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Petrenko’s theory of growth of meromorphic functions lies within the
wider spectrum of Nevanlinna theory and was initiated by V.P. Petrenko
in 1960s. This paper is focused on the achievements of an outstanding
student of V.P. Petrenko, I.I. Marchenko, and his contributions to the theory.
An overview of some of I.I. Marchenko’s main results (and their further
generalizations and applications) concerning deviations, separated maximum
modulus points and strong asymptotic values constitutes the body of the
paper. The final part of the paper is devoted to a generalization of an
early result of I.I. Marchenko and A.I. Shcherba on the sum of deviations of
functions holomorphic in the unit disc.
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1. Introduction

We apply the standard notations of value distribution theory of meromorphic
functions: N(r, a, f), N(r, f) for functions counting a-points and poles, m(r, a, f)
and m(r, f) for mean proximity functions, T (r, f) for characteristic function. We
also use notations δ(a, f) for Nevanlinna’s defect and ∆(a, f) for Valiron’s defect
of f at a value a [19, 25,46].

Petrenko’s theory of growth of meromorphic functions dates back to 1969,
when the uniform metric was introduced into his research of meromorphic func-
tions for the first time. Thus,

L(r, a, f) =


max
|z|=r

log+ |f(z)| for a =∞,

max
|z|=r

log+

∣∣∣∣ 1

f(z)− a

∣∣∣∣ for a 6=∞

was called the function of deviation and

β(a, f) = lim inf
r→∞

L(r, a, f)

T (r, f)
,
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the magnitude of deviation. It can be easily seen that β(a, f) is the uniform
metric analogue of Nevanlinna’s defect δ(a, f). Values with β(a, f) > 0 are called
defective in the sense of V.P. Petrenko and the set of all such values is denoted
as Ω(f).

It follows from respective definitions that for all a ∈ C we have δ(a, f) ≤
β(a, f) and D(f) ⊂ Ω(f), where D(f) denotes the set of all values defective in
the sense of R. Nevanlinna with respect to f.

Although β(a, f) = ∞ is possible for f of infinite order, for meromorphic

functions of finite lower order λ := lim infr→∞
log T (r,f)

log r the properties of β(a, f)
and δ(a, f) are similar. Notwithstanding the lack of analogues of Nevanlinna’s
first and second theorems, analogues of Nevanlinna’s defect relations are possible
for deviations. V.P. Petrenko himself obtained the sharp upper estimate for the
value β(a, f) and the estimate for the sum

∑
a∈C β(a, f) [48].

Theorem 1.1. If f(z) is a meromorphic function of finite lower order λ,
then for all a ∈ C we have

β(a, f) ≤ B(λ) :=


πλ

sinπλ
if λ ≤ 0.5,

πλ if λ > 0.5,∑
a∈C

β(a, f) ≤ 816π(λ+ 1)2.

The value B(λ) appearing in Petrenko’s theorem is called Paley’s constant. In
1932, R. Paley in [47] stated a hypothesis that the inequality β(∞, g) ≤ π% holds
for any entire function g of finite order %, which was proved by N.V. Govorov in
1969 [22]. What is more, the estimate for meromorphic functions of finite lower
order λ > 0.5 follows from a result of A.A. Gol’dberg and I.V. Ostrovskii [18]
and the equality in this estimate is attained by the Mittag–Leffler function

Eρ(z) =

∞∑
n=0

zn

Γ(1 + n
ρ )
.

It should be mentioned that M.N. Sheremeta in [52] proved that for any
numbers λ, ρ, 0 ≤ λ ≤ ρ there exists an entire function Eλ,ρ(z) of finite lower
order λ and order ρ such that

β(∞, Eλ,ρ) = B(λ).

2. Exceptional values of meromorphic functions

In 1990, I.I. Marchenko together with his student A.I. Shcherba proved an ana-
logue of the inequality

∑
a∈C δ(a, f) ≤ 2 for deviations, thus solving the problem

formulated by Petrenko in his book [49]. The method applied by I.I. Marchenko
and A.I. Shcherba in their estimate of the sum of deviations differed from Pe-
trenko’s method and involved application of Baernstein’s T ∗-function [2, 3].
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Theorem 2.1. [45] If f(z) is a meromorphic function of finite lower order
λ, then ∑

a∈C

β(a, f) ≤ 2B(λ).

In case of λ = n
2 , where n is a natural number, the estimate in the theorem

is exact. It is attained for the function constructed by R. Nevanlinna (see [19,
p. 317]). This fact is not accidental, which is shown by the following result of
A.E. Eremenko [14].

Theorem 2.2. Let f(z) be a meromorphic function of finite lower order λ
and such that

∑
(a) β(a, f) = 2B(λ). Then the order ρ = λ = n

2 for (n = 2, 3, . . .)
and if a ∈ Ω(f), then β(a, f) = π.

An interesting question concerned comparative structures of sets D(f) and
Ω(f), other than the inclusion D(f) ⊂ Ω(f). The first example of a meromorphic
function of finite order such that β(0, f) > δ(0, f) = 0 was given by A.F. Gr-
ishin in 1975 [23]. A comprehensive solution to this problem was reached by
A.A. Gol’dberg, A.E. Eremenko, and M.L. Sodin [20,21] in 1987.

Theorem 2.3. Let E1 ⊂ E2 ⊂ C be no more than countable sets and ρ >
0 be any positive number. There exists a meromorphic function of order ρ such
that

D(f) = E1, Ω(f) = E2.

The value

∆(a, f) = lim sup
r→∞

m(r, a, f)

T (r, f)

is called Valiron’s defect and

V (f) = {a ∈ C : ∆(a, f) > 0},

the set of Valiron’s defective values. It is easy to notice that

D(f) ⊂ V (f).

G. Valiron proved that, contrary to the set of Nevanlinna’s defects, V (f) can be
of cardinality of the continuum (see [19, p. 153]). Another interesting question
involved a possible connection between the sets V (f) and Ω(f). The answer was
given by D.F. Shea (presented by W.H.J. Fuchs in [16], see also [49]).

Theorem 2.4. Let f(z) be a meromorphic function of finite lower order λ.
Then for each a ∈ C we have

β(a, f) ≤ B(λ,∆) :=

πλ
√

∆(2−∆) if λ /∈ Λ(∆),

πλ

sinπλ
(1− (1−∆) cosπλ) if λ ∈ Λ(∆),

(2.1)

where Λ(∆) =

{
λ : 0 ≤ λ ≤ 0.5, sin πλ

2 <
√

∆
2

}
, ∆ = ∆(a, f).
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It follows from Theorem 2.4 that for meromorphic functions of finite lower
order always Ω(f) ⊂ V (f). Moreover, the estimate in the theorem is exact, with
an appropriate example given by M.A Ryshkov in [50].

