the action of K given
by (3.2).

3.2.3. The generic locus of DispG1 . By (3.1), the stabilizer of 1 ∈ G under
the K-action given by (3.2) equals the finite group M(Fp). Moreover, the K-orbit
of 1 is open.

By §3.2.2, DispG1 is a quotient of the scheme G. The composite morphism

SpecFp
1−→ G� DispG1 (3.3)

will be called the generic point of the stack DispG1 . The group scheme of auto-
morphisms of this point equals M(Fp), and the image of (3.3) is an open substack
of DispG1 , which identifies with the classifying stack of M(Fp). This open sub-
stack will be called the generic locus of DispG1 and denoted by DispG1,gen. The

word “generic” is justified at least if G is connected (which implies that DispG1 is
irreducible).

3.2.4. Motivation. A pair (F+,F−) equipped with data (ii) from §3.2.1 is
the same as a G-torsor F equipped with a P+-structure and a P−-structure. If
G = GL(d) this means that the vector bundle ξ corresponding to F is equipped
with two filtrations. As explained at the beginning of [23], the typical example
is when ξ is the m-th relative de Rham cohomology of a smooth proper scheme
X over S satisfying certain conditions6. In this situation the P−-structure corre-
sponds to the Hodge filration, and the P+-structure corresponds to the conjugate
one.

Note that the Gauss–Manin connection on ξ is not included into the definition
of DispG1 . However, it is included into the definition of BTG

1,Fp
, which will be given

in §4.2.

3.2.5. Reductive case. If G is reductive it is known that the set of points
of DispG1 is finite; moreover, Theorem 1.6 of [25] gives a complete description of
this set (together with the topology on it), and Theorem 1.7 of [25] describes the
automorphism group scheme of each point.

3.3. The group scheme LauG1

3.3.1. Definition of LauG1 . From now on, we assume7 that G ∈ Shim1

(i.e., the action of Gm on G is 1-bounded). Given an Fp-scheme S and an S-
point of DispG1 , we will construct a group scheme over S. Let us use the notation

6The conditions for the smooth proper morphism f : X → S are as follows: the sheaves
Rbf∗Ω

a
X/S should be locally free, and the Hodge-de Rham spectral sequence for f should de-

generate at the E1 page.
7Without this assumption, the definition given below formally makes sense (but is probably

useless) if one replaces g1 by g>0 .
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of §3.2.1. Note that both P+ and P− act on g1 via M ; we have a P+-equivariant
monomorphism g1 ↪→ g and a P−-equivariant epimorphism g � g/g≤0 = g1. Let
(g1)F± be the vector bundle on S corresponding to F± and the P±-module g1.
We have the diagram

Fr∗S(g1)F−
∼−→ (g1)F+ ↪→ gF+

∼−→ gF− � (g1)F− (3.4)

in which the first isomorphism comes from data (iii) of §3.2.1 and the second one
from (ii). Consider (g1)F− as a commutative restricted Lie OS-algebra with p-
operation8 (3.4). This restricted Lie OS-algebra yields a finite locally free group
S-scheme of height 1 in the usual way (see [26, Exp.VIIA] or [15, §2]). We denote
it by LauG1,S . The formation of LauG1,S commutes with base change S′ → S. As S

varies, the group schemes LauG1,S define a commutative finite flat group scheme

over DispG1 of height 1, which we denote by LauG1 .

The stack BTG
1,Fp

, which will be defined in §4, will turn out to be a gerbe over

DispG1 banded by LauG1 , see Theorem 4.4.2.

3.3.2. Restriction of LauG1 to the generic locus of DispG1 . Let LauG1,gen
be the fiber of LauG1 over the generic point of DispG1 in the sense of §3.2.3, so
LauG1,gen is a finite group scheme over Fp equipped with an action of M(Fp). Then
one has a canonical M(Fp)-equivariant isomorphism

LauG1,gen
∼−→ g1 ⊗Fp µp (3.5)

(indeed, in the case of the generic point of DispG1 the torsors F± are canonically
trivial, and the composite map (3.4) is idg1). Less canonically, LauG1,gen is a direct
sum of dim g1 copies of µp.

4. Definition of BTG
1,Fp

4.1. General remarks on smooth algebraic stacks

4.1.1. An easy lemma. Let SchFp be the category of Fp-schemes and SmFp

the full subcategory of smooth Fp-schemes; unless specified otherwise, we will
specify each of these categories with the etale topology. Let Grpds be the (2,1)-
category of groupoids.

Let X be an Fp-stack, i.e., a functor Schop
Fp
→ Grpds satisfying the sheaf

property. Then the restriction of X : Schop
Fp
→ Grpds to Smop

Fp
will be denoted

by XSm. The following variant of Yoneda’s lemma is easy and well known.

Lemma 4.1.2. The functor X 7→XSm becomes fully faithful when restricted
to the (2.1)-category of smooth algebraic stacks over Fp.

This variant of Yoneda’s lemma is probably well known. For completeness,
we give a proof of a more general statement in Proposition A.0.1 of Appendix A.

8This p-operation is different from the one induced by the p-operation on g1; the latter is
zero by formula (2.3).
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Remark 4.1.3. One can ask how to reconstruct a smooth algebraic stack X
over Fp in terms of XSm. Abstract nonsense gives the following “answer” (see
Proposition A.0.2 and the sentence after it): X is the sheafified left Kan extension
of XSm : Smop

Fp
→ Grpds to Schop

Fp
.

4.1.4. Example. In this article we will be describing smooth algebraic Fp-
stacks by specifying their restriction to Smop

Fp
. Here is a baby example.

Let X be the classifying stack of the group scheme

αp := Ker(Fr : Ga → Ga), where Ga := (Ga)Fp ; (4.1)

in other words, X (S) is the groupoid of αp-torsors on S for the fppf topology.
The stack X is smooth: indeed, the map

Ga × A1 → A1, (a, x) 7→ x+ ap.

defines an action of Ga on A1 such that the quotient stack is X . We claim that
XSm is the following sheaf of sets (rather than groupoids):

S 7→ H0(S,Ω1
S,exact), where S ∈ SmFp and Ω1

S,exact := Im(OS,et
d−→ Ω1

S,et).

Indeed, by (4.1), the derived direct image of αp under the morphism Sfppf → Set
equals A[−1], where A := Cone(Fr : OS,et → OS,et). Finally, smoothness of S
implies that A = Ω1

S,exact .

4.2. Definition of BTG
1 (S), where S ∈ SmFp. We will use the notion of

p-curvature of an integrable connection (see [16, §5]). We say that a connection
is p-integrable if it is integrable and its p-curvature is zero.

4.2.1. Definition. Let G ∈ Shim1. Let M and P± be as in §2.3. Let S ∈
SmFp . Then BTG

1 (S) is the groupoid of the following data:

(i) a P±-torsor F± on S;

(ii) an isomorphism F+
G

∼−→ F−G , where F±G is the G-torsor corresponding to
F±;

(iii) an isomorphism
F+
M

∼−→ Fr∗S F−M , (4.2)

where F±M is the M -torsor corresponding to F±;

(iv) an integrable connection ∇ on F+ satisfying the following conditions: first,
the corresponding connection on F+

M should equal the one that comes from
(4.2) and the usual connection on a FrS-pullback; second, the following Katz
condition should hold:

p-Curv∇ = −KS∇, (4.3)

where p-Curv∇ is the p-curvature of ∇ and KS∇ ∈ H0(S, (g1)F− ⊗ Ω1
S) is

the Kodaira–Spencer9 1-form defined in §4.2.2 below.

