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Nonlinear Partial Differential Equations in
Module of Copolynomials over a
Commutative Ring

S.L. Gefter and A.L. Piven’

Let K be an arbitrary commutative integral domain with identity of
characteristic 0. We study the copolynomials of n variables, i.e., K-linear
mappings from the ring of polynomials Klx1,...,z,] into K. We consider
copolynomials as algebraic analogues of distributions. With the help of
the Cauchy—Stieltjes transform of a copolynomial, we introduce and study a
multiplication of copolynomials. We prove the existence and uniqueness the-
orem of the Cauchy problem for some nonlinear partial differential equations
in the ring of formal power series with copolynomial coefficients. We study
a connection between some classical nonlinear partial differential equations
and integer sequences. In particular, for the Cauchy problem for the Burgers
equation, we obtain the representation of the unique solution to this problem
in the form of the series in powers of d-function with integer coefficients.

Key words: copolynomial, §-function, differential operator of infinite or-
der, Cauchy problem, Cauchy—Stieltjes transform, multiplication of copoly-
nomials

Mathematical Subject Classification 2020: 35R50, 13B25, 35G20, 11Y55

1. Introduction

This paper is a continuation of the paper [9], where linear partial differential
equations in the module of copolynomials over a commutative integral domain
were studied. Moreover, this paper can be considered as the continuation of the
paper [12], where a special class of nonlinear PDE’s was studied in the case of
one space variable. In the present paper, we investigate the ring of copolynomials
of several variables and consider general evolution nonlinear partial differential
equations in this ring.

Let K be a commutative integral domain with identity of characteristic 0 [20,
Section 1.43|, and let KJzi,...,x,] be the ring of polynomials of n variables.
The most interesting case for us is K = Z. A K-linear functional on the ring
Klxy,...,zy] is said to be a copolynomial. The module of copolynomials is
denoted by K[z1,...,x,]). We consider the module K[z1,...,z,]" as an alge-
braic analogue of the space of distributions (see [9,10,12]). General properties of
copolynomials of n variables are considered in Section 2. In particular, we intro-
duce the notion of a homogeneous copolynomial and obtain an analogue of the
Euler differential equation, which completely characterizes these copolynomials
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(see Theorem 2.8). The properties of copolynomials of one variable were partially
studied in [10-13,16]. We notice that in papers [10,11,13,16] copolynomials were
called formal generalized functions. In Section 3, we introduce and study the
Cauchy—Stieltjes transform of copolynomials. In Section 4, the Cauchy—Stieltjes
transform is used to define a multiplication of copolynomials (see Definition 4.1).
The main results of this section are the Leibnitz formula for a linear differen-
tial operator of infinite order (Theorem 4.8) and the analogue of the formula for
partial derivatives of composition (see Theorem 4.10). It should be noticed that
several non-equivalent constructions of a multiplication are considered in the clas-
sical theories of distributions. For example, in the Colombeau theory [5,6], the
square of the -function is well defined, but in some other theories it is not defined
(see, for example, [1, Section 12.5]). The main results are obtained in Section 5.
In Subsection 5.1, we prove the existence and uniqueness theorem to the Cauchy
problem for some nonlinear partial differential equations (see Theorem 5.1). In
Subsection 5.2, we consider the Cauchy problem for the Burgers equation with the
initial condition upd(z), where up € K and §(z) is the copolynomial §-function
(see Example 2.3). Unlike the general Theorem 5.1, we do not impose additional
restrictions on the ring K and obtain the representation of the unique solution
to this problem as a series in powers of the d-function (see Theorem 5.2). Thus,
if K = Z, then we obtain the series with integer coefficients. Such results were
obtained in [12] for some nonlinear PDE’s of the first order only. In Subsection
5.3, we present other meaningful examples which illustrate the constructed the-
ory. In particular, in this section we consider the Cauchy problem for the Harry
Dym type equation and for the Korteweg-de Vries equation. In Examples 5.10
and 5.11, nonlinear PDE’s with several variables are considered. Notice that in
Example 5.11 it happens that we are able to construct a solution over the ring
K without the assumption K D Q. As in [12, Examples 4.1, 4.2 and 4.4], here
the problem of an integrality of coefficients of expansions of solutions in series
in powers of the d-function has appeared. It is noticeable that the unique solu-
tion to the Cauchy problem for the Korteweg—de Vries equation with the initial
condition ¢'(x) can be represented as the series in powers of the d-function (see
Example 5.8). But the integrality of the coefficients of this representation has yet
to be proven. Numerical calculations show that the first 1000 of these coeflicients
are integers.

Linear functionals in the space of polynomials were studied from different
points of view in a number of works on algebra, combinatorics, and the theory
of orthogonal polynomials (cf., for example, [7,8,23,24]). In the classical case
(K =R or K = C), the series with respect to the derivatives of the d-function
are intensively studied because of their applications in differential and functional-
differential equations and the theory of orthogonal polynomials (see, for example,
[7,17,19)).

In the 1970s, the study of the Korteweg-de Vries equation and other nonlin-
ear partial differential equations developed remarkable techniques that connected
these equations to inverse problems of the spectral theory, infinite-dimensional
differential geometry, special problems of the algebraic geometry and the the-
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ory of Lie algebras (see, for example, [3,14,22]. In particular, in [14], Gel'fand
and Dikii described compatible Hamiltonian structures on rings of differential
and pseudo-differential operators for the Korteweg-de Vries type equation. In
this paper, we do not use these methods. In addition, the main object for us
is the Cauchy problem, where the initial condition is an algebraic analogue of
the d-function. For us, the most important problem is when the coefficients of
the expansion for the unique solution of the Cauchy problem in powers of the
d-function belong to the ring K and, in particular, to the ring of integers. This
problem may possibly be connected to the classical constructs of Gel’fand and
Dikii [14], but this connection requires a separate study.

2. Preliminaries

Definition 2.1. By a copolynomial over the ring K, we mean a K-linear func-
tional defined on the ring K[x1,...,x,], i.e., a homomorphism from the module
Klz1,...,zy] into the ring K.

We denote the module of copolynomials over K by Klz1,...,2,). Thus, T €
Klxy,...,z,] ifand only if T : K[z1,...,2,] — K and T has the property of K-
linearity: T'(ap + bq) = aT (p) +bT(q) for all p,q € K|[z1,...,x,] and a,b € K. If
T € K[x1,...,2,) and p € K|[x1,...,x,], then for the value of T on p, we use the
notation (7, p). We also write the copolynomial T' € K|[z1,...,2,])" in the form
T'(x), where x = (x1,...,xy) is considered as the argument of polynomials p(x) €
K(xy,...,z,] subjected to the action of the K-linear mapping 7. In this case, the
result of action of 7' upon p can be represented in the form (7'(z), p(z)). We define
the product ¢T € K|z1,...,2,) of ¢ € K[x1,...,2,) and T € K[xy,...,z,] by
(¢T,p) = (T,qp) for p € K[x1,...,zy].

