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We study asymptotic behavior of the correlation functions of bipartite
sparse weighted random N ×N matrices. It is shown that the main term of
the correlation function of k-th and m-th moments of the integrated density
of states is N−1nk,m. The closed system of recurrent relations for coefficients
{nk,m}∞k,m=1 is obtained.
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1. Introduction

In the last few years interest in the spectral properties of ensembles of sparse
random matrices has sharply increased. It is expected that the spectral properties
of sparse random matrices will differ from the properties of the ensembles of most
matrices with independent elements (see [1], as well as the survey works [2,3] and
literature therein).

Interesting results for sparse random matrices were obtained in a series of
physical works [4–7]. In particular, the equation for the Laplace transform of
limiting integrated state density was derived, the ”density-density correlator”
was studied and it was shown that there exists some critical point pc > 1 in the
vicinity of which the phase transition in p occurs: for p < pc all eigenvectors
are localized, whereas for p > pc delocalized eigenvectors appear. All these
results were obtained by the replica or supersymmetry method, and therefore
need mathematically correct justification.

In mathematical papers [8–10], it was proved that there exists a limit for
N → ∞ averaged moments integrated state density in the simplest case, when
the matrix elements are equal to 0 with probability 1−p/N and 1 with probability
p/N . It is shown that limiting moments satisfy the Carleman condition, thereby
the existence of a limit of the integrated state density for the ensemble of sparse
random matrices is proved. In the papers [11, 12], similar results were obtained
for a wider class of sparse random matrix ensembles. In papers [19, 20], the
delocalization and the existence of absolutely continuous part of the limiting
spectra at 0 were studied. The asymptotic behavior of the correlator of moments
as N →∞ was studied in [14].
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In the papers [15, 16], similar results were obtained for the bipartite sparse
random matrix ensemble. In this paper, we study asymptotic behavior of the cor-
relator of moments as N →∞ for the bipartite sparse random matrix ensemble.
The speed of approaching to zero and the value of the main term are very im-
portant in physical applications. Therefore an extensive literature is devoted to
similar studies for various ensembles of random matrices (see, for example, [17,18]
and literature therein).

2. Main results

We introduce a randomly weighted adjacency matrix of random bipartite
graphs. Let Ξ = {aij : i ≤ j, i, j ∈ N} be the set of jointly independent
identically distributed random variables determined on the same probability space
and possessing the moments

Eakij = Xk <∞, i, j, k ∈ N, (2.1)

where E denotes the mathematical expectation corresponding to Ξ. We set aji =
aij for i ≤ j.

Given 0 < p ≤ N , let us define the family B
(p)
N = {b(N,p)ij : i ≤ j, i, j ∈ 1, N}

of jointly independent random variables

b
(N,p)
ij =

{
p−1/2 with probability p/N,

0 with probability 1− p/N.
(2.2)

We determine b
(N,p)
ji = b

(N,p)
ij and assume that B

(p)
N is independent from Ξ.

Let α ∈ (0, 1), denote I
(N,α)
1 = 1, bαNc, I(N,α)2 = bαNc+ 1, N , where bc

is a floor function. Now one can consider the real symmetric N × N matrix
A(N,p,α)(ω):

A
(N,p,α)
ij = aijb

(N,p)
ij ξ

(N,α)
ij , (2.3)

where

ξ
(N,α)
i,j =

1 if
(
i ∈ I(N,α)1 ∧ j ∈ I(N,α)2 ) ∨ (i ∈ I(N,α)2 ∧ j ∈ I(N,α)1

)
0 otherwise

(2.4)

that has N real eigenvalues λ
(N,p,α)
1 ≤ λ(N,p,α)2 ≤ s ≤ λ

(N,p,α)
N .

The normalized eigenvalue counting function (or integrated density of states)
of A(N,p,α) is determined by the formula

σ
(
λ;A(N,p,α)

)
=
]{j : λ

(N,p,α)
j < λ}
N

.

The following denotations are used:

M(N,p,α)
k =

∫
λkdσ

(
λ;A(N,p,α)

)
, M

(N,p,α)
k = EM(N,p,α)

k ,

C
(N,p,α)
k,m = E

{
M(N,p,α)

k M(N,p,α)
m

}
− E

{
M(N,p,α)

k

}
E
{
M(N,p,α)

m

}
.
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Theorem 2.1. Main asymptotic coefficients of correlators n
(p,α)
k,m ,

lim
N→∞

NC
(N,p,α)
k,m =

{
n
(p,α)
k/2,m/2 if k and m are even,

0 otherwise,
(2.5)

can be obtained by the system of recurrent relations (3.9)–(3.12), (3.23)–(3.52)
with the initial conditions (3.54)–(3.62).

3. Proof of Theorem 1

3.1. Correlators and double bipartite walks. Let us transform correla-

tor C
(N,p,α)
k,m to the form convenient for the limiting transition:

C
(N,p,α)
k,m = E

{
M(N,p,α)

k M(N,p,α)
m

}
− E

{
M(N,p,α)

k

}
E
{
M(N,p,α)

m

}
=

1

N2

(
E
{

Tr[A(N,p,α)]k Tr[A(N,p,α)]m
}
− E

{
Tr[A(N,p,α)]k

}
E
{

Tr[A(N,p,α)]m
})

=
1

N2

N∑
i1,...,ik=1

N∑
j1,...,jm=1

(
E
{
A

(N,p,α)
i1,i2

A
(N,p,α)
i2,i3

· · ·A(N,p,α)
ik,i1

A
(N,p,α)
j1,j2

A
(N,p,α)
j2,j3

· · ·A(N,p,α)
jm,j1

}
− E

{
A

(N,p,α)
i1,i2

A
(N,p,α)
i2,i3

. . . A
(N,p,α)
ik,i1

}
E
{
A

(N,p,α)
j1,j2

A
(N,p,α)
j2,j3

. . . A
(N,p,α)
jm,j1

})
=

1

N2

N∑
i1,...,ik=1

N∑
j1,...,jm=1

(
E {ai1,i2ai2,i3 . . . aik,i1aj1,j2aj2,j3 . . . ajm,j1}

× E
{
b
(N,p)
i1,i2

b
(N,p)
i2,i3

. . . b
(N,p)
ik,i1

b
(N,p)
j1,j2

b
(N,p
j2,j3

. . . b
(N,p)
jm,j1

}
− E {ai1,i2ai2,i3 . . . aik,i1}E {aj1,j2aj2,j3 . . . ajm,j1}

× E
{
b
(N,p)
i1,i2

b
(N,p)
i2,i3

. . . b
(N,p)
ik,i1

}
E
{
b
(N,p)
j1,j2

b
(N,p)
j2,j3

. . . b
(N,p)
jm,j1

})
× ξ(N,α)i1,i2

ξ
(N,α)
i2,i3

. . . ξ
(N,α)
ik,i1

ξ
(N,α)
j1,j2

ξ
(N,α)
j2,j3

. . . ξ
(N,α)
jm,j1

. (3.1)

Let W
(N,α)
k be a set of closed bipartite walks of k steps over the sets I

(N,α)
1 =

1, bαNc and I
(N,α)
2 = bαNc+ 1, N : W

(N,α)
k = (1)W

(N,α)
k ∪ (2)W

(N,α)
k , where

(1)W
(N,α)
k =

{
w = (w1, w2, s, wk, wk+1 = w1) : ∀i ∈ 1, k + 1 wi ∈ I(N,α)2−(imod2)

}
,

(2)W
(N,α)
k =

{
w = (w1, w2, s, wk, wk+1 = w1) : ∀i ∈ 1, k + 1 wi ∈ I(N,α)1+(imod2)

}
.

Here, (a mod m) denotes the residue of a modulo m. Thus, for a walk w

from W
(N,α)
k , either all odd elements are from I

(N,α)
1 and all even elements

are from I
(N,α)
2 , or vice versa, all odd elements are from I

(N,α)
2 and all even

ones are from I
(N,α)
1 . In the first case, w is from (1)W

(N,α)
k , and in the sec-

ond case, w is from (2)W
(N,α)
k . Here are some examples: (2, 4, 1, 5, 3, 4, 2, 6, 2) ∈

(1)W
(6,1/2)
8 ; (5, 1, 4, 2, 6, 3, 6, 1, 5) ∈ (2)W

(6,1/2)
8 ; (2, 4, 1, 5, 3, 4, 2, 6, 1) 6∈ (1)W

(6,1/2)
8
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(nonclosed); (2, 4, 1, 5, 3, 4, 2, 3, 2) ∈ (1)W
(6,1/2)
8 (nonbipartite). For w ∈ W (N,α)

k ,

let us denote a(w) =
∏k
i=1 awi,wi+1 , b(N,p)(w) =

∏k
i=1 b

(N,p)
wi,wi+1 .

Let D
(N,α)
k,m

def≡ W
(N,α)
k ×W (N,α)

m be a set of double bipartite walks of k and m

steps over the sets I
(N,α)
1 and I

(N,α)
2 . For d = (w(1), w(2)) ∈ D

(N)
k,m, let us denote

a(d) = a(w(1))a(w(2)), b(N,p)(d) = b(N,p)(w(1))b(N,p)(w(2)).

