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Class of Parabolic Problems
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In the paper, we prove the existence of the renormalized solution for the

nonlinear degenerate parabolic equation ∂b(u)
∂t −div(A(t, x, u)Du) = f, where

the matrix A (t, x, s) = (aij(t, x, s))1≤i≤N
1≤j≤N

is not controlled with respect to

u, f ∈ L1(Q), and b is a strictly increasing C1-function.
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1. Introduction

In this paper, we study the existence of a solution for a class of parabolic-type
problems of the form

∂b (u)

∂t
− div(A(t, x, u)Du) = f in Ω× (0, T ),

b(u)(t = 0) = b(u0) in Ω,

u = 0 on ∂Ω× ]0, T [ ,

(1.1)

where Ω is an open bounded subset of RN (N ≥ 1), T is a positive number. Set
Q = Ω× (0, T ). In the problem (1.1), b is a strictly increasing C1-function with
b(0) = 0, f ∈ L1 (Q) , and b0(u) ∈ L1 (Ω). Moreover, the matrix

A : (t, x, s)→ A (t, x, s) = (aij(t, x, s))1≤i≤N
1≤j≤N

(1.2)

is a Carathéodory function from Q × (−∞,m) into Symn, it blows up when
s → m− and satisfies the coercivity condition, where Symn is the set of N × N
symmetric matrices and m > 0.

In the literature, there are other models that contain a blow-up term. We
mention 

∂u

∂t
− div(A(t, x, u)Du) + g(u) = f in Ω× (0, T ),

u(t = 0) = u0 in Ω,

u = 0 on ∂Ω× ]0, T [ ,

(1.3)

where the matrix M is not blowing up and the nonlinearity g has a vertical
asymptote. The problem (1.3) was studied in [12] for the case, where f ∈ L1(Q).
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For the case, where f is replaced by a measure, the problem (1.3) was studied
in [1, 2]. On the other hand, we also mention{

−∆u+ g(u) = µ in Ω,

u = 0 on ∂Ω,
(1.4)

where the nonlinearity g has a vertical asymptote at 1 and µ is a bounded measure
on Ω. The problem (1.4) was established in [10,11].

When we look at the problem (1.1), we come up against two kinds of dif-
ficulties. First, the assumptions f ∈ L1 (Q) and b0(u) ∈ L1 (Ω) . To overcome
this difficulty, we use the framework of renormalized solutions. This concept was
presented by DiPerna and Lions [11] to study the Boltzmann equation. See also
Lions [13] for a few applications to fluid mechanics models. We refer the reader
to [8, 18, 19] for elliptic problems and to [5, 6, 14, 15, 17] for parabolic equations.
A similar notion of entropy solution was defined in [16] and it was proven to be
the same as the renormalized solution. The second difficulty is due to the matrix
A (t, x, s) blowing up when s→ m−, which makes the task of giving meaning to
this function on the set {x ∈ Ω | u(x) = m} difficult.

For the case, where the field is a Leray–Lions operator, the existence of renor-
malized solutions was proved in [6] and for the weighted Sobolev space, in [3].
For the case, where the field is a Leray–Lions operator and b is a maximal mono-
tone graph on R, the existence of renormalized solutions was established in [4].
More precisely, the problem (1.1) is an extension of the work of Blanchard et al.
(see [7]).

This paper is organized as follows. In Section 2, we make assumptions and
provide the main result. In Section 3, we give the proof of the main result.

2. Basic assumptions and main result

The following assumptions are assumed to be true throughout the paper:

b : R→ R is a strictly increasing C1-function with b(0) = 0, (2.1)

b0 ∈ L1 (Q) , (2.2)

f ∈ L1 (Q) , (2.3)

A : (t, x, s)→ A (t, x, s) = (aij(t, x, s))1≤i≤N
1≤j≤N

(2.4)

is a Caracthéodory function from Q× (−∞,m) into Symn such that there exist
two positive functions β and γ in C0 ((−∞,m)) which satisfy

lim
s→m−

β(s) = +∞, β (s) ≥ α > 0, s ∈ (−∞,m) , (2.5)∫ m

0
γ(s) ds < +∞, (2.6)

β(s) |ξ|2 ≤ A(t, x, s)ξ · ξ ≤ γ (s) |ξ|2 , ξ ∈ RN . (2.7)
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For any positive real number ε, we define the function σε by

σε(r) =


1 if r ≤ m− 2ε,

1− (r −m+ ε) if m− 2ε ≤ r ≤ m− ε,
0 if r ≥ m− ε.

