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On 2-Convex Non-Orientable Surfaces in
Four-Dimensional Euclidean Space

Dmitry V. Bolotov

We prove that a 2-convex closed surface S C E4 in the four-dimensional
Euclidean space E*, which is either C2-smooth or polyhedral, provided that
each vertex is incident to at most five edges, admits a mapping of degree
one to a two-dimensional torus, where the degree is assumed to be mod 2
if S is non-orientable. As a corollary, we show that the projective plane and
the Klein bottle do not admit such a 2-convex embedding in E*.
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1. Introduction
Let us recall the following definition (see [8, §16]).

Definition 1.1. A subset C of the Euclidean space E" is called k-convex if
through each point z € E™ \ C there passes a k-dimensional plane 7, that does
not intersect C.

Notice that for the case k = n—1, we obtain one of the equivalent definitions of
usual convexity. If we, moreover, replace E™ by the complex affine space C" and
take the hyperplane 7, to be complex, we obtain the definition of linear convexity
of C' C C" (see [8, Definition 1.6]). Recall that the concept of linear convexity
in two-dimensional complex plane C? was first introduced in [2] and has gained
great importance in complex analysis in several variables (see [1,5]). Topological
properties of linearly convex sets and their real analogues are represented in [8].

Clearly, linearly convex sets in C" are (n —2)-convex in R?" ~ R*@4R" = C".
It is not hard to see that the Clifford torus (S! x S* C C?) is a linearly convex
subset of the complex affine plane C? (see [8, Example 1.3]), in particular, this
gives an example of a 2-convex subset of E*.

Yu. Zelinsky asked (see [8, Question 30.5al]): Is there a 2-convex embedding
of a compact K, which is a homological sphere S?, in the Euclidean space E*?

In papers [3,4], we gave a partial answer to this question and showed that
there is no 2-convex embedding f : §2 — E* which is C? or PL-embedding such
that the valence of vertices does not exceed five. For simplicity, denote such
PL-embeddings by PL(5).

In the present paper, we show that our result obtained for the sphere is actu-
ally a corollary of the following topological property of 2-convex closed surfaces,
which are either C2-smooth or PL(5) embedded in E*. Namely, we prove that

© Dmitry V. Bolotov, 2025


https://doi.org/10.15407/mag21.04.01

372 Dmitry V. Bolotov

such a surface admits a mapping of degree one onto a two-dimensional torus (The-
orem 3.1). As a corollary, we show that the projective plane and the Klein bottle
do not admit C?- smooth or PL(5)-embedding in E* (Theorem 3.4, Corollary
3.5). Notice that the Euler characteristic formula shows that the Klein bottle,
unlike the projective plane, does not admit triangulations in which the valence
of vertices does not exceed five.

2. Preliminaries

2.1. Degree mod 2 of a mapping. Let f : M — N be a differentiable
mapping between two n-dimensional differentiable closed manifolds.

Definition 2.1 (see [7]). Let y € N be a regular value, then we define the
degree mod 2 of f (or deg, f) by

degof := #f 'y (mod2). (2.1)

It can be shown that the degree mod 2 does not depend on the regular
value y.
As in the orientable case, using Poincaré duality with coefficients Zs, we have

deg, f == f*u, (2.2)
where u is the generator of H"(N;Zsy) ~ Zo and f* : H"(N;Zs) — H"™(M;Zs)

is the homomorphism of the cohomology groups induced by f.

Let us recall the cohomology ring structure of the torus 72, the projective
plane P? and the Klein bottle K2. Let Zs[z1,. .., x,] denote the polynomial ring
over Zs9 in n variables.

A surface S T2 K2 p?
Cohomology group

Hl (S; Z2)5 Lo @ Lo Lo & 7o Zo
generators a, b c,d e
Cohomology  ring | ;1o 11 /(a2,b2) | Zsle,d]/(c2 d%, d? — cd) | Zo[e]/e?
H*(S;Zs) :

Table 2.1: Ring structure

2.2. Construction. Recall the construction that underlies the proof of the
main result in the case of the sphere (see [3,4]). Denote by S a closed surface
which is C2-smooth or PL(5) embedded into the Euclidean space E*. Since S
is compact, there exists a ball B* ¢ E* that contains S. We will decrease the
radius of B* until its boundary S® := 9B* touches S at some point p. Let TpS3
denote a 3-dimensional plane in E* tangent to S® at the point p. As was shown
in [3,4], there exists another 3-dimensional plane II parallel and sufficiently close
to T pSg, which divides E* into closed half-spaces Ei O p and E* such that the
intersection v :=IIN.S = S, N S_, where S. = E% N S, satisfies the properties
represented in Table 2.2 below.