Let Ny be the set of nonnegative integers. For a multi-index a =
(a1, ..., 0p) € Nj, we put (see [26, Chapter 1, §1-2]):

Hlal n
D* = ol = g Q;
Oz 0xg? - - D™’ o] e 7"
7j=1
« a1 09 (7%

x* =22y apm, al = arlog! - agl.

For multi-indexes «, 8 € Njj, the relation o < 8 means that o; < 3; for all j =
1,...,n. If @ < /3, then we use the notation (g) =T1TI" ('87').

j=1 CMJ'
Let p(z) = >4 <pmtar® € Klzi,...,2p]. If h = (h1,...,hy), then the
polynomial p(x 4+ h) € K[z1,...,%y|[h1,...,hy] can be represented in the form

p(x +h) = Z Pa(x)h,

la|<m
where p,(x) € K[z1,...,2,]. Since in the case of a field with zero characteristic
palx) = Dacﬁ(m), we also assume that, by definition, Daof’!(x) =pa(z), |a] <m,is

true for any commutative ring K. For m < |a|, we assume that %@ =0.



322 S.L. Gefter and A.L. Piven’

Definition 2.2. The partial derivative % of a copolynomial T €
J
Klzi,...,z,)" with respect to the variable z; (j = 1,...,n) is defined by the
formula 9T 3
P
— =—|T,=— € Klxq, ... . 2.1
<a$j’p) ( ’8%']) ) p [.1'17 7'7;77,] ( )

By using this formula, we arrive at the following expression for the derivative
DT
(DT, p) = (—1)'0“(T, D%), pe€ Klxi,...,zy].

Therefore,
(D*T,p) =0, wherep € Klz1,...,2,] and |a| > degp.

By virtue of the equality
DT D%p
<a"p> :(—1)‘04 (T’a')’ pGK[l‘l,...,.’En],

D«

the copolynomials a!T are well defined for any T € K(z1,...,z,) and a € Nj.

Example 2.3. The copolynomial é-function is given by the formula

(6,p) =p(0), p€ K[z1,... 7]

Therefore,
(D%6,p) = (—1)l*l(6, D*p) = (=1)I*IDp(0), a e Nj. (2.2)

Example 2.4. Let K = R, and let f : R — R be a Lebesgue-integrable
function such that

/Rn |29 (z)|dx < +00, o€ NE. (2.3)

Then f generates the regular copolynomial T:

(Tf,p):/np(a:)f(a:)dx, p € Rlxy, ..., zy).

Notice that in this case, unlike in the classical theory, all copolynomials are
regular [7, Theorem 7.3.4], although a nonzero function f can generate the zero
copolynomial (see, e.g. [12, Section 2], where examples of functions that satisfy
the property (2.3) and generate the d-function were explicitly presented).

We now consider the problem of convergence in the space K[r,...,z,]".
In the ring K, we consider the discrete topology. Further, in the module of
copolynomials K|[z1,...,z,]’, we consider the topology of pointwise convergence.
The convergence of a sequence {T}}7°, to T' in Klzy,...,x,] means that for
every polynomial p € K{[z1,...,x,], there exists a number kg € N such that

(Tk,p):(T,p), k=koko+1,kg+2,....
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We now consider the following linear differential operator of infinite order on

Klzy,...,z,]"
o0
F = Z aq D,
|a|=0
where a, € K. This operator acts upon a copolynomial T' € K|z1,...,z,]|" by

the following rule: if p € Klz1,...,z,] and m = degp, then

(o @]

(FT,p)=| Y aaDT,p | = > (-1)ao(T, D) = > aa(D°T,p).
|al=0 la]<m la|<m

Thus, the differential operator F : Klx1,...,x,) — Klz1,...,2,] is well

defined and for any polynomial p of degree at most m, the equality

(FT,p) = Y aa(DT,p)

laj<m

is true.
The following lemma shows the possibility of the decomposition of an arbi-
trary copolynomial in series in terms of the system DTQI‘S, a € Nj (see [8, Propo-

sition 2.3] in the case n =1 and K = C).

Lemma 2.5. Let T € K[x1,...,z,]). Then

=Y (-1)*T,z%) Da,‘s. (2.4)

a!
|a[=0

Now, as in the classical theory, we introduce the notion of a homogeneous
copolynomial. For any A € K, we define \x = (Azy,...,Az,) and for any
polynomial p(x) = ngm agr® € Klr1,...,x,], the polynomial p(Azx) =
2 lal<m a2 € K[z, ..., 2,)] is well defined. Now we define the copolynomial
T(3) by N

(7(5) ) = \"(T@),p0)). (2.5)

Definition 2.6. Let 0 # T € K|x1,...,2,) and m € N. We say that the

copolynomial T is homogeneous of degree —m if

(T(%),p):)\m(T,p), ANeK, peKlxy,..., ]
or, by (2.5),
AT (z),p(A\x)) = A" (T'(x),p(z)), AEK, pe€ Klry,...,z,). (2.6)

It follows from (2.6) that ¢ is a homogeneous copolynomial of degree —n.
Moreover, equation (2.2) implies that

A(D%6, p(Ax)) = (—=1)lAn+lel pap(0)
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— )\n+|06|(DOé(57p)’ \E K’ pE K[lej...,xn], o € Ng,

i.e., D% is a homogeneous copolynomial of degree —|a| — n. Lemma 2.5 shows
that every copolynomial is a sum of homogeneous copolynomials.

If T # 0 is a homogeneous copolynomial of degree —m, then, due to (2.6), for
p(z) = z%, we obtain

>\n+|a|(T’ xa) _ )\m(T’ xa)’ o= Ng’ e K.

Since K is of characteristic 0, this implies m > n and (T, 2%) =0, |a|# m —n.
Conversely, if m > n, then every copolynomial such that (7, 2%) = 0, || # m —
n is homogeneous. Thus we obtain the following lemma.

Lemma 2.7. The copolynomial 0 # T € K|x1,...,x,) is homogeneous of
degree —m if and only if m > n and (T,x%) =0, |a| #m —n.

In particular, for m < n, there are no homogeneous copolynomials of degree
—m. Moreover, if n = 1 and m € N, then an arbitrary homogeneous copolynomial
of degree —m has the form ‘3‘5(71),, where ¢ € K.

Lemma 2.7 implies the following necessary and sufficient conditions for the

homogeneity of T € Klx1,...,x,].

Theorem 2.8. The copolynomial 0 # T € K|z1,...,x,]" is homogeneous of
degree —m if and only if m > n and T satisfies the Fuler differential equation

ija—r = —mT. (2.7)

Proof. Sufficiency. Let T satisfies equation (2.7). We can find the solution of
this equation in the form (2.4). Substituting (2.4) to (2.7), we have

L9 D% o D%
S S ol T n ST
7j=1 |ee]=0 |a|=0

where aq = (T, 2%). Since

- > d D% = - 9 D5
Ia\ 2P _1)lel L2 29 B
ij Z <6:E Tal 7 > Z( 1)"aa (xjﬁxj al 7" )

j=1 |a|=0 |a|=0 Jj=1
2B n
=3 a3 (6 P < - 5705+ s = (18w
|a|=0 j=1 7=1

equality (2.8) implies
ag(|B] +n) = mag, B € Ng.

