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Sub-Linear Growth of a Special Class of

C0-Groups on Dense Subsets

Grigory Sklyar, Vitalii Marchenko, and Piotr Polak
We consider a special class of linearly growing C0-groups from [20, 24],

whose generators are essentially nonselfadjoint unbounded operators. More
precisely, these generators have pure point imaginary spectrum, clustering
at i∞, and corresponding dense and minimal, but not uniformly minimal
family of eigenvectors, hence this family do not form a Schauder basis. We
obtain sharp two-sided estimates for the norms of C0-groups from this class
on dense subsets of a phase space, namely, on D(Ak) for any k ∈ N, where
A is the unbounded generator of the corresponding C0-group. Thereby we
prove that these C0-groups have sub-linear growth on D(Ak). This yields the
sub-linear growth of classical and all more regular solutions of the Cauchy
problems for the corresponding abstract linear evolution equations.
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1. Introduction

The study of the asymptotic behaviour of the C0-semigroups {T (t)}t≥0 on
dense subsets, e.g. on D(A), where A is the generator of the C0-semigroup
{T (t)}t≥0, is an important second step in asymptotic theory of C0-semigroups on
Banach spaces and is quite young and active nowadays area of research. Among
the pioneering works in this direction, we note articles of V. Phong [12, 13],
C.J.K. Batty and T. Duyckaerts [2, 3], A. Borichev and Y. Tomilov [4], and the
first author [19], see also the monograph of J. van Neerven [29]. Most of works
in this direction consider the question of decay of C0-semigroup {T (t)}t≥0 on
D(A), see, e.g. [14, 30] among the newest developments. In [28], one sufficient
condition of the decay (or relative growth) of C0-semigroup {T (t)}t≥0 on D(A)
was obtained in terms of the decay (or relative growth) of the semigroup on the
images of Riesz spectral projections, corresponding to different parts of imaginary
spectrum of the generator A.

In 2017, G. Sklyar and V. Marchenko [20] constructed classes of C0-groups,
whose generators have pure point imaginary spectrum, clustering at i∞, and
dense minimal family of corresponding eigenvectors, which is, however, not uni-
formly minimal, hence this family is not a Schauder basis. It means that these
generators are essentially nonselfadjoint unbounded operators, i.e. operators
which are not similar to any selfadjoint one. For definitions and various properties
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of Schauder bases and Schauder decompositions, we refer to [9, 15, 16]. In [21],
G. Sklyar and V. Marchenko used these classes of C0-groups with non-basis fam-
ily of eigenvectors from [20] to prove that the spectral XYZ Theorem is sharp in
a sense that none of its conditions can be weakened or removed, see Section 2
in [21]. For the formulation, proofs and discussions around the spectral XYZ
theorem, we refer to [20,21,23,31,32].

Throughout the paper, we use notations from [20] and [23], see also [24].
Consider any separable Hilbert space H with norm ‖ · ‖ and take arbitrary Riesz
basis {en}∞n=1 in H. For equivalent definitions and various properties of Riesz
bases, we refer to [5, 9, 10]. Then

H1 ({en}) =

{
x = (f)

∞∑
n=1

cnen : {cn − cn−1}∞n=1 ∈ `2, c0 = 0

}
,

is a Hilbert space of formal series (f)
∞∑
n=1

cnen with norm

‖x‖1 =

∥∥∥∥∥(f)

∞∑
n=1

cnen

∥∥∥∥∥
1

=

∥∥∥∥∥
∞∑
n=1

(cn − cn−1)en

∥∥∥∥∥ .
Let S1 denotes the following class of real sequences:

S1 =
{
{f(n)}∞n=1 ⊂ R : lim

n→∞
f(n) = +∞; {n (f(n)− f(n− 1))}∞n=1 ∈ `∞

}
,

where f(0) = 0. The construction of C0-groups with non-basis family of eigen-
vectors from [20] on space H1 ({en}) is given then by the following theorem.

