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Nonlinear Partial Differential Equations in

Module of Copolynomials over a

Commutative Ring

S.L. Gefter and A.L. Piven’

Let K be an arbitrary commutative integral domain with identity of
characteristic 0. We study the copolynomials of n variables, i.e., K-linear
mappings from the ring of polynomials K[x1, . . . , xn] into K. We consider
copolynomials as algebraic analogues of distributions. With the help of
the Cauchy–Stieltjes transform of a copolynomial, we introduce and study a
multiplication of copolynomials. We prove the existence and uniqueness the-
orem of the Cauchy problem for some nonlinear partial differential equations
in the ring of formal power series with copolynomial coefficients. We study
a connection between some classical nonlinear partial differential equations
and integer sequences. In particular, for the Cauchy problem for the Burgers
equation, we obtain the representation of the unique solution to this problem
in the form of the series in powers of δ-function with integer coefficients.
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1. Introduction

This paper is a continuation of the paper [9], where linear partial differential
equations in the module of copolynomials over a commutative integral domain
were studied. Moreover, this paper can be considered as the continuation of the
paper [12], where a special class of nonlinear PDE’s was studied in the case of
one space variable. In the present paper, we investigate the ring of copolynomials
of several variables and consider general evolution nonlinear partial differential
equations in this ring.

Let K be a commutative integral domain with identity of characteristic 0 [20,
Section 1.43], and let K[x1, . . . , xn] be the ring of polynomials of n variables.
The most interesting case for us is K = Z. A K-linear functional on the ring
K[x1, . . . , xn] is said to be a copolynomial. The module of copolynomials is
denoted by K[x1, . . . , xn]′. We consider the module K[x1, . . . , xn]′ as an alge-
braic analogue of the space of distributions (see [9,10,12]). General properties of
copolynomials of n variables are considered in Section 2. In particular, we intro-
duce the notion of a homogeneous copolynomial and obtain an analogue of the
Euler differential equation, which completely characterizes these copolynomials
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(see Theorem 2.8). The properties of copolynomials of one variable were partially
studied in [10–13,16]. We notice that in papers [10,11,13,16] copolynomials were
called formal generalized functions. In Section 3, we introduce and study the
Cauchy–Stieltjes transform of copolynomials. In Section 4, the Cauchy–Stieltjes
transform is used to define a multiplication of copolynomials (see Definition 4.1).
The main results of this section are the Leibnitz formula for a linear differen-
tial operator of infinite order (Theorem 4.8) and the analogue of the formula for
partial derivatives of composition (see Theorem 4.10). It should be noticed that
several non-equivalent constructions of a multiplication are considered in the clas-
sical theories of distributions. For example, in the Colombeau theory [5, 6], the
square of the δ-function is well defined, but in some other theories it is not defined
(see, for example, [1, Section 12.5]). The main results are obtained in Section 5.
In Subsection 5.1, we prove the existence and uniqueness theorem to the Cauchy
problem for some nonlinear partial differential equations (see Theorem 5.1). In
Subsection 5.2, we consider the Cauchy problem for the Burgers equation with the
initial condition u0δ(x), where u0 ∈ K and δ(x) is the copolynomial δ-function
(see Example 2.3). Unlike the general Theorem 5.1, we do not impose additional
restrictions on the ring K and obtain the representation of the unique solution
to this problem as a series in powers of the δ-function (see Theorem 5.2). Thus,
if K = Z, then we obtain the series with integer coefficients. Such results were
obtained in [12] for some nonlinear PDE’s of the first order only. In Subsection
5.3, we present other meaningful examples which illustrate the constructed the-
ory. In particular, in this section we consider the Cauchy problem for the Harry
Dym type equation and for the Korteweg-de Vries equation. In Examples 5.10
and 5.11, nonlinear PDE’s with several variables are considered. Notice that in
Example 5.11 it happens that we are able to construct a solution over the ring
K without the assumption K ⊃ Q. As in [12, Examples 4.1, 4.2 and 4.4], here
the problem of an integrality of coefficients of expansions of solutions in series
in powers of the δ-function has appeared. It is noticeable that the unique solu-
tion to the Cauchy problem for the Korteweg–de Vries equation with the initial
condition δ′(x) can be represented as the series in powers of the δ-function (see
Example 5.8). But the integrality of the coefficients of this representation has yet
to be proven. Numerical calculations show that the first 1000 of these coefficients
are integers.

Linear functionals in the space of polynomials were studied from different
points of view in a number of works on algebra, combinatorics, and the theory
of orthogonal polynomials (cf., for example, [7, 8, 23, 24]). In the classical case
(K = R or K = C), the series with respect to the derivatives of the δ-function
are intensively studied because of their applications in differential and functional-
differential equations and the theory of orthogonal polynomials (see, for example,
[7, 17,19]).

In the 1970s, the study of the Korteweg-de Vries equation and other nonlin-
ear partial differential equations developed remarkable techniques that connected
these equations to inverse problems of the spectral theory, infinite-dimensional
differential geometry, special problems of the algebraic geometry and the the-
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ory of Lie algebras (see, for example, [3, 14, 22]. In particular, in [14], Gel’fand
and Dikii described compatible Hamiltonian structures on rings of differential
and pseudo-differential operators for the Korteweg-de Vries type equation. In
this paper, we do not use these methods. In addition, the main object for us
is the Cauchy problem, where the initial condition is an algebraic analogue of
the δ-function. For us, the most important problem is when the coefficients of
the expansion for the unique solution of the Cauchy problem in powers of the
δ-function belong to the ring K and, in particular, to the ring of integers. This
problem may possibly be connected to the classical constructs of Gel’fand and
Dikii [14], but this connection requires a separate study.

2. Preliminaries

Definition 2.1. By a copolynomial over the ring K, we mean a K-linear func-
tional defined on the ring K[x1, . . . , xn], i.e., a homomorphism from the module
K[x1, . . . , xn] into the ring K.

We denote the module of copolynomials over K by K[x1, . . . , xn]′. Thus, T ∈
K[x1, . . . , xn]′ if and only if T : K[x1, . . . , xn]→ K and T has the property of K-
linearity: T (ap+ bq) = aT (p) + bT (q) for all p, q ∈ K[x1, . . . , xn] and a, b ∈ K. If
T ∈ K[x1, . . . , xn]′ and p ∈ K[x1, . . . , xn], then for the value of T on p, we use the
notation (T, p). We also write the copolynomial T ∈ K[x1, . . . , xn]′ in the form
T (x), where x = (x1, . . . , xn) is considered as the argument of polynomials p(x) ∈
K[x1, . . . , xn] subjected to the action of the K-linear mapping T . In this case, the
result of action of T upon p can be represented in the form (T (x), p(x)). We define
the product qT ∈ K[x1, . . . , xn]′ of q ∈ K[x1, . . . , xn] and T ∈ K[x1, . . . , xn]′ by
(qT, p) = (T, qp) for p ∈ K[x1, . . . , xn].

Let N0 be the set of nonnegative integers. For a multi-index α =
(α1, . . . , αn) ∈ Nn0 , we put (see [26, Chapter 1, §1–2]):

Dα =
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n
, |α| =

n∑
j=1

αj ,

xα = xα1
1 xα2

2 · · ·x
αn
n , α! = α1!α2! · · ·αn!.

For multi-indexes α, β ∈ Nn0 , the relation α ≤ β means that αj ≤ βj for all j =

1, . . . , n. If α ≤ β, then we use the notation
(
β
α

)
=
∏n
j=1

(
βj
αj

)
.

