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Sobolev’s Type Optimal Topology in the
Problem of Exact Observability for Hilbert
Space Dynamical Systems Connected with

Riesz Basis of Divided Differences
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This paper considers the problem of exact observability of a general class
of linear distributed parameter systems in Hilbert spaces connected to Riesz
basis properties of some families of exponential functions and the divided
differences of those functions. Under some assumptions on asymptotic spec-
tral analysis of the differential operator of the system, the conditions of exact
observability are stated in the form of exact observable spaces being the di-
rect sum of some specific Sobolev spaces. The main result consists of proving
the optimality of these subspaces of observable states. The result was based
on advanced non-harmonic analysis approach connected to the unusual fact
that time-space Riesz basis does not consist only of exponential functions
but also contains divided differences of these functions.
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1. Introduction and problem statement

Control theory research is commonly divided into some areas, such as con-
trollability, stability, etc. One of the main areas is observability, which is aimed
to describe the possibility of reconstructing the initial state of the system, and
in consequence the whole trajectory of the system, basing on an incomplete in-
formation of the current state of the system. The problem of exact observability
of distributed parameter systems in Hilbert spaces as opposed to approximate
observability of such systems is still a subject of contemporary investigations.
In recent years many different classes of systems and many different approaches
where considered (see [6-9, 11, 13,14, 16,23, 25, 26] and references therein). In
particular, it is worth noting that in [10] a setting, which is similar to that spec-
ified in this paper, was considered with a strong assumption of the operator of
motion (A) being a diagonal operator. Unfortunately, this interesting approach
could not be applied in our case even after extending to block diagonal class of
operators.

Lately in [20], a problem of exact observability of a specific class of systems,
connected to Riesz basis of exponential functions and their divided differences,
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was considered. This paper extends those considerations providing not only a
wider observability subspace of the systems in question, but also proving their
optimality. Moreover, it appeared that this optimal subspace is not just a regular
Sobolev space HP, but it is a direct sum of such spaces. The authors are not
acquainted with other works concerning sharpness of observability subspaces in
this form.
More precisely, in this paper we consider a general class of dynamical systems
with observation of the form .
{Z =AZ, (1.1)
Y =CZ,

where A : D(A) C H — H is the infinitesimal generator of a Cy-semigroup 7 (1),
C : H — C is a linear (unbounded) observation operator, H is a Hilbert space.
In addition, we assume that our observation is admissible [15,20-22], that is,

Definition 1.1. The operator C is called an admissible operator for T (t) if,
for some 7" > 0 (and hence for all T > 0), there exists a constant £ > 0 such that

T
/ CT ()20 dt < 12 [|20]> for all 20 € D (A).
0

For infinite-dimensional systems there are different concepts of observability
notions [22]. Here we focus on the following

Definition 1.2 (see [15,21,22]). Let K : H — Y be the output operator
zZ0 — ICZO = CT(t)Zo,

where ) is a Hilbert space of time-dependent functions on the interval (0,7).
System (1.1) is said to be approximately observable in time T (or observable in
time T') if ker K = {0} and Y — H is exactly observable in time T (or Y — H is
continuously observable in time T') if

1Kz0l13 = K% [|z0ll3,,  for all 29 € H, (1.2)
for some constant x > 0.

In general, approximate observability guarantees the possibility of reconstruc-
tion of the initial state of the system, and thus of the whole trajectory, using
knowledge of the output. Exact observability means that we can find the initial
and final states from the given output with infinitesimal precision, that is, for any
convergent sequence of pairwise different initial states the resulting outputs are
convergent and pairwise different as well. Of course, exact observability implies
approximate observability, but not the other way around [22]. In this paper, we
focus on analysis of exact observability notion. Namely, our goal is to consider the
exact observability of system (1.1) with observation C under some assumptions
we impose on the system in question:
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(A1) The operator A has an orthonormal complete sequence of eigenelements
{Yi}kez with corresponding eigenvalues +ipy, where up < k. (o < Si
iff |ag| < C'|Bk| and |Bi| < C'|ag| for some C' and for sufficiently large k,
see [5, p. 442].)

