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On 2-Convex Non-Orientable Surfaces in

Four-Dimensional Euclidean Space

Dmitry V. Bolotov
We prove that a 2-convex closed surface S ⊂ E4 in the four-dimensional

Euclidean space E4, which is either C2-smooth or polyhedral, provided that
each vertex is incident to at most five edges, admits a mapping of degree
one to a two-dimensional torus, where the degree is assumed to be mod 2
if S is non-orientable. As a corollary, we show that the projective plane and
the Klein bottle do not admit such a 2-convex embedding in E4.
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1. Introduction

Let us recall the following definition (see [8, §16]).

Definition 1.1. A subset C of the Euclidean space En is called k-convex if
through each point x ∈ En \ C there passes a k-dimensional plane πx that does
not intersect C.

Notice that for the case k = n−1, we obtain one of the equivalent definitions of
usual convexity. If we, moreover, replace En by the complex affine space Cn and
take the hyperplane πx to be complex, we obtain the definition of linear convexity
of C ⊂ Cn (see [8, Definition 1.6]). Recall that the concept of linear convexity
in two-dimensional complex plane C2 was first introduced in [2] and has gained
great importance in complex analysis in several variables (see [1,5]). Topological
properties of linearly convex sets and their real analogues are represented in [8].

Clearly, linearly convex sets in Cn are (n−2)-convex in R2n ' Rn⊕iRn = Cn.
It is not hard to see that the Clifford torus (S1 × S1 ⊂ C2) is a linearly convex
subset of the complex affine plane C2 (see [8, Example 1.3]), in particular, this
gives an example of a 2-convex subset of E4.

Yu. Zelinsky asked (see [8, Question 30.5a]): Is there a 2-convex embedding
of a compact K, which is a homological sphere S2, in the Euclidean space E4?

In papers [3, 4], we gave a partial answer to this question and showed that
there is no 2-convex embedding f : S2 → E4 which is C2 or PL-embedding such
that the valence of vertices does not exceed five. For simplicity, denote such
PL-embeddings by PL(5).

In the present paper, we show that our result obtained for the sphere is actu-
ally a corollary of the following topological property of 2-convex closed surfaces,
which are either C2-smooth or PL(5) embedded in E4. Namely, we prove that
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such a surface admits a mapping of degree one onto a two-dimensional torus (The-
orem 3.1). As a corollary, we show that the projective plane and the Klein bottle
do not admit C2- smooth or PL(5)-embedding in E4 (Theorem 3.4, Corollary
3.5). Notice that the Euler characteristic formula shows that the Klein bottle,
unlike the projective plane, does not admit triangulations in which the valence
of vertices does not exceed five.

2. Preliminaries

2.1. Degree mod 2 of a mapping. Let f : M → N be a differentiable
mapping between two n-dimensional differentiable closed manifolds.

Definition 2.1 (see [7]). Let y ∈ N be a regular value, then we define the
degree mod 2 of f (or deg2 f) by

deg2f := #f−1y (mod 2). (2.1)

It can be shown that the degree mod 2 does not depend on the regular
value y.

As in the orientable case, using Poincaré duality with coefficients Z2, we have

deg2f := f∗u, (2.2)

where u is the generator of Hn(N ;Z2) ' Z2 and f∗ : Hn(N ;Z2) → Hn(M ;Z2)
is the homomorphism of the cohomology groups induced by f .

Let us recall the cohomology ring structure of the torus T 2, the projective
plane P 2 and the Klein bottle K2. Let Z2[x1, . . . , xn] denote the polynomial ring
over Z2 in n variables.

A surface S T 2 K2 P 2

Cohomology group
H1(S;Z2):

Z2 ⊕ Z2 Z2 ⊕ Z2 Z2

generators a, b c, d e

Cohomology ring
H∗(S;Z2) :

Z2[a,b]/(a2,b2) Z2[c,d]/(c2,d3,d2 − cd) Z2[e]/e3

Table 2.1: Ring structure

2.2. Construction. Recall the construction that underlies the proof of the
main result in the case of the sphere (see [3, 4]). Denote by S a closed surface
which is C2-smooth or PL(5) embedded into the Euclidean space E4. Since S
is compact, there exists a ball B4 ⊂ E4 that contains S. We will decrease the
radius of B4 until its boundary S3 := ∂B4 touches S at some point p. Let TpS