Let p(x) =
∑
|α|≤m aαx

α ∈ K[x1, . . . , xn]. If h = (h1, . . . , hn), then the
polynomial p(x+ h) ∈ K[x1, . . . , xn][h1, . . . , hn] can be represented in the form

p(x+ h) =
∑
|α|≤m

pα(x)hα,

where pα(x) ∈ K[x1, . . . , xn]. Since in the case of a field with zero characteristic

pα(x) = Dαp(x)
α! , we also assume that, by definition, D

αp(x)
α! = pα(x), |α| ≤ m, is

true for any commutative ring K. For m < |α|, we assume that Dαp(x)
α! = 0.
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Definition 2.2. The partial derivative ∂T
∂xj

of a copolynomial T ∈
K[x1, . . . , xn]′ with respect to the variable xj (j = 1, . . . , n) is defined by the
formula (

∂T

∂xj
, p

)
= −

(
T,

∂p

∂xj

)
, p ∈ K[x1, . . . , xn]. (2.1)

By using this formula, we arrive at the following expression for the derivative
DαT :

(DαT, p) = (−1)|α|(T,Dαp), p ∈ K[x1, . . . , xn].

Therefore,

(DαT, p) = 0, where p ∈ K[x1, . . . , xn] and |α| > deg p.

By virtue of the equality(
DαT

α!
, p

)
= (−1)|α|

(
T,
Dαp

α!

)
, p ∈ K[x1, . . . , xn],

the copolynomials DαT
α! are well defined for any T ∈ K[x1, . . . , xn]′ and α ∈ Nn0 .

Example 2.3. The copolynomial δ-function is given by the formula

(δ, p) = p(0), p ∈ K[x1, . . . , xn].

Therefore,

(Dαδ, p) = (−1)|α|(δ,Dαp) = (−1)|α|Dαp(0), α ∈ Nn0 . (2.2)

Example 2.4. Let K = R, and let f : Rn → R be a Lebesgue-integrable
function such that ∫

Rn
|xαf(x)|dx < +∞, α ∈ Nn0 . (2.3)

Then f generates the regular copolynomial Tf :

(Tf , p) =

∫
Rn
p(x)f(x)dx, p ∈ R[x1, . . . , xn].

Notice that in this case, unlike in the classical theory, all copolynomials are
regular [7, Theorem 7.3.4], although a nonzero function f can generate the zero
copolynomial (see, e.g. [12, Section 2], where examples of functions that satisfy
the property (2.3) and generate the δ-function were explicitly presented).

We now consider the problem of convergence in the space K[x1, . . . , xn]′.
In the ring K, we consider the discrete topology. Further, in the module of
copolynomials K[x1, . . . , xn]′, we consider the topology of pointwise convergence.
The convergence of a sequence {Tk}∞k=1 to T in K[x1, . . . , xn]′ means that for
every polynomial p ∈ K[x1, . . . , xn], there exists a number k0 ∈ N such that

(Tk, p) = (T, p), k = k0, k0 + 1, k0 + 2, . . . .
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We now consider the following linear differential operator of infinite order on
K[x1, . . . , xn]′:

F =
∞∑
|α|=0

aαD
α,

where aα ∈ K. This operator acts upon a copolynomial T ∈ K[x1, . . . , xn]′ by
the following rule: if p ∈ K[x1, . . . , xn] and m = deg p, then

(FT, p) =

 ∞∑
|α|=0

aαD
αT, p

 =
∑
|α|≤m

(−1)|α|aα(T,Dαp) =
∑
|α|≤m

aα(DαT, p).

Thus, the differential operator F : K[x1, . . . , xn]′ → K[x1, . . . , xn]′ is well
defined and for any polynomial p of degree at most m, the equality

(FT, p) =
∑
|α|≤m

aα(DαT, p)

is true.
The following lemma shows the possibility of the decomposition of an arbi-

trary copolynomial in series in terms of the system Dαδ
α! , α ∈ Nn0 (see [8, Propo-

sition 2.3] in the case n = 1 and K = C).

Lemma 2.5. Let T ∈ K[x1, . . . , xn]′. Then

T =

∞∑
|α|=0

(−1)|α|(T, xα)
Dαδ

α!
. (2.4)

Now, as in the classical theory, we introduce the notion of a homogeneous
copolynomial. For any λ ∈ K, we define λx = (λx1, . . . , λxn) and for any
polynomial p(x) =

∑
|α|≤m aαx

α ∈ K[x1, . . . , xn], the polynomial p(λx) =∑
|α|≤m aαλ

|α|xα ∈ K[x1, . . . , xn] is well defined. Now we define the copolynomial

T
(
x
λ

)
by (

T
(x
λ

)
, p
)

= λn(T (x), p(λx)). (2.5)

Definition 2.6. Let 0 6= T ∈ K[x1, . . . , xn]′ and m ∈ N. We say that the
copolynomial T is homogeneous of degree −m if(

T
(x
λ

)
, p
)

= λm(T, p), λ ∈ K, p ∈ K[x1, . . . , xn]

or, by (2.5),

λn(T (x), p(λx)) = λm(T (x), p(x)), λ ∈ K, p ∈ K[x1, . . . , xn]. (2.6)

It follows from (2.6) that δ is a homogeneous copolynomial of degree −n.
Moreover, equation (2.2) implies that

λn(Dαδ, p(λx)) = (−1)|α|λn+|α|Dαp(0)
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= λn+|α|(Dαδ, p), λ ∈ K, p ∈ K[x1, . . . , xn], α ∈ Nn0 ,

i.e., Dαδ is a homogeneous copolynomial of degree −|α| − n. Lemma 2.5 shows
that every copolynomial is a sum of homogeneous copolynomials.

If T 6= 0 is a homogeneous copolynomial of degree −m, then, due to (2.6), for
p(x) = xα, we obtain

λn+|α|(T, xα) = λm(T, xα), α ∈ Nn0 , λ ∈ K.

Since K is of characteristic 0, this implies m ≥ n and (T, xα) = 0, |α| 6= m−n.
Conversely, if m ≥ n, then every copolynomial such that (T, xα) = 0, |α| 6= m −
n is homogeneous. Thus we obtain the following lemma.

Lemma 2.7. The copolynomial 0 6= T ∈ K[x1, . . . , xn]′ is homogeneous of
degree −m if and only if m ≥ n and (T, xα) = 0, |α| 6= m− n.

In particular, for m < n, there are no homogeneous copolynomials of degree
−m. Moreover, if n = 1 and m ∈ N, then an arbitrary homogeneous copolynomial

of degree −m has the form cδ(m−1)

(m−1)! , where c ∈ K.
Lemma 2.7 implies the following necessary and sufficient conditions for the

homogeneity of T ∈ K[x1, . . . , xn]′.

Theorem 2.8. The copolynomial 0 6= T ∈ K[x1, . . . , xn]′ is homogeneous of
degree −m if and only if m ≥ n and T satisfies the Euler differential equation

n∑
j=1

xj
∂T

∂xj
= −mT. (2.7)

Proof. Sufficiency. Let T satisfies equation (2.7). We can find the solution of
this equation in the form (2.4). Substituting (2.4) to (2.7), we have

n∑
j=1

xj

∞∑
|α|=0

(−1)|α|aα
∂

∂xj

Dαδ

α!
= −m

∞∑
|α|=0

(−1)|α|aα
Dαδ

α!
, (2.8)

where aα = (T, xα). Since

n∑
j=1

xj

∞∑
|α|=0

(−1)|α|aα

(
∂

∂xj

Dαδ

α!
, xβ
)

=
∞∑
|α|=0

(−1)|α|aα

n∑
j=1

(
xj

∂

∂xj

Dαδ

α!
, xβ
)

= −
∞∑
|α|=0

aα

n∑
j=1

(
δ,

∂

∂xj

Dα(xjx
β)

α!