Then we can write equality (3.1) in the following way:

C
(N,p,α)
k,m =

1

N2

∑
d=(w(1),w(2))∈W (N,α)

k,m

{
Ea(d)Eb(N,p)(d)−

− Ea(w(1))Eb(N,p)(w(1))Ea(w(2))Eb(N,p)(w(2))
}
. (3.2)

For w ∈ W (N,α)
k and f, g ∈ 1, N , denote by nw(f, g) the number of steps f → g

and g → f :

nw(f, g) = #
{
i ∈ 1, k : (wi = f ∧ wi+1 = g) ∨ (wi = g ∧ wi+1 = f)

}
.

For w = (w(1), w(2)) ∈ D
(N,α)
k,m , let us introduce a similar denotation

nd(f, g) = nw(1)(f, g) + nw(2)(f, g).

Then, for all w ∈W (N,α)
k and all d ∈ D

(N,α)
k,m , we have

Ea(w) =

N∏
f=1

N∏
g=f

Vnw(f,g) Ea(d) =

N∏
f=1

N∏
g=f

Vnd(f,g).

Given w ∈ W
(N)
k , let us define the sets Vw = ∪ki=1{wi} and Ew =

∪ki=1{(wi, wi+1)}, where (wi, wi+1) is a non-ordered pair. It is easy to see that
Gw = (Vw, Ew) is a simple connected non-oriented bipartite graph and the walk
w covers the graph Gw. Let us call Gw the skeleton of walk w. We denote by
nw(e) the number of passages of the edge e by the walk w in direct and inverse
directions. For (wj , wj+1) = ej ∈ Ew, let us denote aej = awj ,wj+1 = awj+1,wj .
Then we obtain

Ea(w) =
∏
e∈Ew

Eanw(e)e =
∏
e∈Ew

Vnw(e).

In a similar way, we can write

Eb(N,p)(w) =
∏
e∈Ew

E
(

[b(N,p)e ]nw(e)
)

=
∏
e∈Ew

1

Npnw(e)/2−1
.

Let us introduce similar definitions for a double bipartite walk d = (w(1), w(2)) ∈
D

(N)
k,m. For Vd = Vw(1) ∪ Vw(2) , Ed = Ew(1) ∪ Ew(2) , Gd = (Vd, Ed), the following

equations hold:

Ea(d) =
∏
e∈Ed

Vnd(e), Eb(N,p)(d) =
∏
e∈Ed

1

Npnd(e)/2−1
.
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Then we can write (3.2) in the form

C
(N,p,α)
k,m =

1

N2

∑
d=(w(1),w(2))∈W (N,α)

k,m

∏
e∈Ed

Eand(e)e E
[
b(N,p)e

]nd(e)

−
∏

e∈E
w(1)

Ea
n
w(1) (e)
e E

[
b(N,p)e

]n
w(1) (e) ∏

e∈E
w(2)

Ea
n
w(2) (e)
e E

[
b(N,p)e

]n
w(2) (e)


=

1

N2

∑
d=(w(1),w(2))∈W (N,α)

k,m

N−|Ed| ∏
e∈Ed

Vnd(e)

pnd(e)/2−1

− N−|Ew(1) |−|Ew(2) |
∏

e∈E
w(1)

Vn
w(1) (e)

pnw(1) (e)/2−1

∏
e∈E

w(2)

Vn
w(2) (e)

pnw(2) (e)/2−1


=

1

N2

∑
d=(w(1),w(2))∈W (N,α)

k,m

{ ∏
e∈Ed Vnd(e)

N |Ed|p(k+m)/2−|Ed|

−

∏
e∈E

w(1)
Vn

w(1) (e)

∏
e∈E

w(2)
Vn

w(2) (e)

N |Ew(1) |+|Ew(2) |p(k+m)/2−|E
w(1) |−|Ew(2) |

}
=

∑
d∈W (N,α)

k,m

θ(d), (3.3)

where θ(d) is the contribution of the double bipartite walk d to the mathemati-
cal expectation of the corresponding correlator. The last expression is not very
convenient for the limiting transition. Moreover, the latter formula shows that
the contribution of a double bipartite walk d depends only on the sets

∪e∈Ed {nd(e)}, ∪e∈E
w(1)
{nw(1)(e)}, ∪e∈E

w(2)
{nw(2)(e)}. (3.4)

Therefore, it is natural to introduce an equivalence relation on D
(N,α)
k,m . Double

bipartite walks d = (w(1), w(2)), u = (u(1), u(2)) ∈ W (N,α)
k,m are equivalent d ∼ u

if and only if there exists a partition preserving bijection φ between the sets of
vertices Vd and Vu such that

d ∼ u ⇐⇒
(
∃φ : Vd

bij→ Vu φ(Vd ∩ I
(N,α)
1 ) = Vu ∩ I(N,α)1 , u = φ(d)

)
.

Let us denote by [d] the class of equivalence of double bipartite walk d and by

C
(N,α)
k,m the set of such classes for all d ∈ D

(N,α)
k,m . It is obvious that if two walks d

and u are equivalent, then their contributions are equal:

d ∼ u =⇒ θ(d) = θ(u).

Cardinality of the equivalence class [d] is equal to the number of all mappings
φ : Vd → 1, N such that φ(V1,d) ⊂ IN,α1 and φ(V2,d) ⊂ IN,α2 (where V1,d = Vd ∩
I
(N,α)
1 and V2,d = Vd∩I

(N,α)
2 ). Therefore, it is equal to the number bαNc(bαNc−
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1) . . . (bαNc − |V1,d|+ 1)(d(1− α)Ne)(d(1− α)Ne − 1) · · · (d(1− α)Ne − |V2,d|+
1). Then we can write (3.3) in the following form:

C
(N,α)
k,m =

1

N2

∑
[d]∈C(N,α)

k,m

{
bα1Nc(bα1Nc − 1) · · · (bα1Nc − |V1,d|+ 1)

N |Ed|p(k+m)/2−|Ed|

× (dα2Ne)(dα2Ne − 1) · · · (dα2Ne − |V2,d|+ 1)

×

∏
e∈Ed

Vnd(e) −
p|Ew(1) |+|Ew(2) |−|Ed|

N |Ew(1) |+|Ew(2) |−|Ed|

∏
e∈E

w(1)

Vn
w(1) (e)

∏
e∈E

w(2)

Vn
w(2) (e)


=

∑
[d]∈C(N,α)

k,m

θ([d]), (3.5)

where α1 = α and α2 = 1− α.
But the transition to the limit N →∞ in the last formula is hindered by the

dependence of C
(N,α)
k,m on N . In order to solve this problem, and at the same time

for better understanding of C
(N,α)
k,m , we introduce the notion of minimal double

bipartite walks.

3.2. Minimal and essential walks. It is convenient to deal with D̃
(N,α)
k,m

instead of D
(N,α)
k,m , where D̃

(N,α)
k,m is a set of double bipartite closed walks over the

sets I
(N,α)
1 and Ĩ

(N,α)
2 =

{
1̃, 2̃ . . . , ˜dN(1− α)e

}
. We just renamed the vertices of

the second component. Let us consider C̃
(N,α)
k,m , the set of equivalence classes of

D̃
(N,α)
k,m . As a representative of the equivalence class [d] ∈ C̃

(N,α)
k,m , we can take a

minimal double walk.

Definition 3.1. A double bipartite closed walk d ∈ C̃
(N,α)
k,m is called minimal

if and only if at each stage of the passage a new vertex is the minimum element
among the unused vertices of the corresponding component. In this case, we
apply the following procedure for passing a double walk: first, we pass the first
walk, then we jump over to the initial vertex of the second walk and then pass it.

Let us denote the set of all minimal walks of D̃
(N,α)
k,m by M

(N,α)
k,m .

Example 3.2. The double walk
(

(1, 1̃, 1, 2̃, 1), (3̃, 2, 3̃, 1, 1̃, 1, 3̃)
)

is the minimal
one.