3

denote a 3-dimensional plane in E4 tangent to S3 at the point p. As was shown
in [3,4], there exists another 3-dimensional plane Π parallel and sufficiently close
to TpS

3, which divides E4 into closed half-spaces E4
+ ⊃ p and E4

− such that the
intersection γ := Π ∩ S = S+ ∩ S−, where S± = E4

± ∩ S, satisfies the properties
represented in Table 2.2 below.
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C2-case PL(5)-case

γ is a connected C2-smooth curve,
γ ⊂ ∂Lγ , where Lγ denotes the con-
vex hull of γ

γ is a closed k-segmented polygonal
chain,
3 ≤ k ≤ 5

p ∈ S+ and S+ is homeomorphic to
the disk D2

S+ = Cγ is the cone with vertex p
and base γ

Table 2.2: Properties of γ.

These properties are obvious in PL(5) - case. In C2 - case, we can represent
the surface S in a small neighborhood of the point p as follows:{

x3 = f(x1, x2),

x4 = g(x1, x2),

where {xi : i = 1, . . . , 4} are the Euclidean coordinates in E4 such that the point
p is the origin and the coordinate frame {ei : i = 1, . . . , 4} has the property that
{e1, e2} is a basis of the tangent plane TpS and e3 is orthogonal to the tangent
plane TpS

3, and f is a convex function. Thus, the desired 3-dimensional plane Π
can be taken as {x3 = ε}, where ε is chosen such that the curve f(x1, x2) = ε is
a convex closed curve in the 3-dimensional plane Π0 := {x4 = 0}.

Observe that lx := πx∩Π is a line if x ∈ Lγ \γ (see Definition 1.1). The basic
observation we made for the case of sphere in [3, 4] is transferred one-to-one to
the case of an arbitrary closed surface of the following theorem.

Theorem 2.2. Let S ⊂ E4 be a 2-convex closed surface which is C2 or PL(5)-
embedded in E4. Let Π be a 3-dimensional plane in E4 satisfying the conditions
above (see Table 2.2). Then one of the following possibilities occurs:

1. There exist x ∈ Lγ \γ and πx from Definition 1.1 such that [γ] is a generator
of π1(Π \ lx) ∼= Z.

2. There exist x1, x2 ∈ intLγ and πx1 , πx2 from Definition 1.1 such that:

(a) πx1 and πx2 are in a general position;

(b) lx1 ∩ lx2 = ∅;

(c) [γ] = [a][b][a]−1[b]−1, where a, b are the circles of the bouquet S1 ∨ S1

representing the generators of the group π1(Π \ (lx1 ∪ lx2)) ∼= Z ∗ Z (see
Fig. 2.1).

Sketch of the proof for C2-case. If γ is flat, then item 1 holds obviously.
Suppose, γ is not flat, then γ separates ∂Lγ into two connected parts Ai, i = 1, 2,
homeomorphic to open discs. If there exists a point x ∈ intLγ and πx such that
lx ∩ Ai, i ∈ {1, 2} is one point, then item 1 holds obviously. Otherwise, intLγ =⋃
iCi, i = 1, 2, where Ci is characterized as follows:

xi ∈ Ci iff there exists a plane πxi through xi from Definition 1.1 such that lxi ∩
Ai 6= ∅.

In this case, lxi ∩ Ai consists of two points. Observe that Ci 6= ∅. Indeed,
let yi ∈ Ai be a smooth boundary point, i.e., there exists only one supporting
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Fig. 2.1: Link

plane Tyi through yi. Such points are everywhere dense in Aj [6]. If lyi ⊂ Tyi ,
we can move the plane πyi a little bit to get lyi ∩ intLγ 6= ∅. On the other
hand, obviously, Ci are open subsets in intLγ . From the connectivity of intLγ ,
it follows that C1 ∩ C2 6= ∅. This means that there exists x ∈ intLγ and planes
πi, i = 1, 2, through x from Definition 1.1 such that l1 ∩ l2 = x and li ∩ Ai 6= ∅,
where li := πi ∩ Π. Now, by a small perturbation of the planes πi to the planes
πxi through some points x1, x2 ∈ intLγ , we can get 2(a) and 2(b) of Theorem 2.2
with the mutual arrangement of the straight lines lx1 , lx2 and the curve γ as a
nontrivial link as shown in Fig. 2.1a). The diagram of this link can be obtained
by the orthogonal projection p : Π→ Π ∩Π0. Item 2(c) is checked directly.