)
= −

n∑
j=1

(βj + 1)aβ = −(|β|+ n)aβ,

equality (2.8) implies

aβ(|β|+ n) = maβ, β ∈ Nn0 .

Therefore, aβ = 0 for |β| 6= m− n. By Lemma 2.7, T is homogeneous.
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Necessity. Let 0 6= T ∈ K[x1, . . . , xn]′ be homogeneous of degree −m. Then,
by Lemma 2.7, m ≥ n and (2.6) is satisfied for all λ ∈ K. Note that the left-hand
and right-hand sides of (2.6) are polynomials from K[λ]. Then, dividing (2.6) by
λn and differentiating it by λ, we have

d

dλ
(T (x), p(λx)) =

(
T (x),

d

dλ
p(λx)

)
=

T, n∑
j=1

xj
∂p

∂xj
(λx)


= (m− n)λm−n−1(T, p), p ∈ K[x1, . . . , xn].

Substituting λ = 1, we haveT, n∑
j=1

xj
∂p(x)

∂xj

 = (m− n)(T, p), p ∈ K[x1, . . . , xn]. (2.9)

Since T, n∑
j=1

xj
∂p

∂xj

 =

T, n∑
j=1

∂(xjp(x))

∂xj

−
T, n∑

j=1

p(x)


= −

n∑
j=1

(
xj
∂T

∂xj
, p

)
− n(T, p), p ∈ K[x1, . . . , xn],

equality (2.9) implies

−
n∑
j=1

(
xj
∂T

∂xj
, p

)
= m(T, p), p ∈ K[x1, . . . , xn].

This proves (2.7).

3. Cauchy–Stieltjes transform in the module of copolynomials

Let z = (z1, . . . , zn), and let K
[[
z1, . . . , zn,

1
z1
, . . . , 1

zn

]]
be the module of

formal Laurent series with coefficients in K. For a multi-index α = (α1, . . . , αn) ∈
Zn, we put zα = zα1

1 zα2
2 · · · zαnn . For g ∈ K

[[
z1, . . . , zn,

1
z1
, . . . , 1

zn

]]
, g(z) =∑

α∈Zn gαz
α, we naturally define the formal residue

Res(g(z)) = g(−1,...,−1).

Definition 3.1. Let T ∈ K[x1, . . . , xn]′ and s = (s1, . . . , sn). Consider the
following formal Laurent series from the ring 1

s1s2···snK[[ 1
s1
, 1
s2
, . . . , 1

sn
]]:

C(T )(s) =
∞∑
|α|=0

(T, xα)

sα+ι
,

where ι = (1, . . . , 1) ∈ Nn0 . The Laurent series C(T )(s) is called the Cauchy–
Stieltjes transform of a copolynomial T .
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We may write the result of the Cauchy–Stieltjes transform informally:

C(T )(s) =
(
T, 1

(s1−x1)(s2−x2)···(sn−xn)

)
. Obviously, the mapping C :

K[x1, . . . , xn]′ → 1
s1s2···snK[[ 1

s1
, 1
s2
, . . . , 1

sn
]] is an isomorphism of K-modules.

Proposition 3.2 (The inversion formula). Let T ∈ K[x1, . . . , xn]′ and p ∈
K[x1, . . . , xn]. Then

(T, p) = Res(C(T )(s)p(s)).

Proof. It is sufficient to consider the case p(x) = xβ for some multi-index β ∈
Nn0 . We have

C(T )(s)sβ =

∞∑
|α|=0

(T, xα)sβ

sα+ι
.

Therefore, Res(C(T )(s)sβ) = (T, xβ).

Example 3.3 (The “integral” Cauchy formula). We put (δz, p) = p(z1, . . . , zn)
for z = (z1, . . . , zn) ∈ Kn. Then C(δz)(s) =

∑∞
|α|=0

zα

sα+ι
. In particular,

C(δ)(s) =
1

s1s2 · · · sn
.

We may write informally p(z1, . . . , zn) = Res( p(s1,...,sn)
(s1−z1)(s2−z2)···(sn−zn)) if we identify

the rational function 1
(s1−z1)(s2−z2)···(sn−zn) with the Laurent series

∑∞
|α|=0

zα

sα+ι
.

Let F =
∑∞
|α|=0 aαD

α be a linear differential operator with coefficients aα ∈
K. Obviously, the operator F is well defined on the K-module of formal Laurent
series 1

s1s2···snK[[ 1
s1
, 1
s2
, . . . , 1

sn
]].

Proposition 3.4. For any T ∈ K[x1, . . . , xn]′, the equality

C(FT ) = F(C(T ))

holds.

Proof. We have

C(FT ) =
∞∑
|α|=0

(FT, xα)

sα+ι
=

∞∑
|α|=0

∑
β≤α

aβ
(DβT, xα)

sα+ι

=

∞∑
|α|=0

∑
β≤α

(−1)|β|β!aβ

(
α

β

)
(T, xα−β)

sα+ι

=
∞∑
|β|=0

∑
α≥β

(−1)|β|β!aβ

(
α

β

)
(T, xα−β)

sα+ι

=

∞∑
|β|=0

aβ

∞∑
|α|=0

(−1)|β|β!

(
α+ β

β

)
(T, xα)

sα+β+ι

=
∞∑
|β|=0

aβD
β
∞∑
|α|=0

(T, xα)

sα+ι
= F(C(T )).
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Now consider the notion of a homogeneous formal Laurent series. Let F be
the quotient field of K. For any

g(z) =
∞∑
|α|=0

gα
zα+ι

∈ 1

z1z2 · · · zn
K

[[
1

z1
,

1

z2
, . . . ,

1

zn

]]
and 0 6= λ ∈ K, we consider the following series:

g(λz) =

∞∑
|α|=0

gα
λα+ιzα+ι

∈ 1

z1z2 · · · zn
F

[[
1

z1
,

1

z2
, . . . ,

1

zn

]]
.

Definition 3.5. Let m ∈ N. We say that a formal Laurent series g(z) ∈
1

z1z2···znK
[[

1
z1
, 1
z2
, . . . , 1

zn

]]
is homogeneous of degree −m if

λmg(λz) = g(z), 0 6= λ ∈ K.

Now we prove the following necessary and sufficient condition for the homo-
geneity of a copolynomial in terms of its Cauchy–Stieltjes transform.

Theorem 3.6. The copolynomial T ∈ K[x1, . . . , xn]′ is homogeneous of degree
−m if and only if its Cauchy–Stieltjes transform is homogeneous of the same
degree.

Proof. For any 0 6= λ ∈ K, we have

λm(C(T )(λs) =

∞∑
|α|=0

λm(T, xα)

(λs)α+ι
=

∞∑
|α|=0

λm(T, xα)

λ|α|+nsα+ι

and

C(T )(s) =
∞∑
|α|=0

(T, xα)

sα+ι
=

∞∑
|α|=0

(T, λ|α|+nxα)

λ|α|+nsα+ι
=

∞∑
|α|=0

λn(T, (λx)α)

λ|α|+nsα+ι
.

Therefore, λm(C(T ))(λs) = C(T )(s), 0 6= λ ∈ K, if and only if (2.6) holds for
any λ ∈ K.

4. Multiplication of copolynomials

The Cauchy–Stieltjes transform and Proposition 3.4 allow us to introduce the
multiplication operation on the module of copolynomials such that this operation
is consistent with the differentiation.