Theorem 1.1 (The case k = 1 in Theorem 11 of [20], see also Theorem
1.1 in [24]). Assume that {en}∞n=1 is a Riesz basis of H. Then {en}∞n=1 is com-
plete and minimal sequence in H1 ({en}) but does not form a Schauder basis of
H1 ({en}), and for each {f(n)}∞n=1 ∈ S1 the operator A1 : H1 ({en}) ⊃ D(A1) 7→
H1 ({en}) , defined by

A1x = A1

(
(f)

∞∑
n=1

cnen

)
= (f)

∞∑
n=1

if(n) cnen,

with domain

D(A1) =

{
x = (f)

∞∑
n=1

cnen ∈ H1 ({en}) : {f(n) cn − f(n− 1) cn−1}∞n=1 ∈ `2

}
,

generates the C0-group on H1 ({en}), which acts for every t ∈ R by the formula

eA1tx = eA1t(f)
∞∑
n=1

cnen = (f)
∞∑
n=1

eitf(n)cnen. (1.1)
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In [21], it was proved that for the spectrum σ(A1) of operator A1 we have

σ(A1) = σp(A1) = {if(n)}∞n=1 .

It was shown in [24] that C0-semigroups
{
e±A1t

}
t≥0

do not have a maximal
asymptotics. It means that the fastest growing orbits do not exist, for details
see [24].

Assume that there exists a constant K > 0 such that ∀n ∈ N we have

n |∆f(n)| ≥ K. (1.2)

Then, as it was proved in [22,23] (the case f(n) = lnn, n ∈ N), [24] (the general
case), the C0-group

{
eA1t

}
t∈R from Theorem 1.1 has an exact linear growth, i.e.

there exists a linear function l, with positive coefficients, and constant C > 0
such that for all t ∈ R we have

C|t| ≤
∥∥eA1t

∥∥ ≤ l(|t|). (1.3)

Note that C0-groups of linear growth naturally appear in theory and applications
of evolution equations, see, e.g. [1, 6, 25,27].

It was shown in [28] for the particular case of eigenvalues if(n) = i ln(n+ 1),
n ∈ N, and the particular class of Hilbert phase spaces H1 ({en}), where {en}∞n=1

is an orthonormal basis of the initial Hilbert space H, that∥∥eA1tA−1
1

∥∥
t

→ 0 (1.4)

as t→ +∞, see the Corollary 3.1 and the discussion that preceded it. Moreover,
in [28] the detailed computations of the rate of decay of the expression above
were carried out and it was shown that for t > e we have∥∥eA1tA−1

1

∥∥
t

∼ 1

ln t
.

Equivalently we have the two-sided estimate of the norm of the corresponding
semigroup on D(A1). In this paper we, first, extend this result to a more gen-
eral behaviour of spectrum of the generator A1 from Theorem 1.1, i.e. for the
case when points of spectrum if(n) satisfy (1.2). Second, we obtain exact two-
sided estimates for the norms of C0-groups

{
eA1t

}
t∈R on dense subsets D(Ak1) ⊂

H1 ({en}) for any k ∈ N, where {en}∞n=1 is an arbitrary Riesz basis of the initial
Hilbert space H. More precisely, we prove that there exist two constants M ≥
m > 0 such that

m
|t|

(f(t))k
≤
∥∥∥eA1tA−k1

∥∥∥ ≤M |t|
(f(t))k

(1.5)

for |t| > t0, where f(t) is any continuous and even extension of the monotonic
sequence {f(n)}n∈N to R+. It is worth mentioning that the proof uses the discrete
form of the classical Hardy inequality for p = 2 several times. This means that
these C0-groups

{
eA1t

}
t∈R have sub-linear growth on D(Ak) and we know an
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exact hierarchy of growth, i.e. as k increases it turns out that the rate of growth
strictly decreases. And this fact, in its turn, implies the sub-linear growth of the
classical (starting from D(A1)) and all more regular (starting from D(Ak1), k ≥ 2)
solutions of the corresponding Cauchy problems for the abstract linear evolution
equations. Note that in the case k = 0 estimate (1.5) turns into (1.3).

The construction of C0-groups with non-basis family of eigenvectors was pre-
sented in [20] on certain Banach spaces `p,1 ({en}) , p > 1. Space `p,1 ({en}) , p >

1, is a Banach space of formal series (f)
∞∑
n=1

cnen,

`p,1 ({en}) =

{
x = (f)

∞∑
n=1

cnen : {cn − cn−1}∞n=1 ∈ `p

}
, p > 1,

where c0 = 0 and {en}∞n=1 is symmetric basis of corresponding `p, p > 1, with
appropriate norm, defined similar to the case of H1 ({en}). The concept of sym-
metric basis was first introduced and studied by I. Singer [17] in connection with
the one Banach problem from isomorphic theory of Banach spaces. For defini-
tion and various properties of symmetric bases see, e.g. [7, 11, 15, 17]. Since the
construction of C0-groups with non-basis family of eigenvectors on Banach space
`p,1 ({en}) , p > 1, is similar to the construction on H1 ({en}), the third purpose
of the paper is to extend the obtained results for the case of the corresponding
C0-groups defined on Banach space `p,1 ({en}) , p > 1. Here, we use several times
the discrete form of the classical Hardy inequality for p > 1:

∞∑
n=1

(
1

n

n∑
k=1

ak

)p
≤
(

p

p− 1

)p ∞∑
n=1

apn,

where {ak}∞k=1 is a sequence of nonnegative real numbers.

