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Finding a Positive Constrained Control for a
Linear System to Reach a Given Point
within a Finite Time

Valerii Korobov and Katerina Sklyar

In this paper, we consider a linear system with the control u € 2, where
Q) is a certain domain which does not contain the origin as an interior point.
In particular, the origin may not belong to the set 2. The synthesis problem
is solved, i.e. the control u(z) € Q which transfers a point x that belongs
to a neighbourhood V(0) to 0 in a finite time is constructed by using the
controllability function method. Moreover, this function can be found as the
time of motion from a point « € V(0) to the origin. The case of the linear
control system with a non-autonomous term is also considered.
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1. Introduction

Consider the control system
&= f(z,u), x€FE,, uckE,,

and suppose it is completely controllable.

The admissible local positional synthesis problem consists in finding a feed-
back control u = u(z) satisfying the preassigned constraint (u(z) € ) such that
the trajectory of the system

i = f(z,u()) (L1)

starting at an arbitrary point zg of some neighbourhood of the origin ends in the
origin in a time 7' = T'(zp). If the neighbourhood V' coincides with entire space
E,, then the problem is called global synthesis problem. In [8,9], the solution to
the problem is considered for the set {2 containing origin as an interior point. In
this work, we consider the case of 0 ¢ int Q, in particular, 0 ¢ co2. We assume
that the set €2 is in the positive octant of the set .. As an example, we consider
the stopping problem for the mathematical pendulum by using a one-sided force
applied to the pendulum. The case of an additional force F'(t) is also considered.

The solution to the admissible synthesis problem is based on construction of
a controllability function [8] ©(x) and a control u(z) € € such that for x # 0 and

©) Valerii Korobov and Katerina Sklyar, 2025


https://doi.org/10.15407/mag21.04.03

Finding a Positive Constrained Control for a Linear System 407

some « > 1 and S > 0 the following inequality holds:

Zaxlfl z,u(z)) < —BO " a (), (1.2)

where f;(x) is the i-th coordinate of the vector function f(x).
In this case, the time of motion from a pomt xo to the origin with respect to
system (1.1) satisfies the inequality T'(z) < a@ (xg). f a=p=1and

" 90
o, — fiz,u(z)) = -1, (1.3)

then the function ©(z) is the time of motion from the point xy to the origin,
O(zo) = T'(x0) [4-9,14]. If, in addition,

n
00

min —fi =-1 14
e 4 axzfl(xvu) ’ ( )

=1
then the function © is the smallest time of motion from the point xg to the origin
with respect to system (1.1). In this case, the time-optimal control problem in
the neighbourhood V' is solved. Equation (1.4) is called the Bellman equation.

In the case of a = oo, 8 =0, and f(0,0) = 0, inequality (1.2) has the form

In this case, the function ©(x) is the Lyapunov function and the zero-solution to

system (1.1) with this u(z) is stable (asymptotically stable if Z fz(x u(z)) <
0, x #0).

The controllability function method is a development of the Lyapunov method
for controllable systems.

The asymptotic stability in finite time for robust systems was considered
in [5,12,13,15]. The controllability of chaotic motion was considered in [2] using
the controllability function, and it was considered for some nonlinear systems
n [1,4,9].

2. Construction of a controllability function as the time of mo-
tion
Consider the linear control system

&t =Ax+ Bu, wue€q, (2.1)

where

rang(B, AB, ... ,A(”*l)B) =n.
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First, we introduce the method used in [9,14] for constructing a controllability
function and a control u solving the synthesis problem in the case of ||u| < d.
Then we modify it for the case when 0 ¢ int €2, in particular, 0 ¢ co .

Let f(t) be a non-increasing non-negative function on the half-axis [0, oo) with
at least m decreasing points such that

o0
/ §2m 172250 f(g)ds < 0o for 0< O < ¢,
0

where m is a degree of the minimal polynomial of the matrix A, A, = min(0, A),
Ao is a minimal real part of eigenvalues of the matrix A. Put

N=N@©) = / f <t> e~ A BBre A gy,
. 1 \e

This matrix is positive definite. For x # 0, define the positive solution to the
equation

2000 = (N 'z, 2) (2.2)
by ©(x) (note that this equation has a unique positive solution). For z = 0, we
put ©(0) = 0. The control

u(z) = —%B*N‘l((%(x))x (2.3)

solves the synthesis problem. Put

11—t if 0<¢t<1,
£ — <t<
®) {0 if ¢t>1.