Therefore, ag = 0 for || # m —n. By Lemma 2.7, T is homogeneous.
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Necessity. Let 0 4T € K|[x1,...,z,]" be homogeneous of degree —m. Then,
by Lemma 2.7, m > n and (2.6) is satisfied for all A € K. Note that the left-hand
and right-hand sides of (2.6) are polynomials from K[A]. Then, dividing (2.6) by
A" and differentiating it by A, we have

HT@p00) = (T0), 1000 ) = T,;mjii(m

= (m—n)A\""""YT,p), p€Klz,..., ]

Substituting A = 1, we have

Op(x)
xj 8xj

Since

equality (2.9) implies
n
oT
_Z<xj87p) :m(T,p), pGK[$1,...,CL'n]-
=1 i

This proves (2.7). O

3. Cauchy—Stieltjes transform in the module of copolynomials

Let z = (z1,...,2n), and let K Hzl,...,zn,%,...,i” be the module of
formal Laurent series with coefficients in K. For a multi-index oo = (a1,...,ay) €
Z", we put 2% = 2{"25%--- 20, For g € K|:|:Zl7--'7zn7%7"‘7i }7 9(z) =
Y aczn 9az®, we naturally define the formal residue

Res(g(2)) = 9(—1,..,—1)-

Definition 3.1. Let T € K[z1,...,z,] and s = (s1,...,8,). Consider the

following formal Laurent series from the ring swi--%KHi’ é, e i]]
[e.e]
(T, %)
ey =3y T8,
|ae|=0

where ¢ = (1,...,1) € Nj. The Laurent series C(T)(s) is called the Cauchy-
Stieltjes transform of a copolynomial T
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We may write the result of the Cauchy—Stieltjes transform informally:

C(T)(s) = (T, (srm)(sriz)---(snﬂn)>' Obviously, the mapping C
Klzy,...,z,) — Sls;”sn [[%, é, ce i]] is an isomorphism of K-modules.
Proposition 3.2 (The inversion formula). Let T € K[x1,...,z,] and p €

Klzy,...,2y]. Then
(T, p) = Res(C(T)(s)p(s))-

Proof. Tt is sufficient to consider the case p(x) = 2 for some multi-index 3 €
Ni. We have

(T, z%)sP
C(T)(s)s” = > (Sw)
|ee|=0
Therefore, Res(C(T)(s)s?) = (T, 7). O
Example 3.3 (The “integral” Cauchy formula). We put (6,,p) = p(21,...,2n)
for z = (21,...,2,) € K™ Then C(9,)(s) = Zrao\:o Si—: In particular,
1

5132"'871.

C(6)(s) =

We may write informally p(z1,...,2,) = Res( UG ) if we identify

(s1—21)(s2—22)-(sn—2zn) N
- with the Laurent series Zmzo 25

the rational function
(s1—21)(s2—22)(sn—

Let F = Z|02|=0 aoD“ be a linear differential operator with coefficients a, €
K. Obviously, the operator F is well defined on the K-module of formal Laurent
series

1 1 1 1
$18275n HE’ ECRARRE: QH

Proposition 3.4. For any T € K|z1,...,x,), the equality
C(FT) = F(C(T))
holds.
Proof. We have

(FT, (DT,
O(FT) - Z SaJr:f Z Z ap SoHr;r

\oz|*0 |a|=0 8L

Z S (1 ﬁ|5|a6< )W
\a| 0 A<a B s

= 3 S0 () B
18/=0 o> b/ s

LN + B8 (T,2%)
z_: Z_: a1 (a 3 >Sa+§+t

Zaﬁpﬁz Saﬂ = F(C(T)). O

|18]=0 |a[=0
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Now consider the notion of a homogeneous formal Laurent series. Let F' be
the quotient field of K. For any

oo
G 1 11 1
= € K||l— —,...,—
g(Z) ‘a|:0 ZOH'L 212/2 PR Z’n |:|:zl 22 Zn
and 0 # X\ € K, we consider the following series
oo
G 1 11 1
Az) = € Fll— — ....,—]|].
(A2) a0 Aatizatl T e i 2y Hzl 29 Zn

Definition 3.5. Let m € N. We say that a formal Laurent series g(z)
L_ g Hi L , zn” is homogeneous of degree —m if

1 1
Z21222Zn 217 227"

A"g(A\z) = g(2), 0#X€K.
Now we prove the following necessary and sufficient condition for the homo-
geneity of a copolynomial in terms of its Cauchy—Stieltjes transform
Theorem 3.6. The copolynomial T € K [x1, xy] is homogeneous of degree
—m if and only if its Cauchy-Stieltjes transform is homogeneous of the same
degree.

Proof. For any 0 # A € K, we have

XY (s) = Y W _ 3 An(Ta)
|ar|=0

Meal+n gate
|ar|=0
and

oz o0 T Alal+n o o0 AT
Z SonrL Z ) (

B T, (A\x)%)
)\\a|+n5a+L o Z Mal+ngate -
|=0 |=0 |a|=0
Therefore, )\m(C(T))()\s) C(T)(s), 0 # X\ € K, if and only if (2.6) holds for
any A € K.

O
4. Multiplication of copolynomials

The Cauchy—Stieltjes transform and Proposition 3.4 allow us to introduce the

multiplication operation on the module of copolynomials such that this operation
is consistent with the differentiation

Definition 4.1. Let T1,T» € Klx1,...,x,), i.e., T1,T are copolynomials.
Define their product by the following equality

C(Th\T») = C(Th)C(T>), (4.1)
ie.,
N5 =
where C' : K[z1,...,2,) — 81521”.5“
form (see Section 3).
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In the following lemma the action of the product of copolynomials on mono-
mials is expressed through the action of multipliers on monomials.

Lemma 4.2. Let T\, T € K|x1,...,2,) and a € Nj. Then

Z (T17x6)(T27xaibi/B)7 « Z L,
(TlTQ, xa) = B<a—t (4.2)

0, otherwise.

Proof. By (4.1), we have

T,xﬁ (Ty, z”
C(TyTy)(s) = C(T)(s)C Yy lsmé :
|B|=0 |v|=0
1
_ a—t—f
Z Z (T, %) (T2, 2™ %)

Applying the inversion formula to both sides of this equality (see Proposition
3.2), we obtain (4.2). O

Formula (4.2) implies the following assertion about the continuity of the mul-
tiplication of copolynomials.

Corollary 4.3. Let Q,, — Q and S, — S as m — oo with respect to the
topology on Klxy,...,x,). Then QmnSy — QS as m — oo in the same topology.

Remark 4.4. Definition 4.1 means that the module of copolynomials

Kx1,...,z,]" with the introduced product is an associative commutative ring,
which is isomorphic to the ring of formal Laurent series - L gL, L, 4]
182:Sn 817 82 Sn

with a natural product operation. In particular, the ring of copolynomials is an
integral domain and this is a ring without identity.