Remark 2.3. As will be shown in the proof of Theorem 3.1, the situation
described in item 1 of Theorem 2.2 is impossible.

3. Main result

Theorem 3.1. If S ⊂ E4 is a 2-convex closed surface which is either C2

or PL(5)-embedded into E4, then it admits a mapping of degree one to a two-
dimensional torus. If S is non-orientable, we assume that the degree is taken
modulo 2.

Proof. Suppose f : S → E4 is a 2-convex embedding satisfying the condition
of the theorem. Then Theorem 2.2 is satisfied. If item 1 of Theorem 2.2 holds,
then we immediately come to a contradiction since γ bounds S+ ' D2, which
contradicts to [γ] 6= 0 in π1(Π \ lx) and therefore [γ] 6= 0 in π1(E4 \ πx) since Π \
lx is the deformation retract of E4 \ πx.

Let us suppose that item 2 of Theorem 2.2 is satisfied. Then, from 2(a), it
follows that πx1 ∩ πx2 is a point, which we denote by O. Thus, there are two
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possible cases.

Case 1. O ∈ E4
−. In this case, we have the deformation retraction

r+ : E4
+ \ (πx1 ∪ πx2)→ Π \ (lx1 ∪ lx2),

which is defined as follows:

r+(x) = lOx ∩Π,

where lOx denotes the straight line passing through O and x ∈ E4
+.

Recalling that deformation retraction induces an isomorphism of fundamental
groups, we immediately come to a contradiction since γ bounds the disk

S+ ⊂ E4
+ \ (πx1 ∪ πx2)

and [γ] must be equal to zero in

π1(E4
+ \ (πx1 ∪ πx2)) ' π1(Π \ (lx1 ∪ lx2)),

which contradicts to 2(c) of Theorem 2.2.

Case 2. O ∈ E4
+. In this case, as above, we have the deformation retraction

r− : E4
− \ (πx1 ∪ πx2)→ Π \ (lx1 ∪ lx2)

and the homotopically inverse to r− embedding

i− : Π \ (lx1 ∪ lx2)→ E4
− \ (πx1 ∪ πx2).

Moreover, we have the following homotopy equivalences:

h1 : Π \ (lx1 ∪ lx2)
r1→ S1 ∨ S1 i1

↪→ Π \ (lx1 ∪ lx2),

h2 : S−
r2→ ∨pS1

p

i2
↪→ S− (see Remark 3.2),

where ∨np=1S
1
p is a bouquet of circles generating π1(S−), and rk, ik (k = 1, 2) are

the deformation retractions and the homotopically inverse embeddings to them.

Remark 3.2. Notice that the choice of the bouquet ∨np=1S
1
p generating π1(S−)

and the deformation retraction r2 : S− → ∨np=1S
1
p are ambiguous. Moreover, we

can always choose circles S1
p such that ∩np=1S

1
p ∩γ is a single point (the basepoint

of S−), which we denote by o. Fixing the orientations of the circles S1
p and cutting

along them, we obtain a representation of S− by a 2n-gon P with a hole bounded
by γ and oriented sides that are pairwise identified (see Fig. 3.1 for the case where
S is either P 2 or K2). The deformation retraction

r2 : P \ intS+ → ∂P

is shown in Fig. 3.1 by thin arrows. This determines the equality [γ] = [w] ∈
π1(S−), where w = r2(γ).
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Fig. 3.1: Deformation retraction.

Remark 3.3. The marking of the sides of polygons in Fig. 3.1 is not accidental
since the sides represent homological classes of the group H1(S;Z2) of the surface
S obtained by the gluing of the corresponding sides of the polygons, which are
Poincaré dual to the classes of cohomologies in H1(S;Z2) denoted by the same
letters in Table 2.1. Note that the modulo 2 indices of intersection of homological
classes correspond to the multiplication of cohomology classes with coefficients
in Z2.

Let us consider the following composition of the mappings:

ψ := r1 ◦ r− ◦ f̄ ◦ i2 : ∨pS1
p → S1 ∨ S1,

where f̄ is defined from the composition

f |S− : S−
f̄→ E4

− \ (πx1 ∪ πx2) ↪→ E4.

Taking into account the definition of w and 2(c) of Theorem 2.2, we have

ψ∗[w] = ψ∗r2∗[γ] = (r1 ◦ r−)∗f̄∗i2∗r2∗[γ] = (r1 ◦ r−)∗f̄∗[γ] = [a][b][a]−1[b]−1,

where ∗ indicates the induced homomorphisms of fundamental groups.