If β(a, f) > 0 for a value a ∈ C, then it is easy to imagine that f(z) approaches
a fast in appropriate components, which leads to the expectation that in these
components the derivative f ′(z) tends to 0. A natural question arises whether it is
possible to obtain an upper estimate of the sum

∑
a6=∞ β(a, f) involving ∆(0, f ′).

A positive answer was given by I.I. Marchenko in 1999 [41].

Theorem 2.5. For a meromorphic function of finite lower order λ the fol-
lowing inequality holds: ∑

a6=∞
β(a, f) ≤ 2B(λ,∆(0, f ′)),

where B(λ,∆) is the value defined in (2.1).

Nevanlinna’s first fundamental theorem implies the inequality

m(r, a, f) ≤ T (r, f) +O(1) as r →∞,

while Nevanlinna’s second fundamental theorem, the inequality

q∑
k=1

m(r, ak, f) ≤ 2T (r, f) +O(log(rT (r, f))) as r →∞, r /∈ E, mesE <∞.

Formulation of analogues of these relationships for the uniform metrics involves
the notions of upper and lower logarithmic densities of a set.

Let E ⊂ (0,∞) be a measurable set. The qualities

logdensE = lim sup
R→∞

1

lnR

∫
E∩[1,R]

dt

t
,

logdensE = lim inf
R→∞

1

lnR

∫
E∩[1,R]

dt

t

are called respectively upper and lower logarithmic densities of the set E. The
following estimates were obtained by I.I. Marchenko in 1998 [39].

Theorem 2.6. Let f(z) be a meromorphic function of finite lower order λ
and order ρ. Let also 0 < γ <∞ and a, ak ∈ C, 1 ≤ k ≤ q. We put

E1(γ) = {r : L(r, a, f) < B(γ)T (r, f)} ,

E2(γ) =

{
r :

q∑
k=1

L(r, ak, f) < 2B(γ)T (r, f)

}
.

Then

logdensEn(γ) ≥ 1− λ

γ
, logdensEn(γ) ≥ 1− ρ

γ
, n = 1, 2,

where B(γ) is the Paley constant.
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As it has already been mentioned, for meromorphic functions of infinite lower
order β(a, f) may be infinite. For instance, β(∞, exp ez) =∞. In 1994, W. Berg-
weiler and H. Bock [4] proved that for a meromorphic function of infinite lower
order,

lim inf
r→∞

log+ max|z|=r |f(z)|
rT ′−(r, f)

≤ π,

where T ′−(r, f) is the left derivative of the Nevanlinna characteristic function.
This result opened a possibility to apply the function of deviation L(r, a, f) also
for f of infinite order. In 1997, A.E. Eremenko [13] introduced the quality

b(a, f) = lim inf
r→∞

L(r, a, f)

A(r, f)
,

where A(r, f)π is the spherical area, counting multiplicities of the covering, of
the image on the Riemann sphere of the disc {z : |z| ≤ r} under f. It follows
directly from the estimate of W. Bergweiler and H. Bock that for all a ∈ C,

b(a, f) ≤ π.

A.E. Eremenko also obtained an analogue of Theorem 2.1 for the infinite case.

Theorem 2.7. For a meromorphic function such that the set{
a ∈ C : b(a, f) > 0

}
contains more than one point the following inequality holds:∑

a∈C

b(a, f) ≤ 2π.

Let us add that in 1998, I.I. Marchenko got the estimates of b(a, f) and∑
a∈C b(a, f) involving Valiron’s defect [40].

Theorem 2.8. Let f(z) be a meromorphic function of infinite lower order.
Then for each a ∈ C,

b(a, f) ≤ π
√

∆(a, f)(2−∆(a, f))

and also ∑
a6=∞

b(a, f) ≤ 2π
√

∆(0, f ′)(2−∆(0, f ′)).

Other results concerning functions of infinite order can be found in [8,40,42].
If we replace constants with functions of relatively slow growth, it is still

possible to obtain estimates similar to those in Nevanlinna’s second main theo-
rem. If f, a are meromorphic functions in C, we say that a is a small function
of f if T (r, a) = S(r, f), which means that T (r, a) = o(T (r, f)) apart from an
exceptional set of finite linear measure. The set of all small functions of f is
denoted by S(f). In 1986, G. Frank and G. Weissenborn obtained an extension
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of the second main theorem for functions meromorphic in the plane, with ratio-
nal functions replacing constants [15]. A result of N. Steinmetz concerning small
defective functions in general soon followed [53]. The conclusion is that for func-
tions meromorphic in the complex plane the set of their defective small functions
is at most countable and

δ(∞, f) +
∑

a∈S(f)

δ(a, f) ≤ 2.

The exact analogue of the second main theorem, including the ramification factor,
was obtained by K. Yamanoi in 2004 [55].

These results inspired the efforts to find the estimates for deviations from
small functions and the structure of respective sets of defective small functions.
In an article from 2004 [9], for example, the following extension of Theorem 2.6
was given.

Let f , a be meromorphic functions. We put

β(a, f) = lim inf
r→∞

L(r, a, f)

T (r, f)
,

where L(r, a, f) = L(r,∞, 1
f−a) denotes the deviation of f at a.

Theorem 2.9. Let f(z) be a transcendental entire function of finite lower
order λ, order ρ and let 0 < γ < ∞. Let also {qν(z)}kν=1 be distinct rational
functions. We put E(γ) = {r :

∑k
ν=1 L(r, qν , f) < B(γ)T (r, f)}. Then we have

logdensE(γ) ≥ 1− λ

γ
and logdensE(γ) ≥ 1− ρ

γ
.

As a result, for entire functions of finite lower order, it was possible to es-
tablish the structure of the set of rational functions defective in the sense of
V.P. Petrenko.

Corollary 2.10. Let f(z) be a transcendental entire function of finite lower
order λ and let M denote the set of all rational functions.The set {q ∈ M :
β(q, f) > 0} is no more than countable. Moreover, for distinct rational functions
{qν(z)} we have ∑

(ν)

β(qν , f) ≤ B(λ).

Further results in this direction can be found in [10,11].

3. Separated maximum modulus points of entire and meromor-
phic functions

Some of the problems which are most frequently attended to in the research
of I.I. Marchenko concern the relationship between the number of so-called sep-
arated maximum modulus points and other values inhabiting the world of value
distribution and growth theory.
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Let ν(r) denote the number of maximum points of |f(z)| on the circle |z| =
r. In 1964, P. Erdös (see [1]) formulated a question whether it is possible to find
an entire function other than czp with ν(r) → ∞ as r → ∞. F. Herzog and
G. Piranian in [26] gave an example of a function of infinite order with ν(r)
unbounded, leaving the question open for functions of finite order.

