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Sub-Linear Growth of a Special Class of
Cy-Groups on Dense Subsets

Grigory Sklyar, Vitalii Marchenko, and Piotr Polak

We consider a special class of linearly growing Cy-groups from [20, 24],
whose generators are essentially nonselfadjoint unbounded operators. More
precisely, these generators have pure point imaginary spectrum, clustering
at i0o, and corresponding dense and minimal, but not uniformly minimal
family of eigenvectors, hence this family do not form a Schauder basis. We
obtain sharp two-sided estimates for the norms of Cp-groups from this class
on dense subsets of a phase space, namely, on D(A*) for any k € N, where
A is the unbounded generator of the corresponding Cy-group. Thereby we
prove that these Cy-groups have sub-linear growth on D(A*). This yields the
sub-linear growth of classical and all more regular solutions of the Cauchy
problems for the corresponding abstract linear evolution equations.
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1. Introduction

The study of the asymptotic behaviour of the Cyp-semigroups {7'(t)},~, on
dense subsets, e.g. on D(A), where A is the generator of the Cy-semigroup
{T'(t)},>0, is an important second step in asymptotic theory of Cy-semigroups on
Banach spaces and is quite young and active nowadays area of research. Among
the pioneering works in this direction, we note articles of V. Phong [12, 13],
C.J.K. Batty and T. Duyckaerts [2,3], A. Borichev and Y. Tomilov [4], and the
first author [19], see also the monograph of J. van Neerven [29]. Most of works
in this direction consider the question of decay of Cp-semigroup {T'(t)},~, on
D(A), see, e.g. [14,30] among the newest developments. In [28], one sufficient
condition of the decay (or relative growth) of Cop-semigroup {T'(¢)},~, on D(A)
was obtained in terms of the decay (or relative growth) of the semigroup on the
images of Riesz spectral projections, corresponding to different parts of imaginary
spectrum of the generator A.

In 2017, G. Sklyar and V. Marchenko [20] constructed classes of Cy-groups,
whose generators have pure point imaginary spectrum, clustering at ‘oo, and
dense minimal family of corresponding eigenvectors, which is, however, not uni-
formly minimal, hence this family is not a Schauder basis. It means that these
generators are essentially nonselfadjoint unbounded operators, i.e. operators
which are not similar to any selfadjoint one. For definitions and various properties
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of Schauder bases and Schauder decompositions, we refer to [9,15,16]. In [21],
G. Sklyar and V. Marchenko used these classes of Cp-groups with non-basis fam-
ily of eigenvectors from [20] to prove that the spectral XYZ Theorem is sharp in
a sense that none of its conditions can be weakened or removed, see Section 2
n [21]. For the formulation, proofs and discussions around the spectral XYZ
theorem, we refer to [20,21,23,31,32].

Throughout the paper, we use notations from [20] and [23], see also [24].
Consider any separable Hilbert space H with norm || - || and take arbitrary Riesz
basis {e,}2%; in H. For equivalent definitions and various properties of Riesz
bases, we refer to [5,9,10]. Then

Hy ({en}) = {aj =(f) chen s {en —cno1}pry €42, o = 0} ,

n=1
o0
is a Hilbert space of formal series (f) > c¢pe, with norm
n=1
o o
@]]1 = H(f) Z Cnenl|| = Z(cn — Cp—1)én
n=1 1 n=1

Let S1 denotes the following class of real sequences:
S1= {{MEL R+ lim f(n) = +o0; {n (f(n) — f(n = 1)}, € b},

where f(0) = 0. The construction of Cp-groups with non-basis family of eigen-
vectors from [20] on space Hj ({ey}) is given then by the following theorem.

Theorem 1.1 (The case £ = 1 in Theorem 11 of [20], see also Theorem
1.1 in [24]). Assume that {e,}> | is a Riesz basis of H. Then {e,}° is com-
plete and minimal sequence in Hy ({e,}) but does not form a Schauder basis of
Hy ({en}), and for each {f(n)};2, € Si the operator Ay : Hy ({en}) D D(A;) —
Hy ({en}), defined by

Az = A ((f) > cnen> = (1)) _if(n)cnen,
n=1 n=1

with domain

D(A1) = { chen € Hi({en}) : {f(n)cn = f(n = 1) can}pZy € 52}

generates the Co-group on Hy ({ey}), which acts for every t € R by the formula

o0 oo
ety = eit(f) Z Ze”f Cnén. (1.1)

n=1 n=1
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In [21], it was proved that for the spectrum o(A;) of operator A; we have

0(A1) = op(Ar) ={if(n)};2, -

It was shown in [24] that Cp-semigroups {eiAlt} +~o do not have a maximal
asymptotics. It means that the fastest growing orbits do not exist, for details
see [24].