Then o
t *
N = / (1 — > e~ MBB*e~ A" dt, (2.4)
0 °)

and the controllability function defined by equation (2.2) is the time of motion
from a point z( to the origin. In addition, equation (1.3) holds. For some ¢ > 0,
if
2
ag S T )
sup © > (N by, br)
0<O<c k=1
then the control v = —B*N !z is bounded (||u|| < d) in the domain Q = {x :
O(z) < c} [5,9,14], where by, is the k-th column of the matrix B. The trajectory
x(t) transferring the initial point to the origin can be found in the following way.
For a given x(, we find the positive solution ©¢ to equation (2.2), which is unique.
Then we find the solution to the Cauchy problem for the (n + 1)-dimensional
system:

1
&= Ar — §f(0)BB*N*1x,
O(NN~ 'z, N~'z)
(N—lz,2)+ O(NN—1z, N-1z)’
z(0) = o,
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We have z(T(x¢)) = 0 and ©(T(xg)) = 0 for some t = T'(xg). Here,
N P P—— t
N=[ Lle4pp d—f (=
J aemera(i(5)).
N = / e M'BB*e N d (—f (t)> .
0 )

If the function ©(z) is a time of motion, we have © = —1.

We also note that the given above method is used in the synthesis problem
for the class of systems which can be mapped to linear ones by a change of
variables [19,20]. The detailed description of this class is contained in [17,18,21].

System (2.1) must be locally controllable. In the case of 0 ¢ int €2, the Kalman
criterion is not sufficient. Starting from the works [3, 11] various controllability
criteria were considered for different kinds of constraints. For constraints of the
general form under the condition 0 € 2, the following criterion is true [11].

Proposition 2.1 ([11]). System (2.1) is locally controllable if and only if there
exists neither an eigenvector v corresponding to a real eigenvalue of the conjugate
matriz A* which is a support vector to the set BQ (i.e. (v, Bu) > 0 for all u €
Q) nor an eigenvector v = wy + iwy corresponding to a complex eigenvalue of the
matriz A* orthogonal to the set BQ (i.e. (w1, Bu) =0, (w2, Bu) =0 for all u €

In the case of general constraints on the control without the assumption 0 ¢
€2, the necessary and sufficient conditions are given in [10]. In addition to the
previous conditions, the return condition is required: the trajectory must return
to the origin on some interval [tq, t2].

Let us consider the constraints of the form Q = {u:0 <wu; <¢;, i=1,...,7}.
If the matrix A has a real eigenvalue, then system (2.1) is not locally controllable.

Proposition 2.2. Let the matriz A of system (2.1) have at least one real
eigenvalue A, and let v be an eigenvector of the matrix A* corresponding to A.
Then, under the constraints Q@ = {u : 0 < wu; < ¢;, i = 1,...,r}, this system is
not locally controllable if (v,b;) >0 ,i=1,...,7, or (v,b;) <0,i=1,...,r.

Proof. The set of points from which we can transfer to the origin in the time
T is determined by the equality

T
xo = —/ e 47 Bu(r) dr.
0

Let v be an eigenvector of the matrix A* corresponding to an eigenvalue A. We
have

T T
(v,20) = /0 (v, e~ AT Bu(r))dr = /0 (e v, Bu(r)) dr

T r T T
= —/0 e (v, Z biui(T))dT = — Z/o e (v, bi)u;(1) dr < 0
i=1 i=1



410 Valerii Korobov and Katerina Sklyar

if (v,05) > 0,4 =1,...,7. If (v,b;) < 0,4 = 1,...,7, we have (v,z9) > 0.
Therefore, the set of points from which it is possible to transfer to the origin in
an arbitrary time T belongs to one of the subspaces (v, z¢) > 0 or (v,z9) < 0. [

By K, denote the convex cone generated by the column vectors b1, bo, ..., b,
of the matrix B. Let K* be the dual cone

K*=A{y: (y,2) = 0}
for any x € K. Then Proposition 2.2 can be reformulated in the following way:

Proposition 2.3. Let the matriz A have at least one real eigenvalue . Let
v be an eigenvector of the matriz A* corresponding to A and Q = {u : 0 < u; <
ci, 1t =1,...,r}. If the eigenvector v belongs to the dual cone K* (v € K*), then
the system is mot locally controllable.