Then (3.5) can be written as

C
(N,α)
k,m =

1

N2

∑
d∈M(N,α)

k,m

{
bα1Nc(bα1Nc − 1) · · · (bα1Nc − |V1,d|+ 1)

N |Ed|p(k+m)/2−|Ed|

× (dα2Ne)(dα2Ne − 1) · · · (dα2Ne − |V2,d|+ 1)

×

∏
e∈Ed

Vnd(e) −
p|Ew(1) |+|Ew(2) |−|Ed|

N |Ew(1) |+|Ew(2) |−|Ed|

∏
e∈E

w(1)

Vn
w(1) (e)

∏
e∈E

w(2)

Vn
w(2) (e)


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=
∑

d∈M(N,α)
k,m

θ([d]), (3.6)

Each double walk d ∈ M
(N,α)
k,m has at most k + m vertices. Hence, M

(1,α)
k,m ⊂

M
(2,α)
k,m ⊂ · · · ⊂ M

(d(k+m)min(α1,α2)−1)e,α)
k,m = M

(d(k+m)min(α1,α2)−1)e+1,α)
k,m = · · · . It

is natural to denote M
(α)
k,m = M

(d(k+m)min(α1,α2)−1)e,α)
k,m . Let us denote the number

of common edges of Gw(1) and Gw(2) by c(d) = |Ew(1) |+ |Ew(2) | − |Ed|. Then the
following equality for the main asymptotic coefficient of the correlator holds:

n
(p,α)
k/2,m/2 = lim

N→∞
NC

(N,p,α)
k,m =

∑
w∈M(α)

k,m

lim
N→∞

[
N |Vd|−|Ed|−1

p(k+m)/2−|Ed|
α
|V1,d|
1 α

|V2,d|
2

×

∏
e∈Ed

Vnd(e) −
pc(d)

N c(d)

∏
e∈E

w(1)

Vn
w(1) (e)

∏
e∈E

w(2)

Vn
w(2) (e)

 . (3.7)

M
(α)
k,m is a finite set. Not all minimal walks make a nonzero contribution to

the main asymptotic coefficient of the correlator. The graph Gd has at most 2
connected components because Gw(1) and Gw(2) are connected graphs. But if the
graph Gd has exactly 2 connected components, then

Vw(1) ∩ Vw(2) = ∅⇒ Ew(1) ∩ Ew(2) = ∅⇒ c(d) = 0

⇒

∏
e∈Ed

Vnd(e) −
pc(d)

N c(d)

∏
e∈E

w(1)

Vn
w(1) (e)

∏
e∈E

w(2)

Vn
w(2) (e)

 = 0.

Consequently, such minimal double bipartite walks make zero contribution to

n
(p,α)
k/2,m/2.

This means that only minimal double walks with a connected skeleton Gd can
make a nonzero contribution. For any connected graph Gd, the inequality |Vd| −
|Ed| − 1 ≤ 0 holds, and the equality holds if and only if Gd is a tree. There are
two cases: Ew(1) ∩ Ew(2) = ∅ ⇒ c(d) = 0 and c(d) > 0. In the first case, the

contribution is 0 (see above), and in the second, it is α
|V1,d|
1 α

|V2,d|
2

∏
e∈Ed

Vnd(e)

pnd(e)/2−1 .

Definition 3.3. We call essential a minimal double bipartite walk whose
contribution to the main asymptotic coefficient of the corresponding correlator is
not equal to 0.

Denote the set of essential double walks by Sk,m. Sk,m = {d ∈ Mk,m :
Gd is a tree ∧ c(d) > 0}. These are all minimal double bipartite walks, whose
graph is a tree and the graphs of the first and second walks have at least one
common edge. Now (3.7) can be written like this:

n
(p,α)
k/2,m/2 =

∑
d∈Sk,m

θ(d), (3.8)
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where

θ(d) = α
|V1,d|
1 α

|V2,d|
2

∏
e∈Ed

Vnd(e)

pnd(e)/2−1
.

Thus the first part of the theorem is proved, namely the existence of n
(p)
k/2,m/2.

It remains to derive a system of recurrence relations for n
(p)
k/2,m/2. From the

definition it is clear that the weight θ of an essential double bipartite walk is
multiplicative along the edges of Gd.

It is clear that Sk,m = ∅ if k or m is odd. Indeed, from the definition of the
essential double walk d it follows that Gd is a tree. Hence, Gw(1) and Gw(2) are
trees. Each edge of any tree is a bridge. Since w(1) and w(2) are closed walks,

then their lengths are even numbers. Thus, n
(p)
k/2,m/2 = 0 for such k and m.

3.3. First edge decomposition of essential walks. The idea of deriva-
tion of the recurrent system is the same as that of Wigner ( [1]), however its
implementation is more complicated. Remove from the graph Gd the first edge
(r, v) of the first walk w(1). Since Gd is a tree, the graph splits into two pieces:
the upper graph Gu, which contains the vertex v, and the right graph Gr, which
contains the vertex r. Then the bipartite walk w(1) (respectively, w(2)) is divided
into the upper bipartite walk w(1,u) (respectively, w(2,u)) on Gu and the right
bipartite walk w(1,r) (respectively, w(2,r)) on Gr. Similarly, let us call d(u) =
(w(1,u), w(2,u)) an upper double walk and d(r) = (w(1,r), w(2,r)) a right double
walk. But for an unambiguous restoration of the minimal double walk d it is not
enough to know these pieces. It is also necessary to know the multiplicity of the
edge (r, v) and the behavior of the double walk d at the vertices r and v (that is,
after what moments of passing r and v the edge (r, v) is passed). Let us call this
information a code of the double walk d. Thus, after removing the edge (r, v)
from G, instead of one set of double walks we get a set of upper double walks, a
set of right double walks and a set of codes. We divide the original set of double
walks into such non-intersecting subsets for which the corresponding set of upper
double walks, the set of right double walks and the set of codes are independent
(that is, there is a bijection between the original set of double walks and the
Cartesian product of the set of upper double walks, the set of right double walks
and the set of codes). Then, using the weight multiplicity, we can write a total
weight of double walks from original set as a product of a total weight of upper
double walks by a total weight of right double walks by some number specified
below. Then we do the same for new sets of double walks until the system of
recurrence relations closes. Each such step is carried out in two stages:

(i) cut the graph Gd along the root r and call it the first cutting;

(ii) the resulting piece of Gd, containing the edge (r, v), cut along the vertex v
and call it the second cutting.

Let us introduce some notations. The first walk of a minimal double walk is
called a gray walk, and the second, a blue one. The first vertex of the gray (blue)
walk is called a gray (blue) root. One can see that r is a gray root. We also
denote the left graph by Gl = (r, v)∪Gu. Gl is a tree with the root r and exactly
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one edge extending from the root is (r, v). Half of the length of the gray (blue)
walk we denote by lg (lb). Let also ug (ub) denote a half of the length of a gray
(blue) walk along the upper graph, and fg (fb) denote the number of gray (blue)
steps from the gray root r to the vertex v. We also denote by rg (rb) the number
of all gray (blue) steps leaving the gray root r, and denote by vg (vb) the number

of steps leaving v vertex, other than
−−−→
(v, r).

Let Set(lg, lb) denote the set of essential (lg, lb)-walks, and S(lg, lb) denote
their total weight. The following table describes the used denotations. The same
denotations are also used for total weight S. If several designations are used
simultaneously, then the corresponding set is the intersection of sets with only
one designation, that is, all requirements are met simultaneously (see Table 3.1
below).

Set(a) the parameters rg(d), rb(d) in this class can take any valid
values

the absence of (a) the parameters rg(d), rb(d) are fixed

Set(=) the gray root matches the blue root

Set(6=) the gray root does not match the blue root

Set(c) the skeleton of the gray walk and the skeleton of the blue
walk have at least one common edge

Set(6c) the skeleton of the gray walk and the skeleton of the blue
walk have at least zero common edge

Set(r) the skeleton of the blue walk has the edge (r, v)

Set(g) the skeleton of the blue walk does not have the edge (r, v)

Set(u) the blue root is in the upper tree

Set(d) the blue root which does not coincide with the gray root
is in the right tree

Set(v) the parameters vg(d), vb(d) are fixed

Set(1) the gray or blue walk is lacking

Set(1) the skeleton of the double walk Gd has only one edge with
the gray root r

Set(l) the lengths of the gray walk and the blue walk on the
upper (left) graph
are fixed

Set(f) gray multiplicity and blue multiplicity of the edge (r, v)
are fixed

Set(∅) top graph is empty

Set(s) the blue walk passes the gray root

Set(n) the gray walk does not have any steps
(1)Set the gray root is in the first component (V1,d)
(2)Set the gray root is in the second component (V2,d)

Table 3.1

Schematically, the system of recurrence relations is presented in Fig. 3.1. Each
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element of the scheme is expressed through those elements which are indicated
by arrows coming from it. The dotted arrow means that the total length is
necessarily reduced.

Fig. 3.1: Scheme of the system of recurrence relations

In the figures, the blue root is depicted as a black circle, the gray one is
depicted as a white circle, and if the gray and blue roots coincide, the circle is
black and white. Two parallel segments indicate gray and blue edges. The case
when the blue walk reaches the gray root is depicted as a small black circle inside
the gray root.