2. Sub-linear growth of C0-groups on dense subsets on H1 ({en})

In what follows by ∆ we denote the backward difference operator,

∆ =


1 0 0 0 . . .
−1 1 0 0 . . .
0 −1 1 0 . . .
0 0 −1 1 . . .
...

...
...

...
. . .

 ,

by ∆ {αn}∞n=1 — the sequence {αn − αn−1}∞n=1 and by ∆αn — the n-th element
of the sequence {αn − αn−1}∞n=1, i.e. ∆αn = αn−αn−1, n ∈ N. We will often use
the following properties of difference operator:

∆a1 = a1, ∆an = an − an−1, n > 1,

∆(anbn) = ∆an bn + an−1∆bn, n > 1,
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∆

(
an
bn

)
=

∆an bn−1 − an−1∆bn
bn−1bn

, n > 1,

∆akn = ∆an

k∑
j=1

aj−1
n−1a

k−j
n , n > 1, k ∈ N. (2.1)

We formulate the main result of the paper as the generalization of Theorem 2.1
of [24] as follows.

Theorem 2.1. Let
{
eA1t

}
t∈R be the C0-group from Theorem 1.1, defined on

H1 ({en}), where {f(n)}∞n=1 ∈ S1 and is monotonic. Let k ∈ N∪{0} and assume
that there exists a constant K > 0 such that ∀n ∈ N we have

n |∆f(n)| ≥ K. (2.2)

Then there exist constants Mk ≥ mk > 0 and t0 > 0 such that for any |t| >
t0,

mk
|t|

(f(t))k
≤
∥∥∥eA1tA−k1

∥∥∥ ≤Mk
|t|

(f(t))k
(2.3)

where f(t) is any continuous and even extension of the sequence {f(n)}n∈N to R.

Proof. The case k = 0 in (2.3) follows from the Theorem 2.1 of [24].
Consider k ∈ N. We start from the representation of any x ∈ H1 ({en}) by

the formal series

x = (f)
∞∑
n=1

cnen,

where c0 = 0, (cn) ⊂ `2(∆) (see subsection 3.1) is a complex sequence and (en)n∈N
is a Riesz basis of the initial Hilbert space H [20]. For brevity denote T (t) = eA1t,
t ∈ R, A = A1 and denote fn = f(n), n ∈ N, after a possible permutation, such
that fn’s are increasing. Since the sequence (en)n∈N constitutes a Riesz basis of
the initial Hilbert space H, there exist two constants C ≥ c > 0 such that for
each

y =

∞∑
n=1

cnen ∈ H

we have

c
∞∑
n=1

|cn|2 ≤ ‖y‖2 ≤ C
∞∑
n=1

|cn|2, (2.4)

see, e.g. [5, 9]. Therefore we consider the case when (en)n∈N is an orthonormal
basis of the initial Hilbert space H, the case when (en)n∈N is not orthonarmal
Riesz basis goes similarly.

To estimate the norm of T (t)A−k for t > 0 we first note the following. For
any x ∈ H1 ({en}) we have

‖T (t)A−kx‖21 −
∣∣∣∣ c1

fk1

∣∣∣∣2 =
∞∑
n=2

∣∣∣∣∆( cn
(ifn)k

eitfn
)∣∣∣∣2
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=
∞∑
n=2

∣∣∣∣∣eitfn−1

fkn−1

∆cn + cn∆

(
eitfn

fkn

)∣∣∣∣∣
2

=
∞∑
n=2

∣∣∣∣∣eitfn−1

fkn−1

∆cn + cn
∆eitfn fkn−1 − eitfn−1∆fkn

fkn−1f
k
n

∣∣∣∣∣
2

=
∞∑
n=2

∣∣∣∣∣eitfn−1

fkn−1

∆cn +
cn
fkn

∆eitfn − eitfn−1
cn
n

n∆fkn
fkn−1f

k
n

∣∣∣∣∣
2

.