Assume that there exists a constant K > 0 such that Vn € N we have

n|Af(n)] = K. (1.2)

Then, as it was proved in [22,23] (the case f(n) =Inn, n € N), [24] (the general
case), the Cyp-group {eAlt} teR from Theorem 1.1 has an exact linear growth, i.e.
there exists a linear function [, with positive coefficients, and constant C' > 0
such that for all t € R we have

Clt] < [|e]| < 1)) (1.3)

Note that Cy-groups of linear growth naturally appear in theory and applications
of evolution equations, see, e.g. [1,6,25,27].

It was shown in [28] for the particular case of eigenvalues if(n) = iln(n + 1),
n € N, and the particular class of Hilbert phase spaces H; ({e,}), where {e,}72
is an orthonormal basis of the initial Hilbert space H, that

Jetar]

t (1.4)

as t — 400, see the Corollary 3.1 and the discussion that preceded it. Moreover,
in [28] the detailed computations of the rate of decay of the expression above
were carried out and it was shown that for ¢ > e we have

et ATt 1
t Int’

Equivalently we have the two-sided estimate of the norm of the corresponding
semigroup on D(A;7). In this paper we, first, extend this result to a more gen-
eral behaviour of spectrum of the generator Ay from Theorem 1.1, i.e. for the
case when points of spectrum if(n) satisfy (1.2). Second, we obtain exact two-
sided estimates for the norms of Cy-groups {eAlt} 1er On dense subsets D(AY) c
Hi ({en}) for any k € N, where {e,}>2, is an arbitrary Riesz basis of the initial
Hilbert space H. More precisely, we prove that there exist two constants M >
m > 0 such that

m

|t] Ayt —kH |t]
oy = |4 < Vg )
for |t| > to, where f(t) is any continuous and even extension of the monotonic
sequence { f(n)},cy to Ry. It is worth mentioning that the proof uses the discrete
form of the classical Hardy inequality for p = 2 several times. This means that
these Cp-groups {eAlt} 1cr have sub-linear growth on D(AF) and we know an
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exact hierarchy of growth, i.e. as k increases it turns out that the rate of growth
strictly decreases. And this fact, in its turn, implies the sub-linear growth of the
classical (starting from D(A;)) and all more regular (starting from D(A¥), k > 2)
solutions of the corresponding Cauchy problems for the abstract linear evolution
equations. Note that in the case k = 0 estimate (1.5) turns into (1.3).

The construction of Cy-groups with non-basis family of eigenvectors was pre-
sented in [20] on certain Banach spaces £,1 ({en}), p > 1. Space £p1 ({en}), p >

oo

1, is a Banach space of formal series (f) > cpen,
n=1

lp1 ({en}) = {x = (f) chen t {en —en-1}nig € gp} , p>1,
n=1

where ¢ = 0 and {e, }22, is symmetric basis of corresponding ¢,, p > 1, with
appropriate norm, defined similar to the case of H; ({e,}). The concept of sym-
metric basis was first introduced and studied by I. Singer [17] in connection with
the one Banach problem from isomorphic theory of Banach spaces. For defini-
tion and various properties of symmetric bases see, e.g. [7,11,15,17]. Since the
construction of Cy-groups with non-basis family of eigenvectors on Banach space
lp1 ({en}), p > 1, is similar to the construction on Hj ({ey}), the third purpose
of the paper is to extend the obtained results for the case of the corresponding
Co-groups defined on Banach space £, 1 ({e,}), p > 1. Here, we use several times
the discrete form of the classical Hardy inequality for p > 1:

00 1 n p D p 00
>(ixe) < (2o e
n=1 k=1 n=1

where {a;}7°, is a sequence of nonnegative real numbers.