In 1995, I.I. Marchenko, considering the problem in a wider context of mero-
morphic functions, introduced the notion of separated maximum modulus points.
Initially, he considered the sets, where |f(z)| > 1 and two parameters concerning
maximum modulus points: p(r,∞, f) — the number of component intervals of
the set {ϕ : |f(reiϕ)| > 1}, containing at least one point of maximum modulus of
f(z) and p(∞, f) = lim infr→∞ p(r,∞, f). As it has turned out, these values are
closely related with other notions in the value distribution such as, for example,
the deviation [38] .

Theorem 3.1. If f(z) is a meromorphic function of finite lower order λ,
then

β(∞, f) ≤



πλ

p(∞, f)
if

λ

p(∞, f)
≥ 0.5,

πλ

sinπλ
if p(∞, f) = 1 and λ < 0.5,

πλ

p(∞, f)
sin

πλ

p(∞, f)
if p(∞, f) > 1 and

λ

p(∞, f)
< 0.5.

Corollary 3.2. If f(z) is a meromorphic function of finite lower order λ,
then

p(∞, f) ≤ max

([
πλ

β(∞, f)

]
, 1

)
,

while for an entire function of finite lower order λ,

p(∞, f) ≤ max([πλ], 1).

Here [x] is the integer part of x.

The estimates in the theorem above are sharp. In the first two cases the
equality holds for entire functions constructed on the basis of the Mittag–Leffler
function, while in the third case it holds for a meromorphic function constructed
on the basis of the function appearing in [19, Ex. 3, p. 282].

In [43], I.I. Marchenko was able to generalize Theorem 2.4 in the following
way.

Theorem 3.3. Let f(z) be a meromorphic function of finite lower order λ
and order ρ, γ > 0 be any positive number,

E(γ) =

{
r > 0 : L(r,∞, f) < B(

γ

p(∞, f)
,∆(∞, f))T (r, f)

}
.

Then

logdensE(γ) ≥ 1− λ

γ
, logdensE(γ) ≥ 1− ρ

γ
,

where B(γ,∆) was defined in Theorem 2.4.
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In later papers I.I. Marchenko applied more accurate means to separate max-
imum modulus points of meromorphic functions. Let φ(r) be a positive nonde-
creasing convex function of log r for r > 0 such that φ(r) = o(T (r, f)). Then
pφ(r,∞, f) denotes the number of component intervals of the set{

θ : log |f(reiθ)| > φ(r)
}

with at least one maximum modulus point of f(z). Furthermore,

pφ(∞, f) = lim inf
r→∞

pφ(r,∞, f),

and
p(∞, f) = sup

{φ}
pφ(∞, f).

It is straightforward that p(∞, f) ≥ p(∞, f). It was shown in [6] that Theorem
3.1 also holds if we replace p(∞, f) with p(∞, f).

Another way to separate maximum modulus points is as follows. For 0 < η ≤
1 and r > 0, let us denote by p̃η(r,∞, f) the number of component intervals of
the set {

θ : log |f(reiθ)| > (1− η)T (r, f)
}

with at least one maximum modulus point of the function f(z). We set

p̃φ(∞, f) = lim inf
r→∞

p̃η(r,∞, f)

and
p̃(∞, f) = sup

η
p̃η(∞, f).

It is easily seen that p̃(∞, f) ≥ p(∞, f). The following estimate of p̃(∞, f)
through the value of deviation appeared in [7].

Theorem 3.4. For meromorphic functions f(z) of finite lower order λ the
following inequality is true:

p̃(∞, f) ≤ max

([
2πλ

β(∞, f)

]
, 1

)
,

while for f(z) entire of finite lower order,

p̃(∞, f) ≤ max([2πλ], 1).

Here [x] is the integer part of x.

It should be mentioned here that recently A. Glücksam and L. Pardo-Simon
[17] have constructed an example of an entire function with p̃η(r,∞, f) tending to
infinity, thus giving another argument in favor of a positive answer to the question
of P. Erdös. Also, I.I. Marchenko and A. Kowalski [35] considered separated
maximum modulus points of entire functions, estimated the Lebesgue measure of
the set {

θ : log |f(reiθ)| > α logM(r, f)
}
, 0 ≤ α < 1,

and generalized the results of K. Arima and A. Baernstein.



388 Ewa Ciechanowicz

4. Strong asymptotic values

According to the classical definition (see [19], p. 233), a ∈ C is an asymptotic
value of a meromorphic function f if there exists a continuous curve Γ ⊂ C, Γ :
z = z(t), 0 ≤ t <∞, z(t)→∞ as t→∞, such that

lim
z→∞,z∈Γ

f(z) = lim
t→∞

f(z(t)) = a.

A pair {a,Γ}, defined above, is called an asymptotic spot of f. Two asymptotic
spots {a1,Γ1} and {a2,Γ2} are considered equal if a1 = a2 = a and there exists
a sequence of continuous curves γk with one end of each γk belonging to Γ1 and
the other to Γ2, and

lim
k→∞

min
z∈γk
|z| =∞, lim

z→∞
z∈

⋃
k γk

f(z) = a.

The questions of relationship between the sets of deficient values and asymp-
totic values, and of the number of asymptotic values or asymptotic spots received
a lot of attention earlier. It is easy to see that in general an asymptotic value
does not have to be a deficient value in any sense, even in the sense of G. Valiron(
take, for example, f(z) = sin z

z and a = 0
)
. Iversen proved that if a is a E. Pi-

card defective value of a meromorphic function f (f has only a finite number of
a-points), then it is also an asymptotic value [19], while W.K. Hayman showed
that a may not necessarily be an asymptotic value of f if a more general condition
N(r, a, f) = o(T (r, f)) is fulfilled. In [25], he gave an example of a meromorphic
function of order 0 with δ(∞, f) = 1 and ∞ not being an asymptotic value of
f. As far as the number of asymptotic spots is concerned, a classical theorem of
Denjoy–Carleman–Ahlfors states that an entire function of finite lower order λ
cannot have more than max{[2λ], 1} different asymptotic spots ([x] denotes here
the integer part of x) [19]. As the example of f(z) = ee

z
shows, the number of

asymptotic spots of an entire function of infinite lower order may be infinite. In
case of meromorphic functions, the set of asymptotic values may be infinite for
functions of any order, which was shown by A.E. Eremenko in 1986 [12].

Theorem 4.1. For every value %, 0 ≤ % ≤ ∞, there exists a meromorphic
function of order % with the set of asymptotic values equal to C.

In 2004, I.I. Marchenko introduced the definition of a strong asymptotic value,
which stemmed from the conviction that if the speed of approach of a meromor-
phic function to an asymptotic value is high enough, then the number of such
values must be limited.

Definition 4.2. A value a ∈ C is called an α0-strong asymptotic value of a
meromorphic function f if there exists a continuous curve Γ : z = z(t), 0 ≤ t <
∞, z(t)→∞ as t→∞, such that

lim inf
t→∞

log |f(z(t))− a|−1

T (|z(t)|, f)
= α(a) ≥ α0 > 0 if a 6=∞,
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lim inf
t→∞

log |f(z(t))|
T (|z(t)|, f)

≥ α0 > 0 if a =∞.