On 2-Convex Non-Orientable Surfaces in Four-Dimensional Euclidean Space 373

C?%-case PL(5)-case
v is a connected C?-smooth curve, | v is a closed k-segmented polygonal
7 C 9Ly, where L, denotes the con- | chain,

vex hull of ~ 3<k<5
p € S4 and Sy is homeomorphic to | S; = C7 is the cone with vertex p
the disk D? and base y

Table 2.2: Properties of ~.

These properties are obvious in PL(5) - case. In C? - case, we can represent
the surface S in a small neighborhood of the point p as follows:

where {z; :i = 1,...,4} are the Euclidean coordinates in E* such that the point
p is the origin and the coordinate frame {e; : i = 1,...,4} has the property that
{e1,e2} is a basis of the tangent plane 7,,S and e3 is orthogonal to the tangent
plane T, p53, and f is a convex function. Thus, the desired 3-dimensional plane 11
can be taken as {z3 = £}, where ¢ is chosen such that the curve f(z!,2?) = ¢ is
a convex closed curve in the 3-dimensional plane Il := {z% = 0}.

Observe that I, := 7, NIl is a line if z € L, \ 7y (see Definition 1.1). The basic
observation we made for the case of sphere in [3,4] is transferred one-to-one to
the case of an arbitrary closed surface of the following theorem.

Theorem 2.2. Let S C E* be a 2-convex closed surface which is C* or PL(5)-
embedded in E*. Let II be a 3-dimensional plane in E* satisfying the conditions
above (see Table 2.2). Then one of the following possibilities occurs:

1. There exist x € L\~ and 7, from Definition 1.1 such that [] is a generator
0f7r1(H \ lm) =7.
2. There exist x1,x2 € int L, and 7, , 7y, from Definition 1.1 such that:
(a) 7y, and my, are in a general position;
(b) Iy, Ny = &
(c) [v] = [a][b][a]~'[b] !, where a,b are the circles of the bouquet S' Vv S*

representing the generators of the group mi(IL\ (I, Ulsy,)) = Z +Z (see
Fig. 2.1).

Sketch of the proof for C?-case. If + is flat, then item 1 holds obviously.
Suppose, 7 is not flat, then v separates 0L, into two connected parts A;, ¢ = 1,2,
homeomorphic to open discs. If there exists a point x € int L, and m, such that
Iz N A, i € {1,2} is one point, then item 1 holds obviously. Otherwise, int L, =
U, Ci, i = 1,2, where C; is characterized as follows:

x; € C; iff there exists a plane 7, through x; from Definition 1.1 such that l,;, N
A # .

In this case, l;; N A; consists of two points. Observe that C; # @. Indeed,

let y; € A; be a smooth boundary point, i.e., there exists only one supporting
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a) Cz-casc b) PL(5) - case

Fig. 2.1: Link

plane T}, through y;. Such points are everywhere dense in A; [6]. If I, C Ty,,
we can move the plane m,, a little bit to get [,, Nint L, # @&. On the other
hand, obviously, C; are open subsets in int L. From the connectivity of int L.,
it follows that C1 N Cy # @. This means that there exists « € int L, and planes
i, i = 1,2, through x from Definition 1.1 such that [y Nls = x and [; N A; # O,
where [; := m; NII. Now, by a small perturbation of the planes m; to the planes
Tz, through some points x1, x2 € int L., we can get 2(a) and 2(b) of Theorem 2.2
with the mutual arrangement of the straight lines l;,, 5, and the curve v as a
nontrivial link as shown in Fig. 2.1a). The diagram of this link can be obtained
by the orthogonal projection p : IT — II N Ily. Item 2(c) is checked directly. [

Remark 2.3. As will be shown in the proof of Theorem 3.1, the situation
described in item 1 of Theorem 2.2 is impossible.