Definition 4.1. Let T1, T2 ∈ K[x1, . . . , xn]′, i.e., T1, T2 are copolynomials.
Define their product by the following equality:

C(T1T2) = C(T1)C(T2), (4.1)

i.e.,
T1T2 = C−1 (C(T1)C(T2)) ,

where C : K[x1, . . . , xn]′ → 1
s1s2···snK[[ 1

s1
, 1
s2
, . . . , 1

sn
]] is a Cauchy–Stieltjes trans-

form (see Section 3).
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In the following lemma the action of the product of copolynomials on mono-
mials is expressed through the action of multipliers on monomials.

Lemma 4.2. Let T1, T2 ∈ K[x1, . . . , xn]′ and α ∈ Nn0 . Then

(T1T2, x
α) =


∑
β≤α−ι

(T1, x
β)(T2, x

α−ι−β), α ≥ ι,

0, otherwise.

(4.2)

Proof. By (4.1), we have

C(T1T2)(s) = C(T1)(s)C(T2)(s) =
∞∑
|β|=0

∞∑
|γ|=0

(T1, x
β)(T2, x

γ)

sβ+γ+2ι

=
∑
α≥ι

∑
β≤α−ι

(T1, x
β)(T2, x

α−ι−β)
1

sα+ι
.

Applying the inversion formula to both sides of this equality (see Proposition
3.2), we obtain (4.2).

Formula (4.2) implies the following assertion about the continuity of the mul-
tiplication of copolynomials.

Corollary 4.3. Let Qm → Q and Sm → S as m → ∞ with respect to the
topology on K[x1, . . . , xn]′. Then QmSm → QS as m→∞ in the same topology.

Remark 4.4. Definition 4.1 means that the module of copolynomials
K[x1, . . . , xn]′ with the introduced product is an associative commutative ring,
which is isomorphic to the ring of formal Laurent series 1

s1s2···snK[[ 1
s1
, 1
s2
, . . . , 1

sn
]]

with a natural product operation. In particular, the ring of copolynomials is an
integral domain and this is a ring without identity.

Example 4.5. Let n = 1. We find the square of the δ-function:

C(δ2)(s) = (C(δ))2(s) =
1

s2
=

(
−1

s

)′
= (−C(δ))′ = C(−δ′),

i.e.,
δ2 = −δ′.

Since by Proposition 3.4,

C
(
δ(k)
)

(s) = (C(δ))(k)(s) =
dk

dsk
1

s
= (−1)kk!s−k−1, k = 0, 1, 2, . . . ,

we have
(−1)kδ(k)

k!
= δk+1, k = 0, 1, 2, . . . , (4.3)

and, by Lemma 2.5, for any copolynomial T ∈ K[x]′, the decomposition with
respect to the degrees of δ-functions holds

T =

∞∑
k=0

(T, xk)δk+1.
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The generalization of equalities (4.3) on n variables is given by the following
formulas:

∂nkδ

∂xk1 . . . ∂x
k
n

= (−1)nk(k!)nδk+1, k = 0, 1, 2, . . . . (4.4)

As a consequence,

∂nδk

∂x1 . . . ∂xn
= (−1)nknδk+1, k ∈ N. (4.5)

We show that for the constructed product of copolynomials the natural Leib-
nitz formula is satisfied. At first, we consider particular cases.

Lemma 4.6. Let T1, T2, . . . , Tm ∈ K[x1, . . . , xn]′. Then

∂ (
∏m
k=1 Tk)

∂xj
=

m∑
k=1

m∏
l=1
l 6=k

Tl
∂Tk
∂xj

, j = 1, . . . , n. (4.6)

In particular,
∂(T1T2)

∂xj
=
∂T1
∂xj

T2 + T1
∂T2
∂xj

, j = 1, . . . , n. (4.7)

Proof. By Proposition 3.4 and Definition 4.1, we obtain

C

(
∂ (
∏m
k=1 Tk)

∂xj

)
=
∂C (

∏m
k=1 Tk)

∂sj
=
∂ (
∏m
k=1C(Tk))

∂sj

=

m∑
k=1

m∏
l=1
l 6=k

C(Tl)
∂C(Tk)

∂sj
= C

m∑
k=1

m∏
l=1
l 6=k

Tl
∂Tk
∂xj

, j = 1, . . . , n.

Lemma 4.7. Let T1, T2 ∈ K[x1, . . . , xn]′. Then for any β ∈ Nn0 ,

Dβ(T1T2) =
∑
α≤β

(
β

α

)
DαT1D

β−αT2. (4.8)

Proof. We prove by induction on |β|. For |β| = 1, (4.8) directly follows
from (4.7). Suppose that (4.8) holds for some β ∈ Nn0 . For any j = 1, . . . , n,
consider the multi-index β(j) ∈ Nn0 which is obtained from the multi-index β =
(β1, . . . , βn) ∈ Nn0 by replacing βj on βj + 1. To prove the theorem it is sufficient
to prove the equality

Dβ(j)(T1T2) =
∑

α≤β(j)

(
β(j)

α

)
DαT1D

β(j)−αT2. (4.9)

Indeed, using the induction hypothesis, we obtain

Dβ(j)(T1T2) =
∂

∂xj
Dβ(T1T2) =

∂

∂xj

∑
α≤β

(
β

α

)
DαT1D

β−αT2





330 S.L. Gefter and A.L. Piven’

=
∑
α≤β

(
β

α

)
∂

∂xj
(DαT1)D

β−αT2 +
∑
α≤β

(
β

α

)
DαT1D

β(j)−αT2

=
∑

α≤β(j)

(
β(j)

α

)
DαT1D

β(j)−αT2,

which proves (4.9).

Now we establish the general Leibnitz formula.

Theorem 4.8. Let F =
∑∞
|α|=0 aαD

α be a linear differential operator of

infinite order on K[x1, . . . , xn]′ with the symbol ϕ(z) =
∑∞
|α|=0 aαz

α. Then

F(T1T2) =

∞∑
|α|=0

DαT1
α!
Fα(T2),

where Fα is a differential operator with the symbol Dαϕ(z).

Proof. Let us multiply equality (4.8) by aβ and add on all multi-indexes β ∈
Nn0 . Then

F(T1T2) =
∞∑
|β|=0

∑
α≤β

aβ

(
β

α

)
DαT1D

β−αT2

=
∞∑
|α|=0

∑
β≥α

aβ

(
β

α

)
DαT1D

β−αT2

=

∞∑
|α|=0

DαT1
∑
β≥α

aβ

(
β

α

)
Dβ−αT2 =

∞∑
|α|=0

DαT1
α!
Fα(T2),

where Fα =
∑

β≥α aβα!
(
β
α

)
Dβ−α. Since ϕ(z) =

∑∞
|β|=0 aβz

β is the symbol of the

differential operator F , we obtain that Dαϕ(z) =
∑

β≥α α!
(
β
α

)
zβ−α is the symbol

of the differential operator Fα.

Remark 4.9. In [8, 24], the Cauchy product of copolynomials of one variable
was considered. It was shown that this multiplication of copolynomials is not
consistent with a differentiation. For example, the Leibnitz formula for this mul-
tiplication is not valid. Moreover, the δ-function is the identity with respect to
this multiplication.

Definition 4.1 implies that for any copolynomials T1, . . . , Tm ∈ K[x1, . . . , xn]′

and for any multi-index β ∈ Nn0 , the formula(
m∏
k=1

Tk, x
β

)
= 0, m > |β|+ 1 (4.10)
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holds. Let T1, . . . , Tm ∈ K[x1, . . . , xn]′ and γ = (γ1, . . . , γm) ∈ Nm0 . We define T γ

by the equality

T γ =
m∏
j=1
γj 6=0

T
γj
j , γ 6= 0.