An asymptotic spot {a,Γ} is then called an α0- strong asymptotic spot.

In other words, a is a strong asymptotic value of a meromorphic function f
if on an asymptotic curve Γ the function tends to the value a with the speed
comparable with characteristic T (r, f).

It is easy to notice that if a is an α0-strong asymptotic value of f, then the
magnitude of the Petrenko deviation β(a, f) ≥ α0. It means that a is also a de-
fective value in the sense of Petrenko. Therefore I.I. Marchenko was able to show
that the number of strong asymptotic spots is limited, at least for meromorphic
functions of finite lower order [44].

Theorem 4.3. Let f be a meromorphic function of finite lower order λ and

{aν ,Γν}, ν = 1, 2, . . . , k, α0 be strong asymptotic spots of f. Then k ≤
[

2B(λ)
α0

]
.

The example of f(z) = ee
z

and a = ∞ again shows that such an estimate
cannot be made for functions of infinite order.

Later on, the notion of value which is strongly asymptotic was extended to
include strongly asymptotic small functions. Results concerning the structure
of the set of strong asymptotic rational functions appeared in 2011 [10]. More
general (but less accurate) results concerning the structure of the set of strong
asymptotic small functions appeared in 2017 [11].

5. Meromorphic minimal surfaces

Lately, scientific interests of I.I. Marchenko have been focused mainly on the
theory of meromorphic minimal surfaces. The theory, introduced and developed
in the 1960s and 1970s by E.F. Beckenbach and G.A. Huthinson, creates an inter-
esting field of application of the Nevanlinna theory. The analogues of Nevanlinna’s
first and second main theorems function there with one notable distinction. The
leading role played in classical value distribution theory by the counting function
N(r, a, f) is now held by the so-called visibility function denoted as H(r, a, S).
Thus, for example, the first main theorem for a meromorphic minimal surface S
has the form of the equality

m(r, a, S) +N(r, a, S) +H(r, a, S) = T (r, S) +O(1).

The notions of Petrenko’s theory appeared in the context of minimal surfaces as
early as 1979, when I.I. Marchenko in [37] considered the deviation of meromor-
phic surfaces. Much later, he revisited this area of research. Working together
with A. Kowalski, they obtained a number of results published in a series of
papers. In [28], they presented upper estimates of deviations and the number
of separated maximum modulus points of meromorphic minimal surfaces, while
in [30], they estimated the spread of such a surface. The theorems are illustrated
with examples showing their sharpness. Further results in this area included an
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analogue of Theorem 2.4 for minimal surfaces in [32] and analysis of the rela-
tionship between the number of separated maximum modulus points of minimal
surfaces and the Baernstein T ∗-function in [33].

Other recent results of I.I. Marchenko together with A. Kowalski concern
entire curves [29,34] and algebroid functions [31].

6. Functions meromorphic in the disc

In this section, we focus on functions meromorphic in the unit disc D := {z ∈
C : |z| < 1}. The order and lower order of a meromorphic in the unit disc function
f are defined by

%(f) := lim sup
r→1−

log+ T (r, f)

− log(1− r)
, λ(f) := lim inf

r→1−

log+ T (r, f)

− log(1− r)
.

Nevanlinna’s first theorem states that for a function f meromorphic in the unit
disc the equality

m(r, a, f) +N(r, a, f) = T (r, f) +O(1), (6.1)

holds for any value a ∈ C and r → 1−. By the second main theorem, for a set
{aν}nν=1 of pairwise distinct complex numbers the inequality

m(r, f) +
n∑
ν=1

m(r, aν , f) ≤ 2T (r, f) +O

(
log+ T (r, f) + log

1

1− r

)
(6.2)

is true for r → 1−, possibly except for r in a set E such that
∫
E

dr
1−r < +∞ [46].

A value a ∈ C is called a (Nevanlinna) defective value of a meromorphic in the
unit disc function f if

δ(a, f) = lim inf
r→1−

m(r, a, f)

T (r, f)
= 1− lim sup

r→1−

N(r, a, f)

T (r, f)
> 0.

The defect relations following from Nevanlinna’s theorems in the unit disc are

0 ≤ δ(a, f) ≤ 1,
∑
a∈C

δ(a, f) ≤ 2 +
1

A
, (6.3)

where

A := lim inf
r→1−

T (r, f)

− log(1− r)

if 0 < A <∞ (see [46,51]). It means that the set D(f) of values defective in the
sense of R. Nevanlinna is at most countable provided that A 6= 0. We say that a
meromorphic in the unit disc function f is admissible if A = +∞. In this case,∑

a∈C

δ(a, f) ≤ 2.
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Proximity of a meromorphic in a disc function to a certain value a can also
be measured in terms of deviation, which is defined here as

β(a, f) := lim inf
r→1−

L(r, a, f)

T (r, f)
.

For meromorphic in the unit disc functions the structure of the set Ω(f) of values
with positive deviation may strongly differ from the set D(f) of values defective
in the sense of R. Nevanlinna, even for finite order functions. For instance, for
f(z) = exp( 1

1−z ), the deviation β(∞, f) =∞. In [49], V.P. Petrenko proved that
for any value ρ, 0 ≤ ρ ≤ ∞, there exists a meromorphic in a disc function of
order ρ with Ω(f) of cardinality of the continuum.

For disc functions of finite lower order it is possible, however, to obtain upper
estimates involving the quantity

β̂(a, f) = lim inf
r→1

(1− r)L(r, a, f)

T (r, f)

first introduced by A.V. Krytov in [36]. I.I. Marchenko and A.I. Shcherba in [45]
obtained the following result concerning β̂(a, f).

Theorem 6.1. Let f be an admissible meromorphic function of finite lower
order in the unit disc. Then∑

a∈C

β̂(a, f) ≤ 2πλ cos−1−λ π

2(1 + λ)
.

For other estimates involving β̂(a, f) see, for example, [27].
Let f, a be meromorphic functions. We apply the following notations:

m(r, a, f) := m

(
r, 0,

1

f − a

)
, δ(a, f) := δ

(
0,

1

f − a

)
,

L(r, a, f) := L
(
r, 0,

1

f − a

)
, β(a, f) := β

(
0,

1

f − a

)
.

Let us add the following definition.

Definition 6.2. Let f be a meromorphic function in the unit disc. We say
that a function s : [0, 1)→ R is an S(r, f) (a small target of f) if

s(r) = o(T (r, f)) as r → 1−, r /∈ E,

for a set E such that
∫
E

dr
1−r < +∞.

The following extension of the second main theorem for the unit disc was
shown in [5].

Theorem 6.3. Let f be a meromorphic function in the unit disc and let
a1, . . . , an be distinct meromorphic small functions with respect to f . For any
ε > 0, the following inequality holds:

m(r, f) +

n∑
ν=1

m(r, aν , f) ≤ (2 + ε)T (r, f) + S(r, f) +O

(
log

1

1− r

)
.