2. Sub-linear growth of Cy-groups on dense subsets on H; ({¢,})

In what follows by A we denote the backward difference operator,

1 0 0 O

-1 1 0 0
A=]0 -1 1 0 7

0 0 -11

by A{ay}2 | —the sequence {a, — an—1},., and by Aa, —the n-th element
of the sequence {a,, — ap—1},oy, i.e. Aoy, = ay, —ap—1, n € N. We will often use
the following properties of difference operator:

Aay = a1, Aa,=ap,—ap_1, n>1,
A(anby) = Aayp by + an_1Ab,, n>1,
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Qn Aapby_1 — an_1Ab,
A — p— 1
(bn> bn—lbn I
k . .
Aak = AanZaif_llaﬁ*J, n>1 kel (2.1)
j=

We formulate the main result of the paper as the generalization of Theorem 2.1
of [24] as follows.

Theorem 2.1. Let {eAlt}teR be the Cy-group from Theorem 1.1, defined on
Hy ({en}), where {f(n)}>2, € Si and is monotonic. Let k € NU{0} and assume
that there exists a constant K > 0 such that ¥Yn € N we have

n|Af(n)| > K. (2.2)
Then there exist constants My > my, > 0 and tg > 0 such that for any |t| >
th
my i < HeAltA;’“H < MkL (2.3)
(f@)F — T (f@)k

where f(t) is any continuous and even extension of the sequence {f(n)}, cn to R.

Proof. The case k =0 in (2.3) follows from the Theorem 2.1 of [24].
Consider £ € N. We start from the representation of any x € H; ({en}) by

the formal series -
T = (f) Z cnen,
n=1

where ¢p = 0, (¢5,) C l2(A) (see subsection 3.1) is a complex sequence and (e, )nen
is a Riesz basis of the initial Hilbert space H [20]. For brevity denote T'(t) = e41?,
t € R, A= A; and denote f, = f(n), n € N, after a possible permutation, such
that f,,’s are increasing. Since the sequence (e, )nen constitutes a Riesz basis of
the initial Hilbert space H, there exist two constants C' > ¢ > 0 such that for
each

oo
y = Z cnen € H
n=1
we have
o o
e el < yl? < CD 7 lenl?, (2.4)
n=1 n=1

see, e.g. [5,9]. Therefore we consider the case when (ey)nen is an orthonormal
basis of the initial Hilbert space H, the case when (e,)nen is not orthonarmal
Riesz basis goes similarly.

To estimate the norm of T'(t)A~% for t > 0 we first note the following. For
any x € Hy ({en}) we have

2 0 2
TH)A k)2 — a\_ A < .Cn eitf”>
ITOA = |7r| = 2|2 Gry
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i citfni citfa |?
= Acn + Cn <k‘>
A . 2
= f cn + cn g
n=2 n—1 n—1
[oe)
=3 o 1Aanr Cn pgith _ gitas Cn TASy
n—=2 - fa Ik n frlf IR

According to the decomposition above we define functional sequences B(n,t),
C(n,t), FD(n,t) for t > 0,n > 2, as follows:

eitfnfl
B(n,t) = fTACn,
C(n,t) = E Ae’tf"
1 6n nAfn

D(n,t) = etfn-1
n frlf 1fk
In the notation above we have

2
IT (A 2|l ~

Z |B(n,t) + C(n,t) — D(n,t)]*.

1

We recall that by definition of the class & we have [nAf,| < My, for n > ny.
Next, we estimate three functional sequences B(n,t),C(n,t), D(n,t).

eitfnfl 1
|B(n,t)| = | ———Acn| < 75— [Acn|, n>1 (2.5)
n—1 |fn 1‘
Hence,
Z |B(n,t)|* < |:c||1, t>0, (2.6)

For the functional sequence D(n,t) the application of (2.1) yields

Cn

k
itfum Cn A WMo | cn , n>mng, (2.7)

n fhofk A

where we have used the monotonicity of f,, i.e. that f,_1 < f,,n € N. Due to
Hardy’s inequality we get

clnAfnk:

|D(n,t)| =
n fE | fa

(&

o0 o0
k2 Mg en |2 4kEMG
2
> D) < =53 2 < — 2zl n>ne, t>0. (2.8)
n=2 fl n=2 n fl
For the functional sequence C(n,t) we have
C(n,t)] = c;;k (emfn ~ 1) . n>1, t>0. (2.9)
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Note that the sequence fk is increasing if f¥ > nAf¥ which is satisfied for all

but finitely many n’s. Indeed, for positive, increasing, unbounded sequence (f,)
the formula (2.1) yields Af* < kf*'Af,, hence, it is clear that

nAfF < nAf kfFL < MokfFU < fo =5 n> o,

for ng large enough. Denote by M; maximal value of for n < ng. Since double

inequality B
c+Khnn< f, <C+ Mylnn, néeN, (2.10)

by (2.2) holds, the sequence f tends to infinity, hence denote by ty the number,
starting from which the sequence f exceed the number M. Now, we are going
back to estimate C(n,t). For ¢t > max{tg,no} we get