9The terminology is motivated by the picture from §3.2.4. One can think of data (i)-(ii)
as a G-bundle on S equipped with a P+-structure and a P−-structure. Informally, these are
the conjugate filtration and Hodge filtration, respectively. Also informally, we think of ∇ as a
Gauss-Manin connection.
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Let us explain why (4.3) makes sense. The right-hand side of (4.3) is a section
of the sheaf (g1)F− ⊗Ω1

S . By the first condition from (iv), the connection on F+
M

induced by ∇ is p-integrable, so p-Curv∇ is a section of (Fr∗(g1)F+)∇ ⊗ Ω1
S ,

where Fr := FrS and (Fr∗(g1)F+)∇ is the horizontal part of Fr∗(g1)F+ . But (4.2)
induces an isomorphism Fr∗(g1)F−

∼−→ (g1)F+ , so (Fr∗(g1)F+)∇ = (g1)F− and
(4.3) makes sense.

4.2.2. The Kodaira–Spencer 1-form. By §4.2.1(ii), F+ and F− induce
the same G-torsor, which we denote by F . The connection ∇ on F+ induces
a connection ∇G on F , and KS∇ “measures” the failure of ∇G to preserve the
P−-structure on F . More precisely, ∇G is a section of the Atiyah extension10

0→ gF → A→ ΘS → 0, ΘS := (Ω1
S)∗, (4.4)

and KS∇ : ΘS → (g/g≤0)F− is the composition of ∇G : ΘS → A and the map

A → (g/Lie(P−))F− = (g/g≤0)F−

that comes from the P−-structure on F . Note that g/g≤0 = g1 by the 1-
boundedness assumption.

4.2.3. Remark. The above definition of BTG
1 (S) makes sense with-

out the 1-boundedness assumption if (4.3) is understood as an equality in
H0(S, (g/g≤0)F− ⊗ Ω1

S); this equality implies the Griffiths transversality con-
dition KS∇ ∈ H0(S, (g1)F− ⊗ Ω1

S) because p-Curv∇ is in H0(S, (g1)F− ⊗ Ω1
S).

However, the 1-boundedness assumption is used in the proof of the theorems
formulated in §4.4 below.

4.2.4. On the Katz condition. Condition (4.3) is inspired by Theorem 3.2
of [17]. As far as I understand, the minus sign in (4.3) does not agree11 with [17,
Thm. 3.2], but it agrees with Remark 3.20 of [24], which explains a modern point
of view on Theorem 3.2 of [17]. (In [24, Remark 3.20] the sign appears when one
computes explicitly the functor C•Y/S , which occurs in the l.h.s of (3.19.2) and

(3.19.3).)

4.2.5. Remark. Forgetting the connection ∇ from §4.2.1(iv), one gets for
each S ∈ SmFp a functor BTG

1 (S)→ DispG1 (S), where DispG1 is as in §3.2.1.

4.3. Functoriality in G ∈ Shim1. It is clear that the functor

Smop
Fp
→ Grpds, S 7→ BTG

1 (S). (4.5)

from §4.2.1 depends functorially on G ∈ Shim1, where Shim1 is the (2,1)-
category from §2.2.

10Recall that in terms of the principal G-bundle E → S corresponding to F , the sheaf A from
(4.4) is the sheaf of G-equivariant vector fields on E.

11Theorem 3.2 of [17] involves (−1)b+1, where b is the number of the cohomology group. The
case relevant for us is b = 1.
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4.4. Formulation of the main theorems

Theorem 4.4.1. There exists a smooth algebraic stack BTG
1,Fp

over Fp whose

restriction to Smop
Fp

is the functor (4.5).

By Lemma 4.1.2, BTG
1,Fp

is unique. Combining §4.2.5 and Lemma 4.1.2, we
get a morphism

BTG
1,Fp
→ DispG1 (4.6)

Theorem 4.4.2. The morphism (4.6) is an fppf gerbe banded by the group
scheme LauG1 from §3.3.1.

Theorems 4.4.1 and 4.4.2 will be proved in §6.3.

Corollary 4.4.3. BTG
1,Fp

is a quasi-compact smooth algebraic stack over Fp
of pure dimension 0 with affine diagonal.

Proof. By Theorems 4.4.1–4.4.2, this follows from similar properties of DispG1
(see §3.2.2).

4.4.4. Remark. As explained in §B.0.2 of Appendix B, Theorem 4.4.2 im-
plies that the morphism (4.6) is smooth.

4.4.5. A simple example. Let G be Ga equipped with the usual action of
Gm. In this case DispG1 = SpecFp and LauG1 = µp. Since H i

fppf(SpecFp, µp) =

0 for all i, Theorem 4.4.2 implies that BTG
1,Fp

is canonically isomorphic to the
classifying stack of µp over Fp.

4.5. A conjecture about BTG
1,Fp

in the case G = GL(d)

4.5.1. Some results of E. Lau. Let d, d′ be integers such that 0 ≤ d′ ≤
d. Let n ∈ N. Let G be the group scheme GL(d) equipped with the Gm-action
corresponding to the composite map

Gm → GL(d)→ PGL(d), (4.7)

where the first map takes t to a diagonal matrix with d′ diagonal entries equal to
t and d− d′ diagonal entries equal to 1.

Let BTd,d′
n be the stack of n-truncated Barsotti-Tate groups of height d and

dimension d′. Using a covariant version of Dieudonné theory12, E. Lau defined in
[18] a canonical morphism BTd,d′

n ⊗Fp → DispGn . Moreover, according to Theorem
B of [18], this morphism is a gerbe banded by a commutative locally free finite
group scheme over DispGn . We denote this group scheme by LauG,truen .

According to [18], the group scheme LauG,truen is infinitesimal and has or-
der pnd

′(d−d′) (see Theorem B of [18] and the paragraph after it). Moreover,
Remark 4.8 of [18] describes the restriction of LauG,truen to the generic locus of
DispGn ; in the case n = 1, it is canonically isomorphic to the restriction of LauG1
(which was described in §3.3.2).

12Those who prefer contravariant Dieudonné theory should replace d′ by d−d′ in the definition
of (4.7).
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Proposition 4.5.2. The isomorphism between the restrictions of LauG,true1

and LauG1 to the generic locus of DispG1 extends13 to an isomorphism over the
whole DispG1 .

Proof. Follows from [10, Thm. 4.4.2(ii)] and [10, § 9.2.2].

Combining Proposition 4.5.2 with Theorem 4.4.1, we see that BTG
1,Fp

and

BTd,d′

1 ⊗Fp are gerbes over DispG1 banded by the same group scheme LauG1 .

Conjecture 4.5.3. These two gerbes are isomorphic.