Example 4.5. Let n = 1. We find the square of the d-function:

O(2)(s) = (C(0)(s) = & = (‘1) — (—C()) = O(=7),

ie.,

Since by Proposition 3.4,

€ (69 (5) = (C(3)(s) = @2 = (~D*KIsTL k=0,1,2,...,

we have
(_1)k5(k) _ 5k2+1
k! ’
and, by Lemma 2.5, for any copolynomial T" € K|[z]', the decomposition with
respect to the degrees of §-functions holds

o
T =3 (T, )+,
k=0

k=0,1,2,..., (4.3)
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The generalization of equalities (4.3) on n variables is given by the following
formulas:

8nk5 nkp.\n sk+1
G gpr — UMMk =0,12, (4.4)
i...0zk
As a consequence,
n Sk
8858 — (_1)nkn5k+17 k € N. (45)
x1...0xy

We show that for the constructed product of copolynomials the natural Leib-
nitz formula is satisfied. At first, we consider particular cases.

Lemma 4.6. Let T1,T5, ..., T, € K[z1,...,2,)". Then

O ) =119k .

In particular,

8(T1T2) _ 8T1 4 aTQ
8£Uj al‘j a:L‘j

Proof. By Proposition 3.4 and Definition 4.1, we obtain

o (3(1_[?1 Tk)) _ 00l Te) _ 91Tk C(Th))

aJJj 88]' st
UL oC(T; B OT,
=>_llcm 8(5,‘“)=OZHT18$’“, j=1l...,n O
k=11=1 J k=11=1 J
I#£k I#k

Lemma 4.7. Let T\, T € K|x1,...,2z,]". Then for any 5 € Ny,

DA(TTy) =) <§ > DTy DP~°Ty. (4.8)

a<p

Proof. We prove by induction on |3|. For || = 1, (4.8) directly follows
from (4.7). Suppose that (4.8) holds for some § € Njj. For any j = 1,...,n,
consider the multi-index 3(j) € Nj which is obtained from the multi-index § =
(B1,- .., Bn) € N§ by replacing ; on ; + 1. To prove the theorem it is sufficient
to prove the equality

DOy = <ﬂ<]>)DaT1Dﬂ(j)‘aT2. (4.9)
o<p) ~
Indeed, using the induction hypothesis, we obtain

A 0 0 _
Dﬂ(])(Tng) — %Dﬁ(TlTQ) — . Z (g) Dale_)ﬂ T,
J 7 \a<p
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/B 8 «@ -« /6 fe% ) —a
=Y <a>axj(D T)DP Ty + ) (a>D Ty DAY=,

a<lf a<p
(67
a<B(5)
which proves (4.9). O

Now we establish the general Leibnitz formula.

Theorem 4.8. Let F = ZIOSIZO ao D% be a linear differential operator of
infinite order on Klx1,...,x,])" with the symbol o(z) = Zr:\:o anz®. Then

>\ DTy
F(OiT) =Y —oy Jall2),
|a|=0
where Fo, s a differential operator with the symbol D*p(z).

Proof. Let us multiply equality (4.8) by ag and add on all multi-indexes 3 €
NG. Then

FOT) =Y > as (Z) DT, DP~°T,

|8l=0 a<p
— B
=> Z%( )D“TlDﬁ_aﬂ
|a|=0 B>« «
[o¢] o0
B - DTy
=> Daleaﬂ<a DF~Ty = Y —Fa(D),
|a|=0 B>a |a|=0

where Fo =3 55, aﬂa!(g) DB~ Since ¢(z) = Zrﬁo\:o agz” is the symbol of the
differential operator F, we obtain that D%p(2) = 4., ! (g) 28~ is the symbol

of the differential operator F. O

Remark 4.9. In [8,24], the Cauchy product of copolynomials of one variable
was considered. It was shown that this multiplication of copolynomials is not
consistent with a differentiation. For example, the Leibnitz formula for this mul-
tiplication is not valid. Moreover, the d-function is the identity with respect to
this multiplication.

Definition 4.1 implies that for any copolynomials T4, ..., T, € K[z1,..., 2|’
and for any multi-index 8 € N, the formula

(H Tk,m5> =0, m>|p|+1 (4.10)
k=1
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holds. Let T1,..., Ty, € K[z1,...,z,) and v = (71, ..., vm) € Nj*. We define T
by the equality
m
Y — Vi
m=II7" ~#0
7i#0

Equality (4.10) implies that for any multi-indexes § € Njj and v € N, the
formula

(T7,2°) =0, |y|>|8|+1,

is satisfied. ~ Then, for any formal power series g(z) = Z|070|:1 gy27 €
K|[z1,... ,zm]], the series Zm:l g4T"7 converges with respect to the topology
on Klzi,...,x,). We denote the sum of this series by g(T1,...,Tm). If
g(z) = ‘ —09v%" € K[[z1,...,2p]] and S € Klzy,..., 2], then the product
g(Th,...,T,)S means the sum of the following copolynomials:

o0 [e.9]
905 + Z gy I7 | S =goS+ Z g, 178
lvI=1 lvI=1
(see Corollary 4.3). The theorem below establishes the rule of the differentiation

for a copolynomial g(T1,...,T,,), which is similar to the rule of the differentiation
of a composition.

Theorem 4.10. Let Th,..., Ty, € Klz1,...,2,)" and g(z) = Zm:l g2 €
K[[z1,...,2m]]. Then

8g(T1,..., “ g 8T .
_ —(T1,... =1,...,n.
amj ga 1, ) )8IE] J ) N

Proof. To prove the theorem, it is sufficient to show that

m
(W,xﬁ> = Z@(Tl,...,Tm)a—T‘{ ), j=1,...,n, BN
(4.11)
For B; = 0, equality (4.11) follows from (4.2) and (2.1). In what follows, we
suppose 3; # 0. Denote by e the multi-index of an arbitrary dimension whose
kth coordinate is equal to 1 and other coordinates vanish. Let § = (B1,...,08,) €
N§ and B(j) = B —e; € Nj. Then

dg(Th,....,Tm) 4 T, 4 s .
2L Tm) = E . —3 — B; E 77 2P0 (4.12

[v|=2

On the other hand,
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- oT,
= qz:;geq xj,xﬁ +ZZQW'Y(1< T7 ¢ xq',xﬁ)

q=1 |y|=2 J

= deqafq P +ZQVZ%(T” St ﬁ)- (4.13)

[v|=2 q=1

In the sum Eq 1 ZM 9 97 Vq (T'Y €q 8Tq 6) , the product ~, (TV_G‘Z %,lﬁ) is
well defined, because either 7, = 0 or v 2 eq. By the Leibnitz formula (see (4.6)),

i T, oT
TV a9 26} = B > 2. 4.14
qzlw( i) = (Geat) i (4.14

Substituting (4.14) into (4.13) and taking into account (4.12), we obtain
m
dg oT,
= (Th,..., T) L, 2"
;(82’(1( 1, ) m)ax]7m>

m
= dequ’xﬁ +29727q <T7 1 T )
q=1

V=2 ¢=1
m o0
aT, o1
= Doz | | D gy
g=1 ’ yl=2

" oT, > , dg(Th, ..., T
= ;QEqaxj’:EB _ﬁjzgv (T’yvxﬁ(J)>:< g 1a$j )7x5>7

=2
which proves (4.11). O

5. Nonlinear partial differential equations in the ring of copoly-
nomials

5.1. The Cauchy problem for some nonlinear differential equations
in the ring of copolynomials. At first, we give some notions from [9]. The
module of formal power series of the form u(t, x) = >3, ug(z)t* with coefficients
up(x) € K[z1,...,x,]" is denoted by Klx1,...,z,)[[t]]-