0o 2
Ch M [ .
C(n, 1) = n D (ear - 1)‘ + (eas 1)'
200l =2 g ey
Z n (eitAfn _ )‘ t2 Z Cn nAfn A fn 1
- 1<nt | ™ fk " tAfn
Using the properties of exponential function, we obtain
W (i)
k
fr)) =
cn |2 t 2 2
<t ¥ |2 408 (55) O
1<n<t n>t
2 2
t Cp |2 t
(7)) S |2+ (55) =
= k 0 k
f (t) 1<n<t n f (t) n>t

where f(t) is any continuous monotonic extension of {f(n)},y to Ry. Then, by
virtue of the Hardy inequality and taking M = max{2, My}, we obtain

- 2 ot N\
S 100 <208 (i ) el

Since for each a,b,c € Ry

Cn |2 2

00 2

2 n
1G] <41@2§t{<ﬁ> } 2 |y
n=2 1<n<t

Cn

n

Cn

n

2
)

Cn
n

(a+b+c)* < 3a® + 30> + 3¢,

we can gather all the estimations of B(n,t), C(n,t), D(n,t) and obtain

2 00 0o 0o
<3 |0, ) +3) |B(n, )P +3) _|D(n, 1)
n=2 n=2 n=2

2 2872

_ t 3 12k M
< 6M2< ) 2] + [l + e | |2
fr ) T g e

_ C
|7 () A a2 — \L
7
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Since the case t < 0 is treated analogously, this means that there exist constants
M, ty > 0, such that the following estimation holds

i
FE()
where the function f is an even extension of the previously defined f.

To find the lower bound for ||T(t)A™||, we have to study the lower bound for

the major term |C(n,t)|. It is easy to see that if n > Myt then tAf, <1 < 7.
Then we use inequality

IT) A" < M [t > to,

, 1
|ew—1‘2§$, ogmgg.
to estimate (2.9) and we get
t |ep nAf, Kt |c
Cn,t)| > - | =2—2 > — |[— > [Mot], t>0. 2.11
Cln )| > 5 (225 = Z ||, 0> e (211)

For each t > 1, we consider the element

20 = ()3 e,
n=1

(t)

with the sequence e of the following form:

for 0<n <2[Mpt],
C(t) = 4[M0t] —n for Q[M()t] <n< 4[M0t],

n

3

o

otherwise.

Clearly, z® e H; ({e,}) and A%z e D(AF) for any k. Simple calculations
yield

2
= 4[M0t], t>1.

O = 3 [Ad?
n=1

Now we focus on the lower bound of ||T'(t)A~*z®|3:

> 2
. .
IT@A™ =01 =3 1B(n.1) + Cln.t) = Dln. O + | 5
n=2
2[Mot]
> > |B(n,t)+Cn,t) = D(n, ).
n=[Mot]+1

Next, we would like to show that the term |C'(n, t)| is much bigger than |B(n,t)|+
|D(n,t)|, for t large enough, which by the reverse triangle inequality will allow
us to write

|B(n,t) + C(n,t) — D(n,t)] > |C(n,t)| — | B(n,t)] — |D(n,t)] > 0
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for t >ty and [Mot] < n < 2[Mpt]. Indeed, due to logarithmic character of the
function f(t) (see inequality (2.10)), it is easy to check that

() () K
F(Mot]) ~ FRIMot]) ~ 2My’

for ¢y large enough. Thus, we continue estimating (2.11) taking into account the

(t)
above, the fact that n < 2[Myt], fn, < f(2[Myt]) and that also % > 1 and obtain
that

t > 1o,

| TR 2/ @Mot]) T R 2 g R

t K fk(t) J ot K+ t

Kk+1

for [Mot] < n < 2[Mot], t > to and constant my := .
0

|C'(n,t)| — oo for t — oo while

This implies that

(t)