3. Main result

Theorem 3.1. If S C E* is a 2-conver closed surface which is either C?
or PL(5)-embedded into E*, then it admits a mapping of degree one to a two-
dimensional torus. If S is non-orientable, we assume that the degree is taken
modulo 2.

Proof. Suppose f: S — E*is a 2-convex embedding satisfying the condition
of the theorem. Then Theorem 2.2 is satisfied. If item 1 of Theorem 2.2 holds,
then we immediately come to a contradiction since v bounds S, ~ D?, which
contradicts to [y] # 0 in w1 (IT\ I) and therefore [y] # 0 in w1 (E* \ ) since IT \
I, is the deformation retract of E*\ 7.

Let us suppose that item 2 of Theorem 2.2 is satisfied. Then, from 2(a), it
follows that m,, N 7., is a point, which we denote by O. Thus, there are two
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possible cases.
Case 1. O € E*. In this case, we have the deformation retraction

T4 Ei \ (7 Umrg,) — 1T\ (lyy Uly,),

which is defined as follows:
ry(x) =loz NI,

where [p, denotes the straight line passing through O and x € Ei.
Recalling that deformation retraction induces an isomorphism of fundamental
groups, we immediately come to a contradiction since v bounds the disk

S+ - Ei \ (le U 7T:v2)
and [y] must be equal to zero in

Wl(Ei \ (7r11 U 7Tl"2)) = Wl(H\ (lwl U lr2))>

which contradicts to 2(c) of Theorem 2.2.
Case 2. O € Ejlr. In this case, as above, we have the deformation retraction

r_ B2\ (g Umtgy) =TT\ (Igy Ulsy)
and the homotopically inverse to r_ embedding
io T\ (lyy Uly,) — EL\ (0, Umtgy).

Moreover, we have the following homotopy equivalences:
it T\ (loy Ulyy) ™ STV ST TN (I, Uly,),
hy: S_ 3 VpSp < §_ (see Remark 3.2),

where nglsg is a bouquet of circles generating m1(S_), and 7, ir (k= 1,2) are
the deformation retractions and the homotopically inverse embeddings to them.

Remark 3.2. Notice that the choice of the bouquet \/gzlSp} generating m;(S_)
and the deformation retraction rg : S_ — Vj_; SZ% are ambiguous. Moreover, we
can always choose circles S; such that Nj_, 5’; N~ is a single point (the basepoint
of S_), which we denote by o. Fixing the orientations of the circles S; and cutting
along them, we obtain a representation of S_ by a 2n-gon P with a hole bounded
by ~ and oriented sides that are pairwise identified (see Fig. 3.1 for the case where
S is either P2 or K2). The deformation retraction

ro: P\int Sy — OP

is shown in Fig. 3.1 by thin arrows. This determines the equality [y] = [w] €
m1(S-), where w = ro(7).
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Fig. 3.1: Deformation retraction.

Remark 3.3. The marking of the sides of polygons in Fig. 3.1 is not accidental
since the sides represent homological classes of the group H1(S;Zs) of the surface
S obtained by the gluing of the corresponding sides of the polygons, which are
Poincaré dual to the classes of cohomologies in H'(S;Zs) denoted by the same
letters in Table 2.1. Note that the modulo 2 indices of intersection of homological
classes correspond to the multiplication of cohomology classes with coefficients
in ZQ.

Let us consider the following composition of the mappings:
) ;:rlor,ofoig : VPS; —>Sl\/51,

where f is defined from the composition

fle. : S_ L BAN (my, Umyy) — B
Taking into account the definition of w and 2(c) of Theorem 2.2, we have

Yulw] = vuraly] = (110 r-) fuizaraiy] = (ri o) fib] = [al[b][a] 7' 0] 7,

where * indicates the induced homomorphisms of fundamental groups.

Let us complete the natural cellular decomposition of S* Vv S! to the cellular
decomposition of the torus 7?2 as shown in Fig. 3.2. Observe that S has a natural
cellular decomposition generated by o, \/pS’; \o,v\o,intS_, int S;. We claim
that one can extend v to the continuous map ¥ : S — T2 of degree one.