The partial derivative with respect to ¢ of the series u(t, z) € K[x1,...,z,]'[[t]
is defined by the formula

Z kug(z tk L

The partial derivative D% with respect to variables z1,...,x, of the series
u(t,z) € Kx1,...,x,) [[t] is defined as follows:

o0

Du(t, ) =Y (D%uy)(x)t*.
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The action of the K-linear operator A : K[x1,...,xz,] = Klz1,...,z,]" on a for-
mal power series u(t, ) = > po o uk(2)t* € K[z1,...,z,)'[[t] is defined coefficient-
wisely:

Z Auyg)(x
k=0

Now, let P € K[z1,...,2m], P(0) = 0, and let F; = Zm:o ajoD* (j =
1,...,m) be linear differential operators of infinite order with coefficients a;, €
K which act on the module of copolynomials K[z1,...,z,|. Now we consider
the module K{z1,...,x,])" as the commutative ring in which the multiplication
was introduced in Section 4. Consider the following Cauchy problem in the ring
Kz, ...,z ][[t]:

Mg;m) =P ((Au)(t,2),.... (Fau)(t,2)), (5.1)
uw(0,2) = Q(z) € Kl[z1,...,1,)". (5.2)

Now we are to prove the existence and uniqueness theorem for the Cauchy
problem (5.1)—(5.2).

Theorem 5.1. Let K D Q. Then for any copolynomial Q € Klx1,...,2y,],
the Cauchy problem (5.1)—(5.2) has a unique solution.

Proof. We are looking for a solution of the Cauchy problem (5.1)-(5.2) in the

form -
= Zuk(az)tk, (5.3)
k=0

where ug(z) € Klzi1,...,2,). Then, by the initial condition (5.2), we have
uo(x) = Q(x). Substituting (5.3) into equation (5.1) and equating coefficients of
t#, we obtain that there exist polynomials pj, € K|z, ... Zm(kt1)] (B =10,1,2,...)
such that

(k4 Dugs1(z)
= Pk (./."1UQ,]:2U0, . ,fmuo,flul,fgul, e ,fmul, . ,fluk,fguk, e ,.quk) .

Since the ring K contains the field of rational numbers, we uniquely find
ug(z), ke N:

—1
uk:k pk,l(}"luo,...,fmuo,flul,...,fmul,...,fluk,l,...,fmuk,l). Il

5.2. The Cauchy problem for the Burgers equation. We denote the
quotient field of K by F. Let a,b,ug € K. Consider the Cauchy problem for the
Burgers equation in the ring K[z]'[[t]]:

ou 0%u ou

— =a—— +bu— A4

ot~ "oz " "ox (5:4)
u(0,x) = upd(x). (5.5)

We prove the following existence and uniqueness theorem for this Cauchy
problem without the additional assumption K D Q.
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Theorem 5.2. The Cauchy problem (5.4)—(5.5) has a unique solution. This
solution has the form

o
= upd?E, (5.6)
k=0

where ug, € K. Moreover, for everyt € K, the series (5.6) converges with respect
to the topology on the module K|[x]'.

Proof. Differentiating (5.6) on ¢t and x, we have

ou >

k=0
8 oo
£ == (2K + Dyup6 2k, (5.8)
k=0
Pu = 243,k
50 = > (2K + 1)(2k + 2)uy,6°F3¢E (5.9)
k=0

Substituting (5.6)—(5.9) into (5.4), we get

(o]
D (ke + Dy 6235 = az (2k + 1) (2k + 2)uy, 62 T3¢+
k=0 k=0

oo k
. k k
— bz 2(2] + Dujug_ ;625 3¢k,
k=0 j=0

Equating the coefficients at ¢t*, we obtain

k
(k+1)uppr = a(2k+1)(2k+2)up—b Y (2 +Dujup—;, k=0,1,2,.... (5.10)
§=0
Due to
k k
2 jujup_; =k Y ujup_j, k=01,2,...,
j=0 j=0
equation (5.10) implies
k
(k+ Dupyr = a(2k+1)(2k+2up —b(k+1) > wjup—j, k=0,1,2,.... (5.11)
j=0

Since K is of characteristic 0, from (5.11), we obtain

k
w1 = a(dk + 2up — 0y ujup_j, k=0,1,2,..., (5.12)
=0
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hence u, € K for all kK € N. In particular, if ug € Z, then u, € Z, k €
N. By Theorem 5.1, the formal power series (5.6) is the unique solution of the
Cauchy problem (5.4)—-(5.5) in the ring F[z]'[[t]]. Since u(t,z) € Kl[z|'[[t]], it
is the unique solution of the Cauchy problem (5.4)—(5.5) in the ring K|[z]'[[t]].
Moreover, for every t € K, the series (5.6) converges with respect to the topology
on the module Kx]'. O

Remark 5.3. Now, let bug = 2a. Then (5.12) implies ux, = 0, k£ € N, and the
corresponding solution of the Cauchy problem (5.4)—(5.5) has the form u(t,z) =
upd(x). For a = 1,b = 2 and up € N, the solution of (5.4) with the initial
condition u(0, z) = “2 was obtained in a classic situation by using the Cole-Hopf
transform in [21].

Example 5.4. Here we study the Cauchy problem (5.4)—(5.5), where b is an
invertible element of the ring K and ug = 4ab~!. Consider the rational solution

dab 1z
w(t,z) = 22 4 2at

of equation (5.4) (see [28, Section 5.1.5]). Decomposing this solution into the
series with respect to negative powers x, we get

& (_Q)kakJrltk
$2k+1

The inverse Cauchy—Stieltjes transform for this Laurent series gives us the fol-
lowing element of the ring K[x]'[[t]]:

0 0 k+1(_o\ks(2k)
u(t,z) =4b~1 > " a" T (=2)Fo(x) I = 4b Y A é)kﬁ () (5.13)
k=0 k=0 ’

(see (4.3)). By Theorem 5.2, this formal power series is the unique solution of
the Cauchy problem (5.4)—(5.5). Moreover, for every t € K, the series (5.13)
converges with respect to the topology on the module K|x]'.

Remark 5.5. Theorem 5.2, Example 5.4 and Examples 4.1, 4.2, 4.4 in [12] show
that there is an interesting connection between some classical partial differential
equations and well-known integer sequences. The recurrent sequence (5.12) is a
particular case of a self-convolutive recurrence which was studied in [25]. If ug =
1,a = 1,b = —1, then the corresponding element uy (k € N) of (5.12) is connected
with the number of rooted quadrangulations on some darts [4, Example 4.4] (see
also the integer sequence A292186 in [29]).