]{ZM() Cn, 1 T kM() <1

Tt | | ST TR S

for [Myt] < n < 2[Myt] and t > t( for sufficiently large to.
Finally, we are returning to estimate from below the semigroup operator on
elements A~*z(®) ¢ D(AF),

[B(n, )] + [D(n,1)] < —— | Acl?)

n

+ -
n

i

n—1

2[Mot]
ITHA D2 > S [B(n,t) + Cln,1) — D(n, )2
n=[Mot]+1
2[Mot]
Y. (Cm)]—|B(n,t)] — |D(n,1)))*
n=[Mopt]+1
2[Mot]

3 ()

n:[Mot]+1

[Mot] _t o c_ 757”'11”356)”)2 >t
EAVUOIENAERVEOI I

for sufficiently large tg. Taking m = iml and noting the similarity of the proof
for negative ¢t we obtain the desired inequality from below,

v

Y

- 4
ITHATF > m—e, > 1. O
FE(®)

Remark 2.2. For the case when f(n) =Inn, n € N, condition (1.2) obviously
holds. For this case Theorem 2.1 for k = 0 was first obtained in [22] and proved
in [23].

I¢]
(f(£)*
, is sub-linear. Moreover, for any k €

Remark 2.3. Note that for any k € N the function from Theorem 2.1,

which controls the growth of HeAltAfk
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N, the function % grow as t — +oo faster than t* for any a € (0,1), but

slower than St for any 8 > 0. In other words, for any k € N the function (f(‘%
is asymptotically below any linear function and above any root function.

Corollary 2.4. Let Ay be the operator from Theorem 2.1 and consider the
Cauchy problem for the abstract differential equation

{a’:(t) = Ayz(t), teR,

#(0) — 2% (2.12)

on the space Hy ({e,}). Then all classical and more regular solutions of (2.12)
have sub-linear growth (2.3).

Proof. Tt is known that the classical solution of the problem (2.12) has the
form
zo(t) = ey,
where xg € D(A1), see, e.g. [29]. Then the Theorem (2.1) (the case k = 1) yields
that there exist constants M > m > 0 and ¢y > 0 such that for any [t| > ¢,
4 14
m—— < |lz.(t)]| < M—=.

More generally, k-regular solution of the problem (2.12) has the form z,(t) =
eMitzy, where 2o € D(AY), see, e.g. [29]. So in this general case Theorem (2.1)
yields that there exist constants M > m > 0 and ¢y > 0 such that for any [t| >
to we have

t t
m el < a

(F@)* ~ (f(&)*

It follows that k-regular solution z,(t) has sub-linear growth for any k. O

3. Sub-linear growth of Cj-groups on dense subsets on Banach
spaces 0,1 ({e,}), p>1

3.1. Preliminary constructions. First, we remind the reader the con-
struction of Cp-groups on special class of Banach spaces £, 1 ({en}), p > 1. Let
{en}22, be arbitrary symmetric basis of £,, p > 1. Then, ¢, ({e,}), p > 1, is a

o0
Banach space of formal series (f) > cpen,
n=1

lpa ({en}) = {1’ = (f) Z cnen t {entnZy € gp(A)} ;
n=1
where
U(A) ={z={an}tne1 CC: Az ey}, p> 1.

By Proposition 5 in [20], we have that Lin{e,}>°; = £,1 ({en}), the sequence
{en}22, is minimal but {e,}5; is not uniformly minimal in ¢, ; ({e,}), hence it
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does not form a Schauder basis of ¢, 1 ({e,}). We refer to Section 2.2 in [20] for
more details.
Consider the operator

Ay ({en}) 2 D (A1) = b ({ea))

defined on a Banach space ¢, 1 ({en}), p > 1, as follows:

A = E(f) Z cnen = () Z if(n)cnen, (3.1)
n=1 n=1

n=1

where z € D (21;) ,Af()}2, € 81 and {e,}22, is a symmetric basis of the
initial Banach space £, p > 1, with domain

D (A1) = { = ()3 entn € by (o)) L) enbiy € @(A)} - (32)
n=1

By virtue of Theorem 16 in [20], operator A generates the Cy-group {efgﬁ} "
te

on ¢p1 ({en}), p > 1, which acts on £, ({e,}) for every t € R by the following
formula

o e ¢}
edity = eAit(f) Z cnen = (f) Z tTMenen,. (3.3)
n=1 n=1

3.2. Class of linearly growing Cy-groups on ¢, ({e,}), p > 1. For the
case of Cyp-groups with non-basis family of eigenvectors from [20] on a Banach
space {1 ({en}), p > 1, we obtain the following theorem on their sub-linear
growth on dense subsets of ¢, 1 ({ey}), similar to the Theorem 2.1.