Equality (4.10) implies that for any multi-indexes β ∈ Nn0 and γ ∈ Nm0 , the
formula

(T γ , xβ) = 0, |γ| > |β|+ 1,

is satisfied. Then, for any formal power series g(z) =
∑∞
|γ|=1 gγz

γ ∈
K[[z1, . . . , zm]], the series

∑∞
|γ|=1 gγT

γ converges with respect to the topology

on K[x1, . . . , xn]′. We denote the sum of this series by g(T1, . . . , Tm). If
g(z) =

∑∞
|γ|=0 gγz

γ ∈ K[[z1, . . . , zm]] and S ∈ K[x1, . . . , xn]′, then the product
g(T1, . . . , Tm)S means the sum of the following copolynomials:

g0S +

 ∞∑
|γ|=1

gγT
γ

S = g0S +
∞∑
|γ|=1

gγT
γS

(see Corollary 4.3). The theorem below establishes the rule of the differentiation
for a copolynomial g(T1, . . . , Tm), which is similar to the rule of the differentiation
of a composition.

Theorem 4.10. Let T1, . . . , Tm ∈ K[x1, . . . , xn]′ and g(z) =
∑∞
|γ|=1 gγz

γ ∈
K[[z1, . . . , zm]]. Then

∂g(T1, . . . , Tm)

∂xj
=

m∑
q=1

∂g

∂zq
(T1, . . . , Tm)

∂Tq
∂xj

, j = 1, . . . , n.

Proof. To prove the theorem, it is sufficient to show that(
∂g(T1, . . . , Tm)

∂xj
, xβ
)

=

 m∑
q=1

∂g

∂zq
(T1, . . . , Tm)

∂Tq
∂xj

, xβ

 , j = 1, . . . , n, β ∈ Nn0 .

(4.11)
For βj = 0, equality (4.11) follows from (4.2) and (2.1). In what follows, we
suppose βj 6= 0. Denote by ek the multi-index of an arbitrary dimension whose
kth coordinate is equal to 1 and other coordinates vanish. Let β = (β1, . . . , βn) ∈
Nn0 and β(j) = β − ej ∈ Nn0 . Then

(
∂g(T1, . . . , Tm)

∂xj
, xβ
)

=

 m∑
q=1

geq
∂Tq
∂xj

, xβ

− βj ∞∑
|γ|=2

gγ

(
T γ , xβ(j)

)
. (4.12)

On the other hand,

m∑
q=1

(
∂g

∂zq
(T1, . . . , Tm)

∂Tq
∂xj

, xβ
)
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=

 m∑
q=1

geq
∂Tq
∂xj

, xβ

+
m∑
q=1

∞∑
|γ|=2

gγγq

(
T γ−eq

∂Tq
∂xj

, xβ
)

=

 m∑
q=1

geq
∂Tq
∂xj

, xβ

+
∞∑
|γ|=2

gγ

m∑
q=1

γq

(
T γ−eq

∂Tq
∂xj

, xβ
)
. (4.13)

In the sum
∑m

q=1

∑∞
|γ|=2 gγγq

(
T γ−eq

∂Tq
∂xj

, xβ
)
, the product γq

(
T γ−eq

∂Tq
∂xj

, xβ
)

is

well defined, because either γq = 0 or γ ≥ eq. By the Leibnitz formula (see (4.6)),

m∑
q=1

γq

(
T γ−eq

∂Tq
∂xj

, xβ
)

=

(
∂T γ

∂xj
, xβ
)
, |γ| ≥ 2. (4.14)

Substituting (4.14) into (4.13) and taking into account (4.12), we obtain

m∑
q=1

(
∂g

∂zq
(T1, . . . , Tm)

∂Tq
∂xj

, xβ
)

=

 m∑
q=1

geq
∂Tq
∂xj

, xβ

+
∞∑
|γ|=2

gγ

m∑
q=1

γq

(
T γ−eq

∂Tq
∂xj

, xβ
)

=

 m∑
q=1

geq
∂Tq
∂xj

, xβ

+

 ∞∑
|γ|=2

gγ
∂T γ

∂xj
, xβ


=

 m∑
q=1

geq
∂Tq
∂xj

, xβ

− βj ∞∑
|γ|=2

gγ

(
T γ , xβ(j)

)
=

(
∂g(T1, . . . , Tm)

∂xj
, xβ
)
,

which proves (4.11).

5. Nonlinear partial differential equations in the ring of copoly-
nomials

5.1. The Cauchy problem for some nonlinear differential equations
in the ring of copolynomials. At first, we give some notions from [9]. The
module of formal power series of the form u(t, x) =

∑∞
k=0 uk(x)tk with coefficients

uk(x) ∈ K[x1, . . . , xn]′ is denoted by K[x1, . . . , xn]′[[t]].
The partial derivative with respect to t of the series u(t, x) ∈ K[x1, . . . , xn]′[[t]]

is defined by the formula

∂u

∂t
=
∞∑
k=1

kuk(x)tk−1.

The partial derivative Dα with respect to variables x1, . . . , xn of the series
u(t, x) ∈ K[x1, . . . , xn]′[[t]] is defined as follows:

Dαu(t, x) =

∞∑
k=0

(Dαuk)(x)tk.
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The action of the K-linear operator A : K[x1, . . . , xn]′ → K[x1, . . . , xn]′ on a for-
mal power series u(t, x) =

∑∞
k=0 uk(x)tk ∈ K[x1, . . . , xn]′[[t]] is defined coefficient-

wisely:

(Au)(t, x) =
∞∑
k=0

(Auk)(x)tk.

Now, let P ∈ K[z1, . . . , zm], P (0) = 0, and let Fj =
∑∞
|α|=0 aj,αD

α (j =
1, . . . ,m) be linear differential operators of infinite order with coefficients aj,α ∈
K which act on the module of copolynomials K[x1, . . . , xn]′. Now we consider
the module K[x1, . . . , xn]′ as the commutative ring in which the multiplication
was introduced in Section 4. Consider the following Cauchy problem in the ring
K[x1, . . . , xn]′[[t]]:

∂u(t, x)

∂t
= P ((F1u)(t, x), . . . , (Fmu)(t, x)) , (5.1)

u(0, x) = Q(x) ∈ K[x1, . . . , xn]′. (5.2)

Now we are to prove the existence and uniqueness theorem for the Cauchy
problem (5.1)–(5.2).

Theorem 5.1. Let K ⊃ Q. Then for any copolynomial Q ∈ K[x1, . . . , xn]′,
the Cauchy problem (5.1)–(5.2) has a unique solution.

Proof. We are looking for a solution of the Cauchy problem (5.1)–(5.2) in the
form

u(t, x) =
∞∑
k=0

uk(x)tk, (5.3)

where uk(x) ∈ K[x1, . . . , xn]′. Then, by the initial condition (5.2), we have
u0(x) = Q(x). Substituting (5.3) into equation (5.1) and equating coefficients of
tk, we obtain that there exist polynomials pk ∈ K[z1, . . . , zm(k+1)] (k = 0, 1, 2, . . .)
such that

(k + 1)uk+1(x)

= pk (F1u0,F2u0, . . . ,Fmu0,F1u1,F2u1, . . . ,Fmu1, . . . ,F1uk,F2uk, . . . ,Fmuk) .

Since the ring K contains the field of rational numbers, we uniquely find
uk(x), k ∈ N:

uk = k−1pk−1(F1u0, . . . ,Fmu0,F1u1, . . . ,Fmu1, . . . ,F1uk−1, . . . ,Fmuk−1).