(2.8)

For a fixed n ≥ 1 and for all s ∈ R, we define

θn(s) =
1

n
(Tn(s− Tn(s)) and h(s) = 1− |θn(s)| . (2.9)

Definition 2.1. A measurable function u defined on Ω is a renormalized
solution of the problem (1.1) if

∀k ≥ 0 Tk(u) ∈ L2(0, T ;H1
0 (Ω)) , (2.10)

b(u) ∈ L∞(0, T ;L1(Ω)), (2.11)

u ≤ m a.e. in Q, (2.12)

∀k ≥ 0 χ{−k<u<m}A(t, x, u)Du ∈
(
L2(Ω)

)N
, (2.13)

lim
p→+∞

1

p

∫
{−2p<u<−p}

A(t, x, u)Du ·Dudx dt = 0, (2.14)

∀ϕ ∈ C∞c ([0, T ]) lim
p→+∞

p

N∑
i=1

∫
Q
ϕχ{m−2/p<u<m−1/p}A(t, x, u)Du ·Dudx dt

=

∫
Q
fϕχ{u=m} dx dt, (2.15)

and u satisfies

∂Bs(u)

∂t
− div

(
S′(u)A(t, x, u)Du

)
+ S

′′
(u)A(t, x, u)Du ·Du

= fS′(u) in D′(Q), (2.16)

where

Bs(z) =

∫ z

0
b′(s)S′(s) ds and Bs(u)(t = 0) = Bs(u0)

for every function S in W 2,∞(R) such that supp(S′) is compact and S′(m) = 0
and for any ϕ ∈ C∞c

(
[0, T ]× Ω

)
such that S′(u)ϕ ∈ L2(0, T ;H1

0 (Ω)).

Remark 2.2. Conditions (2.10) and (2.13) show that all terms in (2.16) are
well defined. The assumption (2.1) was established in [7] when b(u) = u.

Theorem 2.3. Under the assumptions (2.1)–(2.7) there exists at least a
renormalized solution u of the problem (1.1).
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3. Proof of main result

3.1. Step 1: Approximation of the problem. For ε > 0, we consider
the field of matrices

Aε(t, x, s) = σε(s)A (t, x, s) + (1− σε(s))β(m− ε)I, (3.1)

where σε is the function defined by (2.8) and I is the diagonal matrix. Indeed,
in (3.1), we use the convention

σε(s)A (t, x, s) = 0 for s ≥ m− ε.

Due to the assumptions (2.5) and (2.7), we have

β(s) |ξ|2 ≤ Aε(t, x, s)ξ · ξ ≤ (γ (s)σε(s) + sup
r∈(0,m−ε)

β(r)) |ξ|2 . (3.2)

Thus,
bε(s) = b(T1/ε(s)) + εs for ε > 0,

and
bε(s)→ b(s) converges almost everywhere on Q. (3.3)

Finally, there exists (fε)ε>0 ∈ L∞ (Q) such that

fε → f in L1(Q), (3.4)

and there exists (uε0)ε>0 ∈ L∞ (Q) such that

bε(u
ε
0)→ b(u0) in L1(Ω).

The following regularized problem admits a weak solution uε :
∂bε(u

ε)

∂t
− div(Aε(t, x, uε)Duε) = fε in Q,

b(uε)(t = 0) = b0(uε0) in Ω,

uε = 0 in ∂Ω× ]0, T [ .

(3.5)

As a result, to show the existence of a weak solution uε ∈ L2(0, T ;H1
0 (Ω) of (3.5)

is an easy task (see [4]).

Remark 3.1. Any weak solution is a renormalized solution. Indeed, for any
S ∈W 2,∞ (R) and any ϕ ∈ C∞c ((0, T )×Ω) such that S′(uε)ϕ ∈ L2(0, T ;H1

0 (Ω)),
we can choose S′(uε)ϕ as a test function in (3.5), to deduce, using the integration-
by-parts formula (see [4]), that

∂Bε
s(u

ε)