Since for each essential double walk the gray and blue roots either coincide
or they do not coincide, the following equality is true:

n
(p,α)
lg ,lb

= S(lg, lb; p, α) = S
(a)
(=, c)(lg, lb; p, α) + S

(a)
(6=, c)(lg, lb; p, α). (3.9)

Here, S(lg, lb; p, α), S
(a)
(=, c)(lg, lb; p, α), S

(a)
(6=, c)(lg, lb; p, α) and other S depend on

p and α, but in order not to overload the formulas, we will further omit the
explicit expression of this dependence. Looking through all possible values of the
parameters rg and rb, we get the equality

S
(a)
(=, c)(lg, lb) =

lg∑
rg=0

lb∑
rb=0

S(=, c)(lg, lb; rg, rb). (3.10)
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Since the edge (r, v) is either in the blue skeleton or it is not, the following equality
holds:

S(=, c)(lg, lb; rg, rb) = S
(g)
(=, c)(lg, lb; rg, rb) + S

(r)
(=, c)(lg, lb; rg, rb). (3.11)

Since the gray root is either in the first component or it is in the second one, the
following equality holds:

S(=, c)(lg, lb; rg, rb) = (1)S(=, c)(lg, lb; rg, rb) + (2)S(=, c)(lg, lb; rg, rb). (3.12)

Take an arbitrary double bipartite walk d from Set
(g)
(=, c)(lg, lb; rg, rb). We divide

its skeleton Gd into the left graph Gl and the right graph Gr. And the double
bipartite walk d splits into a left double bipartite walk f and a right one s. At
the same time, f is really a single walk since there is no blue walk in f (the edge
(r, v) in the blue walk d is not traversed, and the skeleton Gd is a tree). At the

root r of the skeleton of f there is only one edge, therefore f ∈ Set
(1)
(1)(fg+ug, fg).

Once in Gd there is a blue-gray edge, but in Gl it does not exist, then it is in Gr.
The gray and blue roots in s coincide, therefore s ∈ Set(=,c)(lg − ug − fg, lb, rg −
fg, rb). The following lemma holds.

Lemma 3.4 (The first cutting lemma). Let lg, lb, rg, rb be natural numbers
such that lg ≥ rg > 0 and lb ≥ rb > 0. Then the following equalities are true:

(1)S
(g)
(=, c)(lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

(1)S
(g,l,f)
(=, c) (lg, lb; rg, rb;ug, fg), (3.13)

(1)S
(g,l,f)
(=,c) (lg, lb; rg, rb;ug, fg)

= α−11

(
rg − 1

fg − 1

)
(1)S

(1)
(1)(fg + ug, fg)

(1)S(=,c)(lg − ug − fg, lb, rg − fg, rb), (3.14)

(2)S
(g)
(=, c)(lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

(2)S
(g,l,f)
(=, c) (lg, lb; rg, rb;ug, fg), (3.15)

(2)S
(g,l,f)
(=,c) (lg, lb; rg, rb;ug, fg)

= α−12

(
rg − 1

fg − 1

)
(2)S

(1)
(1)(fg + ug, fg)

(2)S(=,c)(lg − ug − fg, lb, rg − fg, rb). (3.16)

What is (1)Set
(g)
(=, c)(lg, lb; rg, rb)? If we look at the spreadsheet, we can easily

understand that (1)Set
(g)
(=, c)(lg, lb; rg, rb) is a set of essential double bipartite closed

walks such that:

1) the length of the first (gray) walk is 2lg, the length of the second (blue) walk
is 2lb;

2) (1) means that the root of the first walk is 1 and the first step of the first

walk is
−−−→
(1, 1̃);
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3) = means that the root of the second walk coincides with the root of the first
root, so it is 1;

4) c means that the skeleton of the first walk and the skeleton of the second
walk have at least one common edge;

5) g means that the skeleton of the second walk does not have edge (1, 1̃), so
fb = 0, then ub = 0, because the skeleton of the second walk is a tree and it
does not have edge (1, 1̃, but it has vertex 1; 6) the number of steps of the
first walk from vertex 1 is rg, the number of steps of the second walk from
vertex 1 is rb. So, going over all the possible values ug, ub, we get (3.13).

Relation (3.14) follows from the bijection

(1)Set
(g, l, f)
(=, c) (lg, lb; rg, rb;ug, fg)→ (1)Set

(1)
(1)(fg + ug, fg)

× (1)Set(=, c)(lg − ug − fg, lb, rg − fg, rb)× Code(1)(rg, fg), (3.17)

where Code(1)(rg, fg) is a set of sequences of zeros and ones of length rg, which
have exactly fg ones and the first term is 1. Fig. 3.2 illustrates equality (3.14).

Fig. 3.2: Representation of (1)Set
(g,l,f)
(=,c)

Indeed, since the contribution of essential double bipartite walks is multiplica-
tive along the edges and vertices (see (3.8)), the contribution of an essential walk

from (1)Set
(g,l,f)
(=,c) (lg, lb; rg, rb;ug, fg) is equal to the product of contributions of its

parts from (1)Set
(g,l,f)
(=,c) (lg, lb; rg, rb;ug, fg) and (1)Set(=,c)(lg−ug−fg, lb, rg−fg, rb)

and a factor α−11 . The multiplier α−11 arises due to the double use of the root in
the first and second double bipartite walks of the partition. Applying this fact
and the Cartesian product of the image of the above described bijective map, we
obtain the following equality:

(1)S
(g, l, f)
(=, c) (lg, lb; rg, rb;ug, fg) =

∣∣∣Code(1)(rg, fg)
∣∣∣ (1)S(1)

(1)(fg + ug, fg)

× (1)S(=, c)(lg − ug − fg, lb, rg − fg, rb)α−11 ,

where
∣∣∣Code(1)(rg, fg)

∣∣∣ =
(rg−1
fg−1

)
is a trivial combinatorial fact. Indeed, if the

first element is fixed, then we have to choose fg − 1 positions for the remaining
elements among the rg − 1 free places.

It remains to prove the bijectivity of (3.17). First, we are to obtain two
numerical double walks and a code and then to minimize both double walks. For
splitting, the following splitting algorithm is used. We first split a gray walk.
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Further, we go along d(1) and if the next step belongs to Gl, then we add it to
the first gray walk f (1), otherwise we add it to the second gray walk s(1). At the
same time, if the next step begins with the gray root, then, if it is (r, v), we assign
1 to the code, otherwise we assign 0 to the code. Obviously, the first element of
the code is 1 since the first edge of the gray walk is (r, v) by definition, and the
total number of ones in the code is fg, i.e., #{i : ci = 1} = fg, #{i : ci = 0} =
rg − fg ∧ c1 = 1. It is easy to see that f (1) and s(1) are really bipartite walks (in
particular for every adjacent edge, the origin of the next edge coincides with the
end of the previous edge), closed walks (in particular both walks have the same
root r). Obviously, every edge from the left graph Gl and from the right graph
Gr is traversed in the corresponding walk f (1) or s(1) the same number of times
as in a gray walk d(1), i.e.,(

∀e ∈ Gl nd(1)(e) = nf (1)(e)
)

and
(
∀e ∈ Gr nd(1)(e) = ns(1)(e)

)
.

Since the blue walk is completely in s(2), splitting is obvious, i.e.,(
∀e ∈ Gl nd(2)(e) = nf (2)(e) = 0

)
and

(
∀e ∈ Gr nd(2)(e) = ns(2)(e)

)
.

Thus, the weight of the original double walk is equal to the product of weights
of the first and second partitioned double walks up to the factor α−11 . Now we
make them minimal by applying minimization mapping to them. At the same
time, the weight of walks does not change.

Here is an example of double bipartite closed walk d =
(
d(1), d(2)

)
that illus-

trates the lemma.

d(1) = (1, 1̃, 2, 2̃, 2, 3̃, 2, 2̃, 2, 1̃, 3, 1̃, 3, 1̃,1, 4̃, 4, 4̃, 5, 4̃, 6,

4̃, 1, 5̃, 1, 4̃, 1, 1̃, 1, 5̃, 1, 1̃, 1, 4̃, 1, 1̃, 3, 1̃, 1);

d(1) is a gray walk;

d(2) = (1, 6̃, 7, 7̃, 7, 6̃, 7, 7̃, 7, 6̃, 1, 5̃, 8, 5̃, 1, 4̃, 1, 4̃, 9, 4̃, 5, 4̃, 1, 5̃, 1);

d(2) is a blue walk, r = 1, v = 1̃, d ∈ (1)Set
(g, l, f)
(=, c) (19, 12; 9, 5; 7, 4) ;

G =
({

1, 1̃, 2, 2̃, 3̃, 3, 4̃, 4, 5, 6, 5̃, 8, 6̃, 7, 7̃, 9
}
,{

(1, 1̃), (1̃, 2), (2, 2̃), (2, 3̃), (1̃, 3), (1, 4̃), (4̃, 4),

(4̃, 5), (4̃, 6), (1, 5̃), (5̃, 8), (1, 6̃), (6̃, 7), (7, 7̃), (4̃, 9)
})

;

Gu =
({

1̃, 2, 2̃, 3̃, 3
}
,
{

(1̃, 2), (2, 2̃), (2, 3̃), (1̃, 3)
})

;

Gl =
({

1, 1̃, 2, 2̃, 3̃, 3
}
,
{

(1, 1̃), (1̃, 2), (2, 2̃), (2, 3̃); (1̃, 3)
})

;

Gr =
({

1, 4̃, 4, 5, 6, 5̃, 8, 6̃, 7, 7̃, 9
}
,{

(1, 4̃), (4̃, 4), (4̃, 5), (4̃, 6), (1, 5̃), (5̃, 8), (1, 6̃), (6̃, 7), (7, 7̃), (4̃, 9)
})

;
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lg = 19, lb = 12, fg = 4, fb = 0, rg = 9, rb = 5, ug = 7; ub = 0, vg = 4, vb = 0,
d→ (η, θ, c), η = (η(1), η(2)); θ = (θ(1), θ(2)), c ∈ {0, 1}9;

η(1) = (1, 1̃, 2, 2̃, 2, 3̃, 2, 2̃, 2, 1̃, 3, 1̃, 3, 1̃, 1, 1̃, 1, 1̃, 1, 1̃, 3, 1̃, 1);

η(2) = (1);

θ(1) = (1, 4̃, 4, 4̃, 5, 4̃, 6, 4̃, 1, 5̃, 1, 4̃, 1, 5̃, 1, 4̃, 1);

θ(2) = (1, 6̃, 7, 7̃, 7, 6̃, 7, 7̃, 7, 6̃, 1, 5̃, 8, 5̃, 1, 4̃, 1, 4̃, 9, 4̃, 5, 4̃, 1, 5̃, 1);

c = (1, 0, 0, 0, 1, 0, 1, 0, 1); η ∈ (1)Set
(1)
(1)(11, 7), θ ∈ (1)Set(=, c)(8, 12, 5, 5).