As far as I understand, Conjecture 4.5.3 has already been proved in [12].

5. Analyzing the conditions for the connection ∇

The definition of BTG
1 (S) from §4.2.1 involves a connection ∇, which has

to satisfy certain conditions. In this section we show that these conditions are
affine-Fp-linear; for a precise statement, see Theorem 5.2.6 below. In §6 we will
deduce Theorems 4.4.1 and 4.4.2 from Theorem 5.2.6.

5.1. The sheaves T and T ′

5.1.1. The category Sm /DispG1 . Let Sm /DispG1 be the category of pairs
(S, f), where S ∈ SmFp and f ∈ DispG1 (S). We equip Sm /DispG1 with the etale
topology.

5.1.2. The sheaf T . Let (S, f) ∈ Sm /DispG1 , so f ∈ DispG1 (S) is given by
data (i)–(iii) from §4.2.1. We will use the notation of §4.2.1 for these data (i.e.,
F±, F±M , etc.). Let T (S, f) be the fiber of the functor BTG

1 (S)→ DispG1 (S) over
f ∈ DispG1 (S). This fiber is a set rather than a groupoid; namely, T (S, f) is the
set of connections ∇ on the P+-bundle F+ satisfying certain conditions. The
conditions are as follows:

(a) the connection on F+
M induced by ∇ is equal to the one that comes from the

isomorphism F+
M

∼−→ Fr∗S F
−
M ;

(b) ∇ is integrable;

(c) ∇ satisfies the Katz condition, i.e.,

p-Curv∇ = −KS∇, (5.1)

where KS∇ ∈ H0(S, (g1)F− ⊗Ω1
S) is the Kodaira–Spencer 1-form defined in

§4.2.2 and p-Curv∇ ∈ H0(S, (Fr∗(g1)F+)∇ ⊗ Ω1
S) = H0(S, (g1)F− ⊗ Ω1

S) is
the p-curvature of ∇ (see §4.2.1 for details).

The assignment (S, f) 7→ T (S, f) is a sheaf on Sm /DispG1 (with respect to
the etale topology).

13Such an extension is unique. Indeed, by §3.2.2, DispG
1 is a quotient of the reduced irreducible

scheme G = GL(n).
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5.1.3. The sheaf T ′ ⊃ T . We keep the notation of §5.1.2. Let T ′(S, f) be
the set of connections ∇ on F+ satisfying condition (a) from §5.1.2. Then T ′ is
a sheaf of sets on Sm /DispG1 , and T ⊂ T ′.

5.2. T and T ′ as torsors

5.2.1. The sheaf A′. Define a sheaf of Fp-vector spaces A′ on Sm /DispG1
as follows:

A′(S, f) := H0(S, (g1)F+ ⊗ Ω1
S). (5.2)

Then A′ acts on T ′ in the usual way (adding a 1-form to a connection). Moreover,
T ′ is an A′-torsor.

Using the isomorphism F+ ∼−→ Fr∗S F− (which is a part of the data), we can
rewrite (5.2) as

A′(S, f) = H0(S,Fr∗S(g1)F− ⊗ Ω1
S) = H0(S, (g1)F− ⊗ (FrS)∗Ω

1
S). (5.3)

Note that FrS : S → S induces the identity on the underlying set of S, so
(FrS)∗Ω

1
S is just the sheaf Ω1

S equipped with the Frobenius-twisted OS-action.

5.2.2. The next goals. In §5.2.4 we will define a subsheaf of Fp-vector
spaces A ⊂ A′. Then we will formulate Theorem 5.2.6, which says that T is an
A-torsor.

5.2.3. The maps ϕ, ϕ̃, C, and C̃. Let ϕ : (g1)F− → (g1)F− be the p-linear
map corresponidng to theOS-linear map Fr∗S(g1)F− → (g1)F− from formula (3.4).
The latter is the composition

Fr∗S(g1)F−
∼−→ (g1)F+ ↪→ gF+

∼−→ gF− � (g1)F− .

The map ϕ induces a p-linear map

ϕ̃ : (g1)F− ⊗ (FrS)∗Ω
1
S → (g1)F− ⊗ Ω1

S ;

namely, ϕ̃ is the tensor product of ϕ : (g1)F− → (g1)F− and the identity14 map

(FrS)∗Ω
1
S → Ω1

S

(the latter is p-linear).

We have the OS-submodule ((FrS)∗Ω
1
S)closed ⊂ (FrS)∗Ω

1
S and the Cartier

operator15

C : ((FrS)∗Ω
1
S)closed → Ω1

S ,

which is OS-linear and surjective. C induces a surjective OS-linear map

C̃ : (g1)F− ⊗ ((FrS)∗Ω
1
S)closed → (g1)F− ⊗ Ω1

S , C̃ := id⊗C
14See the end of §5.2.1.
15In Lemma 5.4.2 we will recall the explicit description of the Cartier operator assuming that

S is equipped with a coordinate system.
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5.2.4. The sheaf A. Let us use formula (5.3) for A′. Define a sheaf of
Fp-vector spaces A ⊂ A′ as follows:

A(S, f) = {ω ∈ H0(S, (g1)F− ⊗ ((FrS)∗Ω
1
S)closed | C̃(ω) = ϕ̃(ω)}, (5.4)

where C̃ and ϕ̃ were defined in §5.2.3.

5.2.5. Remarks about A
(i) By definition, A is the kernel of a certain morphism of sheaves. Later we

will see that this morphism is surjective, see Lemma 5.3.4.

(ii) The “true nature” of A will be explained in Proposition 6.2.3.

Theorem 5.2.6. The subsheaf T ⊂ T ′ is stable under the action of A ⊂ A′.
Moreover, T is an A-torsor.

The proof will be given in §5.3, 5.4.

Remark 5.2.7. In particular, Theorem 5.2.6 says that for every S ∈ SmFp ,

every object of DispG1 (S) admits a lift to BTG
1 (S) etale-locally on S. As explained

in §4.4.4, this is a part of Theorem 4.4.2, which we want to prove.

5.3. Proof of Theorem 5.2.6. Given (S, f) ∈ Sm /DispG1 , let TS be the
restriction of T to Set; similarly, we have T ′S , AS , A′S . The problem is to prove
that the subsheaf TS ⊂ T ′S is an AS-torsor.

Lemma 5.3.1. Zariski-locally on S, there exists a connection ∇ on F+ sat-
isfying conditions (a) and (b) from §5.1.2.

Proof. Zariski-locally, there exists an isomorphism between F+ and the P+-
torsor induced from the M -torsor F+

M via the inclusion M ↪→ P+. Choose such
an isomorphism and take ∇ to be induced by the canonical connection on F+

M =
Fr∗S F

−
M .

Lemma 5.3.2. Let ∇ be as in Lemma 5.3.1. A connection ∇̃ on F+ sat-
isfies conditions (a) and (b) from §5.1.2 if and only if ∇̃ = ∇ + ω, where ω ∈
H0(S, (g1)F+ ⊗ Ω1

S) and dω = 0.