∂t
− div

(
S′(u)Aε(t, x, uε)Duε

)
+ S

′′
(u)Aε(t, x, uε)Duε ·Duε

= fεS
′(uε) in D′(Q), (3.6)

where

Bε
s(z) =

∫ z

0
b′ε(s)S

′(s) ds and Bε
s(u

ε)(t = 0) = Bs(u
ε
0)

for any S ∈W 2,∞ (R) .
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3.2. Step 2: Apriori estimate and weak limit of the field. The test

function ϕ is always equal to ϕ = min
(

(T−δ−t)+
δ , 1

)
. Choosing S′(r) = Tk (uε)

in (3.6), we have

1

δ

∫ T−δ

T−2δ

∫
Ω

∫ uε

0
b′ε(s)Tk(s) ds dx dt

+

∫ T−2δ

0

∫
Ω
Aε(t, x, uε)DTk(u

ε) ·DTk(uε) dx dt

≤ k
[
‖fε‖L1(Q) + ‖bε(uε0)‖L1(Ω)

]
. (3.7)

Let δ tend to 0. Then we have∫ T

0

∫
Ω
Aε(t, x, uε)DTk(u

ε) ·DTk(uε) dx dt ≤ k
[
‖fε‖L1(Q) + ‖bε(uε0)‖L1(Ω)

]
.

Thanks to (2.7) and fε ∈ L1 (Q) , we have

α

∫
Q
|DTk(uε)|2 dx dt ≤ Ck (3.8)

and
Xε(t, x, uε)DTk(u

ε) ∈ (L2(Q))N , (3.9)

where Xε (x, s) =
(
xεij(x, s)

)
1≤i≤N
1≤j≤N

is the square root of the matrix Aε (x, s) .

To establish that b(u) is in L∞(0, T ;L1 (Ω)), we replace S′(r) = χ(0,τ)T1 (uε) in
(3.6). Proceeding as above, we get

‖bε(uε)‖L∞(0,T ;L1(Ω)) ≤ C.

Then we pass to the limit-inf as ε tends to 0, which gives that b(u) belongs to
L∞(0, T ;L1(Ω)).

By a classical argument (see, e.g, [3]), for a subsequence still indexed by ε,
from (3.8) and (3.3), we have

uε → u a.e. in Q, (3.10)

bε(u
ε)→ b(u) a.e. in Q, (3.11)

∀k > 0 Tk (uε) ⇀ Tk (u) weakly in L2(0, T ;H1
0 (Ω)). (3.12)

Now, using of S′(s) = T+
2m(s)− T+

m(s) in (3.6), leads to∫ T

0

∫
Ω
Aε(t, x, uε)DTk(u

ε) ·D
(
T+

2m(uε)− T+
m(uε)

)
dx dt ≤ C,

where C does not depend on ε. By (3.2), we have

β(m− ε)
∫
Q

∣∣T+
2m(uε)− T+

m(uε)
∣∣2 dx dt ≤ C. (3.13)
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We pass to the limit in (3.13), as ε tends to 0, to deduce that

T+
2m(u)− T+

m(u) = 0 a.e. in Q, (3.14)

u ≤ m a.e. in Q.

We define two sequences of auxiliary functions

vε =

(uε)+∫
0

(γ (s)σε(s) + (1− bε(s))β(m− ε) ds (3.15)

and

dε =

(uε)+∫
0

(β (s)σε(s) + (1− bε(s))β(m− ε) ds. (3.16)

For every k ≥ 0, we have Tk(v
ε) ∈ L2(0, T ;H1

0 (Ω)) and Tk(d
ε) ∈ L2(0, T ;H1

0 (Ω))
with

∇Tk(vε) = χ{vε<k} [(γ (uε)σε(u
ε) + (1− σε(uε))β(m− ε)]∇Tk/α(uε)+ (3.17)

and

∇Tk(dε) = χ{dε<k} [(β (uε)σε(u
ε) + (1− σε(uε))β(m− ε)]∇Tk/α(uε)+. (3.18)

By taking S′(uε) = Tn(dε − (uε)−) in (3.6), we have∫
Q
Aε(t, x, uε)Duε · Tn(dε − (uε)−) dx dt ≤ C. (3.19)

Since the supports of dε and (uε)− are disjoint, by using (3.18), we can deduce
that

N∑
i=1

∫
Q
χ{dε<k} [β(uε)σε(u

ε) + (1− σε(uε))]
(
Aε(t, x, uε)D (uε)+) ·DTn

α
(uε)+dx dt

+
N∑
i=1

∫
Q
χ{(uε)−<k}

N∑
j=1

Aε(t, x, uε)D (uε)− ·DTn(uε)−dxdt ≤ C. (3.20)

Now the definition (3.1) of Aε, together with the assumptions (2.7), shows that

(1− σε(s))β(m− ε) |ξ|2 + β(s)σε(s) |ξ|2 ≤ Aε(t, x, uε)ξ · ξ

for any s ∈ R, any ξ ∈ RN , and a.e. in Q.