3. Construction of a positive control

Consider the solution to the synthesis problem for the linear control system
&t =Ar+ Bu, ue€q, (3.1)

where Q ={u:0<¢; <w; <d;, i=1,...,r}, ;< dj,i=1,...,r.
Let control system (3.1) be globally controllable. The system

i'l = T2,

To=—T1+u
is an example of the system of such kind (see [10,16]). The control (2.3) is not
appropriate for this case because its components may change their signs. So we

have to operate in another way.
Consider a new control v = (v1,...,v,)* such that

1
di—Ci

(2ui—di—cl-), 1= 1,...,7". (32)

V; =

Then u; = ((di—ci)vi—l-(di—f—ci))/Q, 1=1,...,7. If ¢; <u; <d;, then -1 <wv; <
Li=1,....r. Put

di — dr_ T
B1:< ! Clbla"'? Cb?‘)v

2 2
d d
By— (Bt o pte, )
2 2
where Bj is a matrix, By is a vector, by,...,b, are the column vectors of the

matrix B. Then we have Bu = Bjv + Bs, and system (3.1) takes the form

T =Ax+ Biv+ By, ve€Q, (33)
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where Q; ={v: |v;| <1,i=1,...,r}. We have
t
x(t) = e <£L’0 +/ e A" Bu(r) dT)
0

t T
= A (:Co +/ e~ A" Biu(t) dr —|—/ e 7B, dT) .
0 0

Let the control u(t) transfer a point x to the origin in some time ¢ = 7. Then

T T
xo —I—/ e A" Bydr = —/ e A" Byu(r) dr.
0 0
This equality means that the control v(¢) transfers the point
T
Yo = T + / e AT By dr
0

to the origin with respect to the system

y = Ay + Bjv.

(3.4)

Since the origin is an interior point of the set 21, this problem can be solved

using the controllability function method if the time 7" is known.

First, consider the case where the controllability function is the time of mo-

tion. The controllability function O(z) is determined by the equation
2000 = (Nl_lyay) )

where o
t *
Nl(@) = / (1 — ) e_AtBlBle_A tdt.
0 ©

The control v(t) is given by the equation
1 * nr—1
The coefficient ag is chosen according to the condition

max |v;| < 1.
1<i<r

To this aid, it is sufficient that ag satisfy the inequality

2
ap < max

I dsr sup © (Nfll;i, l~)z> 7
(C]

where INJZ is the ¢-th column of the matrix Bj.

(3.5)
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Let us find the equation for determining the time T. Replace © by T and y
by yo in equation (3.5) to obtain

T T
2a0T = <N1_1(T)(:c0+ / e A" By dr), (z0 + / e 7By d7)>, (3.6)
0 0

where .
t ¥
Ny(T) = / <1 — @) e~ B Bfe A dt.
0

In general, this equation has a non-unique solution. For each time T, we
obtain the control and the trajectory y(t). After finding T', we get the trajectory
y(t) as the solution to the following Cauchy problem on the interval [0, T:

. 1 N
y=Ay - ;BIBIN; L©e®w))y,
0=—1,
T
y(O) = Yo = To —I—/ CfATBQ dr,
0

o) =T.

After finding the trajectory y(t), we obtain the trajectory x(t) according to the
equality

T
(1) = y(t) — e /t 7B, dr. (3.7)

Indeed, by subtracting equality (3.3) from equality (3.4), we get
t—y=A(x —y)+ Bo.

t
x—y:eAt <£L’0—y0—|—/ e_ATB2d7'> =
0

T t
= At (- / e By dr + / e—ATBQdT>,
0 0

therefore, x(t) is given by equality (3.7).
The trajectory z(t) can also be found as a solution to the Cauchy problem on
the segment [0, 7] for the system

) 1 N
y = Ay — SBIBINT (0(y))y,
0=-1,

Hence,

1
i = Ax — =B1BIN7Y(©(y))y + B,
5 BLBINT (O(y)) 2 (38)

T
y(0) = 9 + / e~ By dr,
0
x(0) = mo,
0(0) =T,

where T is the found time of motion from the point x( to the origin.
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Fig. 3.1: Plots of (a) trajectory z(t) and (b) trajectory x2(t). Horizontal axis means ¢,
and vertical ones are z1(t) and z2(¢).