According to the decomposition above we define functional sequences B(n, t),
C(n, t), FD(n, t) for t > 0, n ≥ 2, as follows:

B(n, t) =
eitfn−1

fkn−1

∆cn,

C(n, t) =
cn
fkn

∆eitfn ,

D(n, t) = eitfn−1
cn
n

n∆fkn
fkn−1f

k
n

.

In the notation above we have

‖T (t)A−kx‖21 −
∣∣∣∣ c1

fk1

∣∣∣∣2 =
∞∑
n=2

|B(n, t) + C(n, t)−D(n, t)|2 .

We recall that by definition of the class S1 we have |n∆fn| < M0, for n > n0.
Next, we estimate three functional sequences B(n, t), C(n, t), D(n, t).

|B(n, t)| =

∣∣∣∣∣eitfn−1

fkn−1

∆cn

∣∣∣∣∣ ≤ 1

|fn−1|k
|∆cn| , n > 1. (2.5)

Hence,
∞∑
n=2

|B(n, t)|2 ≤ 1

f2k
1

‖x‖21, t > 0, (2.6)

For the functional sequence D(n, t) the application of (2.1) yields

|D(n, t)| =

∣∣∣∣∣eitfn−1
cn
n

n∆fkn
fkn−1f

k
n

∣∣∣∣∣ ≤
∣∣∣∣∣cnn n∆fn k

fkn−1fn

∣∣∣∣∣ ≤ kM0

fkn−1fn

∣∣∣cn
n

∣∣∣ , n > n0, (2.7)

where we have used the monotonicity of fn, i.e. that fn−1 ≤ fn, n ∈ N. Due to
Hardy’s inequality we get

∞∑
n=2

|D(n, t)|2 ≤ k2M2
0

f2k+2
1

∞∑
n=2

∣∣∣cn
n

∣∣∣2 ≤ 4k2M2
0

f2k+2
1

‖x‖21, n > n0, t > 0. (2.8)

For the functional sequence C(n, t) we have

|C(n, t)| =
∣∣∣∣cnn n

fkn

(
eit∆fn − 1

)∣∣∣∣ , n > 1, t > 0. (2.9)
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Note that the sequence n
fkn

is increasing if fkn > n∆fkn , which is satisfied for all

but finitely many n’s. Indeed, for positive, increasing, unbounded sequence (fn)
the formula (2.1) yields ∆fkn ≤ kfk−1

n ∆fn, hence, it is clear that

n∆fkn ≤ n∆fn kf
k−1
n ≤M0kf

k−1
n < fn f

k−1
n = fkn , n > n0,

for n0 large enough. Denote by Mf maximal value of n
fkn

for n ≤ n0. Since double

inequality
c̃+K lnn < fn < C̃ +M0 lnn, n ∈ N, (2.10)

by (2.2) holds, the sequence n
fkn

tends to infinity, hence denote by t0 the number,

starting from which the sequence n
fkn

exceed the number Mf . Now, we are going

back to estimate C(n, t). For t > max{t0, n0} we get

∞∑
n=2

|C(n, t)|2 =
∑

1<n<t

∣∣∣∣cnn n

fkn

(
eit∆fn − 1

)∣∣∣∣2 +
∑
n≥t

∣∣∣∣cnn n

fkn

(
eit∆fn − 1

)∣∣∣∣2

≤
∑

1<n<t

∣∣∣∣cnn n

fkn

(
eit∆fn − 1

)∣∣∣∣2 + t2
∑
n≥t

∣∣∣∣cnn n∆fn
fkn

eit∆fn − 1

t∆fn

∣∣∣∣2 .
Using the properties of exponential function, we obtain

∞∑
n=2

|C(n, t)|2 ≤4 max
1<n<t

{(
n

fkn

)2
} ∑

1<n<t

∣∣∣cn
n

∣∣∣2 +M2
0

(
t

fk(t)

)2∑
n≥t

∣∣∣cn
n

∣∣∣2
≤4M2

f

∑
1<n<t

∣∣∣cn
n

∣∣∣2 +M2
0

(
t

fk(t)

)2∑
n≥t

∣∣∣cn
n

∣∣∣2
≤4

(
t

fk(t)

)2 ∑
1<n<t

∣∣∣cn
n

∣∣∣2 +M2
0

(
t

fk(t)

)2∑
n≥t

∣∣∣cn
n

∣∣∣2 ,
where f(t) is any continuous monotonic extension of {f(n)}n∈N to R+. Then, by
virtue of the Hardy inequality and taking M̄ = max{2,M0}, we obtain

∞∑
n=2

|C(n, t)|2 ≤ 2M̄2

(
t

fk(t)

)2

‖x‖21.