One can extend 9 to the map of 1-skeletons ™) : §(1) — 72 by means of
some diffeomorphism ¥ |y : 7 — u preserving orientations. By the construction,
we have
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b

Fig. 3.2: Cellular decomposition of T2

Thus, we can extend ¥ to S_, whose images are in 7; (see Fig. 3.2), and then
to Sy by some diffeomorphism V¥|g, : S; — 2. Smoothing ¥ and leaving them
unchanged in a small disk B C int S5, show that the degree of V¥ is equal to one
(see (2.1)). O

Theorem 3.4. Neither the projective plane nor the Klein bottle admits a
continuous mapping onto the torus T? of degree one mod 2.

Proof. Let us suppose that g : S — T2 is a mapping of a closed surface S to
the torus 72 and degy, g = 1. Then, using the ring structure of H*(T?;Zs) (see
Table 2.1) and (2.2), we have

g (aUb)=g*aUg*b # 0. (3.1)
It should be noticed that
alda=bUb=0. (3.2)

Case 1. S = P2. In this case, it follows from the ring structure of H*(P?;Zs)
(see Table 2.1) and (3.1) that g*a = g*b = e. But this leads to a contradiction
with (3.2):

0#£e’=gaUg*a=g*(aUa) =0.

Case 2. S = K2. Let c,d be generators of the group H'(K?;7s) ~ 7o & 7o

(see Table 2.1). If g*a = g*b = ¢, then we obtain the contradiction:

0=c?=g*aUg*b #0.

The last inequality is caused by (3.1). Thus, one of two things happens:

(a) grae{d,d+c}or

(b) g*be{d,d+c}.

Without loss of generality, we can assume that (a) is satisfied. Using the ring

structure of H*(K?;7Zs), we have

. &40,
e (ctd)U(c+d)=c?+2cud+d?=d?+#0.
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But this yields to a contradiction: 0 # g*aUg*a = g*(aUa) = 0 (the last equality
follows from (3.2)). O

Theorems 3.1 and 3.4 imply the corollary.

Corollary 3.5. Neither the projective plane nor the Klein bottle admits a C?-
smooth or PL(5)-embedding in a four-dimensional Euclidean space as a 2-convex
surface.

4. Final remarks

Finally, we note that the question under consideration for non-orientable sur-
faces M 3, u > 3, where u denotes the number of Mébius bands glued into the
sphere S?, remains open. Indeed, any such surface is homeomorphic to the torus
T? with p—2 M&bius bands glued into it. The mapping ¢ : M 3 — T2, contracting
each such Mobius band to a point, has degyg = 1 (see Fig. 4.1) and Theorem 3.4
is wrong for S = Mg, w> 3.

Fig. 4.1: Degree one mod 2 map of M2 to the torus T2.
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IIpo 2-omykJii HEOPi€EHTOBHI MOBEPXHi B
YOTUPUBUMIPHOMY €BKJIJIOBOMY IIPOCTOPIi
Dmitry V. Bolotov

Hosemneno, mo 2-0ImyKJIa 3aMKHyTa mosepxus S C E* y yoTupusuMmiprO-
My eBKJIigoBoMy mpoctopi E4, axa € abo C?-riiaikoro, abo mosiieapabHoo,
3a YMOBH, IO KOXKHA BEPINWHA iHIMIEHTHA HE OiIbINe HiXK 'aTH pedbpam,
JIOITYCKAE BiT0OparkeHHsI CTeleHs OUH y IBOBUMIPHUI TOD, /€ CTEMHb PO3-
JISIAEThCst 38 mod 2, sIKIo S € HeOPIEHTOBHOW. ZK HAC/IIIOK, MU IOKa-
3y€MO, IO MPOEKTUBHA ILIOMIWHA 1 mrsika KiisiiiHa He JOMyCKAalTh TAKOIO
2-0IIyKJIOro BKJajieHns B B4,

KirrowoBi ciioBa: k-omyk/ia MHOKWHA, €BKJTIIiB TPOCTip, HEOPI€EHTOBHA IT0-
BEpXH
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