(A2) There exists an increasing sequence {k,}, ., of indices such that eigen-
values iug, and tug,—1 are approaching each other with a certain speed,
|Hkon, — Moy —1| =< ﬁ

(A3) For some Ty > 0, the system

£ = {eimt) U {ewkt _ ewklt} (1.3)
REL\{kn} Mk — HEk—1 ke{kn} '

is a Riesz basis for L? (0, Tp).
(A4) ’Ck‘ = ﬁ, where Ck = CYk
A similar problem of exact observability has been solved in [20] by using less
general assumptions on the system in question. It is worth noting that exact
observability depends heavily on the choice of topology in the space as opposed
to approximate observability [15]. There are two possible approaches to the study
of exact observability of system (1.1). One can use a weaker topology on the right-
hand side of inequality (1.2) (using, for example, the domain D (\A) or its power
D (A™) [22]), or a stronger topology on the left-hand side of this inequality. We
continue to use the second approach in our research. Namely, using the results
of [20], one can prove that the considered system is not exactly observable in
default topologies setting (more precisely, neither is L? (0,7) —H nor H' (0,7) —
H exactly observable in any time 7" > 0) and one can find a stronger topology for
state observation for which the system becomes exactly observable (the system
is H? (0,T) — H exactly observable in any time 7' > Tp).

The above stated conditions (A1), (A2), (A4) imply (together with (A3))
details of the previous result. Tinkering only with conditions (A1), (A2), and
(A4) would change the degree of the result (c.f. [17]), i.e., the system would not
be HP —H exact observable and would be HP*! — 7 exact observable. Condition
(A3) plays a crucial role in our further analysis. It turned out that the previously
obtained degrees of observable/not observable topologies are not sharp. (Notice
that this condition is stated in the form suitable in our analysis, based on complex
analysis approach [2]; other possible formulations can be found in literature (cf.
[3]).) Exploiting this Riesz basis of divided differences properties [1], we will find
a subspace O, H' ¢ O ¢ H?, giving the sharp O — H exact observability result.

Example 1.3. Conditions (A1)—(A4) are satisfied in one of the models of
vibrating Timoshenko beams. (For more details on Timoshenko beam theory,
see [4].) Namely, following [20], we can provide a possible class of systems to
which our results can be applied. Consider the following example of a vibrating
Timoshenko beam system governed by partial differential equations of the form

{ w(z,t) —w' (z,t) — & (z,t) =0,

Elrst) — 7€, 0) + !, 1) + € 1) = 0 -



466 Jarostaw Wozniak and Mateusz Firkowski

for z € (0,1) and ¢ > 0, where W = wy, W' = wy, £ = & and & = &, and 42 >
1 depends on physical properties of the material of the beam (see [12,18,19]).
Here, w(z,t) denotes the deflection of the center line of the beam, &(x,t) is the
rotation angle of the cross section area and x, t stand respectively for the position
along the beam and time. We assume the beam to be clamped at x = 0 and have
a free end at x = 1. From that we have boundary conditions of the form

w(0,t) = £(0,t) = 0,
w'(1,t) + £(1,t) =0, (1.5)
&(1,t) =0

for t > 0. We observe the deflection of the center line of the beam at the free
end, i.e.,

= w(l,"). (1.6)

For such systems, one can use our results, stated below, presenting the optimal
observability subspace after a suitable choice of Hilbert spaces and differential
operators (cf. [20]).

2. O — H exact observability

In this section, we present the first result of the paper, i.e., the precise exact
observability analysis of system (1.1). We conduct the analysis for time T' = Tj,
for T' > Ty the result is classical. (The system exactly observable in time Tj
remains exactly observable for times 7' > Ty [22].) At the beginning, we define
the set of optimal observable states O, which is necessary in the proof of our
theorem. Due to the character of the Riesz basis (1.3) of L? (0,Tp), the following
observable subspace is more natural in this setting than the previously considered
HP? (0,Tp) spaces.