5.2. The Cauchy problem for the Burgers equation. We denote the
quotient field of K by F . Let a, b, u0 ∈ K. Consider the Cauchy problem for the
Burgers equation in the ring K[x]′[[t]]:

∂u

∂t
= a

∂2u

∂x2
+ bu

∂u

∂x
(5.4)

u(0, x) = u0δ(x). (5.5)

We prove the following existence and uniqueness theorem for this Cauchy
problem without the additional assumption K ⊃ Q.
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Theorem 5.2. The Cauchy problem (5.4)–(5.5) has a unique solution. This
solution has the form

u(t, x) =
∞∑
k=0

ukδ
2k+1tk, (5.6)

where uk ∈ K. Moreover, for every t ∈ K, the series (5.6) converges with respect
to the topology on the module K[x]′.

Proof. Differentiating (5.6) on t and x, we have

∂u

∂t
=
∞∑
k=0

(k + 1)uk+1δ
2k+3tk, (5.7)

∂u

∂x
= −

∞∑
k=0

(2k + 1)ukδ
2k+2tk, (5.8)

∂2u

∂x2
=
∞∑
k=0

(2k + 1)(2k + 2)ukδ
2k+3tk. (5.9)

Substituting (5.6)–(5.9) into (5.4), we get

∞∑
k=0

(k + 1)uk+1δ
2k+3tk = a

∞∑
k=0

(2k + 1)(2k + 2)ukδ
2k+3tk

− b
∞∑
k=0

k∑
j=0

(2j + 1)ujuk−jδ
2k+3tk.

Equating the coefficients at tk, we obtain

(k+1)uk+1 = a(2k+1)(2k+2)uk−b
k∑
j=0

(2j+1)ujuk−j , k = 0, 1, 2, . . . . (5.10)

Due to

2
k∑
j=0

jujuk−j = k
k∑
j=0

ujuk−j , k = 0, 1, 2, . . . ,

equation (5.10) implies

(k+ 1)uk+1 = a(2k+ 1)(2k+ 2)uk− b(k+ 1)

k∑
j=0

ujuk−j , k = 0, 1, 2, . . . . (5.11)

Since K is of characteristic 0, from (5.11), we obtain

uk+1 = a(4k + 2)uk − b
k∑
j=0

ujuk−j , k = 0, 1, 2, . . . , (5.12)
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hence uk ∈ K for all k ∈ N. In particular, if u0 ∈ Z, then uk ∈ Z, k ∈
N. By Theorem 5.1, the formal power series (5.6) is the unique solution of the
Cauchy problem (5.4)–(5.5) in the ring F [x]′[[t]]. Since u(t, x) ∈ K[x]′[[t]], it
is the unique solution of the Cauchy problem (5.4)–(5.5) in the ring K[x]′[[t]].
Moreover, for every t ∈ K, the series (5.6) converges with respect to the topology
on the module K[x]′.

Remark 5.3. Now, let bu0 = 2a. Then (5.12) implies uk = 0, k ∈ N, and the
corresponding solution of the Cauchy problem (5.4)–(5.5) has the form u(t, x) =
u0δ(x). For a = 1, b = 2 and u0 ∈ N, the solution of (5.4) with the initial
condition u(0, x) = u0

x was obtained in a classic situation by using the Cole–Hopf
transform in [21].

Example 5.4. Here we study the Cauchy problem (5.4)–(5.5), where b is an
invertible element of the ring K and u0 = 4ab−1. Consider the rational solution

w(t, x) =
4ab−1x

x2 + 2at

of equation (5.4) (see [28, Section 5.1.5]). Decomposing this solution into the
series with respect to negative powers x, we get

w(t, x) =
4ab−1x

x2 + 2at
= 4b−1

∞∑
k=0

(−2)kak+1tk

x2k+1
.

The inverse Cauchy–Stieltjes transform for this Laurent series gives us the fol-
lowing element of the ring K[x]′[[t]]:

u(t, x) = 4b−1
∞∑
k=0

ak+1(−2)kδ(x)2k+1tk = 4b−1
∞∑
k=0

ak+1(−2)kδ(2k)(x)

(2k)!
tk (5.13)

(see (4.3)). By Theorem 5.2, this formal power series is the unique solution of
the Cauchy problem (5.4)–(5.5). Moreover, for every t ∈ K, the series (5.13)
converges with respect to the topology on the module K[x]′.

Remark 5.5. Theorem 5.2, Example 5.4 and Examples 4.1, 4.2, 4.4 in [12] show
that there is an interesting connection between some classical partial differential
equations and well-known integer sequences. The recurrent sequence (5.12) is a
particular case of a self-convolutive recurrence which was studied in [25]. If u0 =
1, a = 1, b = −1, then the corresponding element uk (k ∈ N) of (5.12) is connected
with the number of rooted quadrangulations on some darts [4, Example 4.4] (see
also the integer sequence A292186 in [29]).

5.3. Some other examples

Example 5.6. Let K ⊃ Q and u0 ∈ K. Consider the Cauchy problem in
K[x]′[[t]]:

∂u

∂t
= u

∂2u

∂x2
, (5.14)
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u(0, x) = u0δ(x). (5.15)

By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.14)–
(5.15). As in [12, Example 4.4], we are looking for the solution of this problem
in the following form:

u(t, x) =

∞∑
k=0

ukδ
3k+1tk, (5.16)

where uk ∈ K. Thus,

∂u

∂t
=
∞∑
k=0

(k + 1)uk+1δ
3k+4tk, (5.17)

∂2u

∂x2
=
∞∑
k=0

(3k + 1)(3k + 2)ukδ
3k+3tk,

u
∂2u

∂x2
=
∞∑
k=0

k∑
j=0

(3j + 1)(3j + 2)ujuk−jδ
3k+4tk. (5.18)

Substituting (5.16)–(5.18) into (5.14), we get

∞∑
k=0

(k + 1)uk+1δ
3k+4tk =

∞∑
k=0

k∑
j=0

(3j + 1)(3j + 2)ujuk−jδ
3k+4tk.

Equating the coefficients at δ3k+4tk, we obtain

(k + 1)uk+1 =
k∑
j=0

(3j + 1)(3j + 2)ujuk−j , k ∈ N0.

Since K ⊃ Q, we have

uk+1 =
1

k + 1

k∑
j=0

(3j + 1)(3j + 2)ujuk−j , k ∈ N0. (5.19)

If K = Z and u0 = 1, then (5.19) implies that u5 = 2627152
5 /∈ Z. This example

shows that the condition K ⊃ Q in Theorem 5.1 is essential.

Example 5.7. Let K ⊃ Q, a, u0 ∈ K and m ∈ N. Consider the following
Cauchy problem for the Harry Dym type equation in K[x]′[[t]]:

∂u

∂t
= aum

∂mu

∂xm
, (5.20)

u(0, x) = u0δ(x). (5.21)

By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.20)–
(5.21). As in [12, Example 4.4], we are looking for the solution of this problem
in the following form:

u(t, x) =

∞∑
k=0

ukδ
2mk+1tk, (5.22)
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where uk ∈ K. Thus,

∂u

∂t
=
∞∑
k=0

(k + 1)uk+1δ
2mk+2m+1tk, (5.23)

∂mu

∂xm
= (−1)m

∞∑
k=0

(2mk + 1)(2mk + 2) · · · (2mk +m)ukδ
2mk+m+1tk,

aum
∂mu

∂xm
= (−1)ma

∞∑
k=0

∑
|α|=k

(2mα1 + 1) · · · (2mα1 +m)uα1 · · ·uαm+1δ
2mk+2m+1tk.