392 Ewa Ciechanowicz

The estimates presented below refer back to the results of I.I. Marchenko and
A.I. Shcherba from [45], while their proofs are based on a variety of techniques of
the Nevanlinna theory applied in works of I.I. Marchenko. In both estimates the
constants, which appeared in the original results are replaced with polynomials
not intersecting on |z| = 1. The phrase “not intersecting on |z| = 1” refers to
a situation when for a pair pν , pη of distinct polynomials pν(z) − pη(z) 6= 0 for
points z on the unit circle.

Theorem 6.4. Let f be an admissible holomorphic function of lower order
0 < λ < ∞ in the unit disc. Then, for any set of distinct polynomials {pν}qν=1

not intersecting on |z| = 1,

q∑
ν=1

β̂(pν , f) ≤ πλ cos−1−λ π

2(1 + λ)
.

Theorem 6.5. Let f be an admissible holomorphic function of zero lower
order in the unit disc. Then, for any set of distinct polynomials {pν}qν=1 not
intersecting on |z| = 1 and of degree not exceeding d,

q∑
ν=1

β̂(p, f) ≤ 2∆
(

0, f (d+1)
)
,

where ∆(0, f (d+1)) is Valiron’s defect of f (d+1) at zero.

6.1. Auxiliary results. We start with a lemma on the logarithmic deriva-
tive as formulated in [25].

Lemma 6.6. If f is a function meromorphic in the unit disc, f(0) 6= 0,∞,
then for 0 < r < R < 1,

m

(
r,
f ′

f

)
< 4 log+ T (R, f) + 4 log+ log+ 1

|f(0)|

+ 5 log+R+ 6 log+ 1

R− r
+ log+ 1

r
+ 14.

Since we deal with disc functions of unbounded characteristic here, for our
purposes we formulate the estimate

m

(
r,
f ′

f

)
< 5 log+ T (R, f) + 6 log+ 1

R− r

holding for r0 ≤ r < R < 1. Setting R = r+1
2 , we get

m

(
r,
f ′

f

)
< 5 log+ T

(
1− 1− r

2
, f

)
+ 6 log+ 2

1− r
.

It leads to the estimate for positive integers d and r → 1−,

m

(
r,
f (d+1)

f

)
< (5d+ 6) log T

(
1− 1− r

2d+1
, f

)
+ (6d+ 7) log

1

1− r
. (6.4)

The following result from [45] is a unit disc version of a theorem concerning
the sequences of Polya peaks [49].



Developments in Petrenko’s Theory 393

Lemma 6.7. Let f be a function of finite lower order λ in the unit disc. For
each fixed number B > 1 there exist two sequences of positive numbers {vk} and
{Rk} such that

lim
k→∞

vk = lim
k→∞

Rk = lim
k→∞

Rk
vk

= 0,

and for each ε > 0 there exists k0 = k0(ε) such that for k > k0(ε),

T

(
1− Rk

B
, f

)
Rλk + T

(
1− vk

B
, f
)
vλk < ε

∫ vk

Rk

T (1−R, f)Rλ−1 dR.

Let f be an admissible holomorphic function of finite lower order λ in the
unit disc. For 1 ≤ ν ≤ q, let {pν}qν=1 be a set of distinct polynomials such that

deg(pν) ≤ d, d ≥ 1, and β̂(pν , f) > 0, 1 ≤ ν ≤ q. Moreover, if |z| = 1, we have
pν(z) 6= pη(z), ν 6= η. Let S0 > 0 be chosen in such a way that if S0 ≤ |z| < 1,
then for all 1 ≤ ν, η ≤ q, ν 6= η we have pν(z) 6= pη(z). We put for ν 6= η,

cν,η = min
|z|≥S0

|pν(z)− pη(z)| > 0,

c = min
1≤ν
η≤q

cν,η > 0.

We apply notations from Lemma 6.7. We also denote by A(r,R) the annulus {z :
r < |z| < R} and by A(r,R) its closure. Let ε ∈ (0, 1) be fixed. For k ≥ k0(ε)
and such that 1− 2vk ≥ S0, we put

Gk :=

{
z ∈ A

(
1− 2vk, 1−

2Rk
B

)
:

|f (d+1)(z)| < exp

{
−2εT

(
1− 1− |z|

2d+1
, f

)}}
,

Now, for 1 ≤ ν ≤ q, we put Gk,ν for the union of those connected components of
Gk which contain a point z0 such that

|f(z0)− pν(z0)| < c

4

and points z1, z2, . . . , zd such that for j = 1, . . . , d,

|f (j)(zj)− p(j)
ν (zj)| < exp{−2εT (1− 1− |zj |

2d+1
, f)}.

Lemma 6.8. The sets Gk,ν and Gk,η are disjoint for ν 6= η, 1 ≤ ν, η ≤ q.

Proof. We show that the sets Gk,ν and Gk,η are disjoint for ν 6= η applying
the method introduced by A. Weitsman [54] and following the same lines as in [45]
and [9].

Let rn = 1 − 2−n, n ≥ 1. For a fixed k, we put m0(k), M0(k) for positive
integers such that

rm0(k) ≤ 1− 2vk < rm0(k)+1, rM0(k)−1 < 1− 2Rk
N
≤ rM0(k).
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By Cartan’s theorem, inequality (6.4) takes the form∫ 2π

0
n

(
1− 1− rn

2
,

1

f (d+1) − teiϕ

)
=

∫ 2π

0
n

(
1− 1− rn

2
, eiϕ,

f (d+1)

t

)

≤ 4

1− rn

∫ 2π

0
N(1− 1− rn

4
, eiϕ,

f (d+1)

t
)

≤ C

1− rn

(
T (1− 1− rn

4
, f (d+1)) +O(1) + log+ 1

t

)
≤ C

1− rn

(
(1 + o(1))T (1− 1− rn

2d+1
, f) + log+ 1

t

)
as n→∞.

Applying the length-area principle, we find that there exists a number αn,

εT

(
1− 1− rn

2d+1
, f

)
≤ αn ≤ εT

(
1− 1− rn

2d+1
, f

)
+ log 2

such that

l(e−αn) ≤ C2

√
T

(
1− 1− rn

2d+1
, f

)
(1− rn)−1, (6.5)

where l(t) denotes the total length of the level curves |fd+1(z)| = t in |z| < rn+1.
We put

Gnk := A

(
1− 2vk, 1−

2Rk
B

)
∩
{
z ∈ A(rn, rn+1) : |f (d+1)(z)| < e−αn

}
.