Proof. Write ∇̃ = ∇ + ω, where ω ∈ H0(S, (g≥0)F+ ⊗ Ω1
S). Condition (a)

means that ω ∈ H0(S, (g1)F+ ⊗ Ω1
S). Condition (b) is equivalent to the Maurer-

Cartan equation for ω. Since [g1, g1] = 0, this is just the equation dω = 0.

As noted in §5.2.1, H0(S, (g1)F+ ⊗ Ω1
S) = H0(S, (g1)F− ⊗ (FrS)∗Ω

1
S). So the

ω from Lemma 5.3.2 is in H0(S, (g1)F− ⊗ ((FrS)∗Ω
1
S)closed).

Lemma 5.3.3. In the situation of Lemma 5.3.2, we have

KS∇̃−KS∇ = ϕ̃(ω), (5.5)

p-Curv∇̃−p-Curv∇ = −C̃(ω), (5.6)

where ϕ̃ : (g1)F−⊗ (FrS)∗Ω
1
S → (g1)F−⊗Ω1

S and C̃ : (g1)F−⊗ ((FrS)∗Ω
1
S)closed →

(g1)F− ⊗ Ω1
S are as in §5.2.3.
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Formula (5.5) immediately follows from the definition of ϕ̃. A proof of (5.6)
will be given in §5.4.

Theorem 5.3 follows from (5.5) and (5.6) and the next lemma.

Lemma 5.3.4. The map (g1)F− ⊗ ((FrS)∗Ω
1
S)closed

C̃−ϕ̃−→ (g1)F− ⊗ Ω1
S is a

surjective morphism of etale sheaves of Fp-vector spaces.

Proof. Let E1 := (g1)F− ⊗ ((FrS)∗Ω
1
S)closed , E2 := (g1)F− ⊗ Ω1

S ; these are
finitely generated locally freeOS-modules. Let E1, E2 be the corresponding vector
bundles; these are schemes over S (namely, Ei is the spectrum of the symmetric
algebra of E∗i ). Recall that C̃ : E1 → E2 is a surjective OS-linear map and ϕ̃ :

E1 → E2 is p-linear. So the morphism of S-schemes E1
C̃−ϕ̃−→ E2 is smooth. It is

also surjective: indeed, the image is an open subgroup scheme of E2, so it has
to be equal to E2. Therefore every section of E2 etale-locally admits a lift to a
section of E1.

5.4. Proof of formula (5.6). A proof will be given in §5.4.4; it is parallel
to that of Propostion 7.1.2 of [17]. Let us first recall some facts used in the proof.

5.4.1. Recollections. Let Fp〈x, y〉 be the free associative Fp-algebra on x, y.
Let us define J ∈ Fp〈x, y〉 by J(x, y) := (x + y)p − xp − yp. We have J = J1 +
. . .+ Jp−1, where Ji is homogeneous of degree i in y. Jacobson proved that each
Ji belongs to the free Lie algebra on x, y (which is a Lie subalgebra of Fp〈x, y〉)
and that

J1(x, y) = adp−1x (y). (5.7)

Hochschild’s proof of these results can be found in [6, p. 199-200]. Since Ji is a
Lie polynomial in x, y, which is homogeneous of degree i in y, we see that

Ji ∈ [a, a] for i > 1, (5.8)

where a ⊂ Fp〈x, y〉 is the Lie subalgebra generated by the elements adjx(y), j ≥
0.

We will also need the following coordinate description of the Cartier operator

C : H0(S,Ω1
S)closed → H0(S,Ω1

S).

Lemma 5.4.2. Let S be a scheme etale over SpecFp[x1, . . . , xn] and ω ∈
H0(S,Ω1

S)closed . Write ω =
∑
i
fi · dxi, C(ω) =

∑
i
hi · dxi, where fi, hi ∈

H0(S,OS). Then

hpi = −∂p−1i (fi), where ∂i :=
∂

∂xi
. (5.9)

This lemma is well known, see formula (7.1.2.6) of [17]; moreover, P. Cartier
used (5.9) to define C, see p. 200 and p. 202–203 of [6]. We prove the lemma for
completeness.



On Shimurian Generalizations of the Stack BT1 ⊗ Fp 289

Proof of Lemma 5.4.2. By Cartier’s isomorphism, the space of closed 1-forms
is generated by locally exact 1-forms and by

gp · xp−1i dxi, g ∈ H0(S,OS), 1 ≤ i ≤ n. (5.10)

If ω is given by (5.10) then C(ω) = g · dxi, and (5.9) holds because

∂p−1i (gp · xp−1i ) = (p− 1)! · gp = −gp

by Wilson’s theorem. On the other hand, if ω =
∑
i
fi · dxi is exact then C(ω) =

0, and the problem is to show that ∂p−1i (fi) = 0. Indeed, if ω = du then fi =

∂i(u) and we have ∂p−1i (fi) = ∂pi (u) = 0.

Remark 5.4.3. Formula 5.10 tells us that in the situation of Lemma 5.4.2, the
function ∂p−1i (fi) is a p-th power. Here is a direct proof of this. It suffices to

show that ∂j∂
p−1
i (fi) = 0 for all j. But the equality dω = 0 means that ∂j(fi) =

∂i(fj), so ∂j∂
p−1
i (fi) = ∂pi (fj) = 0.

5.4.4. Proof of formula (5.6). We can assume that S is equipped with an
etale morphism to SpecFp[x1, . . . , xn]. Write ω ∈ H0(S, (g1)F+ ⊗ Ω1

S)closed as

ω =
∑
i

fi ⊗ dxi , where fi ∈ H0(S, (g1)F+).

We have (g1)F+ = Fr∗ E , where E = (g1)F− ; so E is the horizontal part of
Fr∗(g1)F+ . The problem is to prove that

p-Curv∇+ω −p-Curv∇ = −C̃(ω), (5.11)

where C̃ : H0(S, (g1)F+ ⊗Ω1
S)closed = H0(S, E ⊗ (Fr∗Ω1

S)closed)→ H0(S, E ⊗Ω1
S)

is induced by C : (Fr∗Ω1
S)closed → Ω1

S . Write C̃(ω) =
∑
i
hi ⊗ dxi, where hi ∈

H0(S, E), then Lemma 5.4.2 implies that

Fr∗(hi) = −∇p−1i (fi), where ∇i := ∇ ∂
∂xi

. (5.12)

Let us now compute the l.h.s. of (5.11). By §2.3.3, [g1, g1] = 0 and the p-
operation on g1 is zero. So by (5.7), (5.8), we get (∇i + fi)

p − ∇pi = ∇p−1i (fi).
This means that the l.h.s. of (5.11) equals −

∑
i
hi ⊗ dxi, where the hi’s are as

in (5.12).

6. Proof of Theorems 4.4.1 and 4.4.2

In §6.3 we will see that Theorems 4.4.1 and 4.4.2 easily follow from Theo-
rem 5.2.6 and a result of Artin–Milne [1], which we are going to recall now.
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6.1. A result of Artin–Milne

6.1.1. The setting. Let S be a smooth Fp-scheme and H a finite flat
commutative group scheme over S. Assume that H has height 1 (i.e., is killed
by Frobenius). We have a morphism of sites π : Sfppf → Set. Artin and Milne
described the sheaves Rqπ∗H.