Theorem 3.1. Let {efgﬁ} be the Cy-group given by (3.3) defined on a Ba-

teR
nach space £y1 ({en}), p > 1, where {f(n)},2, € Si and is monotonic. Assume
that 3K > 0 such that ¥Yn € N we have (1.2), i.e.

n|Af(n)] > K.

Then, for each k € NU {0}, there exist constants Mj, > 7y, > 0 and to > 0
such that for any |t| > to,
~ It k|| 77 It
m < eAltAl H < Mk‘ ;
(f(£)*

where f(t) is any continuous and even extension of the sequence {f(n)}, cn to R.

(3.4)

Proof. The case k = 0 in (3.4) follows from the Theorem 3.1 of [24].
To prove (3.4) for k € N, we note that if {e,}72 is a symmetric basis of
Banach space ¢p, p > 1, then there exist constants C' > ¢ > 0 such that for each

o

y= chen € Epv

n=1
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we have

) e
¢S Jeal” < IylP <O el (35)
n=1 n=1

i.e. two-sided estimate, similar to (2.4), see Proposition 4 in [20] and [7] for
more details. That means that all the tricks of the proof of the Theorem 2.1
could be done in the proof of this theorem, see also the proof of the Theorem 3.1
from [24]. O

Also we have the following corollary of the Theorem 3.1, similar to the Corol-
lary 2.4.

Corollary 3.2. Let :4: be the operator from Theorem (3.1) and consider the
Cauchy problem for the abstract differential equation

oz

on the space £, ({en}), p > 1. Then all classical and more regqular solutions
of (3.6) have sub-linear growth (3.4).
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Cyo6uiiniiiHe 3pocTanHs crneriajbHOro Kjacy Cy-rpyn Ha
HIIJIBHUX ITiIMHOXKHHAaX

Grigory Sklyar, Vitalii Marchenko, and Piotr Polak

Mu posrisimaeMo creriajabHuil Kiac JiHifHOo 3pocranbaux Co-Tpyn 3
[20, 24], reHepaTopu SIKHX € CyTTEBO HECAMOMIIPSDKEHUMH HEOOMEXKEeHUMU
oneparopamu. TouHile, i T€HEPATOPU MAIOTh YUCTO TOYKOBUI ySIBHUI
CIIEKTDP, IO 3TYIIYETHCS B TOYIN $00, Ta BiANOBIIHY MOBHY Ta MiHIMAaJbHY,
ajie He PIBHOMIPDHO MiHIMAJIbHY, CIM’I0 BJIACHUX BEKTODIB, K& HE yTBOPIOE
6asuc llaynepa. Mu omepkyemo To4HI JBOCTOPOHHI OIiHKH HOpM Cy-rpyir
3 IIBOrO KJIACy Ha IIJIBHUAX IIiIMHOXKHHAX (DA30BOr0O IIPOCTOPY, & caMe, Ha
D(Ak) st Oyab-akux k € N, 1e A € HeoOMeXKeHM MeHEePaTOPOM Bi OB
wol Cp-rpynm. Tum camum Mu J10BouMO, 1110 111 Cy-rpymu MatoTh cyOJiiHiliHe
spocranns na D(AF). Ile ozmauae cy6iniiiHe 3pocTaHHs KJIACHIHAX Ta BCiX
OiIbIT peryaapHux po3B’sa3kiB 3agadi Komri s BiamoBigamx abCcTpakTHHIX
JIIHIHUX €BOJIIOIIMTHUX PIBHAHb.

Kirouosi ciioBa: Cy-rpymna, cybJiiHiliHE 3pOCTaHHsI, CYTTEBO HECAMOCIIPSI-
2KEHUIT HeoOMeKeHuit orepaTop, IBOCTOPOHHI OIIHKY, CIIeKTpaJibHa X Y Z Te-
opeMa, MILTbHI T IMHOKWHHI, KJIACUIHUN PO3B’I30K
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