The bijectivity is proved by the following collection algorithm. We gradually
renumber vertices of the first and second walks. The roots of these double walks
are set in compliance number 1. Let us go along the first and second double
walks. We start the construction from the root. If the next step of a double
walk under construction ends at the root, then, if the next element of the code
is 1, we continue going along the first subwalk f , otherwise continue going along
the second subwalk s. If the final vertex of the current step along the subwalk
does not have its own number in the large walk, then we set it in correspondence
with the largest number of the already completed vertices of the large walk in
the corresponding component plus 1 in the corresponding set. The result is a
bipartite double walk from the required class. It is easy to see that splitting
mapping and collection mapping are injective. It means that they are bijective
since the area of definition and the area of values are finite. It remains to split
the gray walk f (1).

Lemma 3.5 (The second cutting lemma). Let fg be a natural number and
ug be a natural number or zero. Then the following equalities are true:

(1)S
(1)
(1)(fg + ug, fg) =

ug∑
vg=0

(1)S
(1, v)
(1) (fg + ug, fg, vg), (3.18)

(1)S
(1, v)
(1) (fg + ug, fg, vg) =

(
fg + vg − 1

fg − 1

)
α1V2fg
pfg−1

(2)S(1)(ug, vg), (3.19)

(2)S
(1)
(1)(fg + ug, fg) =

ug∑
vg=0

(2)S
(1, v)
(1) (fg + ug, fg, vg), (3.20)

(2)S
(1, v)
(1) (fg + ug, fg, vg) =

(
fg + vg − 1

fg − 1

)
α2V2fg
pfg−1

(1)S(1)(ug, vg). (3.21)

This lemma is proved in the same way as the first cutting lemma. The first
equality is obvious, and the second equality follows from the bijection

(1)Set
(1,v)
(1) (fg+ug, fg, vg)

bij→ (2)Set(1)(ug, vg)×(1)Set
(1,∅)
1 (fg)×Code(2)(fg+vg, fg),

(3.22)
where Code(2)(fg + vg, fg) is a set of sequences of zeros and ones of length fg +
vg, which have exactly fg ones and the last term is 1. The last term is 1 since
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the gray walk should return to the gray root r by the last step from the vertex v.

It is obvious that (1)Set
(1,∅)
1 (fg) consists of a single walk with a weight

α1α2V2fg
pfg−1 .

Fig. 3.3 illustrates equality (3.19).

Fig. 3.3: Representation of (1)Set
(1, v)
(1)

Combining these two lemmas, changing the order of summation and taking
out some expressions beyond sign of the sum, we get the formulas:

(1)S
(g)
(=, c)(lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

×
lg−rg∑
ug=0

(1)S(=, c)(lg − ug − fg, lb; rg − fg, rb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

)
(2)S(1)(ug, vg), (3.23)

(2)S
(g)
(=, c)(lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

×
lg−rg∑
ug=0

(2)S(=, c)(lg − ug − fg, lb; rg − fg, rb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

)
(1)S(1)(ug, vg). (3.24)

3.4. Conclusion of a recursive system of equations. In a similar way,
(see also [12]) the next formulas are proved:

(1)S(1)(lg, rg) =

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

lg−rg∑
ug=0

(1)S(1)(lg − ug − fg, rg − fg)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

)
(2)S(1)(ug, vg), (3.25)

(2)S(1)(lg, rg) =

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

lg−rg∑
ug=0

(2)S(1)(lg − ug − fg, rg − fg)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

)
(1)S(1)(ug, vg). (3.26)
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The formulas

(1)S
(r)
(=, c)(lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

) rb∑
fb=1

(
rb
fb

)
V2(fg+fb)

pfg+fb−1

×
lg−rg∑
ug=0

(1)S(=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

) ub∑
vb=0

(
fb + vb − 1

fb − 1

)
(2)S(=, 6c)(ug, vg), (3.27)

(2)S
(r)
(=, c)(lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

) rb∑
fb=1

(
rb
fb

)
V2(fg+fb)

pfg+fb−1

×
lg−rg∑
ug=0

(2)S(=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

) ub∑
vb=0

(
fb + vb − 1

fb − 1

)
(1)S(=, 6c)(ug, vg) (3.28)

follow from Lemmas 3.6 and 3.7 below.

Lemma 3.6. Let lg, lb, rg, rb be natural numbers such that lg ≥ rg > 0 and
lb ≥ rb > 0. Then the following equalities are true:

(1)S
(r)
(=, c)(lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

lb−rb∑
ub=0

rb∑
fb=1

(1)S
(r,l,f)
(=, c) (lg, lb; rg, rb;ug, ub; fg, fb),

(1)S
(r,l,f)
(=, c) (lg, lb; rg, rb;ug, ub; fg, fb)

= α−11

(
rg − 1

fg − 1

)(
rb
fb

)
(1)S

(r,f)
(1,=, c)(fg + ug, fb + ub; fg, fb)

× (1)S(=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb),

(2)S
(r)
(=, c)(lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

lb−rb∑
ub=0

rb∑
fb=1

(2)S
(r,l,f)
(=, c) (lg, lb; rg, rb;ug, ub; fg, fb),

(2)S
(r,l,f)
(=, c) (lg, lb; rg, rb;ug, ub; fg, fb)

= α−12

(
rg − 1

fg − 1

)(
rb
fb

)
(2)S

(r,f)
(1,=, c)(fg + ug, fb + ub; fg, fb)

× (2)S(=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb).

The formula contains the factor
(
rb
fb

)
because, unlike a gray walk, the first step

of a blue walk does not have to be (r, v) (see Fig. 3.4).
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Fig. 3.4: Representation of (1)Set
(r,l,f)
(=, c)

Lemma 3.7. Let fg, fb be natural numbers and ug, ub be natural numbers or
zeros. Then the following equalities are true:

(1)S
(r,f)
(1,=, c)(fg + ug, fb + ub; fg, fb)

=

ug∑
vg=0

ub∑
vb=0

(1)S
(v,r,f)
(1,=, c)(fg + ug, fb + ub; fg, fb; vg, vb),

(1)S
(v,r,f)
(1,=, c)(fg + ug, fb + ub; fg, fb; vg, vb)

=

(
fg + vg − 1

fg − 1

)(
fb + vb − 1

fb − 1

)
α1V2(fg+fb)

pfg+fb−1
(2)S(=, 6c)(ug, ub; vg, vb).

(2)S
(r,f)
(1,=, c)(fg + ug, fb + ub; fg, fb)

=

ug∑
vg=0

ub∑
vb=0

(2)S
(v,r,f)
(1,=, c)(fg + ug, fb + ub; fg, fb; vg, vb),

(2)S
(v,r,f)
(1,=, c)(fg + ug, fb + ub; fg, fb; vg, vb)

=

(
fg + vg − 1

fg − 1

)(
fb + vb − 1

fb − 1

)
α2V2(fg+fb)

pfg+fb−1
(1)S(=, 6c)(ug, ub; vg, vb).

The second formula is illustrated in Fig. 3.5.

Fig. 3.5: Representation of (1)Set
(v,r,f)
(1,=, c)

A double bipartite walk from S(=, 6c)(lg, lb; rg, rb) has a blue-gray edge or does
not have it. In the first case, it is from S(=, c)(lg, lb; rg, rb). And in the second, blue
and gray walks do not have common vertices except the gray root r, therefore
they are practically independent. This implies the following equations:

(1)S(=, 6c)(lg, lb; rg, rb) = (1)S(=, c)(lg, lb; rg, rb) + α−11
(1)S(1)(lg, rg)

(1)S(1)(lb, rb),

(3.29)
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(2)S(=, 6c)(lg, lb; rg, rb) = (2)S(=, c)(lg, lb; rg, rb) + α−12
(2)S(1)(lg, rg)

(1)S(2)(lb, rb).