5.3. Some other examples

Example 5.6. Let K D Q and ug € K. Consider the Cauchy problem in
Kz]'[[t]]:

ou 9%u
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u(0, ) = upd(x). (5.15)

By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.14)—
(5.15). As in [12, Example 4.4], we are looking for the solution of this problem
in the following form:

z) =) upd* IR (5.16)
where ug € K. Thus,
a o
ait‘ = 57k + Dupe 1 845, (5.17)
k=0
8*u - 3k+3 4k
57 = > (3K + 1)(3k + 2)uy, 657 F3¢F,
r k=0
&*u : 3k+4,k
Uz ZZ 35 4+ 1)(37 4 2)ujuy,_ ;63 H4¢k. (5.18)
k=0 j=0

Substituting (5.16)—(5.18) into (5.14), we get

00 oo k
Dk + D 6554 =37 (35 4+ 1) (35 + 2)ujup—_; 057
k=0 k=0 5=0

Equating the coefficients at §t4¢* we obtain

k
(k+ Duppr = Y (35 + 1)(35 + 2ujup—;, k€ No.
7=0
Since K D Q, we have
k
Uy = Z 3j +1)(35 + 2ujup_j, ke No. (5.19)
7=0

If K =7Z and up = 1, then (5.19) implies that us = % ¢ Z. This example
shows that the condition K O Q in Theorem 5.1 is essential.

Example 5.7. Let K D Q, a,ug € K and m € N. Consider the following
Cauchy problem for the Harry Dym type equation in K [z]'[[t]]:

ou m 0"
u(0, ) = upd(x). (5.21)

By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.20)—
(5.21). As in [12, Example 4.4], we are looking for the solution of this problem
in the following form:

oo
= > upd?mEE, (5.22)
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where u;, € K. Thus,

8 o0
ai: =3 (k + Dug 62mFH2m Ik (5.23)
k=0
g g )™ (2mk +1)(2mk +2) -+ (2mk + m)ugs> T,
X
k:0

6m
aum 22 = (—l)maz Z (2mag + 1)+ (2mag +m)ug, - - uam+162mk+2m+1tk.
k=0 |a|=k
(5.24)

Substituting (5.23) and (5.24) into (5.20), we get
o0
Z ]C—l— 1 uk 1(52mk+2m+1tk
k=0

0
maz Z (2ma1 + 1) A (2ma1 + m)ual . uam+152mk+2m+1tk.
k=0 |a|=k

Equating the coefficients at §27#+2m+1¢k we obtain

(k+Dugs1 = (—1)"a Z (2moi+1) -+ 2mor+m)ua, - - Uay,,,, K=0,1,2,....
la|=k

Since K D Q, this difference equation is equivalent to the equation

az 2maq + 1) -+ (2may + m)uq, - Uay, s kK =0,1,2,...,
o=k

Uk+1 =

ie., ur (k € N) is uniquely determined by wug. Hence, the formal power se-
ries (5.22) is a unique solution of the Cauchy problem (5.20)—(5.21) in the ring
K|[z]'[[t]]. Moreover, for every t € K, the series (5.22) converges with respect to
the topology on the module Kz

If @ = —1 and m = 1, then equation (5.20) is an Euler—-Hopf equation which
was studied in [12, Example 4.1]. It was shown that u; (k = 0,1,2,...) is the
well-known sequence of Catalan numbers. If @ = 1 and m = 3, then equation
(5.20) is the Harry Dym equation which was also considered in [12].

Example 5.8. Let K D Q. Consider the following Cauchy problem for the
Korteweg-de Vries equation in K[z]'[[t]]:
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By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.25)—
(5.26). As for the Burgers equation (see Subsection 5.2), we are looking for a
solution of this problem in the following form:

where u;, € K. Thus,
gu _ i(kz + 1D)ug g 03K (5.28)
ot = k+1 ) '
k=0

or h ’
k=0

u > 3k+5 4k

o — > (3K +2)(3k + 3)(3k + 4)upd*F oL, (5.29)
k=0

ou > & . 3k+5 4k

buz - = —6) > (35 + 2ujup_ ;50 (5-30)

k=0 j=0

Substituting (5.28)—(5.30) into (5.25) and (5.26), we get ug = —1 (see Exam-
ple 4.5) and

D (k4 Dy 655 = (3% + 2)(3k + 3) (3 + 4)uy 030
k=0 k=0
oo k
— 6 ) (3 + 2ujup_; 6 E,
k=0 j=0

Equating the coefficients at §15¢t* we obtain

k
(k+ Dy = (3k +2)(3k +3)(3k + A)up —6 (35 +ujup—j, k=0,1,2,....
j=0
(5.31)
Since K D Q, the difference equation (5.31) is equivalent to the equation

k
ups1 = 3(3k +2)(3k + Dug — 6(k + 1)1 Y (35 + Dujup—y, k=0,1,2,...,
7=0

i.e., ur (k € N) is uniquely determined by ug. Hence, the formal power series
(5.27) is the unique solution of the Cauchy problem (5.25)-(5.26) in the ring
K[z]'[[t]. If K = Z, then computer experiments show that the first 1000 terms
of the sequence uy are integers. Although this sequence is absent in the online
encyclopedia of integer sequences [29], we formulate the conjecture that uy € Z
for all k € Ny.
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Consider three examples for the case n > 2.

Example 5.9. Let a € K. Consider the following Cauchy problem in
Klzy,...,z,][[t]:

ou o"u
Ou _ SCIN 32
ot~ “oxy- -0, (5-32)

u(0,x) = d(x). (5.33)

Since (5.32) is a linear equation, we can apply Theorem 6.3 from [9]. According
to this theorem, the Cauchy problem (5.32)—(5.33) has a unique solution and this
solution has the form

o

= 1
k 1)k ()11 k
- (K="t
Z k! 8x 8:L'k kz

(see Formula (4.4)). For the case n = 3, S.L. Sobolev considered equation (5.32)
in the classical situation (see, for example, [27, Section 2.3]).

Example 5.10. Let K D Q, a,ug € K. Consider the following Cauchy problem
in K[zq,...,z,)'[[t]]:

ou o0"u
u(0,x) = upd(x) (5.35)

By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.34)—
(5.35). As in [12, Example 4.4], we are looking for a solution of this problem in
the following form:

(o]
= ups*t R, (5.36)
where u, € K. Due to (4.5), we have
8”“ ) - 2k+2,k
_— (2K + 1) up 6221,
Thus,
U —
_ 2k+3 4k
o7 = (b Dug 673, (5.37)
k=0
9" oo k
U = (—l)naz Z(Qj + 1) ujug_ j02FT3ER, (5.38)
ox1...0x, pr e

Substituting (5.37),(5.38) into (5.34), we get

00 oo k

Z(k’ + Dug102 38 = (-1)"a Z Z(Qj + 1) ujug_ j02FT3ER,
k=0 k=0 j=0
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Equating the coefficients at 52643tk we obtain
k
(k4 Duppr = (—=1)"a > (2 + 1) ujup_j. (5.39)
=0

Since K D Q, the difference equation (5.39) is equivalent to the equation

k

uper = (k+ 171 (=1)"a Y (25 + 1)"ujup—y, k=0,1,2,...,

§=0
ie., ur (k € N) is uniquely determined by ug. Hence, the formal power series
(5.36) is the unique solution of the Cauchy problem (5.20)—(5.21) in the ring
Klz1,...,z,)'[[t]]. Moreover, for every t € K, the series (5.36) converges with
respect to the topology on the module K|x1,...,z,]".