To formulate their result, we need some notation. Let h := Lie(H); this is a
finitely generated locally free OS-module. The p-operation on h is a p-linear map
ϕ : h → h. Similarly to §5.2.3, one defines a p-linear map ϕ̃ : h ⊗ (FrS)∗Ω

1
S →

h ⊗ Ω1
S and a surjective OS-linear map C̃ : h ⊗ ((FrS)∗Ω

1
S)closed → h ⊗ Ω1

S (the
definition of ϕ̃ uses ϕ, and the definition of C̃ uses the Cartier operator C).

Proposition 6.1.2. In the situation of §6.1.1 one has a canonical exact
sequence

0→ R1π∗H
f−→ h⊗ ((FrS)∗Ω

1
S)closed

C̃−ϕ̃−→ h⊗ Ω1
S → 0 (6.1)

of sheaves on Set, which is functorial with respect to H and with respect to base
changes S′ → S; moreover, Rqπ∗H = 0 if q > 1.

This is Proposition 2.4 of [1]. The construction of the map f from (6.1) will
be recalled in §6.1.5.

6.1.3. Example. Let H = (αp)S . In this case Propostion 6.1.2 says that

Rπ∗H = ((FrS)∗Ω
1
S)exact[−1].

Since FrS induces the identity functor Set → Set, we can rewrite this as Rπ∗H =
Ω1
S,exact[−1]. This is well known (and explained at the end of §4.1.4).

6.1.4. Remarks

(i) The equality R0π∗H = 0 is clear because S is reduced and the reduced part
of the fiber of H over each point of S is zero.

(ii) The proof of the equality Rqπ∗H = 0 for q > 1 given in [1] works for any
scheme S and any finite locally free commutative group scheme over S.

(iii) In a particular situation, surjectivity of the map C̃−ϕ̃ from (6.1) was proved
in Lemma 5.3.4. The same argument works in general.

6.1.5. Interpretation and noncommutative generalization of (6.1).
An element of H1

fppf(S,H) is an isomorphism class of a principal H-bundle E →
S. Since H is killed by Frobenius, the geometric Frobenius F : E → Fr∗S E factors

as E → S
σ−→ Fr∗S E. The section σ trivializes the bundle Fr∗S E. On the other

hand, any FrS-pullback (e.g., Fr∗S E) is equipped with a p-integrable connection.
A connection ∇ on the trivialized Fr∗S H-bundle Fr∗S E is given by an element
ω ∈ H0(S,Fr∗S h ⊗ Ω1

S) = H0(S, h ⊗ (FrS)∗Ω
1
S). Moreover, integrability of ∇ is

equivalent to the Maurer–Cartan equation for ω; since H is commutative, this
equation just means that ω ∈ H0(S, h⊗ ((FrS)∗Ω

1
S))closed). Thus we get a map

H1
fppf(S,H)→ H0(S, h⊗ ((FrS)∗Ω

1
S))closed).



On Shimurian Generalizations of the Stack BT1 ⊗ Fp 291

This map and similar maps for all schemes etale over S give rise to the map f
from (6.1). (This is essentially the description of f from [1, §2.7] although the
word “connection” is not used there).

It is easy to check16 that the inclusion Im f ⊂ Ker(C̃ − ϕ̃) (which is a part
of Proposition 6.1.2) just means that the p-curvature of ∇ is zero. So the exact
sequence (6.1) essentially says that H1

fppf(S,H) canonically identifies (via FrS-
pullback) with the set of p-integrable connections on the trivial H-bundle on S.
One can prove that this statement remains valid without assuming H commuta-
tive; we will not need this fact.

6.2. The classifying stack of LauG1

6.2.1. The sheaf B. Let Sch /DispG1 be the category of pairs (S, f), where
S is a scheme and f : S → DispG1 is a morphism. Let Sm /DispG1 be the full
subcategory of Sch /DispG1 formed by pairs (S, f) such that S ∈ SmFp . We equip

Sch /DispG1 and Sm /DispG1 with the etale topology.

In §3.3.1 we defined a commutative finite flat group scheme LauG1 over DispG1 ;
this group scheme has height 1. By definition, the classifying stack of LauG1 is the
stack of Picard groupoids on Sch /DispG1 whose sections over (S, f) ∈ Sch /DispG1
are (f∗ LauG1 )-torsors. Let B be the restriction of this stack to Sm /DispG1 . For
any (S, f) ∈ Sm /DispG1 one has H0(S, f∗ LauG1 ) = 0 (because S is reduced), so
the groupoid of sections of B over (S, f) is discrete. Therefore B is just a sheaf
of abelian groups.

6.2.2. Remark. Restricting from Sch /DispG1 to Sm /DispG1 does not lead
to loss of information: this follows from Lemma 4.1.2 and the fact that the
classifying stack of LauG1 is smooth over Fp. The latter follows from §B.0.1 of
Appendix B because by §3.2.2, DispG1 is smooth over Fp.

Proposition 6.2.3. The sheaf B from §6.2.1 is canonically isomorphic to the
sheaf A from §5.2.4.

Proof. Follows from Proposition 6.1.2 and the definitions of A and LauG1 .

6.3. Proof of Theorems 4.4.1 and 4.4.2. In §5.1.2 we introduced the
notation T for BTG

1,Fp
viewed as a sheaf of sets on Sm /DispG1 . The problem is to

show that T is locally isomorphic to the sheaf B from §6.2.1. By Proposition 6.2.3,
B = A. By Theorem 5.2.6, T is locally isomorphic to A.

A. Generalities on stacks

Let P be a smooth-local property of schemes. Let Sch be the category of all
schemes and SchP the category of schemes satisfying P ; we equip Sch and SchP
with the etale topology. Let StacksP be the (2,1)-category of algebraic stacks
satisfying P (this makes sense because P is smooth-local). Let Grpds be the
(2,1)-category of groupoids.

16The verification is parallel to §5.4.4; the only difference is that the p-operation on h is not
assumed to be zero, while the restricted Lie algebra (g1)F+ from §5.4.4 has zero p-operation.
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Given a stack Y : Schop → Grpds, let YP denote the restriction of Y to
Schop

P .

Proposition A.0.1. Let X ∈ StacksP . Then the functor Mor(X ,Y ) →
Mor(XP ,YP ) is an equivalence for any stack Y : Schop → Grpds.

Proof. Let π : X → X be a smooth surjective morphism with X being a
scheme. Let X• be the Čech nerve of π. Note that each Xn is an algebraic space
with property P . We have

Mor(X ,Y ) = Tot(Mor(X•,Y )), Mor(XP ,YP ) = Tot(Mor((X•)P ,YP )).

Thus we have reduced the problem to the case where X is an algebraic space.
Running the same argument again, we reduce to the case where X ∈ SchP ,

which is covered by Yoneda’s lemma.

Our next goal is to reformulate Proposition A.0.1 in terms of a certain mor-
phism of toposes. Our approach is influenced by §4.10 of Exposé IV of [27] and by
the more sophisticated Proposition A.0.4 of [11] (which goes back to A. Mathew
and is about derived stacks).