(3.30)

Going over all possible values of the parameters rg and rb, we deduce the equality

S
(a)
( 6=, c)(lg, lb) =

lg∑
rg=0

lb∑
rb=0

(
(1)S(6=, c)(lg, lb; rg, rb) + (2)S( 6=, c)(lg, lb; rg, rb)

)
. (3.31)

In any essential double bipartite walk from , the edge (r, v) is a blue-gray one or
it is a pure gray one. Therefore, the following equalities hold:

(1)S( 6=, c)(lg, lb; rg, rb) = (1)S
(g)
(6=, c)(lg, lb; rg, rb) + (1)S

(r)
( 6=, c)(lg, lb; rg, rb), (3.32)

(2)S( 6=, c)(lg, lb; rg, rb) = (2)S
(g)
(6=, c)(lg, lb; rg, rb) + (2)S

(r)
( 6=, c)(lg, lb; rg, rb). (3.33)

If a blue root does not coincide with a gray one, then the blue root is either in
the upper graph or it is in the lower one:

(1)S
(g)
( 6=, c)(lg, lb; rg, rb) = (1)S

(g, u)
(6=, c)(lg, lb; rg, rb) + (1)S

(g,d)
( 6=, c)(lg, lb; rg, rb), (3.34)

(2)S
(g)
( 6=, c)(lg, lb; rg, rb) = (2)S

(g, u)
(6=, c)(lg, lb; rg, rb) + (2)S

(g,d)
( 6=, c)(lg, lb; rg, rb). (3.35)

For a double walk from S
(g, u)
(6=, c)(lg, lb; rg, rb), rb is 0 since there is no edge (r, v) in

the blue skeleton. In the second double walk s there is no blue component. We
have the next lemma (see also Fig. 3.6).

Lemma 3.8. Let lg, lb, rg, rb be natural numbers or zeros such that lg ≥
rg > 0 and lb ≥ rb ≥ 0. Then the following equalities are true:

(1)S
(g, u)
(6=, c)(lg, lb; rg, rb) = δrb

lg−rg∑
ug=0

rg∑
fg=1

(1)S
(g,u,l,f)
(6=, c) (lg, lb; rg;ug, fg),

(1)S
(g, u, l, f)
(6=, c) (lg, lb; rg;ug, fg)

= α−11

(
rg − 1

fg − 1

)
(1)S

(g, f)
(1, 6=, c)(fg + ug, lb; fg)

(1)S(1)(lg − ug − fg, rg − fg),

(2)S
(g, u)
(6=, c)(lg, lb; rg, rb) = δrb

lg−rg∑
ug=0

rg∑
fg=1

(2)S
(g,u,l,f)
(6=, c) (lg, lb; rg;ug, fg),

(2)S
(g, u, l, f)
(6=, c) (lg, lb; rg;ug, fg)

= α−12

(
rg − 1

fg − 1

)
(2)S

(g, f)
(1, 6=, c)(fg + ug, lb; fg)

(2)S(1)(lg − ug − fg, rg − fg).

If a blue root lies in the upper graph, then it either coincides with the vertex
v or it does not coincide with it. In the first case, a double walk along the
upper graph belongs to S(=, c)(ug, lb; vg, vb), and in the second case, it belongs to
S( 6=, c)(ug, lb; vg, vb). And we have the next lemma.
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Fig. 3.6: Representation of (1)Set
(g, u, l, f)
(6=, c)

Lemma 3.9. Let fg be a natural number, ug be a natural number or zero, lb
be a natural number or zero. Then the following equalities are true:

(1)S
(g, f)
(1, 6=, c)(fg + ug, lb; fg) =

ug∑
vg=0

lb∑
vb=0

(1)S
(v, g, f)
(1, 6=, c)(fg + ug, lb; fg; vg),

(1)S
(v, g, f)
(1, 6=, c)(fg + ug, lb; fg; vg)

= α1

(
fg + vg − 1

fg − 1

)
V2fg
pfg−1

(
(2)S(=, c)(ug, lb; vg, vb) + (2)S( 6=, c)(ug, lb; vg, vb)

)
,

(2)S
(g, f)
(1, 6=, c)(fg + ug, lb; fg) =

ug∑
vg=0

lb∑
vb=0

(2)S
(v, g, f)
(1, 6=, c)(fg + ug, lb; fg; vg),

(2)S
(v, g, f)
(1, 6=, c)(fg + ug, lb; fg; vg)

= α2

(
fg + vg − 1

fg − 1

)
V2fg
pfg−1

(
(1)S(=, c)(ug, lb; vg, vb) + (1)S( 6=, c)(ug, lb; vg, vb)

)
.

Fig. 3.7: Representation of (1)Set
(v, g, f)
(1, 6=, c)

The next equalities follow from Lemmas 3.8 and 3.9:

(1)S
(g, u)
(6=, c)(lg, lb; rg, rb) = δrb

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

lg−rg∑
ug=0

(1)S(1)(lg − ug − fg, rg − fg)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

) lb∑
vb=0

(
(2)S(=, c)(ug, lb; vg, vb) + (2)S(6=, c)(ug, lb; vg, vb)

)
,

(3.36)

(2)S
(g, u)
(6=, c)(lg, lb; rg, rb) = δrb

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

lg−rg∑
ug=0

(2)S(1)(lg − ug − fg, rg − fg)
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×
ug∑
vg=0

(
fg + vg − 1

fg − 1

) lb∑
vb=0

(
(1)S(=, c)(ug, lb; vg, vb) + (1)S(6=, c)(ug, lb; vg, vb)

)
,

(3.37)

The following formulas:

(1)S
(g,d)
(6=, c)(lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

×
lg−rg∑
ug=0

(1)S(6=, c)(lg − ug − fg, lb; rg − fg, rb)
ug∑
vg=0

(
fg + vg − 1

fg − 1

)
(2)S(1)(ug, vg),

(3.38)

(2)S
(g,d)
(6=, c)(lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

×
lg−rg∑
ug=0

(2)S(6=, c)(lg − ug − fg, lb; rg − fg, rb)
ug∑
vg=0

(
fg + vg − 1

fg − 1

)
(1)S(1)(ug, vg)

(3.39)

are obtained from Lemmas 3.5 and 3.10 (see also Fig. 3.8).

Fig. 3.8: Representation of (1)Set
(g, d, l, f)
( 6=, c)

Lemma 3.10. Let lg, lb, rg, rb be natural numbers or zeros such that lg ≥
rg > 0 and lb ≥ rb ≥ 0. Then the following equalities are true:

(1)S
(g,d)
( 6=, c)(lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

(1)S
(g, d, l, f)
(6=, c) (lg, lb; rg, rb;ug, fg),

(1)S
(g, d, l, f)
( 6=, c) (lg, lb; rg, rb;ug, fg)

= α−11

(
rg − 1

fg − 1

)
(1)S

(1)
(1)(fg + ug, fg)

(1)S( 6=, c)(lg − ug − fg, lb, rg − fg, rb),

(2)S
(g,d)
( 6=, c)(lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

(2)S
(g, d, l, f)
(6=, c) (lg, lb; rg, rb;ug, fg),

(2)S
(g, d, l, f)
( 6=, c) (lg, lb; rg, rb;ug, fg) =
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= α−12

(
rg − 1

fg − 1

)
(2)S

(1)
(1)(fg + ug, fg)

(2)S( 6=, c)(lg − ug − fg, lb, rg − fg, rb).

The blue root which does not coincide with the gray one can be located either
in the upper graph or in the lower (right) graph:

(1)S
(r)
(6=, c)(lg, lb; rg, rb) = (1)S

(r, u)
(6=, c)(lg, lb; rg, rb) + (1)S

(r, d)
(6=, c)(lg, lb; rg, rb), (3.40)

(2)S
(r)
(6=, c)(lg, lb; rg, rb) = (2)S

(r, u)
(6=, c)(lg, lb; rg, rb) + (2)S

(r, d)
(6=, c)(lg, lb; rg, rb). (3.41)

One more lemma for S
(r, u)
(6=, c)(lg, lb; rg, rb) looks like this (see also Fig. 3.9).

Fig. 3.9: Representation of (1)Set
(r,u,l,f)
(6=, c)

Lemma 3.11. Let lg, lb, rg, rb be natural numbers or zeros such that lg ≥
rg > 0 and lb ≥ rb > 0. Then the following equalities are true:

(1)S
(r, u)
(6=, c)(lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

lb−rb∑
ub=0

rb∑
fb=1

(1)S
(r,u,l,f)
(6=, c) (lg, lb; rg, rb;ug, ub; fg, fb),

(1)S
(r,u,l,f)
(6=, c) (lg, lb; rg, rb;ug, ub; fg, fb)

=

(
rg − 1

fg − 1

)(
rb − 1

fb − 1

)
(1)S

(r, f)
(1, 6=, c)(fg + ug, fb + ub; fg, fb)

× α−11
(1)S(=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb),

(2)S
(r, u)
(6=, c)(lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

lb−rb∑
ub=0

rb∑
fb=1

(2)S
(r,u,l,f)
(6=, c) (lg, lb; rg, rb;ug, ub; fg, fb)

(2)S
(r,u,l,f)
(6=, c) (lg, lb; rg, rb;ug, ub; fg, fb)

=

(
rg − 1

fg − 1

)(
rb − 1

fb − 1

)
(2)S

(r, f)
(1, 6=, c)(fg + ug, fb + ub; fg, fb)

× α−12
(2)S(=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb).