Then (3.1) and (3.20) yield∫
Q
|DTn(dε)|2 dx dt+ α

∫
Q

∣∣DTn((uε)−)
∣∣2 dx dt ≤ C. (3.21)



308 Mohammed El Fatry, Mounir Mekkour, and Youssef Akdim

Since the supports of dε and (uε)− are disjoint, we deduce that

min(1, α)

∫
Q

∣∣Tn(dε − (uε)−)
∣∣2 dx dt ≤ C. (3.22)

Poincaré’s inequality and (3.22) lead to

n2 meas
{

(t, x) ∈ Q
∣∣ ∣∣dε − (uε)−

∣∣ > n
}

= 0,

where C does not depend on n and ε, and we obtain that

lim
n→+∞

sup
ε

{
(t, x) ∈ Q

∣∣ ∣∣dε − (uε)−
∣∣ > n

}
= 0. (3.23)

To obtain the analog of (3.23) with

vε = dε +

∫ (uε)+

0
(γ(s)− β(s)σε(s) ds ≤ dε +

∫ m

0
(γ(s)− β(s)σε(s) ds, (3.24)

where ∫ m

0
(γ(s)− β(s))σε(s)ds < +∞,

by (2.6) and (3.23) it follows that

lim
n→+∞

sup
ε

{
(t, x) ∈ Q

∣∣ ∣∣vε − (uε)−
∣∣ > n

}
= 0. (3.25)

Next, by (3.22), following the same procedures as above, we obtain

dε → d a.e. in Q, (3.26)

where d is a measurable function. Then, by (3.10), (3.24), and (3.26), we have

vε → v a.e. in Q, (3.27)

where

v = d+

∫ (u)+

0
(γ(s)− β(s)σε(s) ds

and v is a measurable positive function. Referring to the definition of σε in (2.8)
and of vε in (3.15), as well as to the convergence (3.12) and (3.27), it is seen that

v =

∫ (u)+

0
γ(s) ds a.e. in {(x, t) ∈ Q | u (x, t) < m} . (3.28)

However, as far as we know, we cannot expect to have a similar identification on
the subset {(t, x) ∈ Q | u (t, x) = m} .

Now we choose S′(uε) = θn
(
vε − (uε)−

)
in (3.6) which gives us

1

n

∫
{n≤|vε−(uε)−|≤2n}

Aε(t, x, uε)D (uε) ·DTn(vε − (uε)−) dx dt
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≤
∫
{|vε−(uε)−|>n}

|fε| dx dt+

∫
Ω

∫ |u0|
0

∣∣b′ε(r)θn (Gε(r)− (r)−
)∣∣ dr dx. (3.29)

As for the second term, it should be noticed that the support of Gε(r) and r−

are disjoint. Thus, using fε ∈ L1 (Q) and (3.25), we obtain

lim
n→+∞

sup
ε

1

n

∫
{n≤|vε−(uε)−|≤2n}

Aε(t, x, uε)D (uε) ·DTn(vε − (uε)−) dx dt = 0.

(3.30)
Repeating the above argument with S′(r) = θn (r) , we have

lim
n→+∞

sup
ε

1

n

∫
{n≤|uε|≤2n}

Aε(t, x, uε)D (uε) ·DTn(uε) dx dt = 0. (3.31)

To prove the weak limit of the field, we need to see that Aε(t, x, uε)Duε is
bounded in L2(Q) for every i = 1, . . . , N in the subset, where vε − (uε)− is
truncated. Indeed, we plug the test function Tk(v

ε) in (3.6) and, by using (3.17),
we obtain∫
{|vε|≤k}

Aε(t, x, uε)D (uε) ·D (uε)+ [(γ (uε)σε(u
ε) + (1− σε(s))β(m− ε)] dx dt

≤ C.

By the definition (3.1) of Aε(x, s) and (2.7), we get

Aε(t, x, s)ξ · ξ ≤ (γ (s)σε(s) + (1− σε(s))β(m− ε) |ξ|2 (3.32)

for any s ∈ R, any ξ ∈ RN , and a.e. in Ω. Use (3.32) with ξ = Xε(x, uε)D (uε)+ .
Therefore, ∫

{|vε|≤k}

∣∣Aε(t, x, s)D (uε)+
∣∣2 dx dt ≤ C.