Let S̃ch (respectively Ŝch) be the category of presheaves (respectively sheaves)

of groupoids on Sch. Similaly, we have S̃chP and ŜchP . Let g̃∗ : S̃ch→ S̃chP , ĝ∗ :

Ŝch → ŜchP be the restriction functors. They have left adjoints g̃∗ and ĝ∗. The

functor g̃∗ : S̃chP → S̃ch is the left Kan extension. The functor ĝ∗ : ŜchP → Ŝch
is the sheafified left Kan extension, i.e., the composition

ŜchP ↪→ S̃chP
g̃∗−→ S̃ch→ Ŝch.

Each of the adjoint pairs (g̃∗, g̃∗) and (ĝ∗, ĝ∗) defines a morphism of toposes.
Since the functor SchP → Sch is fully faithful, so is g̃∗; equivalently, the unit

of the adjunction id → g̃∗g̃
∗ is an isomorphism. The same is true for ĝ∗. For

sheaves of sets, this is [29, Tag 00XT]. For sheaves of groupoids, one can argue as

follows: if F ∈ ŜchP then ĝ∗ĝ
∗(F) is the restriction of the sheafification of g̃∗F ,

which equals17 the sheafification of the restriction of g̃∗F , i.e., the sheafification
of F , i.e., F itself.

Now we can reformulate Proposition A.0.1 as follows.

Proposition A.0.2. If X ∈ StacksP then the canonical morphism

ĝ∗XP = ĝ∗ĝ∗X →X

is an isomorphism. Equivalently, X belongs to the essential image of the fully
faithful functor ĝ∗.

Proposition A.0.2 tells us how to reconstruct X ∈ StacksP from XP : namely,
X = ĝ∗XP , i.e., X is the sheafified left Kan extension of XP .

17Sheafification commutes with restriction by part 1 of [7, Prop. 7.1]. Probably this can also

be proved by interpreting Ŝch and ŜchP as explained in part 2 of Exercise 4.10.6 of Exposé IV
of [27] (i.e., a sheaf on Sch is just a collection of sheaves FS on Set for all S ∈ Sch plus certain
morphisms relating the sheaves FS with each other).
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B. Recollections on gerbes

B.0.1. Classifying stacks. Let H be a flat affine group scheme of finite
presentation over an algebraic stack X . Then the classifying stack BH is known
to be an algebraic stack smooth over X : indeed, we can assume that X is a
scheme, in which case the statement is proved in [29, Tag 0DLS] using [29, Tag
05B5] and a deep theorem of M. Artin, see [29, Tag 06FI]. (On the other hand,
if H is finite over X , one can give an elementary constructive proof similar to
the one given in §4.1.4 in the case H = αp.)

B.0.2. Gerbes. Let f : Y → X be a morphism of finite presentation
between algebraic stacks. If f is an fppf gerbe then f is smooth. Indeed, smooth-
ness can be checked fppf-locally on X , so we can assume that the gerbe is trivial.
Then we can apply §B.0.1.

B.0.3. Remark. Let f : Y → X be as in §B.0.2. Since f is smooth and
surjective, it admits a section locally for the smooth topology of X . This implies
that if X is a scheme then f admits a section etale-locally on X .

C. A definition of BTG
n via syntomification

Let n ∈ N and G ∈ Shimn , where Shimn is as in §2.2. For every derived p-
adic formal scheme S, we define in §C.2 an∞-groupoid BTG

n (S). The assignment
S 7→ BTG

n (S) is an etale sheaf. Conjecture C.3.1 says that for each m ∈ N the
restriction of BTG

n to the category of derived schemes over Z/pmZ is a smooth
algebraic stack over Z/pmZ.

C.1. Recollections on syntomification

C.1.1. The stack S�. Bhatt and Lurie [4] define a prismatization functor

S 7→ S� from the category of derived p-adic formal schemes to the category of
fpqc-stacks of∞-groupoids on the category of p-nilpotent18 derived schemes. The
stacks S� are not very far from being algebraic in the sense of Definition 2.3.5
of [9] (whose essential point is that the quotient of a scheme over a ring R by
an action of a flat affine group scheme H over R is considered to be an algebraic
stack even if H has infinite type).

The above words “not very far” are necessary for two reasons. First, the
derived setting is not considered in [9]. Second, already the stacks (Spf Zp)� and

(SpecZ/pnZ)� are formal (in the sense of [9, §2.9.1]) rather than algebraic; e.g.,

(SpecFp)� = Spf Zp.

C.1.2. The stacks SN and SSyn. Bhatt defines in his lecture notes [2] the
(Nygaard-)filtered prismatization functor S 7→ SN . As before, this is a functor
from the category of derived p-adic formal schemes to the category of fpqc-stacks
of ∞-groupoids on the category of p-nilpotent derived schemes. However, for
pedagogical reasons, Bhatt assumes in [2] that S is a classical19 scheme, and he

18This means that p is Zariski-locally nilpotent.
19“Classical” means “not really derived”.
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defines in [2] only the restriction of the stack SN to the category of classical p-
nilpotent schemes. As before, the stacks SN are not very far from being algebraic
in the sense of [9].

The stack SN has two open substacks canonically isomorphic to S�. Gluing
them together, Bhatt gets a stack which is called the syntomification of S and
denoted by SSyn. The assignment S 7→ SSyn is a functor. By definition, one has
a natural morphism

SN → SSyn.

There is a canonical line bundle on (Spf Zp)Syn called the Breuil-Kisin twist.
It defines a morphism (Spf Zp)Syn → BGm, where BGm is the classifying stack
of Gm. By functoriality, it induces a morphsim SSyn → BGm for any S. The
corresponding line bundle on SSyn is denoted by OSSyn{1} or O{1}.

C.1.3. The canonical morphism S × BGm → SN . There is a canonical
morphism

S ×BGm → SN (C.1)

over BGm; namely, (C.1) is the composite map

S × {0}/Gm ↪→ S × A1/Gm → SdR,+ → SN ,

where SdR,+ and the maps S×A1/Gm → SdR,+ → SN are defined in [2, §5.3.13].
We need the morphism (C.1) only if S = Spec k, where k is a perfect field. In

this case it can be described as follows. It is known20 that

(Spec k)N ⊗ Fp = (Spec k[u, t]/(ut))/Gm ,

where the Gm-action is such that deg t = 1, deg u = −1; so the closed substack
of the stack (Spec k)N ⊗ Fp given by t = u = 0 equals Spec k × BGm. (Let us
note that this closed substack is called the Hodge locus.)

C.1.4. On notation. The definition of SN and SSyn is sketched in [9, §1.7],

but the notation is different there (S�′ instead of SN and S�′′ instead of SSyn).

In [3, 4] the stack S� was denoted by WCartS .

C.2. Definition of BTG
n (S). Let S be a derived p-adic formal scheme. Let

G ∈ Shimn .