It follows that

Gk,ν ⊂ Gk ⊂
M0(k)⋃

n=m0(k)

Gnk . (6.6)

Let k ≥ k0(ε) and for a fixed ν let z ∈ Gk,ν . Then there is a component G of Gk,ν
such that z ∈ G and there is a point z0 ∈ G with |f(z0)− pν(z0)| < c

4 and points
z1, z2, . . . , zd such that for j = 1, . . . , d,

|f (j)(zj)− p(j)
ν (zj)| < exp

{
−2εT

(
1− 1− rn

2d+1
, f

)}
.

By (6.6), for z ∈ G we can join z with the points zj , 0 ≤ j ≤ d, by curves lying
in G, each of them of the length not exceeding the sum of lengths of boundaries
of Gnk (m0(k) ≤ n ≤M0(k)). By (6.5), the length of each of the boundaries does

not exceed C2

√
T
(
1− 1−rn

2d+1 , f
)

(1− rn)−1. Let us put g(z) := f(z) − pν(z) and

notice that g(d+1)(z) = f (d+1)(z). This way we obtain

|f(z)− pν(z)| = |g(z)| ≤ |g(z0)|+ |g(z)− g(z0)| < c

4
+

∫ z

z0

|g′(ξ)| |dξ|

≤ c

4
+

∫ z

z0

(|g′(z1)|+ |g′(ξ)− g′(z1)|) |dξ|
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≤ c

4
+ |g′(z1)|l0 +

∫ z

z0

(∫ ξ

z1

|g′′(ξ1)||dξ1|
)
|dξ|

≤ c

4
+ |g′(z1)|l0 + |g′′(z2)|l0l1 +

∫ z

z0

(∫ ξ

z1

(|g′′(ξ1)− g′′(z2)||dξ1|
)
|dξ|

≤ c

4
+ |g′(z1)|l0 + |g′′(z2)|l0l1 +

∫ z

z0

(∫ ξ

z1

(∫ ξ1

z2

|g(3)(ξ2)||dξ2|
)
|dξ1|

)
|dξ|

≤ c

4
+ |g′(z1)|l0 + |g′′(z2)|l0l1 + · · ·+ |g(d)(zd)|l0l1 · · · ld−1

+

∫ z

z0

(∫ ξ

z1

· · ·
∫ ξd−1

zd

|f (d+1)(ξd)||dξd| · · · |dξ1|
)
|dξ|

≤ c

4
+ exp

{
−2εT

(
1− 1− rn

8
, f

)}
(l0 + l0l1 + · · ·+ l0l1 · · · ld),

where l0, . . . , ld denote lengths of curves joining z0, . . . , zd with respective points
of the component G. Thus ( [45]),

|f(z)− pν(z)| ≤ c

4
+ C3

M0(k)∑
n=m0(k)

exp

{
−2εT

(
1− 1− rn

2d+1
, f

)}

×
d∑
j=1

(
T
(
1− 1−rn

2d+1 , f
)

1− rn

) d
2

≤ c

4
+ C3

∞∑
n=m0(k)

exp

{
−ε log 2

2
dn

}
<
c

4
+
c

4
as k →∞.

It follows that Gk,ν and Gk,η do not intersect for ν 6= η.

For 1 ≤ ν ≤ q and k ≥ k0, we consider the functions

uk,ν(z) :=


max

{
log

1

|f (d+1)(z)|
, 4εT (1− 1− |z|

2d+1
, f)

}
, z ∈ Gk,ν ,

4εT

(
1− 1− |z|

2d+1
, f

)
, z /∈ Gk,ν .

The functions uk,ν(z) are δ-subharmonic in A(1 − vk, 1 − (2Rk)/B), which can
be shown by following the same lines as in the proof of Lemma 6 in [45]. Let us
recall here the definition and basic properties of the Baernstein function T ∗. For
a complex number z = reiθ, we put [3]:

m∗(z, uk,ν) = sup
|E|=2θ

1

2π

∫
E
uk,ν(reiϕ)dϕ,

T ∗(z, uk,ν) = m∗(z, uk,ν) +N(r, uk,ν),

where θ ∈ [0, π], |E| is the Lebesgue measure of the set E and

N(r, uk,ν) =

∫ r

1−2vk

µk,ν(t)

t
dt,
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where µk,ν(r) is the number of zeros of f (d+1)(z) in Gk,ν ∩ {z : |z| < r}.
For a number t, 0 < t ≤ +∞, consider the set

Ft =
{
reiθ : uk,ν(reiθ) > t

}
,

and let
ũk,ν

(
reiθ

)
= sup

{
t : reiθ ∈ F ∗t

}
,

where F ∗t is the symmetric rearrangement of Ft through the circular symmetriza-
tion with respect to the ray Arg(z) = 0. [24]. The functions ũk,ν(reiθ) are non-
negative and non-increasing with respect to θ for θ ∈ [0, π] even in θ and, for a
fixed r, equimeasureable with uk,ν(reiθ). Moreover,

ũk,ν(r) = max

(
L(r, 0, f (d+1)), 4εT

(
1− 1− r

2d+1
, f

))
.

Let us also notice that

m∗(z, uk,ν) =
1

π

∫ θ

0
ũk,ν

(
reiϕ

)
dϕ.

The function T ∗(z, uk,ν) is subharmonic in

D =

{
z = reiθ : z ∈ A

(
1− vk, 1−

2Rk
B

)
, 0 < θ < π

}
,

continuous on D ∪ ((2Rk)/B)− 1, vk − 1) ∪ (1− vk, 1− (2Rk)/B) and convex in
log r for each fixed θ ∈ [0, π] [3]. What is more,

T ∗(r, uk,ν) = N(r, uk,ν),

∂

∂θ
T ∗(reiθ, uk,ν) =

ũk,ν(reiθ)

π
for 0 < θ < π.

As in [45], we consider

T ∗0
(
reiθ, f

)
=

q∑
ν=1

T ∗
(
reiθ, uk,ν

)
.

It follows that

T ∗0 (z, f) = T ∗0
(
reiθ, f

)
=

q∑
ν=1

T ∗(z, uk,ν)

=

q∑
ν=1

(m∗(z, uk,ν) +N(r, uk,ν))

≤ m
(
r,

1

f (d+1)

)
+N

(
r,

1

f (d+1)

)
+ 4qεT

(
1− 1− r

2d+1
, f

)
= T

(
r,

1

f (d+1)

)
+ 4qεT

(
1− 1− r

2d+1
, f

)
.
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By the first main theorem, the fact that f is holomorphic and inequality (6.4),
we have

T ∗0 (z, f) ≤ T (r, f) + ε1T

(
1− 1− r

2d+1
, f

)
+O

(
log

1

1− r

)
, (6.7)

Previous considerations lead to the following statement.

Lemma 6.9. The function T ∗0
(
reiθ, f

)
is subharmonic in

D =

{
z = reiθ : z ∈ A

(
1− vk, 1−

2Rk
B

)
, 0 < θ < π

}
,

continuous on D ∪ ((2Rk)/B)− 1, vk − 1) ∪ (1− vk, 1− (2Rk)/B) and convex in
log r for each fixed θ ∈ [0, π]. Moreover,

∂

∂θ
T ∗0
(
reiθ, f

)
=

1

π

q∑
ν=1

ũk,ν
(
reiθ

)
.