Let us complete the natural cellular decomposition of S1 ∨ S1 to the cellular
decomposition of the torus T 2 as shown in Fig. 3.2. Observe that S has a natural
cellular decomposition generated by o, ∨pS1

p \ o, γ \ o, intS−, intS+. We claim
that one can extend ψ to the continuous map Ψ : S → T 2 of degree one.

One can extend ψ to the map of 1-skeletons Ψ(1) : S(1) → T 2(1)
by means of

some diffeomorphism Ψ(1)|γ : γ → u preserving orientations. By the construction,
we have

(Ψ(1))∗[γ]−1[w] = [u]−1[a][b][a]−1[b]−1.
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Fig. 3.2: Cellular decomposition of T 2.

Thus, we can extend Ψ(1) to S−, whose images are in σ̄1 (see Fig. 3.2), and then
to S+ by some diffeomorphism Ψ|S+ : S+ → σ̄2. Smoothing Ψ and leaving them
unchanged in a small disk B ⊂ intS+, show that the degree of Ψ is equal to one
(see (2.1)).

Theorem 3.4. Neither the projective plane nor the Klein bottle admits a
continuous mapping onto the torus T 2 of degree one mod 2.

Proof. Let us suppose that g : S → T 2 is a mapping of a closed surface S to
the torus T 2 and deg2 g = 1. Then, using the ring structure of H∗(T 2;Z2) (see
Table 2.1) and (2.2), we have

g∗(a ∪ b) = g∗a ∪ g∗b 6= 0. (3.1)

It should be noticed that

a ∪ a = b ∪ b = 0. (3.2)

Case 1. S = P 2. In this case, it follows from the ring structure of H∗(P 2;Z2)
(see Table 2.1) and (3.1) that g∗a = g∗b = e. But this leads to a contradiction
with (3.2):

0 6= e2 = g∗a ∪ g∗a = g∗(a ∪ a) = 0.

Case 2. S = K2. Let c,d be generators of the group H1(K2;Z2) ' Z2 ⊕ Z2

(see Table 2.1). If g∗a = g∗b = c, then we obtain the contradiction:

0 = c2 = g∗a ∪ g∗b 6= 0.

The last inequality is caused by (3.1). Thus, one of two things happens:

(a) g∗a ∈ {d,d + c} or

(b) g∗b ∈ {d,d + c}.
Without loss of generality, we can assume that (a) is satisfied. Using the ring
structure of H∗(K2;Z2), we have

• d2 6= 0,

• (c + d) ∪ (c + d) = c2 + 2c ∪ d + d2 = d2 6= 0.
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But this yields to a contradiction: 0 6= g∗a∪g∗a = g∗(a∪a) = 0 (the last equality
follows from (3.2)).

Theorems 3.1 and 3.4 imply the corollary.

Corollary 3.5. Neither the projective plane nor the Klein bottle admits a C2-
smooth or PL(5)-embedding in a four-dimensional Euclidean space as a 2-convex
surface.

4. Final remarks

Finally, we note that the question under consideration for non-orientable sur-
faces M2

µ, µ ≥ 3, where µ denotes the number of Möbius bands glued into the
sphere S2, remains open. Indeed, any such surface is homeomorphic to the torus
T 2 with µ−2 Möbius bands glued into it. The mapping g : M2

µ → T 2, contracting
each such Mobius band to a point, has deg2g = 1 (see Fig. 4.1) and Theorem 3.4
is wrong for S = M2

µ, µ ≥ 3.

Fig. 4.1: Degree one mod 2 map of M2
3 to the torus T 2.
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Про 2-опуклi неорiєнтовнi поверхнi в
чотиривимiрному евклiдовому просторi

Dmitry V. Bolotov

Доведено, що 2-опукла замкнута поверхня S ⊂ E4 у чотиривимiрно-
му евклiдовому просторi E4, яка є або C2-гладкою, або полiедральною,
за умови, що кожна вершина iнцидентна не бiльше нiж п’яти ребрам,
допускає вiдображення степеня один у двовимiрний тор, де степiнь роз-
глядається за mod 2, якщо S є неорiєнтовною. Як наслiдок, ми пока-
зуємо, що проєктивна площина i пляшка Кляйна не допускають такого
2-опуклого вкладення в E4.

Ключовi слова: k-опукла множина, евклiдiв простiр, неорiєнтовна по-
верхня
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