C.2.1. The group scheme GO{1}. Our G is a group scheme over Z/pnZ.
Twisting G by the canonical Gm-torsor on BGm⊗Z/pnZ, one gets a group scheme
over BGm ⊗ Z/pnZ, which we denote by GO{1}. One has

Lie(GO{1}) =
⊕
i

gi ⊗O{i},

where gi is the i-th graded component of Lie(G) and O{i} is the i-th tensor power
of the canonical line bundle on BGm ⊗ Z/pnZ.

Since SSyn ⊗ Z/pnZ is equipped with a morphism to BGm ⊗ Z/pnZ, we can
consider GO{1}-torsors on SSyn ⊗ Z/pnZ.

20See [2, §3.3 and §5.4].
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C.2.2. Definition. For any derived p-adic formal scheme S of finite type21

over Spf Zp, let BTG
n (S) be the ∞-groupoid of GO{1}-torsors E on SSyn ⊗ Z/pnZ

such that for every geometric point α : Spec k → S, the pullback of E via the
composite morphism

Spec k×BGm → (Spec k)N ⊗ Fp
α∗−→ SN ⊗ Fp ↪→ SN ⊗Z/pnZ→ SSyn ⊗Z/pnZ

(C.2)
is trivial. The first arrow in (C.2) was described in §C.1.3.

C.2.3. Remarks

(i) The isomorphism class of the above-mentioned pullback is an element να ∈
H1((Gm)k, Gk), where Gk is the base change of G to k, and we want να to
be zero for all geometric points α. One can show that if S is connected then
it suffices to check the condition να = 0 for a single α.

(ii) H1((Gm)k, Gk) is the set of G(k)-conjugacy classes of splittings for the
canonical epimorphism (Gm)k nGk � (Gm)k. The latter set depends only
on the quotient of Gk by its unipotent radical (together with the action of
Gm on this quotient).

(iii) The definition of BTG
n (S) from §C.2.2 makes sense without assuming the

action of Gm on G to be 1-bounded. But the conjecture formulated below
is unlikely to hold without this assumption.

C.3. The conjecture. For each n ∈ N and G ∈ Shimn we have defined a
contravariant functor S 7→ BTG

n (S), where S is a derived p-adic formal scheme
of finite type over Spf Zp.

Conjecture C.3.1. For each m ∈ N the restriction of this functor to the cat-
egory of derived schemes over Z/pmZ is a quasicompact smooth algebraic stack22

over Z/pmZ with affine diagonal.

In particular, the conjecture would imply that the restriction of the functor
BTG

n to the category of classical schemes over Z/pmZ is a smooth algebraic stack
in the sense of [20].

As far as I understand, Conjecture C.3.1 has already been proved in [12].

C.3.2. Remarks

(i) If S is a smooth Fp-scheme then the definitions of BTG
1 (S) given in §4.2.1

and §C.2.2 are equivalent, see [28, Thm. 3.8] or Appendix D below.

(ii) Let G be the group Ga ⊗ Z/pnZ equipped with the usual Gm-action. Then
the triviality condition from §C.2.2 is automatic by §C.2.3, so BTG

n (S) is the
∞-groupoid of all O{1}-torsors on SSyn⊗Z/pnZ. Bhatt and Lurie proved23

21“Finite type” means that the classical truncation of S⊗Fp has finite type in the usual sense.
For the motivation of the finite type precaution, see §C.3.2(ii) below.

22Here the words “algebraic stack” are understood in the derived sense (since S is allowed to
be derived); see the definition of 1-stack in [21, Def. 5.1.3] (which goes back to [30]).

23Theorem 7.5.6 of [3] identifies the p-adic completion of RΓ(Set,O×S )[−1] with a certain
complex RΓsyn(S,Zp(1)), whose definition does not involve SSyn. If S is quasisyntomic then it
is known that RΓsyn(S,Zp(1)) = RΓ(SSyn,O{1}).
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that

RΓ(SSyn ⊗ Z/pnZ,O{1}) = RΓ(Set,Cone(O×S
pn−→ O×S )[−1]). (C.3)

if S is quasisyntomic. Moreover, (C.3) is expected to hold24 for any
p-nilpotent derived scheme of finite type over Spf Zp (similarly to [4,
Prop. 8.16]). If so then BTG

n identifies with the classifying stack of µpn .
This agrees with Conjecture C.3.1; in the case n = m = 1 this also agrees
with §4.4.5.

D. Equivalence between the two definitions of BTG
1 (S)

Let G be a smooth affine group scheme over Fp equipped with an action of Gm.
Given a smooth Fp-scheme S, we have two definitions of the groupoid BTG

1 (S):
an elementary one (see §4.2.1) and a definition via the stack SSyn (see §C.2.2);
both definitions make sense without assuming that the Gm-action is 1-bounded,
see §4.2.3 and §C.2.3(iii). In this Appendix we sketch a proof of the equivalence
between the two definitions.

D.1. Recollections on SSyn ⊗ Fp. We will follow [2, Ch. 2].

D.1.1. As mentioned in §C.1.2, SSyn is obtained from SN by gluing together
the two open substacks canonically isomorphic S�. One has S� ⊗ Fp = SdR :=
SdR /Fp . Following §2.8 of [2], we use the notation SC := SN ⊗ Fp. The stack
SC contains two open substacks canonically isomorphic to SdR, and after gluing
them together, one gets SSyn ⊗ Fp.

Let us now recall the material on SC from [2, Ch. 2].

D.1.2. Just as in Construction 2.8.2 from [2], let C denote the quotient of
the coordinate cross SpecFp[u, t]/(ut) by the hyperbolic action of Gm. One has
(SpecFp)C = C. The two irreducible components of C are denoted by Cu=0 and
Ct=0.

D.1.3. The preimage of Ct=0 (respectively Cu=0) in SC is denoted in [2]
by SdR,c (respectively SdR,+); the superscript c stands for “conjugate filtration”.
Let SHodge := SdR,c ∩ SdR,+.

In §D.1.1 we mentioned two open substacks of SC canonically isomorphic SdR;
these substacks are SdR,c \ SHodge and SdR,+ \ SHodge.

D.1.4. By §D.1.1 and §D.1.3, we have a pushout diagram of stacks

SSyn ⊗ Fp SdR,+oo

SdR,c

OO

SdR t SHodgeoo

OO

(D.1)

Chapter 2 of [2] contains a rather explicit description of the whole diagram (D.1)
via the procedure of transmutation (see [2, Rem. 2.3.8]). The key point is that

24Again, the problem is to show that RΓsyn(S,Zp(1)) = RΓ(SSyn,O{1}).
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it suffices to describe (D.1) in the particular case S = Ga as a diagram of ring
stacks. For such a description, see [2, 2.8.3] and references therein, as well as [2,
2.5.1], [2, 2.7.8], and [2, Prop. 2.7.12]. We paraphrase this description in §D.4.