If K =7, a=1n=2and up = 1, then (5.39) implies that uz = 132

Z. But, if n = 3, then computer experiments show that the first 1000 terms
of the sequence uy are integers. Although this sequence is absent in the online
encyclopedia of integer sequences [29], we formulate the conjecture that uy € Z
for all k£ € Ny.

Example 5.11. Let a,ug € K. Consider the following Cauchy problem in
Klzq,...,z,][[t]):

ou W T Ou
5=l g (5.40)
u(0,z) = upd(x) (5.41)

By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.40)—
(5.41) in the ring Fx1,...,x,]'[[t]]. We are looking for the solution of this prob-
lem in the following form:

o0
u(t,z) = Zuk5”k+1tk, (5.42)
k=0

where ug € K. By Theorem 4.10,

ou > gsneitt

- = u, — ¢

8.7}j ajzzo & a:Ej

- no 9 .
= Zua.(naj—l—l)é i—t, j=1,...,n. (5.43)
J 81‘]‘
a;=0
Due to Proposition 3.4 and Example 3.3,
06 0 0 1 1
C’<>=C(5)= = — , Jg=1,...,n.

Ox; 0s; 0sj 518y 51" 8p5;j
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Therefore,
L) - <35>
C — | =Tlc(+—
]113:1:] Jlill 0z
1 “1 1
— (—1)" i 1)" _ n n+1
D" >£[1 ()" g = (F0"CE
Hence,
m A0 en
Hg = (—1)"ontt (5.44)
j=1""7

By (5.44) and (5.43),
na]l:Il 88;2 —a Z_ N Z (nay + 1) -+ (nay + Dug, - ,uan5n|a\+n+1t|a|

o0
= az Z (nay 4+ 1) - - (noy + Vg, - - - ta, 6T HEE . (5.45)

k=0 |a|=Fk
Now,
Ou _ i(k + 1)ugy O7FFHLEE (5.46)
ot b ’ '
k=0

Substituting (5.46),(5.45) into (5.40), we get

o0
k:0 k=0 |a|= k

Equating the coefficients at §™*T"+1¢t* we obtain the difference equation

(k+1Dupy1 =a Z (noy +1) -+ (nog, + Vg, -+ ta, 0 £=0,1,2,....
|a|=k
(5.47)

We show that for any given ug € K, the sequence

Ap(n+1,1%) 4 -1kt
Uk:T_H(ZUO s k:0,1,2,...,

is the unique solution of (5.47), where Ag(r,m) = (r+,z”k ) are Fuss—Catalan—

Raney numbers [30] and r,m € N. Indeed, by using combinatorial identity, which
was proved in [15], we obtain for k =0,1,2,...,

a Z (naq + 1) -+ (nay, + Vg, - g, STEFHL
|a|=k
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(nap + 1)+ (nay, + 1)

— ak+1u(n_1)k+n Z Aal (n + 17 n2) Aﬂén (n + 17 n2)
’ nap + 1 nog, + 1

|a|=k

_ ak+1u(()n*1)(k+1)+1 Z Ag,(n+1,n2)--- Ay (n+1,n2)
loo|=k

= akﬂuén*l)(kH)HAk(n(n +1), n2)

ka1 (i) (k+1)+1 <n(n +1) + kn2> n+1
a UO

k n+1+kn

_ k1, (D) +L (n+ (k+ 1)n?)! n+1

’ B(n+ (k+ 1 — k) n+ 1+ kn
= gFtH1y (I (n+ (k + 1)n?)! (k+1(n+1)

’ (k+D!(n+(k+1)n2—k)! nk+n+1
= akHu(”_l)(kH)H& n+1+ (k+1)n? n+1
= 0 nk+n+1 kE+1 n+14 (k+1)n2
_ k1, (n=1) (k1) 41 (k+1)Agi1(n+1,n2) el

Hence, uy (k = 0,1,2...) satisfy equation (5.47) and therefore u(¢,x) defined
by (5.42) is the unique solution of the Cauchy problem (5.40)—(5.41) in the ring

Flxy,...,zy)[[t]]. By using combinatorial transformations, we can prove
A 2 2 _
k(n+1,n): n nk+n-—1  keN
nk+1 E(k(n—1)+1) k—1

Since the right-hand side of this equality is integer [2], we have u, € K. Therefore,
u(t,z) € K[z1,...,zy)'[[t]] and it is the unique solution of the Cauchy problem
(5.40)—(5.41) in the ring Klx1,...,x,) [[t]].

In Examples 5.6, 5.7, 5.9-5.11 and in Subsection 5.2 the unique solution of
the Cauchy problem (5.1)—(5.2) with Q(z) = 6(z) has the form

o
u(t,z) = Zukémk (x)tf, up € K, my € N (5.48)
k=0
The following example shows that the solution of the corresponding Cauchy prob-
lem for Q(z) = §(z) not always has the form (5.48).
Example 5.12. Let K D Q. Consider the following Cauchy problem for the
Korteweg-de Vries equation in K[z|'[[t]]:
— =———+6u— 5.49
+6uz, (5.49)
u(0,2) = o(x). (5.50)

By Theorem 5.1, there exists a unique solution of this Cauchy problem, which
has the form

u(t,z) = up(@)t*, (5.51)
k=0
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where ug(z) € K[z]'. Substituting (5.51) into (5.49), (5.50) and taking into
account (4.3), we have

uy(z) = —6" + 668" = 65* — 65°.
This shows that the solution is not of the form (5.48).

Acknowledgments. This research was partially supported by the Akhiezer
Foundation grant, 2024. The authors are grateful to Eugene Karolinsky and
Sergey Poslavsky for useful discussions of the paper results. The authors also
would like to thank the referee for helpful comments and suggestions that im-
proved the text of this paper.

References

[1] P. Antosik, J. Mikusinski, and R. Sikorski, Theory of Distributions. The Sequential
Approach, Elsevier Science Publ. Co., Amsterdam, PWN, Warsaw, 1973.

[2] M. Bousquet-Mélou, E. Fusy, and L.-F. Préville-Ratelle, The number of intervals in
the m-Tamari lattices, Electron. J. Combin., 18 (2011), No. 2, Paper No. 31.

[3] F.Calogero and A.Degasperis, Spectral Transform and Solitons: Tolls to Solve and
Investigate Nonlinear Evolution Equations, North-Holland Publishing Company,
Amsterdam, 1982.

[4] L. Ciobanu and A. Kolpakov, Free subgroups of free products and combinatorial
hypermaps, Discrete Math. 342 (2019), No. 5, 1415-1433.

[5] J.F. Colombeau, Multiplication of Distributions. A Tool in Mathematics, Numerical
Engineering and Theoretical Physics, Springer-Verlag, Berlin, 1992.