Then, for any k ≥ 0,

χ{vε<k}A
ε(t, x, s)D (uε)+ is bounded in L2(Q) uniformly in ε.

Now, since χ{|vε−(uε)−|<k} = χ{0≤vε<k} + χ{0≤uε<k} a.e. in Ω, by the contin-

uous character of Aε(t, x, s) for s ∈ (−∞, 0] and the estimate (3.8), we have

χ|vε−(uε)−|<kA
ε(t, x, uε)D (uε)+ is bounded in

(
L2(Q)

)N
uniformly in ε.

(3.33)
Use the estimates (3.33) and (3.9) to extract another subsequence, still in-

dexed by ε, such that

hn(vε − (uε)−)Aε(t, x, uε)D (uε)→ ψn weakly in (L2(Q))N ,

Xε(t, x, uε)DTk(u
ε)→ Yk weakly in L2(Q) (3.34)

as ε tends to 0, where for any k ≥ 0 and n ≥ 1, ψn ∈ L2(Q) and Yk ∈ L2(Q).
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Next, we identify ψn on the subset, where u < m. Let h be a C∞(R)-function
such that supp(h) is compact in (−M, l) with l < m and M > 0. Then, using the
fact that h(s)Aε(t, x, uε) = h(s)A(t, x, Tl(s

+) − TM (s−)) for ε small enough and
the convergences (3.12), and (3.27), we have

h(uε)hn(vε − (uε)−)Aε(t, x, uε)Duε → h(u)hn(v − u−)A(t, x, u)Du

weakly in
(
L2(Q)

)N
(3.35)

as ε tends to 0 and Du stands for DTl(u
+) − DTM (u+). It follows from (3.35)

and (3.2) that

ψn = hn (v − u)A(t, x, u)Du a.e. in {(t, x) ∈ Q | u (t, x) < m} (3.36)

since l < m and M are arbitrary.

It should be noticed that on the subset {(t, x) ∈ Q | u (t, x) < m} we have

0 ≤ v =

∫ (u)+

0
γ(s) ds <

∫ m

0
γ(s) ds.

Then, for

n >

∫ m

0
γ(s)ds,

we have hn (v − u) = hn (−u) on {(t, x) ∈ Q | u (t, x) < m} . It follows from (3.36)
that

ψn = hn (−u)A(t, x, u)Du a.e. in {(t, x) ∈ Q | u (t, x) < m}

which, in turn, implies that

χ{−k<u<m}A(t, x, u)Du ∈
(
L2(Q)

)N
. (3.37)

To identify Yn, we use ψn defined above. For every k ≥ 0, we have

hn(vε − (uε)−)Aε(t, x, uε)DTk(u
ε)→ ψkn weakly in

(
L2(Q)

)N
.

We can write

hn(vε − (uε)−)Xε(t, x, uε)Tk(u
ε)

= hn(vε − (uε)−) (Xε(t, x, uε))−1Aε(t, x, uε)Tk(u
ε).

Using some technique developed in ( [6]), we can deduce that

Yk = χ{u<m}X(t, x, u)Tk(u) a.e. in Q.
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3.3. Step 3: Strong convergence of the field. To show this convergence,
several authors use a particular temporal regularization (see, e.g., [10]). In this
paper, we use a method developed in [4] by Porretta for the Stefan problem.

Let ξ ∈ C∞0 (0, T ] such that 0 ≤ ξ ≤ 1. We choose S′(r) = hn(r)Tk(r) and
ξ = ϕ in (3.6) to obtain∫
Q
Aε(t, x,uε)DTk(u

ε) ·DTk(uε) dx dt ≤
∫
Q
ξt

∫ uε

0
b′ε(s)hn(s)Tk(s) ds dx dt

+

∫
Q
ξ(0)

∫ uε0

0
b′ε(s)hn(s)Tk(s) ds dx dt+

∫
Q
ξfεhn(uε)Tk(u

ε) ds dx dt

+ k
1

n

∫
{n<|uε|<2n}

Aε(t, x, uε)DTk(u
ε) ·DTk(uε) dt dx. (3.38)

We pass to the limit as ε tends to 0 in (3.38) and, by using (3.10) and (3.3), we
find that

lim
ε→0

sup

∫
Q
Aε(t, x, uε)DTk(u

ε) ·DTk(uε) dx dt ≤
∫
Q
ξt

∫ u

0
b′(s)hn(s)Tk(s) ds dx dt

+

∫
Q
ξ(0)

∫ u0

0
b′(s)hn(s)Tk(s) ds dx dt+

∫
Q
ξfhn(u)Tk(u) ds dx dt

+ lim
ε→0

sup k
1

n

∫
{n<|uε|<2n}

Aε(t, x, uε)DTk(u
ε) ·DTk(uε) dx dt.