3.1. The stopping problem for the mathematical pendulum. Let
system (3.1) has the form

’ (3.9)

Let us construct a control u(t) transferring the point z¢g = (0,4) to the point
(0,0). To this aid, change the control w = v/4+ 3/4. Then this system takes the
form (3.3):

T = Ax + Biv + Bs,

(50 me () ()

System (3.4) has the following form:

where

yl = Y2,
1 (3.10)
y2:7y1+1/va 71§U§1

Consider equation (3.5), where

1 © t sin? ¢ —sintcost
M _16/0 <1 N 9> (— sintcost cos?t dt

—1+4 202 4 cos20 —20 +sin 20
- 1280 1280
—20 +sin 20 1+202% —cos20
1280 1280

Restriction on ag has the form ag < 1/3. Further, we will assume a9 = 1/3.
Equation (3.5) for © has the form

s —) (3.11)

den
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where

num = ;@(—1 — 202 +20* + 205in 20 + cos 20) + 640(—1

— 20 + c0s20)y7 + 128(—20 + sin 20y y2+
+ 640(1 — 202 4 cos 20)y3,
den = —1 — 202 4 20 + cos 20 + 20 5in 26.

The initial state yg for system (3.10) is

T
Yo = X0 —+ / eiAtBQ dt
0

3sinT

3
= <4<—1 +cosT),4 + > = (¥10, Y20)-

Substituting T for © and y9, y20 for y1,y2 in (3.11), we obtain equation (3.6) for
finding the time of motion from gy to the origin:

2T* — 329072 + 11527 + 1535 — 11527%sin T
+216T sinT + 1152sin T — 1067 sin 2T
— 576sin 27 + 727(—16 + 31") cos T' — 1535 cos 21" = 0.

This equation has 5 positive roots: ©1 ~ 35.4201, O, ~ 37.4601, O3 ~ 40.9275,
O4 =~ 44.8576, O5 ~ 46.2312. The control

—160(0—cos O sin O)y; — 8O(—1+202+cos20)ys
—1—202 4+ 20* + c0s 20 + 20 sin 20

1 .
U:U(t):—§B1N1 by =

solves the problem for system (3.10). Further, for definiteness, we will assume
T = ©1. But each of the values ©1,...,05 can be taken as T. Then we solve the
system

(11 = Y2,

. 1

Y2 = —y1+ v

0=-1,

y1(0) = §(—1 +cosT),

4
3sinT
y2(0) :4+ 4 )

0(0) =T

on the segment [0,7]. To obtain x(t), we use equation (3.7):
S . 3
z1(t) =y (t) — 7 5in t(sinT — sint) + 708 t(cost —cosT),

3 3
xa(t) = ya(t) — 2 sint(cost —cosT) — 7508 t(sinT — sint).
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Fig. 3.2: The phase trajectory of trajectory of the system 3.9.

Plots of z1(t) and x2(t) are given in Figs. 3.1, the phase trajectory is given in
Fig. 3.2.

The controllability problem for a pendulum with restrictions in the form 0 <
u < 1 was considered in [22].

Trajectories z(t) can be found by solving the Cauchy problem (3.8) on the
segment [0, 7). In this example, the problem takes the form

U1 = Y2,
. 1
Yo = —y1 + Z'Uy
1 = w2,
1 3
$2—_331+ZU+Z7
=1,
3
y1(0) = —=(=1+cosT),
y2(0) =4 3STT7
z1(0) =0,
z2(0) = 4,
0(0) =6,