The last formula contains the factor
(
rb−1
fb−1

)
since the last step of the blue walk

from the gray root of r should be
−−−→
(r, v). The second double walk has or it does

not have blue-gray edges due to the fact that the edge (r, v) is gray-blue.

The following lemma for S
(r, u)
(6=, c)(lg, lb; rg, rb) looks like this (see also Fig. 3.10).
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Fig. 3.10: Representation (1)Set
(v, r, f)
(1, 6=, c)

Lemma 3.12. Let fg, fb be natural numbers and ug, ub be natural numbers
or zeros. Then the following equalities are true:

(1)S
(r, f)
(1, 6=, c)(fg + ug, fb + ub; fg, fb)

=

ug∑
vg=0

ub∑
vb=0

(1)S
(v, r, f)
(1, 6=, c)(fg + ug, fb + ub; fg, fb; vg, vb),

(1)S
(v, r, f)
(1, 6=, c)(fg + ug, fb + ub; fg, fb; vg, vb) =

(
fg + vg − 1

fg − 1

)
V2(fg+fb)

pfg+fb−1
α1

×
((

fb + vb
fb

)
(2)S(=, 6c)(ug, ub; vg, vb) +

(
fb + vb − 1

fb

)
(2)S

(s)
(6=, 6c)(ug, ub; vg, vb)

)
,

(2)S
(r, f)
(1, 6=, c)(fg + ug, fb + ub; fg, fb)

=

ug∑
vg=0

ub∑
vb=0

(2)S
(v, r, f)
(1, 6=, c)(fg + ug, fb + ub; fg, fb; vg, vb),

(2)S
(v, r, f)
(1, 6=, c)(fg + ug, fb + ub; fg, fb; vg, vb) =

(
fg + vg − 1

fg − 1

)
V2(fg+fb)

pfg+fb−1
α2

×
((

fb + vb
fb

)
(1)S(=, 6c)(ug, ub; vg, vb) +

(
fb + vb − 1

fb

)
(1)S

(s)
(6=, 6c)(ug, ub; vg, vb)

)
.

The blue root either matches the vertex v or it does not. In the first case,
a double walk along the upper graph is from (1)S(=, 6c)(ug, ub; vg, vb), and in the

second case, from (1)S
(s)
(6=, 6c)(ug, ub; vg, vb) (the blue walk along the upper graph

should go along the vertex v since the blue root is in the upper graph, but the
blue walk passes through the edge (r, v)). Different factors are in the expression
in parentheses since in the second case the last step from the vertex v does not

have to coincide with
−−−→
(v, r), but in the first case it is optional. So, we have the

following formulas:

(1)S
(r, u)
(6=, c)(lg, lb;rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

) rb∑
fb=1

(
rb − 1

fb − 1

)
V2(fg+fb)

pfg+fb−1

×
lg−rg∑
ug=0

lb−rb∑
ub=0

(1)S(=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

) ub∑
vb=0

((
fb + vb
fb

)
(2)S(=, 6c)(ug, ub; vg, vb)
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+

(
fb + vb − 1

fb

)
(2S

(s)
(6=, 6c)(ug, ub; vg, vb)

)
, (3.42)

(2)S
(r, u)
(6=, c)(lg, lb;rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

) rb∑
fb=1

(
rb − 1

fb − 1

)
V2(fg+fb)

pfg+fb−1

×
lg−rg∑
ug=0

lb−rb∑
ub=0

(2)S(=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

) ub∑
vb=0

((
fb + vb
fb

)
(1)S(=, 6c)(ug, ub; vg, vb)

+

(
fb + vb − 1

fb

)
(1)S

(s)
( 6=, 6c)(ug, ub; vg, vb)

)
. (3.43)

A walk from S
(s)
( 6=, 6c)(ug, ub; vg, vb) either has gray edges with a gray root or it

does not have. If the walk has gray edges with a gray root, then the edge (r, v)
can be either blue-gray or pure gray. If the edge (r, v) is blue-gray, then it is just
tree-like double walk with different roots and a blue-gray edge (r, v), i.e., it is

from S
(r)
(6=, c)(lg, lb; rg, rb). If the edge (r, v) is pure gray, then the blue root is in

the lower graph since a blue walk passes through the gray root r. If there are no
gray edges in the walk with a gray root, then there are no gray edges at all:

(1)S
(s)
( 6=, 6c)(lg, lb; rg, rb) = (1)S

(r)
(6=, c)(lg, lb; rg, rb)+

+ (1)S
(s, g, d)
(6=, 6c) (lg, lb; rg, rb) + (1)S

(s,n)
(6=, 6c)(lg, lb; rg, rb), (3.44)

(2)S
(s)
(6=, 6c)(lg, lb; rg, rb) = (2)S

(r)
(6=, c)(lg, lb; rg, rb)+

+ (2)S
(s, g, d)
(6=, 6c) (lg, lb; rg, rb) + (2)S

(s,n)
(6=, 6c)(lg, lb; rg, rb). (3.45)

And we have the next lemma for S
(s, g, d)
(6=, 6c) (lg, lb; rg, rb) (see also Fig. 3.11).

Fig. 3.11: Representation of (1)Set
(s, g, d ,l, f)
(6=, 6c)

Lemma 3.13. Let lg, lb, rg, rb be natural numbers or zeros such that lg ≥
rg > 0 and lb ≥ rb > 0. Then the following equalities are true:

(1)S
(s, g, d)
(6=, 6c) (lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

(1)S
(s, g, d ,l, f)
(6=, 6c) (lg, lb; rg, rb;ug, fg),
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(1)S
(s, g, d ,l, f)
(6=, 6c) (lg, lb; rg, rb;ug, fg)

= α−11

(
rg − 1

fg − 1

)
(1)S

(1)
(1)(fg + ug, fg)

(1)S
(s)
(6=, 6c)(lg − ug − fg, lb, rg − fg, rb),

(2)S
(s, g, d)
(6=, 6c) (lg, lb; rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

(1)S
(s, g, d ,l, f)
(6=, 6c) (lg, lb; rg, rb;ug, fg),

(2)S
(s, g, d ,l, f)
(6=, 6c) (lg, lb; rg, rb;ug, fg)

= α−12

(
rg − 1

fg − 1

)
(2)S

(1)
(1)(fg + ug, fg)

(1)S
(s)
(6=, 6c)(lg − ug − fg, lb, rg − fg, rb).

For proving we use Lemma 3.5:

(1)S
(1)
(1)(fg + ug, fg) =

ug∑
vg=0

(
fg + vg − 1

fg − 1

)
α1V2fg
pfg−1

(2)S(1)(ug, vg),

(2)S
(1)
(1)(fg + ug, fg) =

ug∑
vg=0

(
fg + vg − 1

fg − 1

)
α2V2fg
pfg−1

(1)S(1)(ug, vg).

Therefore, the following equalities hold:

(1)S
(s, g, d)
( 6=, c) (lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

×
lg−rg∑
ug=0

(1)S
(s)
(6=, 6c)(lg − ug − fg, lb; rg − fg, rb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

)
(2)S(1)(ug, vg). (3.46)

(2)S
(s, g, d)
( 6=, c) (lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

)
V2fg
pfg−1

×
lg−rg∑
ug=0

(2)S
(s)
(6=, 6c)(lg − ug − fg, lb; rg − fg, rb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

)
(1)S(1)(ug, vg). (3.47)

If there are no gray edges, then lg = 0 and rg = 0. So, by the definition of
(1)S

(s,n)
( 6=, 6c)(lg, lb; rg, rb), the following formulas are correct:

(1)S
(s,n)
(6=, 6c)(lg, lb; rg, rb) = δlgδrg

(1)S(1,s)(lb; rb), (3.48)

(2)S
(s,n)
(6=, 6c)(lg, lb; rg, rb) = δlgδrg

(2)S(1,s)(lb; rb). (3.49)
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The case S(1, s)(lb, rb) also does not cause problems (see Figs. 3.12 and 3.13). We
denote by b a vertex from which a blue walk first passes the gray root r. We cut
the graph along the vertices of the edge (r, b). Here ub means half of the length
of the blue walk along the upper blue graph which was formed after removing
the edge (r, b), and fb means half of the length of the blue walk along the edge of

(r, b). By vb, we denote the number of steps leaving the vertex b other than
−−−→
(b, r).

Obviously, the blue root lies in the upper graph. Again, two cases are possible:
the blue root coincides with the vertex b and it does not coincide with the vertex
b. In different cases different factors appear. And we have two more lemmas.