D.2. BTG
1 (S) as a fiber product. Let BTG

1 (S) denote the groupoid defined
in §C.2.2. Thus BTG

1 (S) is the groupoid of GO{1}-torsors E on SSyn ⊗ Fp such
that for every geometric point α : Spec k → S, the pullback of E via a certain
morphism fα : Spec k ×BGm → SSyn ⊗ Fp is trivial. Let us note that fα factors
as

Spec k ×BGm → SHodge → SSyn ⊗ Fp, (D.2)

see the last paragraph of §C.1.3

Diagram (D.1.4) yields a pullback diagram of groupoids

BTG
1 (S) //

��

X dR,+(S)

��
X dR,c(S) //X dR(S)×X Hodge(S)

(D.3)

where X dR(S) is the groupoid of G-torsors25 on SdR and X dR,+(S) (respec-
tively X dR,c(S) or X Hodge(S)) is the groupoid of GO{1}-torsors on SdR,+ (re-

spectively SdR,c or SHodge) satisfying the triviality condition26 similar to the one
from the definition of BTG

1 (S).

In the next subsection we will translate the diagram

X dR,c(S)→X dR(S)×X Hodge(S)←X dR,+(S) (D.4)

into an elementary language. The isomorphism between BTG
1 (S) and the

groupoid from §4.2.1 will immediately follow from this description because di-
agram (D.3) is Cartesian.

D.3. Diagram (D.4) in elementary terms. Let g := Lie(G). We will use
the subgroupsM,P± ⊂ G defined in §2.3 and the grading g =

⊕
i
gi corresponding

to the Gm-action.

D.3.1. X (S) is the groupoid of G-torsors on S equipped with a nilpotent
integrable connection.

D.3.2. X Hodge(S) is the groupoid of pairs (FM , σ), where FM is an M -
torsor on S and σ ∈ H0(S, (g1)FM

⊗ Ω1
S), see [2, Rem. 2.5.9].

D.3.3. X dR,+(S) is the groupoid of P−-torsors F− on S equipped with
a nilpotent integrable connection ∇ on the corresponding G-bundle F−G sat-
isfying the Griffiths transversality condition KS∇ ∈ H0(S, (g1)F− ⊗ Ω1

S) ⊂
H0(S, (g/g≤0)F− ⊗ Ω1

S) (we are using the notation from §4.2.2). See [2,
Rem. 2.5.8].

25A GO{1}-torsor on SdR is the same as a G-torsor because (SpecFp)dR = SpecFp.
26The formulation of this condition uses the factorization (D.2).
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D.3.4. X dR,c(S) is the groupoid of P+-torsors F+ on S equipped with an
integrable connection ∇ inducing a p-integrable connection on the M -torsor F+

M

corresponding to F+. See [2, Rem. 2.7.10].

D.3.5. The functor X dR,c(S) → X Hodge(S) from diagram (D.4) is as
follows:

(i) the M -torsor FM from §D.3.2 is the FrS-descent of the M -torsor F+
M from

§D.3.4 via the p-integrable connection;
(ii) σ ∈ H0(S, (g1)FM

⊗ Ω1
S) is the image of −p-Curv∇ ∈ H0(S, (g≥1)FM

⊗
Ω1
S).

The other functors from diagram (D.4) are self-explanatory.

D.3.6. Origin of the sign. The “minus” sign in §D.3.5(ii) comes from the
“minus” sign in formula (D.7) below.

D.4. The ring stack GSyn
a ⊗Fp. Let Ga denote the additive group over Fp.

In this subsection we recall the description of GSyn
a ⊗ Fp given in [2, Ch. 2] and

explain the origin of the “minus” sign in §D.3.5(ii).

D.4.1. Plan. Ga is a ring scheme, so GSyn
a ⊗ Fp is a ring stack over

(SpecFp)Syn ⊗ Fp. One gets (SpecFp)Syn ⊗ Fp from the stack C considered in
§D.1.2 by gluing together the two open points of C. Equivalently, (SpecFp)Syn⊗
Fp is obtained from P1/Gm by gluing {0}/Gm with {∞}/Gm.

Let R be the pullback of GSyn
a ⊗ Fp via the map P1 → (SpecFp)Syn ⊗ Fp.

To describe GSyn
a ⊗ Fp, we will describe in §D.4.2-D.4.3 the Gm-equivariant ring

stack R over P1 and the isomorphism R0
∼−→ R∞, where R0,R∞ are the fibers

of R over 0,∞ ∈ P1.

D.4.2. The ring stack R. Let (Ga)P1 = Ga×P1; this is a ring scheme over
P1. One has

R = Cone(G
d−→ (Ga)P1),

where (G, d) is a quasi-ideal27 in (Ga)P1 , which we are going to define.

Let G]
a denote the the PD-hull of zero in Ga. Then G]

a is a Ga-module, and
the natural map f : G]

a → Ga is a Ga-module homomorphism such that

Im f = αp := Ker(Fr : Ga → Ga).

One defines G to be a certain Ga-submodule of G]
a ×Ga × P1 and d : G→ Ga ×

P1 to be the projection. The equations defining G ⊂ G]
a×Ga×P1 are as follows:

uy = f(x), (D.5)

yp = 0, (D.6)

where x ∈ G]
a, y ∈ Ga, u ∈ P1. Strictly speaking, (D.5) means that

uy = f(x) if u 6=∞, y = u−1f(x) if u 6= 0.

Note that if u 6= 0 then (D.6) follows from (D.5).
Finally, the action of λ ∈ Gm on G and Ga × P1 is given by x̃ = λ−1x, ũ =

λ−1u, ỹ = y.

27For the language of quasi-ideals and cones, see [9, §1.3.3-1.3.4].
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D.4.3. The isomorphism R0
∼−→ R∞. Let K := Ker(G]

a
f−→ Ga). Then

R0 = Cone(K ⊕ αp
(0,1)−→ Ga) = Cone(K

0−→ Ga/αp) = Cone(K
0−→ Ga)

(we have used the ring isomorphism Ga/αp
∼−→ Ga induced by Fr : Ga → Ga).

On the other hand,

R∞ = Cone(G]
a

0−→ Ga).

The isomorphism R0
∼−→ R∞ comes from the isomorphism

− V : G]
a
∼−→ K, (D.7)

where V is the Verschiebung of G]
a.

D.4.4. Origin of formula (D.7). One gets (D.7) by comparing [2, §2.8.3]
with [2, §2.8.1] and [2, Prop. 2.7.12]. The “minus” sign in (D.7) comes from
diagram (2.7.5) of [2].
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Шимуровi узагальнення стеку BT1 ⊗ Fp
Vladimir Drinfeld

Нехай G є гладкою груповою схемою над Fp, оснащеною дiєю Gm так,
що всi ваги Gm на Lie(G) не перевищують 1. Нехай DispG

n є стеком n-
зрiзаних G-дисплеїв Айке Лау (це алгебраїчний Fp-стек). У випадку n =

1 ми вводимо алгебраїчний стек, оснащений морфiзмом до DispG
1 . Ми

припускаємо, що якщо G = GL(d), то новий стек канонiчно iзоморфний
редукцiї за модулем p стеку 1-зрiзаних груп Барсоттi–Тейта висоти d та
розмiрностi d′, де d′ залежить вiд дiї Gm на GL(d).

Ми також обговорюємо, як визначити аналог нового стеку для n >
1 та як замiнити Fp на Z/pmZ.

Ключовi слова: група Барсоттi–Тейта, многовид Шимури, дисплей,
F -зiп, зв’язнiсть, p-кривина, синтомiфiкацiя
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