Using (3.31), we have

lim
n→+∞

lim
ε→0

sup k
1

n

∫
{n<|uε|<2n}

Aε(t, x, uε)DTk(u
ε) ·DTk(uε) dx dt = 0. (3.39)

Now, using (3.39), we pass to the limit as n tends to +∞ and obtain

lim
n→+∞

lim
ε→0

sup

∫
Q
Aε(t, x, uε)DTk(u

ε) ·DTk(uε) dx dt

≤
∫
Q
ξt

∫ u

0
b′(s)Tk(s) ds dx dt

+

∫
Q
ξ(0)

∫ u0

0
b′(s)Tk(s) ds dx dt+

∫
Q
ξfTk(u) dx dt. (3.40)

Then, using S′n(r) = hn(Gε(r+)− r−) in (3.6), we have

− ‖ϕ‖L∞(Ω)

1

n

∫
{n<|vε−(uε)−|<2n}

Aε(t, x, uε)Duε ·D(vε − (uε)−) dx dt

≤ −
∫
Q
ϕt

∫ uε

0
b′ε(s)hn(Gε(s+)− s−) ds dx dt

−
∫
Q
ξ(0)

∫ u0

0
b′ε(s)hn(Gε(s+)− s−) ds dx dt−

∫
Q
ϕfhn(vε − (uε)−) dx dt
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+

∫
Q
Aε(t, x, uε)Duε ·Dϕhn(vε − (uε)−) dx dt

≤ ‖ϕ‖L∞(Ω)

1

n

∫
{n<|vε−(uε)−|<2n}

Aε(t, x, uε)Duε ·D(vε − (uε)−) dx dt. (3.41)

We want now to pass to the limit in ε. First, we remark that for n >
∫m

0 γ(s)ds,

hn(Gε(s+)− s−)→ χ{s<0}hn(−s−) + χ{0<s<m}hn(s+) (3.42)

as ε tends 0. As a consequence of (3.42), it follows that∫
Q
ϕt

∫ uε

0
b′(s)hn(Gε(s+)− s−) ds dx dt

→
∫
Q
ϕt

[∫ −u−
0

b′(s)hn(s)ds+ b
(
T+
m(u)

)]
dx dt

and∫
Q
ϕt

∫ u0

0
b′(s)hn(Gε(s+)− s−) ds dx dt

→
∫
Q
ϕt

[∫ −u−0
0

b′(s)hn(s)ds+ b
(
T+
m(u0)

)]
dx dt.

Secondly, from (3.36), we get∫
Q
Aε(t, x, uε)Duε ·Dϕhn(vε − (uε)−) dx dt→

∫
Q
ψn ·Dϕdxdt,

Further, using (3.36) and the inequalities∫
Q
fεϕdx dt− ‖ϕ‖L∞(Ω)

∫
{|vε−(uε)−|>n}

|fε| dx dt ≤
∫
Q
ϕfεhn(vε − (uε)−) dx dt

≤
∫
Q
fεϕdx dt+ ‖ϕ‖L∞(Ω)

∫
{|vε−(uε)−|>n}

|fε| dx dt

setting

κ1(n) =
1

n
sup
ε

1

n

∫
{n<|vε−(uε)−|<2n}

Aε(t, x, uε)Duε ·D(vε − (uε)−) dx dt

and

κ2(n) = sup
ε

∫
{|vε−(uε)−|>n}

|fε| dx dt,

we pass to the limit

−‖ϕ‖L∞(Ω) (κ1(n) + κ2(n)) ≤ −
∫
{u(t,x)=m}

ψn ·Dϕdxdt



Existence of a Renormalized Solution for a Class of Parabolic Problems 313

−
∫
Q
ϕt

[∫ −u−0
0

b′(s)hn(s)ds+ b
(
T+
m(u0)

)]
dx dt

+

∫
Q
ϕt

[∫ −u−
0

b′(s)hn(s)ds+ b
(
T+
m(u)

)]
dx dt

+

∫
u(t,x)<m

A(t, x, u)Du ·Dϕhn(v − (u)−) dx dt

−
∫
Q
fεϕdxdt ≤ ‖ϕ‖L∞(Ω) (κ1(n) + κ2(n)).