Since for each a, b, c ∈ R+

(a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2,

we can gather all the estimations of B(n, t), C(n, t), D(n, t) and obtain

‖T (t)A−kx‖21 −
∣∣∣∣ c1

fk1

∣∣∣∣2 ≤ 3

∞∑
n=2

|C(n, t)|2 + 3

∞∑
n=2

|B(n, t)|2 + 3

∞∑
n=2

|D(n, t)|2

≤ 6M̄2

(
t

fk(t)

)2

‖x‖21 +
3

f2k
1

‖x‖21 +
12k2M̄2

f2k+2
1

‖x‖21.
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Since the case t < 0 is treated analogously, this means that there exist constants
M, t0 > 0, such that the following estimation holds

‖T (t)A−k‖ ≤M |t|
fk(t)

, |t| > t0,

where the function f is an even extension of the previously defined f.
To find the lower bound for ‖T (t)A−k‖, we have to study the lower bound for

the major term |C(n, t)|. It is easy to see that if n > M0t then t∆fn < 1 < π
2 .

Then we use inequality ∣∣eix − 1
∣∣ ≥ 1

2
x, 0 ≤ x ≤ π

2
.

to estimate (2.9) and we get

|C(n, t)| ≥ t

2

∣∣∣∣cnn n∆fn
fkn

∣∣∣∣ ≥ Kt

2fkn

∣∣∣cn
n

∣∣∣ , n > [M0t], t > 0. (2.11)

For each t > 1, we consider the element

x(t) = (f)

∞∑
n=1

c(t)
n en

with the sequence c
(t)
n of the following form:

c(t)
n =


n for 0 < n ≤ 2[M0t],

4[M0t]− n for 2[M0t] < n < 4[M0t],

0 otherwise.

Clearly, x(t) ∈ H1 ({en}) and A−kx(t) ∈ D(Ak) for any k. Simple calculations
yield

‖x(t)‖21 =

∞∑
n=1

∣∣∣∆c(t)
n

∣∣∣2 = 4[M0t], t > 1.

Now we focus on the lower bound of ‖T (t)A−kx(t)‖21:

‖T (t)A−kx(t)‖21 =

∞∑
n=2

|B(n, t) + C(n, t)−D(n, t)|2 +

∣∣∣∣ c1

fk1

∣∣∣∣2

≥
2[M0t]∑

n=[M0t]+1

|B(n, t) + C(n, t)−D(n, t)|2 .

Next, we would like to show that the term |C(n, t)| is much bigger than |B(n, t)|+
|D(n, t)|, for t large enough, which by the reverse triangle inequality will allow
us to write

|B(n, t) + C(n, t)−D(n, t)| ≥ |C(n, t)| − |B(n, t)| − |D(n, t)| > 0
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for t > t0 and [M0t] < n < 2[M0t]. Indeed, due to logarithmic character of the
function f(t) (see inequality (2.10)), it is easy to check that

f(t)

f([M0t])
>

f(t)

f(2[M0t])
>

K

2M0
, t > t0,

for t0 large enough. Thus, we continue estimating (2.11) taking into account the

above, the fact that n ≤ 2[M0t], fn ≤ f(2[M0t]) and that also c
(t)
n
n ≥ 1 and obtain

that

|C(n, t)| ≥ Kt

2fkn

∣∣∣∣∣c(t)
n

n

∣∣∣∣∣ ≥ t

fk(t)

Kfk(t)

2fk(2[M0t])
≥ t

fk(t)