Lemma 3.14. Let lb, rb be natural numbers such that lb ≥ rb > 0. Then the
following equalities are true:

(1)S(1, s)(lb, rb)) =

lb−rb∑
ub=0

rb∑
fb=1

(1)S(1, s, l, f)(lb; rb;ub; fb),

(1)S(1, s, l, f)(lb; rb;ub; fb

=

(
rb − 1

fb − 1

)
α−11

(1)S
(1, s, f)
(1) (fb + ub, fb)

(1)S(1)(lb − ub − fb, rb − fb),

(2)S(1, s)(lb, rb)) =

lb−rb∑
ub=0

rb∑
fb=1

(1)S(1, s, l, f)(lb; rb;ub; fb),

(2)S(1, s, l, f)(lb; rb;ub; fb)

=

(
rb − 1

fb − 1

)
α−12

(2)S
(1, s, f)
(1) (fb + ub, fb)

(2)S(1)(lb − ub − fb, rb − fb).

Fig. 3.12: Representation of (1)Set(1, s, l, f)

Lemma 3.15. Let fb be a natural number, ub be a natural number or zero.
Then the following equalities are true:

(1)S
(1, s, f)
(1) (fb + ub, fb) =

ub∑
vb=0

(1)S
(1, s, v, f)
(1) (fb + ub, fb, vb),

(1)S
(1, s, v, f)
(1) (fb + ub, fb, vb)

=
α1V2fb
pfb−1

((
fb + vb − 1

fb

)
(1)S(1, s)(ub, vb) +

(
fb + vb
fb

)
(1)S(1)(ub, vb)

)
,
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(2)S
(1, s, f)
(1) (fb + ub, fb) =

ub∑
vb=0

(2)S
(1, s, v, f)
(1) (fb + ub, fb, vb),

(2)S
(1, s, v, f)
(1) (fb + ub, fb, vb)

=
α2V2fb
pfb−1

((
fb + vb − 1

fb

)
(2)S(1, s)(ub, vb) +

(
fb + vb
fb

)
(2)S(1)(ub, vb)

)
.

Fig. 3.13: Representation of Set
(1, s, v, f)
(1)

These two lemmas imply the following equalities:

(1)S(1, s)(lb, rb) =

rb∑
fb=1

(
rb − 1

fb − 1

)
V2fb
pfb−1

lb−rb∑
ub=0

(1)S(1)(lb − ub − fb, rb − fb)

×
ub∑
vb=0

((
fb + vb
fb

)
(2)S(1)(ub, vb) +

(
fb + vb − 1

fb

)
(2)S(1, s)(ub, vb)

)
, (3.50)

(2)S(1, s)(lb, rb) =

rb∑
fb=1

(
rb − 1

fb − 1

)
V2fb
pfb−1

lb−rb∑
ub=0

(1)S(2)(lb − ub − fb, rb − fb)

×
ub∑
vb=0

((
fb + vb
fb

)
(1)S(1)(ub, vb) +

(
fb + vb − 1

fb

)
(1)S(1, s)(ub, vb)

)
. (3.51)

The lemmas for (1)S
(r, d)
(6=, c)(lb, rb) are formulated as follows.

Lemma 3.16. Let lg, lb, rg, rb be natural numbers or zeros such that lg ≥
rg > 0 and lb ≥ rb > 0. Then the following equalities are true:

(1)S
(r, d)
(6=, c)(lg, lb, rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

lb−rb∑
ub=0

rb∑
fb=1

(1)S
(r, d, l, f)
(6=, c) (lg, lb; rg, rb;ug, ub; fg, fb),

(2)S
(r, d)
(6=, c)(lg, lb, rg, rb) =

lg−rg∑
ug=0

rg∑
fg=1

lb−rb∑
ub=0

rb∑
fb=1

(2)S
(r, d, l, f)
(6=, c) (lg, lb; rg, rb;ug, ub; fg, fb),

(2)S
(r, d, l, f)
(6=, c) (lg, lb; rg, rb;ug, ub; fg, fb)

=

(
rg − 1

fg − 1

)(
rb − 1

fb

)
(2)S(1,=, c)(fg + ug, fb + ub; fg, fb)

× α−12
(2)S

(s)
(6=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb).
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Lemma 3.17. Let lg, lb, rg, rb, fg, fb be natural numbers and ug, vg be
natural numbers or zeros such that lg ≥ rg ≥ fg > 0 and lb ≥ rb ≥ fb > 0. Then
the following equalities are true:

(1)S
(r, d, l, f)
( 6=, c) (lg, lb; rg, rb;ug, ub; fg, fb)

=

(
rg − 1

fg − 1

)(
rb − 1

fb

)
(1)S(1,=, c)(fg + ug, fb + ub; fg, fb)

× α−11
(1)S

(s)
( 6=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb),

(1)S(1,=, c)(fg + ug, fb + ub; fg, fb)

=

ug∑
vg=0

ub∑
vb=0

(1)S
(v)
(1,=, c)(fg + ug, fb + ub; fg, fb; vg, vb),

(1)S
(v)
(1,=, c)(fg + ug, fb + ub; fg, fb; vg, vb) =

(
fg + vg − 1

fg − 1

)(
fb + vb − 1

fb − 1

)
× α1

V2(fg+fb)

pfg+fb−1
(2)S(=, 6c)(ug, ub; vg, vb),

(2)S(1,=, c)(fg + ug, fb + ub; fg, fb)

=

ug∑
vg=0

ub∑
vb=0

(2)S
(v)
(1,=, c)(fg + ug, fb + ub; fg, fb; vg, vb),

(2)S
(v)
(1,=, c)(fg + ug, fb + ub; fg, fb; vg, vb) =

(
fg + vg − 1

fg − 1

)(
fb + vb − 1

fb − 1

)
× α2

V2(fg+fb)

pfg+fb−1
(1)S(=, 6c)(ug, ub; vg, vb).

Lemmas 3.16 and 3.17 imply the following equalities:

(1)S
(r, d)
(6=, c)(lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

) rb∑
fb=1

(
rb − 1

fb

)
V2(fg+fb)

pfg+fb−1

×
lg−rg∑
ug=0

lb−rb∑
ub=0

(1)S
(s)
(6=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

) ub∑
vb=0

(
fb + vb − 1

fb − 1

)
(2)S(=, 6c)(ug, ub; vg, vb), (3.52)

(2)S
(r, d)
( 6=, c)(lg, lb; rg, rb) =

rg∑
fg=1

(
rg − 1

fg − 1

) rb∑
fb=1

(
rb − 1

fb

)
V2(fg+fb)

pfg+fb−1

×
lg−rg∑
ug=0

lb−rb∑
ub=0

(2)S
(s)
(6=, 6c)(lg − ug − fg, lb − ub − fb; rg − fg, rb − fb)

×
ug∑
vg=0

(
fg + vg − 1

fg − 1

) ub∑
vb=0

(
fb + vb − 1

fb − 1

)
(1)S(=, 6c)(ug, ub; vg, vb). (3.53)
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The system (3.9)–(3.12), (3.23)–(3.52) is recursive since by each essential step
we decrease the total length of the double (single) walk. For unambiguous solv-
ability, it is necessary to impose on the system the following initial conditions:

(1)S(1)(0, x) = δxα1,
(2)S(1)(0, x) = δxα2 (3.54)

(1)S(1, s)(0, x) = 0, (2)S(1, s)(0, x) = 0. (3.55)

Let x, y, z, w be natural numbers or zeros such that at least one of the next
inequalities z ≥ x > 0 w ≥ y > 0 is violated. Then the following equalities hold:

(1)S
(g)
(=, c)(z, w;x, y) = 0, (2)S

(g)
(=, c)(z, w;x, y) = 0, (3.56)

(1)S
(r)
(=, c)(z, w;x, y) = 0, (2)S

(r)
(=, c)(z, w;x, y) = 0, (3.57)

(1)S
(r, u)
(6=, c)(z, w;x, y) = 0, (2)S

(r, u)
(6=, c)(z, w;x, y) = 0, (3.58)

(1)S
(r,d)
(6=, c)(z, w;x, y) = 0, (2)S

(r,d)
(6=, c)(z, w;x, y) = 0, (3.59)

(1)S
(s, g, d)
(6=, 6c) (z, w;x, y) = 0, (2)S

(s, g, d)
(6=, 6c) (z, w;x, y) = 0. (3.60)

Let x, y, z, w be natural numbers or zeros such that at least one of the next
inequalities z ≥ x > 0 w ≥ y ≥ 0 is violated. Then the following equalities hold:

(1)S
(g, u)
( 6=, c)(z, w;x, y) = 0, (2)S

(g, u)
(6=, c)(z, w;x, y) = 0, (3.61)

(1)S
(g,d)
( 6=, c)(z, w;x, y) = 0, (2)S

(g,d)
(6=, c)(z, w;x, y) = 0. (3.62)
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Асимптотика кореляторiв розбавлених дводольних
випадкових графiв

V. Vengerovsky

Дослiджено асимптотику кореляцiйних функцiй дводольних розбав-
лених зважених випадкових N × N матриць. Показано, що основний
член кореляцiйної функцiї k-го та m-го моментiв iнтегральної щiльно-
стi станiв дорiвнює N−1nk,m. Одержано замкнуту систему рекурентних
спiввiдношень для коефiцiєнтiв {nk,m}∞k,m=1.

Ключовi слова: дводольний розбавлений випадковий граф, кореля-
тор моментiв, асимптотика, основний член, система рекурентних рiв-
нянь
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