(5.24)

Substituting (5.23) and (5.24) into (5.20), we get

∞∑
k=0

(k + 1)uk+1δ
2mk+2m+1tk

= (−1)ma
∞∑
k=0

∑
|α|=k

(2mα1 + 1) . . . (2mα1 +m)uα1 . . . uαm+1δ
2mk+2m+1tk.

Equating the coefficients at δ2mk+2m+1tk, we obtain

(k+1)uk+1 = (−1)ma
∑
|α|=k

(2mα1+1) · · · (2mα1+m)uα1 · · ·uαm+1 , k = 0, 1, 2, . . . .

Since K ⊃ Q, this difference equation is equivalent to the equation

uk+1 =
(−1)m

k + 1
a
∑
|α|=k

(2mα1 + 1) · · · (2mα1 +m)uα1 · · ·uαm+1 , k = 0, 1, 2, . . . ,

i.e., uk (k ∈ N) is uniquely determined by u0. Hence, the formal power se-
ries (5.22) is a unique solution of the Cauchy problem (5.20)–(5.21) in the ring
K[x]′[[t]]. Moreover, for every t ∈ K, the series (5.22) converges with respect to
the topology on the module K[x]′.

If a = −1 and m = 1, then equation (5.20) is an Euler–Hopf equation which
was studied in [12, Example 4.1]. It was shown that uk (k = 0, 1, 2, . . .) is the
well-known sequence of Catalan numbers. If a = 1 and m = 3, then equation
(5.20) is the Harry Dym equation which was also considered in [12].

Example 5.8. Let K ⊃ Q. Consider the following Cauchy problem for the
Korteweg-de Vries equation in K[x]′[[t]]:

∂u

∂t
= −∂

3u

∂x3
+ 6u

∂u

∂x
, (5.25)

u(0, x) = δ′(x). (5.26)
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By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.25)–
(5.26). As for the Burgers equation (see Subsection 5.2), we are looking for a
solution of this problem in the following form:

u(t, x) =

∞∑
k=0

ukδ
3k+2tk, (5.27)

where uk ∈ K. Thus,

∂u

∂t
=

∞∑
k=0

(k + 1)uk+1δ
3k+5tk, (5.28)

∂u

∂x
= −

∞∑
k=0

(3k + 2)ukδ
3k+3tk,

∂3u

∂x3
= −

∞∑
k=0

(3k + 2)(3k + 3)(3k + 4)ukδ
3k+5tk, (5.29)

6u
∂u

∂x
= −6

∞∑
k=0

k∑
j=0

(3j + 2)ujuk−jδ
3k+5tk. (5.30)

Substituting (5.28)–(5.30) into (5.25) and (5.26), we get u0 = −1 (see Exam-
ple 4.5) and

∞∑
k=0

(k + 1)uk+1δ
3k+5tk =

∞∑
k=0

(3k + 2)(3k + 3)(3k + 4)ukδ
3k+5tk

− 6
∞∑
k=0

k∑
j=0

(3j + 2)ujuk−jδ
3k+5tk.

Equating the coefficients at δ3k+5tk, we obtain

(k+ 1)uk+1 = (3k+ 2)(3k+ 3)(3k+ 4)uk − 6

k∑
j=0

(3j+ 2)ujuk−j , k = 0, 1, 2, . . . .

(5.31)
Since K ⊃ Q, the difference equation (5.31) is equivalent to the equation

uk+1 = 3(3k + 2)(3k + 4)uk − 6(k + 1)−1
k∑
j=0

(3j + 2)ujuk−j , k = 0, 1, 2, . . . ,

i.e., uk (k ∈ N) is uniquely determined by u0. Hence, the formal power series
(5.27) is the unique solution of the Cauchy problem (5.25)–(5.26) in the ring
K[x]′[[t]]. If K = Z, then computer experiments show that the first 1000 terms
of the sequence uk are integers. Although this sequence is absent in the online
encyclopedia of integer sequences [29], we formulate the conjecture that uk ∈ Z
for all k ∈ N0.
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Consider three examples for the case n ≥ 2.

Example 5.9. Let a ∈ K. Consider the following Cauchy problem in
K[x1, . . . , xn]′[[t]]:

∂u

∂t
= a

∂nu

∂x1 · · · ∂xn
, (5.32)

u(0, x) = δ(x). (5.33)

Since (5.32) is a linear equation, we can apply Theorem 6.3 from [9]. According
to this theorem, the Cauchy problem (5.32)–(5.33) has a unique solution and this
solution has the form

u(t, x) =
∞∑
k=0

ak
1

k!

∂nkδ

∂xk1 · · · ∂xkn
tk =

∞∑
k=0

(−1)nkak(k!)n−1δk+1tk

(see Formula (4.4)). For the case n = 3, S.L. Sobolev considered equation (5.32)
in the classical situation (see, for example, [27, Section 2.3]).

Example 5.10. Let K ⊃ Q, a, u0 ∈ K. Consider the following Cauchy problem
in K[x1, . . . , xn]′[[t]]:

∂u

∂t
= au

∂nu

∂x1 · · · ∂xn
, (5.34)

u(0, x) = u0δ(x) (5.35)

By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.34)–
(5.35). As in [12, Example 4.4], we are looking for a solution of this problem in
the following form:

u(t, x) =
∞∑
k=0

ukδ
2k+1tk, (5.36)

where uk ∈ K. Due to (4.5), we have

∂nu

∂x1 · · · ∂xn
= (−1)n

∞∑
k=0

(2k + 1)nukδ
2k+2tk.

Thus,

∂u

∂t
=

∞∑
k=0

(k + 1)uk+1δ
2k+3tk, (5.37)

au
∂nu

∂x1 . . . ∂xn
= (−1)na

∞∑
k=0

k∑
j=0

(2j + 1)nujuk−jδ
2k+3tk. (5.38)

Substituting (5.37),(5.38) into (5.34), we get

∞∑
k=0

(k + 1)uk+1δ
2k+3tk = (−1)na

∞∑
k=0

k∑
j=0

(2j + 1)nujuk−jδ
2k+3tk.
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Equating the coefficients at δ2k+3tk, we obtain

(k + 1)uk+1 = (−1)na
k∑
j=0

(2j + 1)nujuk−j . (5.39)

Since K ⊃ Q, the difference equation (5.39) is equivalent to the equation

uk+1 = (k + 1)−1(−1)na
k∑
j=0

(2j + 1)nujuk−j , k = 0, 1, 2, . . . ,

i.e., uk (k ∈ N) is uniquely determined by u0. Hence, the formal power series
(5.36) is the unique solution of the Cauchy problem (5.20)–(5.21) in the ring
K[x1, . . . , xn]′[[t]]. Moreover, for every t ∈ K, the series (5.36) converges with
respect to the topology on the module K[x1, . . . , xn]′.

If K = Z, a = 1, n = 2 and u0 = 1, then (5.39) implies that u3 = 139
3 /∈

Z. But, if n = 3, then computer experiments show that the first 1000 terms
of the sequence uk are integers. Although this sequence is absent in the online
encyclopedia of integer sequences [29], we formulate the conjecture that uk ∈ Z
for all k ∈ N0.