Now, let u0j be a sequence of the class C∞0 (Ω) such that

u0j → u0 strongly in L1 (Ω)

and
u(t) = u0j for t < 0.

We choose

ϕ = ξ
1

h

∫ t

t−h
Tk(u(τ))dτ

as a test function in (3.6), which gives us

−k(κ1(n) + κ2(n)) ≤
∫
{u(t,x)=m}

ψn ·D
(

1

h

∫ t

t−h
Tk(u(τ)) dτ

)
dx dt

−
∫
Q
ϕ(0)

[∫ −u−0
0

b′(s)hn(s)ds+ b(T+
m(u0))

]
dx dt

−
∫
Q

∂

∂t

(
ξ

1

h

∫ t

t−h
Tk(u(τ)) dτ

)[∫ −u−
0

b′(s)hn(s) ds+ b(T+
m(u))

]
dx dt

−
∫
u(t,x)<m

A(t, x, u)Du ·D
(

1

h

∫ t

t−h
Tk(u(τ))dτ

)
hn(v − (u)−)ωi dx dt

−
∫
Q
fϕ dx dt ≤ k(κ1(n) + κ2(n)).

To control the parabolic term in the previous inequality, we apply Lemma 2.3
from [4] with w = u, F (u) = u,

B(r) =

∫ −r
0

hn(s)b′(s)ds+ T+
m(r),

and we can easily prove that when h tends to 0

1

h

∫ t

t−h
Tk(u(τ) dτ → Tk(u) strongly in L2(0, T ;H1

0 (Ω)),

we get

−k(κ1(n) + κ2(n)) ≤ −
∫
Q
ξt

[(∫ −u−
0

b′(s)hn(s)ds+ b(T+
m(u))

)
Tk(u) dr
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−
∫ u

0
T ′k(r)

(
b(−r−) + b(T+

m(u))
)
dr

]
dx dt

−
∫

Ω
ξ(0)

[(∫ u−0

0
b′(s)hn(s) ds+ b(T+

m (u0))

]
Tk (u0j) dr

−
∫ u0j

0
T ′k(r)

(
b(−r−) + b(T+

m(u))
)
dr

]
dx

+

∫
{u(t,x)=m}

ξψn ·DTk(u0) dx dt

+

∫
u(t,x)<m

ξA(t, x, u)Du ·DTk(u)hn(v − (u)−) dx dt

−
∫
Q
fξTk (u) dx dt. (3.43)

Finally, let n go to infinity. Observe first that, by the definition of Tk (s) , we
have

χ{u=m}ψn ·DTk(u) = 0 .

Thanks to (3.31) and (3.25), we have

κ1(n)→ 0 and κ2(n)→ 0.

Since hn(s)→ 1 and for every n >
∫m

0 γ(s)ds, the inequality (3.43) yields

0 ≤ −
∫
Q
ξt

[(∫ −u−
0

b′(s)hn(s)ds+ b(T+
m(u))

)
Tk(u) dr

−
∫ u

0
T ′k(r)

(
b(−r−) + b(T+

m(u))
)
dr

]
dx dt

−
∫

Ω
ξ(0)

[(∫ u−0

0
b′(s)hn(s) ds+ b(T+

m (u0))

]
Tk (u0j) dr

−
∫ u0j

0
T ′k(r)

(
b(−r−) + b(T+

m(u))
)
dr

]
dx

−
∫
u(t,x)<m

ξA(t, x, u)Du ·DTk (u) dx dt−
∫
Q
fξTk (u) dx dt. (3.44)

Notice that for every s ≤ m, we have(
b(−r−) + b(T+

m(s))
)
Tk(s)−

∫ s

0
T ′k(r)

(
b(−r−) + b(T+

m(r))
)
dr

=

∫ s

0
b′(s)Tk(r) dr. (3.45)

Thus, from (3.45) and putting together (3.44) and (3.40), we can prove that

lim
ε→0

sup

∫
Q
ξA(t, x, u)Du ·DTk (u)dx dt



Existence of a Renormalized Solution for a Class of Parabolic Problems 315

≤
∫
{u(t,x)<m}

ξA(t, x, u)Du ·DTk (u) dx dt.