In further considerations we assume that T ∗0 (z, f) is twice continuously dif-
ferentiable. If not, it would be possible to approximate T ∗0 (z, f) by a monotone
family of infinitely differentiable subharmonic functions uniformly converging to
T ∗0 (z, f) (see [45]).

For λ > 0, we choose numbers α, ψ, α1 for a fixed ε1 such that

0 < α = α(ε1) ≤ min
{π

2
− ε1,

π

2λ

}
, 0 < α1 ≤ α/2, −

π

2λ
≤ ψ ≤ π

2λ
− α. (6.8)

Let us consider

σ(R) :=

∫ α

α1

T ∗0
(
1−Re−iϕ, f

)
cosλ(ψ + ϕ) dϕ, R ∈ [Rk, vk],

where vk = vk(B), Rk = (B) with B such that B cosα > 4.

Lemma 6.10. For a fixed ε > 0 and k > k0(ε),

vλ+1
k |σ′(vk)|+Rλ+1

k |σ′(Rk)|+λvλkσ(vk)+λRλkσ(Rk) < ε

∫ vk

Rk

T (1−R, f)Rλ−1 dR.

Proof. We conduct the proof in a similar way as the proof of Lemma 4 in [45].
We put

T ∗0 (1−Re−iϕ, f) = W (R,ϕ) = V (r, θ),

where z = reiθ = 1−Re−iϕ. Let θ ∈ (2ε, π/2− ε). Then

∂

∂R
W (R,ϕ) = − ∂

∂r
V (r, θ) cos(θ + ϕ) +

1

r

∂

∂θ
V (r, θ) sin(θ + ϕ), (6.9)

∂

∂ϕ
W (R,ϕ) =

R

r

∂

∂θ
V (r, θ) cos(θ + ϕ) +R

∂

∂r
V (r, θ) sin(θ + ϕ). (6.10)
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As V (r, θ) is a concave function of θ on (2ε, π/2 − ε) (see Lemma 2 in [45]), we
get

−V (r, θ)

θ
≤ V (r, 2θ)− V (r, θ)

θ
≤ ∂

∂θ
V (r, θ) ≤ 2

V (r, θ)− V (r, θ/2)

θ
≤ 2

V (r, θ)

θ
.

It follows that ∣∣∣∣ ∂∂θV (r, θ)

∣∣∣∣ ≤ 2
V (r, θ)

θ
.

By the convexity of V (r, θ) in log r, for a fixed θ ∈ (2ε, π − 2ε), we have

r
∂

∂r
V (r, θ) ≤ V (y, θ)

log(y/r)
. (6.11)

As r = r(R,ϕ) =
√

1− 2R cosϕ+R2 and B cosϕ > 4, setting R = vk, y = 1−
3vk
B , ϕ ∈ (α1, α), we obtain

r =

√
1− 2

vk
B
B cosϕ+ v2

k ≤
√

1− 8

B
vk + v2

k = 1− 4

B
vk + o(vk) as k →∞,

log
y

r
≥ log

1− (3vk)/B

1− (4vk)/B
+ o(vk) =

1

B
vk + o(vk).

Applying (6.7) to inequality (6.11), we get

r
∂

∂r
V (r, θ) ≤ BT (1− (3vk)/B, f) + T (1− (3vk)/(2

d+1B), f)

vk

+
O(log(1/vk)) +O(1)

vk

≤ 2B
T (1− (3vk)/(2

d+1B), f)

vk

and ∣∣∣∣ ∂∂θV (r, θ)

∣∣∣∣ ≤ 4
T (1− (3vk)/(2

d+1B), f)

θ
.

We can also derive similar inequalities with vk replaced with Rk.

From the definition of σ(R),

vλ+1
k |σ′(vk)|+Rλ+1

k |σ′(Rk)| = vλ+1
k

∫ α

α1

∣∣∣∣ ∂∂RW (R,ϕ) cosλ(ψ + ϕ) dϕ

∣∣∣∣ ∣∣∣∣
R=vk

+Rλ+1
k

∫ α

α1

∣∣∣∣ ∂∂RW (R,ϕ) cosλ(ψ + ϕ)dϕ

∣∣∣∣ ∣∣∣∣
R=Rk

≤ vλ+1
k

∫ α

α1

[
∂

∂r
V (r, θ) +

1

r

∂

∂θ
V (r, θ) sin(θ + ϕ)

] ∣∣∣∣
R=vk

dϕ

+Rλ+1
k

∫ α

α1

[
∂

∂r
V (r, θ) +

1

r

∂

∂θ
V (r, θ) sin(θ + ϕ)

] ∣∣∣∣
R=Rk

dϕ.



Developments in Petrenko’s Theory 399

As θ = arcsin
(
R
r sinϕ

)
, we get∫ α

α1

sin(θ + ϕ)

θ
dϕ ≤

∫ α

α1

(
1 +

ϕ

θ

)
dϕ ≤

∫ α

α1

(
1 +

ϕr

R sinϕ

)
dϕ

≤ π

2
+
r

R

∫ π/2

0

ϕ

sinϕ
dϕ ≤ c1

R
.

Finally, we obtain

vλ+1
k |σ′(vk)|+Rλ+1

k |σ′(Rk)| ≤ c2v
λ
kT (1− (3vk)/(2

d+1B), f)

+ c3R
λ
kT (1− (3Rk)/(2

d+1B), f)

and

vλkσ(vk) +Rλkσ(Rk) ≤ c4v
λ
kT (1− (3vk)/(2

d+1B), f)

+ c5R
λ
kT (1− (3Rk)/(2

d+1B), f),

Applying both inequalities and Lemma 6.7, we get the statement.

We shall also need another lemma from [45].

Lemma 6.11. For a fixed ε > 0 and k > k0(ε),∫ vk

Rk

T (|1−Re−iα|, f)Rλ−1 dR ≤ 1 + ε

cosλ α

∫ vk

Rk

T (1−R, f)Rλ−1 dR,∫ vk

Rk

T (|1−Re−iα|, f)Rλ−1 dR ≥ 1− ε
cosλ α

∫ vk

Rk

T (1−R, f)Rλ−1 dR.

The following result is an extension of Lemma 9 from [45] and can be proved
along the same lines with applications of Lemma 6.10 and inequality (6.4).

Lemma 6.12. Let f be an admissible function of finite lower order λ in the
unit disc. For each fixed ε > 0 and k0 = k0(ε), for k > k0(ε) and d ∈ N0,∫ vk

Rk

L(1−R,∞, f (d+1)/f)Rλ dR < ε

∫ vk

Rk

T (1−R, f)Rλ−1 dR.