[6] Yu. V. Egorov, A contribution to the theory of generalized functions, Russian Math.
Surveys 45 (1990), No. 5, 1-49.

[7] R. Estrada and R.P. Kanwal, A Distributional Approach to Asymptotics. Theory
and Applications, Birkhduser Advanced Texts, Birkhduser Boston, Inc., Boston,
MA, 2002.

[8] J.C. Garcia-Ardila, F. Marcelldn, and M.E. Marriaga, Orthogonal Polynomials and
Linear Functionals. An Algebraic Approach and Applications, EMS Series of Lec-
tures in Mathematics, EMS Press, Berlin, 2001.

[9] S.L. Gefter and A.L. Piven’, Partial differential equations in module of copolynomi-
als over a commutative ring, J. Math. Phys. Anal. Geom. 21 (2025), No. 1, 56-83.

[10] S.L. Gefter and A.L. Piven’, Linear partial differential equations in module of formal
generalized functions over commutative ring, J. Math. Sci. 257 (2021), No. 5, 579—
596.

[11] S.L. Gefter and A.L. Piven’, Implicit linear differential-difference equations in the
module of formal generalized functions over a commutative ring, J. Math. Sci., 255
(2021), No. 4, 409-422.

[12] S.L. Gefter and A.L.Piven’, Some class of nonlinear partial differential equations
in the ring of copolynomials over a commutative ring, Front. Appl. Math. Stat. 10
(2024), Paper No. 1466569.



344

S.L. Gefter and A.L. Piven’

[13]

[14]

S.L. Gefter and T.E. Stulova, Fundamental solution of the simplest implicit linear
differential equation in a vector space, J. Math. Sci. 207 (2015), No. 2, 166-175.

I. M. Gel'fand and L. A. Dikii Asymptotic behaviour of the resolvent of Sturm-—
Liouville equations and the algebra of the Korteweg—de Vries equations, Russian
Math. Surveys 30 (1975), No. 5, 77-113.

H.W. Gould, Some generalizations of Vandermonde’s convolution, Amer. Math.
Monthly, 63 (1956) No. 2, 84-91.

S.L. Hefter and O.L. Piven’, Infinite-order differential operators in the module of
formal generalized functions and in a ring of formal power series, Ukr. Math. J., 74
(2022), No. 6, 896-915.

L.G. Hernandez and R. Estrada, Solutions of ordinary differential equations by series
of delta functions, J. Math. Anal. Appl. 191 (1995), No. 1, 40-55.

L. Hérmander, The Analysis of Linear Partial Differential Equations, 1, Distribution
Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983.

A.M. Krall, R.P. Kanwal, and L.L. Littlejohn, Distributional solutions of ordinary
differential equations. CMS Conf. Proc., 8. Published by the American Mathematical
Society, Providence, RI, 1987, 227-246.

R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge,
1996.

G. Lysik, Borel summable solutions of the Burgers equation, Ann. Polon. Math. 95
(2009), 187-197.

Yu.I. Manin, Algebraic aspects of nonlinear differential equations, J. Soviet Math.
11 (1979), No. 1, 1-122.

P. Maroni, Sur quelques espaces de distributions qui sont des formes linéaires sur
léspace vectoriel des polynémes, Lecture Notes in Math., 1171, Springer-Verlag,
Berlin, 1985, 184-194.

P. Maroni, Une théorie algébrique des polynémes orthogonaux. Application aux
polynémes orthogonaux semi-classiques, Orthogonal Polynomials and their applica-
tions, MACS, Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991, 95-130.

R.J. Martin and M.J. Kearney, An exactly solvable self-convolutive recurrence, Ae-
quat. Math. 80 (2010), 291-318.

M. Morimoto, An Introductions to Sato’s Hyperfunctions, Amer. Math. Soc. Prov-
idence, RI, 1993.

M. Ortner and P. Wagner, Fundamental solutions of linear partial differential oper-
ators. Theory and Practice, Springer International Publishing Switzerland, Cham,
Switzerland, 2015.

A.D. Polyanin and V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equa-
tions, Second Edition, Taylor & Francis Group, CRC Press, Boca Raton, FL, 2012.

N.J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.
org/.

R.D.P. Zhou and S.H.F. Yan, The Raney numbers and (s,s + 1)-core partitions,
European J. Combin. 59 (2017), 114-121.


https://oeis.org/
https://oeis.org/

Nonlinear Partial Differential Equations in Module of Copolynomials 345

Received June 6, 2024, revised May 12, 2025.

S.L. Gefter,

V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine,
B. Verkin Institute for Low Temperature Physics and Engineering of the National
Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine,

E-mail: gefter@karazin.ua

A.L. Piven’,
V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine,
E-mail: aleksei.piven@karazin.ua

Heuniniitai qudepennianbii piBHAHHA 3 YaCTUHHUMU
MOXITHUMHU Yy MO/YJIi KOIIOJIIHOMIiB HaJ KOMYTaTUBHUM
KijJgbmemMm
S.L. Gefter and A.L. Piven’

Hexait K — noBijibHe KOMyTATHUBHE IUTICHE KiTbIle 3 OJUHUIEIO XapaK-
tepuctuku 0. JlocaimKyroTbest KOmoiHOMHU 71 3MiHHEMX, TOOTO, K-jiHiitHi
Binobpazkenusa 3 Kuiblg noiainomis K(x1,...,x,] y K. Mu posrisagaemo Ko-
OJTiHOMU SIK ajireOpalvni aHasorn po3moaurB. 3a MOIOMOIH ITEPEeTBOPEHHS
Komi—CrisTheca BBEIEHO Ta JOCIIIIZKEHO MHOXKEHHSI KOTIoJIiHOMIB. JloBeaeHo
TeopeMy iCHyBaHHs Ta €IUHOCTI po3B 3Ky 3asmadi Komri st gesakux Hesi-
HIHHUX audepeHIiajJbHIX PIBHIHb 3 YACTUHHUME [TOXITHUMA B KiJIbIl (DOp-
MaJIbHUX CTEIEHEBUX PSIIiB 3 KOIMOJIHOMIaILHIMEI KoedirienraMu. Beranos-
JIEHO 3B’SI30K MiXK IeAKNMU KJIACHIHAMA HEJIHIHHUME AudepPeHIiaTbHIMI
PIBHSHHSAMU 3 YaCTUHHUMHM TOXITHUMU Ta IIJIOYUCETbHUMU TTOCIIiJOBHOCTS-
MH. 30KpeMa, OJePrKaHO 300parkeHHs €UHOr0 po3B’si3Ky 3ajadi Kol jiist
piBasiHHs Broprepca y BUrsii psifly 3a crerneHsiMu 0-pyHKIM 3 IIJIMMHA KO-
edirienTamu.

Kutrouosi ciioBa: konoJjiinoM, §-pyHKIIis, audepeHniajabHuil olrepaTop He-
CKIHYEHHOIO MOPsJIKY, 3aada Ko, nmepersopentsi Komri—Criiirbeca, MHO-
JKEHH$ KOIIOJIIHOMIB
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