Example 5.11. Let a, u0 ∈ K. Consider the following Cauchy problem in
K[x1, . . . , xn]′[[t]]:

∂u

∂t
= (−1)na

n∏
j=1

∂u

∂xj
, (5.40)

u(0, x) = u0δ(x) (5.41)

By Theorem 5.1, there exists a unique solution of the Cauchy problem (5.40)–
(5.41) in the ring F [x1, . . . , xn]′[[t]]. We are looking for the solution of this prob-
lem in the following form:

u(t, x) =

∞∑
k=0

ukδ
nk+1tk, (5.42)

where uk ∈ K. By Theorem 4.10,

∂u

∂xj
=

∞∑
αj=0

uαj
∂δnαj+1

∂xj
tj

=

∞∑
αj=0

uαj (nαj + 1)δnαj
∂δ

∂xj
tj , j = 1, . . . , n. (5.43)

Due to Proposition 3.4 and Example 3.3,

C

(
∂δ

∂xj

)
=

∂

∂sj
C(δ) =

∂

∂sj

1

s1 · · · sn
= − 1

s1 · · · snsj
, j = 1, . . . , n.
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Therefore,

C

 n∏
j=1

∂δ

∂xj

 =
n∏
j=1

C

(
∂δ

∂xj

)

= (−1)n
1

(s1 · · · sn)n

n∏
j=1

1

sj
= (−1)n

1

sn+1
1 · · · sn+1

n
= (−1)nC(δn+1).

Hence,
n∏
j=1

∂δ

∂xj
= (−1)nδn+1 (5.44)

By (5.44) and (5.43),

(−1)na
n∏
j=1

∂u

∂xj
= a

∞∑
α1=0

· · ·
∞∑

αn=0

(nα1 + 1) · · · (nαn + 1)uα1 · · ·uαnδn|α|+n+1t|α|

= a
∞∑
k=0

∑
|α|=k

(nα1 + 1) · · · (nαn + 1)uα1 · · ·uαnδnk+n+1tk. (5.45)

Now,

∂u

∂t
=

∞∑
k=0

(k + 1)uk+1δ
nk+n+1tk, (5.46)

Substituting (5.46),(5.45) into (5.40), we get

∞∑
k=0

(k+ 1)uk+1δ
nk+n+1tk = a

∞∑
k=0

∑
|α|=k

(nα1 + 1) · · · (nαn+ 1)uα1 · · ·uαnδnk+n+1tk.

Equating the coefficients at δnk+n+1tk, we obtain the difference equation

(k + 1)uk+1 = a
∑
|α|=k

(nα1 + 1) · · · (nαn + 1)uα1 · · ·uαnδnk+n+1, k = 0, 1, 2, . . . .

(5.47)

We show that for any given u0 ∈ K, the sequence

uk =
Ak(n+ 1, n2)

nk + 1
aku

(n−1)k+1
0 , k = 0, 1, 2, . . . ,

is the unique solution of (5.47), where Ak(r,m) = r
r+mk

(
r+mk
k

)
are Fuss–Catalan–

Raney numbers [30] and r,m ∈ N. Indeed, by using combinatorial identity, which
was proved in [15], we obtain for k = 0, 1, 2, . . . ,

a
∑
|α|=k

(nα1 + 1) · · · (nαn + 1)uα1 · · ·uαnδnk+n+1
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= ak+1u
(n−1)k+n
0

∑
|α|=k

Aα1(n+ 1, n2)

nα1 + 1
· · · Aαn(n+ 1, n2)

nαn + 1
(nα1 + 1) · · · (nαn + 1)

= ak+1u
(n−1)(k+1)+1
0

∑
|α|=k

Aα1(n+ 1, n2) · · ·Aαn(n+ 1, n2)

= ak+1u
(n−1)(k+1)+1
0 Ak(n(n+ 1), n2)

= ak+1u
(n−1)(k+1)+1
0

(
n(n+ 1) + kn2

k

)
n+ 1

n+ 1 + kn

= ak+1u
(n−1)(k+1)+1
0

(n+ (k + 1)n2)!

k!(n+ (k + 1)n2 − k)!

n+ 1

n+ 1 + kn

= ak+1u
(n−1)(k+1)+1
0

(n+ (k + 1)n2)!

(k + 1)!(n+ (k + 1)n2 − k)!

(k + 1)(n+ 1)

nk + n+ 1

= ak+1u
(n−1)(k+1)+1
0

k + 1

nk + n+ 1

(
n+ 1 + (k + 1)n2

k + 1

)
n+ 1

n+ 1 + (k + 1)n2

= ak+1u
(n−1)(k+1)+1
0

(k + 1)Ak+1(n+ 1, n2)

n(k + 1) + 1
= (k + 1)uk+1.

Hence, uk (k = 0, 1, 2 . . .) satisfy equation (5.47) and therefore u(t, x) defined
by (5.42) is the unique solution of the Cauchy problem (5.40)–(5.41) in the ring
F [x1, . . . , xn]′[[t]]. By using combinatorial transformations, we can prove

Ak(n+ 1, n2)

nk + 1
=

n

k(k(n− 1) + 1)

(
n2k + n− 1

k − 1

)
, k ∈ N.

Since the right-hand side of this equality is integer [2], we have uk ∈ K. Therefore,
u(t, x) ∈ K[x1, . . . , xn]′[[t]] and it is the unique solution of the Cauchy problem
(5.40)–(5.41) in the ring K[x1, . . . , xn]′[[t]].

In Examples 5.6, 5.7, 5.9–5.11 and in Subsection 5.2 the unique solution of
the Cauchy problem (5.1)–(5.2) with Q(x) = δ(x) has the form

u(t, x) =

∞∑
k=0

ukδ
mk(x)tk, uk ∈ K, mk ∈ N. (5.48)

The following example shows that the solution of the corresponding Cauchy prob-
lem for Q(x) = δ(x) not always has the form (5.48).

Example 5.12. Let K ⊃ Q. Consider the following Cauchy problem for the
Korteweg-de Vries equation in K[x]′[[t]]:

∂u

∂t
= −∂

3u

∂x3
+ 6u

∂u

∂x
, (5.49)

u(0, x) = δ(x). (5.50)

By Theorem 5.1, there exists a unique solution of this Cauchy problem, which
has the form

u(t, x) =

∞∑
k=0

uk(x)tk, (5.51)
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where uk(x) ∈ K[x]′. Substituting (5.51) into (5.49), (5.50) and taking into
account (4.3), we have

u1(x) = −δ′′′ + 6δδ′ = 6δ4 − 6δ3.

This shows that the solution is not of the form (5.48).
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Нелiнiйнi диференцiальнi рiвняння з частинними
похiдними у модулi кополiномiв над комутативним

кiльцем
S.L. Gefter and A.L. Piven’

Нехай K — довiльне комутативне цiлiсне кiльце з одиницею харак-
теристики 0. Дослiджуються кополiноми n змiнних, тобто, K-лiнiйнi
вiдображення з кiльця полiномiв K[x1, . . . , xn] у K. Ми розглядаємо ко-
полiноми як алгебраїчнi аналоги розподiлiв. За допомоги перетворення
Кошi–Стiлтьєса введено та дослiджено множення кополiномiв. Доведено
теорему iснування та єдиностi розв’язку задачi Кошi для деяких нелi-
нiйних диференцiальних рiвнянь з частинними похiдними в кiльцi фор-
мальних степеневих рядiв з кополiномiальними коефiцiєнтами. Встанов-
лено зв’язок мiж деякими класичними нелiнiйними диференцiальними
рiвняннями з частинними похiдними та цiлочисельними послiдовностя-
ми. Зокрема, одержано зображення єдиного розв’язку задачi Кошi для
рiвняння Бюргерса у виглядi ряду за степенями δ-функцiї з цiлими ко-
ефiцiєнтами.

Ключовi слова: кополiном, δ-функцiя, диференцiальний оператор не-
скiнченного порядку, задача Кошi, перетворення Кошi–Стiлтьєса, мно-
ження кополiномiв
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