6.2. Proof of Theorem 6.4. Let f be a function holomorphic in the unit
disc of finite lower order λ > 0. We apply the differential operator L = R d

dR(R d
dR)

to σ(R). By subharmonicity of W (R,ϕ) = T ∗0 (1−Re−iϕ, f), we obtain

R
d

dR
(Rσ′(R)) =

∫ α

α1

LW (R,ϕ) cosλ(ψ + ϕ)dϕ

≥
[
− ∂

∂ϕ
W (R,ϕ) cosλ(ψ + ϕ)

] ∣∣∣∣α
α1

− λ
∫ α

α1

∂

∂ϕ
W (R,ϕ) sinλ(ψ + ϕ)dϕ
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=

[
− ∂

∂ϕ
W (R,ϕ) cosλ(ψ + ϕ)

] ∣∣∣∣α
α1

− [λW (R,ϕ) sinλ(ψ + ϕ)]αα1
+ λ2σ(R)

≡ h(R) + λ2σ(R).

It follows that

R
d

dR
(Rσ′(R)) ≥ h(R) + λ2σ(R). (6.12)

We multiply (6.12) by Rλ−1 and integrate for R ∈ [Rk, vk] to obtain∫ vk

Rk

h(R)Rλ−1dR+ λ2

∫ vk

Rk

σ(R)Rλ−1dR ≤
∫ vk

Rk

Rλ
d

dR
(Rσ′(R))dR

=
[
Rλ+1σ′(R)− λRλσ(R)

] ∣∣∣vk
Rk

+ λ2

∫ vk

Rk

σ(R)Rλ−1dR.

It follows that∫ vk

Rk

h(R)Rλ−1dR =

∫ vk

Rk

{[
− ∂

∂ϕ
W (R,ϕ)

] ∣∣∣∣
ϕ=α

cosλ(ψ + α)

+

[
∂

∂ϕ
W (R,ϕ)

] ∣∣∣∣
ϕ=α1

cosλ(α1 + ψ)

− λW (R,α) sinλ(ψ + α)

+ λW (R,α1) sinλ(ψ + α1)

}
Rλ−1dR

≤
[
Rλ+1σ′(R)− λRλσ(R)

]vk
Rk

.

We take ψ = π
2λ − α, pass to the limit with α1 → 0 and apply Lemma 6.10.

Hence,∫ vk

Rk

{[
∂

∂ϕ
W (R,ϕ)

] ∣∣∣∣
ϕ=0

sinλα− λW (R,α) + λW (R, 0) cosλα

}
Rλ−1dR

< ε

∫ vk

Rk

T (1−R, f)Rλ−1dR.

As reiθ = 1−Re−iϕ, from (6.10), we obtain[
∂

∂ϕ
W (R,ϕ)

] ∣∣∣∣
ϕ=0

=
R

1−R

[
∂

∂θ
T ∗0
(
reiθ, f

)] ∣∣∣∣
θ=0

.

Thus, by Lemma 6.10, we have∫ vk

Rk

R

1−R
sinλα

π

q∑
ν=1

ũk,ν(1−R, 0)Rλ−1dR
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− λ
∫ vk

Rk

{
T ∗0 (1−Re−iα, f)− T ∗0 (1−R, f) cosλα

}
Rλ−1dR

< ε

∫ vk

Rk

T (1−R, f)Rλ−1dR. (6.13)

Applying (6.7), Lemma 6.11 and the fact that, by Lemma 6.10,∫ vk

Rk

T (1− 1− |1−Re−iα|
2d+1

, f)Rλ−1dR ≤ (1 + ε̃)c̃

∫ vk

Rk

T (1−R, f)Rλ−1dR,

we obtain∫ vk

Rk

R

1−R

q∑
ν=1

ũk,ν(1−R, 0)dR ≤ π

sinλα

[
λ(1 + ε)

cosλ α
+ ε1λ(1 + ε̃)c̃+ ε

]
×
∫ vk

Rk

T (1−R, f)Rλ−1dR.

Applying the inequality

L
(
r,∞, 1

f − pν

)
≤ L

(
r,∞, f

(d+1)

f − pν

)
+ L

(
r,∞, 1

f (d+1)

)
≤ ũk,ν(r, 0) + 4εT

(
1− 1− r

2d+1
, f

)

and Lemma 6.12, we conclude that there exists a sequence {rk}, rk
k→∞→ 1− such

that

1− rk
rk

q∑
ν=1

L
(
rk,∞,

1

f − pν

)
≤ π

sinλα

[
λ(1 + ε̂)

cosλ α
+ ε̂

]
T (rk, f).

The statement follows from this inequality.

6.3. Proof of Theorem 6.5. Let f be a function holomorphic in the unit
disc of lower order λ = 0. All the considerations made before the definition of
σ(R) are equally true for this case. For any ε > 0, let us take a number α such
that 0 < α < π

2 − ε and µ, 0 < µ < 1
2 instead of λ in (6.8). Proceeding as before

and putting λ = 0 in Lemmas 6.7 and 6.10, we arrive at the equivalent of (6.13)
in the following form:∫ vk

Rk

R

1−R
sinµα

π

q∑
ν=1

ũk,ν(1−R, 0)
dR

R

− µ
∫ vk

Rk

{
T ∗0 (1−Re−iα, f)− T ∗0 (1−R, f) cosµα

} dR
R

< ε

∫ vk

Rk

T (1−R, f)
dR

R
.
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It follows that

q∑
ν=1

β̂(pν , f) ≤ πµ

sinµα

(
1

cosµ α
−
(

1−∆
(
0, f (d+1)

))
cosµα

)
.

Passing to the limit with µ→ 0, we get

q∑
ν=1

β̂(pν , f) ≤ π

α
∆
(
0, f (d+1)

)
.

Taking α→ π
2 − ε. we have

q∑
ν=1

β̂(pν , f) ≤ (2 + ε)∆
(
0, f (d+1)

)
.

This leads to the statement in the case λ = 0.
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Про новi та попереднi дослiдження в теорiї Петренка
зростання мероморфних функцiй

Ewa Ciechanowicz

Теорiя Петренка зростання мероморфних функцiй належить до шир-
шого спектра теорiї Неванлiнни i була започаткована В.П. Петренком
у 1960-х роках. Ця стаття присвячена досягненням видатного учня
В.П. Петренка, I.I. Марченка, та його внеску в теорiю. Огляд деяких
основних результатiв I.I. Марченка (та їх подальших узагальнень i за-
стосувань), що стосуються вiдхилень, вiдокремлених точок максимуму
модуля та сильних асимптотичних значень, становить основну частину
статтi. Заключна частина статтi присвячена узагальненню раннього ре-
зультату I.I. Марченка та А.I. Щерби щодо суми вiдхилень голоморфних
функцiй в одиничному крузi.

Ключовi слова: мероморфна функцiя, голоморфна функцiя, вiдхи-
лення, точка максимуму, асимптотичне значення
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