4. The case of an arbitrary controllability function

Consider the case where the controllability function is not the time of motion.
E.g., the function f(t/©) = ¢~*/® allows us to find the time of motion. In this
case, the main difference in finding the trajectory is in determining the time
of motion 7. This time can be found using an iterative approach, e.g. the
half-division method. For a given yg, we find Oy as the only positive solution
to equation (2.2). Then we solve the Cauchy problem (y,©) on some segment
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[0,T]. We choose the value of T' large enough to satisfy the inequality ©(T") < 0,
then we divide the segment in half and solve the Cauchy problem (y,©®) on the
left part of the segment [0, T1], where T3 = T'/2. If it turns out that ©(7}) < 0,
then we divide the segment [0, 77] in half and solve the Cauchy problem on this
segment. If it turns out that ©(7y) > 0, then we divide the segment [T7,7] in
half and solve the Cauchy problem on the segment [T}, T3], where Ty = 3T'/4 etc.
We continue the process until we find ©(7},) with the accuracy close to zero. We
find the trajectory z(t) in the same way as in the case where the function O(z)
is the time of motion.

5. The case of a linear system with an additional term

The method of constructing the positive control given in Section 3 can be also
applied to the system

T
’ / e ATF(1)dr
0

Changing the control u by the control v determined by (3.2) in control system
(5.1), we obtain an analogue of system (3.3):

& = Ax + Bu+ F(t). (5.1)

Assume that

< oo forany T > 0. (5.2)

& = Az + Biv+ By + F(t).

Then we consider the problem of constructing a control transferring the trajectory
of system (3.4) with initial condition

T
y(0) = 20 + /O e (By + F(7)) dr (5.3)

to the origin.

Example 5.1. Consider the system

jjl = T2,
1
T9 = —x1 +u+sint, 3 <u<l,
131(0) :0,
1:2(0) =4.

For this system, it is not possible to construct a control using the controllability
function which is the time of motion because

T 1 102 T
/ e VTF(t)dr = <4(—2T +sinT), 51112 )
0

and condition (5.2) is true, however the equation for determining the time 7" has
no positive roots.
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Fig. 5.1: The phase trajectory of example 5.2

Example 5.2. In the case of a system
T = 2,

<u<l,

N |

To = —x1 + u + sin 2¢,

1‘1(0) = 0,
.1‘2(0) = 4,

the initial condition (5.3) for system (3.4) has the form
2
y1(0) = 2(—1 +cosT) — 3 sin® T,

2
y2(0) =4 — 5(_1 +cos® T) + ZsinT

and condition (5.2) is true. The equation for determining the time of motion has
positive solutions: T ~ 41.7791, T, ~ 44.4547, T3 ~ 47.6571, T ~ 51.2663, T5 ~
53.4776. The type of control remains the same as in the case of system (3.9).

The phase trajectory of the system is given in Fig. 5.1.
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ITonryk mo3mTMBHOrO OOMEXKEHOI'0 KepyBaHHS IJIs
JiHifiHOI cucTeMu OJId MOCATHEHHS 3aJaHOl TOYKH 3a
KiHIleBuii yac

Valerii Korobov and Katerina Sklyar

VY 1iit poboTi po3TIIAAAETHCS JiHITHA cUCTeMa 3 KepyBaHHsSM u € (), je
Q) — nesika 00JIaCTb, K& HE MICTUTH IIOYATKY KOOPJMHAT, K BHYTPIIIHBOT
TOYKH. 30KPEMa, OYATOK KOOD/UHAT MOYKE He HAJICXKATH MHOYKUHI w.

Posp’sa3an0 3amady cuaTe3y, TOOTO 38 JIONOMOIOK METOMY (DYHKINT Ke-
poBaHocTi nobynoBane KepyBaHHs u(x) € (), sdKe I€PEBOJUTH TOUKY X, IO
nasexutb okosry V(0), no 0 3a ckinuennuii gac. Kpim roro, mo dyukiio
MOXKHA 3HaWTH, K 9ac pyxy Big Toukn x € V(0) 10 MOUaTKy KOODJIUHAT.

TakoxK PO3IVIAHYTO 33734y CHHTE3Y JJjis KepOBaHO! JIHIIHOI cucreMu 3
HEABTOHOMHUM “JIEHOM.

Kimo4goBi ciioBa: KepoBaHa CUCTEMA, 3a1a49a CUHTE3Y, (DyHKIliS KEPOBAHO-
CTi, mo3uIIiitHe KEPYyBaHHA, JTOJaTHE OOMEKeHe KePYBaHHS
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