Kk+1

2k+1Mk
0

= m1
t

fk(t)
,

for [M0t] ≤ n ≤ 2[M0t], t > t0 and constant m1 := Kk+1

2k+1Mk
0

. This implies that

|C(n, t)| → ∞ for t→∞ while

|B(n, t)|+ |D(n, t)| ≤ 1

fkn−1

∣∣∣∆c(t)
n

∣∣∣+
kM0

fkn−1fn

∣∣∣∣∣c(t)
n

n

∣∣∣∣∣ ≤ 1

fkn−1

+
kM0

fkn−1fn
≤ 1

for [M0t] ≤ n ≤ 2[M0t] and t > t0 for sufficiently large t0.
Finally, we are returning to estimate from below the semigroup operator on

elements A−kx(t) ∈ D(Ak),

‖T (t)A−kx(t)‖21 ≥
2[M0t]∑

n=[M0t]+1

|B(n, t) + C(n, t)−D(n, t)|2

≥
2[M0t]∑

n=[M0t]+1

(|C(n, t)| − |B(n, t)| − |D(n, t)|)2

≥
2[M0t]∑

n=[M0t]+1

(
t

fk(t)
m1 − 1

)2

≥ [M0t]

(
t

fk(t)

m1

2

)2

=

(
t

fk(t)

m1

4
‖x(t)‖1

)2

, t > t0,

for sufficiently large t0. Taking m = 1
4m1 and noting the similarity of the proof

for negative t we obtain the desired inequality from below,

‖T (t)A−k‖ ≥ m |t|
fk(t)

, t > t0.

Remark 2.2. For the case when f(n) = lnn, n ∈ N, condition (1.2) obviously
holds. For this case Theorem 2.1 for k = 0 was first obtained in [22] and proved
in [23].

Remark 2.3. Note that for any k ∈ N the function |t|
(f(t))k

from Theorem 2.1,

which controls the growth of
∥∥∥eA1tA−k1

∥∥∥, is sub-linear. Moreover, for any k ∈
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N, the function |t|
(f(t))k

grow as t → +∞ faster than tα for any α ∈ (0, 1), but

slower than βt for any β > 0. In other words, for any k ∈ N the function |t|
(f(t))k

is asymptotically below any linear function and above any root function.

Corollary 2.4. Let A1 be the operator from Theorem 2.1 and consider the
Cauchy problem for the abstract differential equation{

ẋ(t) = A1x(t), t ∈ R,
x(0) = x0,

(2.12)

on the space H1 ({en}). Then all classical and more regular solutions of (2.12)
have sub-linear growth (2.3).

Proof. It is known that the classical solution of the problem (2.12) has the
form

xc(t) = eA1tx0,

where x0 ∈ D(A1), see, e.g. [29]. Then the Theorem (2.1) (the case k = 1) yields
that there exist constants M ≥ m > 0 and t0 > 0 such that for any |t| > t0,

m
|t|
f(t)

≤ ‖xc(t)‖ ≤M
|t|
f(t)

.

More generally, k-regular solution of the problem (2.12) has the form xr(t) =
eA1tx0, where x0 ∈ D(Ak1), see, e.g. [29]. So in this general case Theorem (2.1)
yields that there exist constants M ≥ m > 0 and t0 > 0 such that for any |t| >
t0 we have

m
|t|

(f(t))k
≤ ‖xr(t)‖ ≤M

|t|
(f(t))k

.

It follows that k-regular solution xr(t) has sub-linear growth for any k.

3. Sub-linear growth of C0-groups on dense subsets on Banach
spaces `p,1 ({en}), p > 1

3.1. Preliminary constructions. First, we remind the reader the con-
struction of C0-groups on special class of Banach spaces `p,1 ({en}) , p > 1. Let
{en}∞n=1 be arbitrary symmetric basis of `p, p > 1. Then, `p,1 ({en}) , p > 1, is a

Banach space of formal series (f)
∞∑
n=1

cnen,

`p,1 ({en}) =

{
x = (f)

∞∑
n=1

cnen : {cn}∞n=1 ∈ `p(∆)

}
,

where
`p(∆) = {x = {αn}∞n=1 ⊂ C : ∆x ∈ `p} , p > 1.

By Proposition 5 in [20], we have that Lin{en}∞n=1 = `p,1 ({en}), the sequence
{en}∞n=1 is minimal but {en}∞n=1 is not uniformly minimal in `p,1 ({en}), hence it
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does not form a Schauder basis of `p,1 ({en}) . We refer to Section 2.2 in [20] for
more details.