By Minty’s trick lemma, we conclude that for any k ≥ 0 and any 0 < τ < T,

χ{uε<m}X
ε(t, x, uε)Duε ·DTk(uε)→ χ{u<m}X(t, x, uε)Du ·DTk(u)

strongly in L2(0, τ ;H1
0 (Ω)) (3.46)

for every i = 1, . . . , N. Note that (3.46) implies that

Tk(u
ε)→ Tk(u) strongly in L2(0, τ ;H1

0 (Ω)). (3.47)

3.4. Step 4: End of the proof. In this step, we prove that u is a renor-
malized solution in the sense of definition. It is easy to prove that u satisfies
(2.10)–(2.13).

Firstly, we prove that u satisfies (2.16). Let S ∈ W 2,∞(R), with supp(S′) ⊂
(−L,m) being compact. Then we obtain

∂Bε
s(u

ε)

∂t
− div(S′(uε)Aε(t, x, uε)Duε) + S

′′
(uε)Aε(t, x, uε)Duε ·Duε

= fS′(uε) in D′(Q), (3.48)

where

Bε
s(z) =

∫ z

0
b′ε(s)S

′(s)ds.

Taking the limit as ε tends to 0 and n tends to +∞ in (3.48).

Limit of
∂Bε

s(u
ε)

∂t
. Since S is bounded and continuous, according to the

convergences (3.11) and (3.10), we have that
∂Bε

s(u
ε)

∂t
converges to

∂Bs(u)

∂t
in

D′(Q) as n tends to +∞.

Limit of the second and the third terms in (3.48). Since supp(S′) ⊂
(−L,L), we can replace uε by TL (uε) in the second and the third terms of (3.48).
Then, due to (3.10) and (3.46), we have

S
′′
(TL (uε))Aε(t, x, uε)DTL (uε) ·DTL (uε)

⇀ S
′′
(TL (u))A(t, x, u)DTL (u) ·DTL (u) weakly in L1(Q).

In view of (3.10) and (3.47), we have

S
′
(TL (uε))Aε(t, x, uε)DTL (uε)

⇀ S′(TL (u))A(t, x, u)DTL (u) weakly in L2(Q)

for every i = 1, . . . , N.
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Limit of the right-hand side of (3.48). Due to (3.10) and (3.4), we have

fεS(uε)→ fS(u) strongly in L1(Q).

Secondly, we prove that u satisfies (2.14). We choose S′(r) = θp(−r−) in (3.6)
for a fixed integer p ≥ 1 and we do the same procedure as in Step 2 to obtain

lim
p→+∞

1

p

∫
{−2p<u<−p}

A(t, x, u)Du ·Dudx dt = 0.

Finally, to establish (2.1), we take S′(r) = (1 − σ1/p(r
+)), where p is a fixed

integer ≥ 1, and for any ϕ ∈ C∞c ([0, T ]) in (3.6), we have

−
∫
Q
ϕt

∫ uε

0
(1− σ1/p(r

+))b′(r) dr dt dx−
∫

Ω
ϕ(0)

∫ u0

0
b′(r)(1− σ1/p(r

+)) dr dx

+p

∫
Q
χ{m−2/p<u<m−1/p}A(t, x, u)Du · ϕdx dt =

∫
Q
fε(1− σ1/p(u

+))ϕdx dt.

Now, as p tends to +∞, (1− σ1/p(u
+))→ χ{u=m} a.e. in Q, we have

lim
p→+∞

p

∫
Q
χ{m−2/p<u<m−1/p}A(t, x, u)Du ·Duϕdx dt =

∫
Q
fχ{u=m}ϕdx dt,

which is (2.1).
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Iснування ренормалiзованого розв’язку для класу
параболiчних задач

Mohammed El Fatry, Mounir Mekkour, and Youssef Akdim

У цiй статтi ми доводимо iснування ренормалiзованого розв’язку для
нелiнiйного виродженого параболiчного рiвняння ∂b(u)

∂t −div(A(t, x, u)Du)
= f, де матриця A (t, x, s) = (aij(t, x, s))1≤i≤N

1≤j≤N
не контролюється за u, f ∈

L1(Q), а b є строго зростальною C1-функцiєю.

Ключовi слова: ренормалiзований розв’язок, вибух, L1-данi
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