Consider the operator

Ã1 : `p,1 ({en}) ⊃ D
(
Ã1

)
7→ `p,1 ({en})

defined on a Banach space `p,1 ({en}) , p > 1, as follows:

Ã1x = Ã1(f)
∞∑
n=1

cnen = (f)
∞∑
n=1

if(n) cnen, (3.1)

where x ∈ D
(
Ã1

)
, {f(n)}∞n=1 ∈ S1 and {en}∞n=1 is a symmetric basis of the

initial Banach space `p, p > 1, with domain

D
(
Ã1

)
=

{
x = (f)

∞∑
n=1

cnen ∈ `p,1 ({en}) : {f(n) cn}∞n=1 ∈ `p(∆)

}
. (3.2)

By virtue of Theorem 16 in [20], operator Ã1 generates the C0-group
{
ẽA1t

}
t∈R

on `p,1 ({en}) , p > 1, which acts on `p,1 ({en}) for every t ∈ R by the following
formula

ẽA1tx = ẽA1t(f)
∞∑
n=1

cnen = (f)
∞∑
n=1

eitf(n)cnen. (3.3)

3.2. Class of linearly growing C0-groups on `p,1 ({en}), p > 1. For the
case of C0-groups with non-basis family of eigenvectors from [20] on a Banach
space `p,1 ({en}) , p > 1, we obtain the following theorem on their sub-linear
growth on dense subsets of `p,1 ({en}) , similar to the Theorem 2.1.

Theorem 3.1. Let
{
ẽA1t

}
t∈R

be the C0-group given by (3.3) defined on a Ba-

nach space `p,1 ({en}) , p > 1, where {f(n)}∞n=1 ∈ S1 and is monotonic. Assume
that ∃K > 0 such that ∀n ∈ N we have (1.2), i.e.

n |∆f(n)| ≥ K.

Then, for each k ∈ N ∪ {0}, there exist constants M̃k ≥ m̃k > 0 and t̃0 > 0
such that for any |t| > t̃0,

m̃k
|t|

(f(t))k
≤
∥∥∥ẽA1tÃ1

−k∥∥∥ ≤ M̃k
|t|

(f(t))k
, (3.4)

where f(t) is any continuous and even extension of the sequence {f(n)}n∈N to R.

Proof. The case k = 0 in (3.4) follows from the Theorem 3.1 of [24].
To prove (3.4) for k ∈ N, we note that if {en}∞n=1 is a symmetric basis of

Banach space `p, p ≥ 1, then there exist constants C ≥ c > 0 such that for each

y =
∞∑
n=1

cnen ∈ `p,
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we have

c
∞∑
n=1

|cn|p ≤ ‖y‖p ≤ C
∞∑
n=1

|cn|p, (3.5)

i.e. two-sided estimate, similar to (2.4), see Proposition 4 in [20] and [7] for
more details. That means that all the tricks of the proof of the Theorem 2.1
could be done in the proof of this theorem, see also the proof of the Theorem 3.1
from [24].

Also we have the following corollary of the Theorem 3.1, similar to the Corol-
lary 2.4.

Corollary 3.2. Let Ã1 be the operator from Theorem (3.1) and consider the
Cauchy problem for the abstract differential equation{

ẋ(t) = Ã1x(t), t ∈ R,
x(0) = x0,

(3.6)

on the space `p,1 ({en}), p > 1. Then all classical and more regular solutions
of (3.6) have sub-linear growth (3.4).
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Сублiнiйне зростання спецiального класу C0-груп на
щiльних пiдмножинах

Grigory Sklyar, Vitalii Marchenko, and Piotr Polak

Ми розглядаємо спецiальний клас лiнiйно зростальних C0-груп з
[20, 24], генератори яких є суттєво несамомпряженими необмеженими
операторами. Точнiше, цi генератори мають чисто точковий уявний
спектр, що згущується в точцi i∞, та вiдповiдну повну та мiнiмальну,
але не рiвномiрно мiнiмальну, сiм’ю власних векторiв, яка не утворює
базис Шаудера. Ми одержуємо точнi двостороннi оцiнки норм C0-груп
з цього класу на щiльних пiдмножинах фазового простору, а саме, на
D(Ak) для будь-яких k ∈ N, де A є необмеженим генератором вiдповiд-
ної C0-групи. Тим самим ми доводимо, що цi C0-групи мають сублiнiйне
зростання на D(Ak). Це означає сублiнiйне зростання класичних та всiх
бiльш регулярних розв’язкiв задачi Кошi для вiдповiдних абстрактних
лiнiйних еволюцiйних рiвнянь.

Ключовi слова: C0-група, сублiнiйне зростання, суттєво несамоспря-
жений необмежений оператор, двостороннi оцiнки, спектральна XYZ те-
орема, щiльнi пiдмножини, класичний розв’язок
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