Definition 2.1. Let us define the following decomposition of

L2(0,Ty) = Vi @ Vs,

ethkt _giHhk—11 }
Hik—HKk—1 ke{kn}
called an optimal observable state space and is given by

where Vi = lin{e"s'} 7 ¢ v, Vo = lin{ . The subspace O is

O={feL*0,T) | f=Ff+f, L €ViNH0,Tp),
f2 € V2N H?(0,Tp) and ||f[|3) < oo},

with accompanying norm

2 2 2
d
+2| gt

= (2.1)

d
2 2
191 = 1Py +2 5

LQ(O)TO) L2(O’TO)
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Now we proceed to the main result of this section. We prove that conditions
(A1)-(A4) imply O — H exact observability in time 7T of system (1.1).

Theorem 2.2. Assume that conditions (A1)—(A4) are satisfied. Then system
(1.1) is O — H exactly observable in time Ty.

Remark 2.3. Notice that Ty is the minimal possible time, where the exact
observability phenomenon can hold (see Proposition 1 and Corollary 1 in [20]).

Proof. We start the proof with an estimation of the norm of the left-hand side
of inequality (1.2), i.e., ||[Kz0[%. In order to do that, we decompose an arbitrary
state vector in the eigenspace (A1) and then rewrite it in the Riesz basis (1.3) from
(A3). The arbitrary state zp € H can be written in the normalized eigenvector
space in the following form:

zZ20 — ZakYk, (2.2)

kEZ

where oy = (z0,Y)) € £?. Further, after using the form of the operator K, we
obtain

,CZ(] = CT(t)ZQ = Z akei“ktCk.
kEZ

Then we decompose it in the Riesz basis (1.3),

ekt _ plig—1t

I O S e e S e —— (2.3)

kez kEZ\{kn} ke {kn )} Mk — HEk—1
where the coefficients are given by the formulas
By = Cray for k#k, — 1k,
and
Brn—1 = Ck, ak, + Ck, —10k,, -1,
Vi = (Hkp — k1) Chpp— 10, -1

for remaining cases. Now we estimate from below the left-hand side of the ob-
servability inequality (1.2). For simplicity of further calculations, we present the
norm in the space O from (2.1) in an equivalent way obtained using the parallel-
ogram law. Hence, the norm of Kzy can be expressed as

2

2
1712 = 1/1220,25) + 2 Hf1 +2‘ L
L2(0 To) L2 (O,To)
d? 2 d d2 2
= |I£17 + Hfl — =5/ H i+ -5/ , (2.4)
L2(0,T0) dt dt? L2(0.T0) dt dt2 A0Th)

where

ekt _ clipt—1t

fO)=CTMn= > Be™ + Y p——

kEZ\{kn} ke {kn) Mk = k=1



468 Jarostaw Wozniak and Mateusz Firkowski

Lt
Z Bk etk )

keZ\{kn}
ekt _ oipt—1t
=Y
ke {hn} Mk — Hk—1

Now we present necessary calculations for the second and third terms of (2.4),

d . it
%fl = Z Z;U“kﬂke Kk )

kEZN\ {kn}
ol= > () et ST () A
dt ke {kn} ke {kn} Mk = Hk—1
= ) () we™ D (—pper) e
ke{kn} ke{kn}
Z/”’kt — el,u‘kflt
+ 3 ()
ke {kn} Kk — Hk—1

After rearranging the terms, we obtain

d2 e/j'kt — eukflt
= > (= me) we T+ Y () e
ke {kn} ke {on} Hie = Pkt
ettt _ pttk—1t
= —Hk+1 — Pk) Ve+1€ M) e
( ) Y1 + (—#i) -
ke {kn—1} ke {kn} Hk = Hk—1
Then,
d d? it it
g Egph= ST mkBee™t F > (kkar + ) Yesre
keZ\{kn} ke {kn—1}
ekt _ plik—1t
Ty mm————
ke (o} — Hk-1
- > PeBRe™ > (B F (k1 + 1) Year) €7
k€Z\{kn—1,kn} ke{kn—1}
ekt _ plpp—1t
T m———— — (2.5)
ke{kn}

Let us recall that if the family {¢y} is a Riesz basis, then there exist constants
m, M > 0 such that for any sequence () € ¢? one has

m3 " Jol? < HZ“%H? <MYyl (2.6)

(see, e.g., [24]). Using (2.3), (2.5) and (2.6), we obtain an estimation from below
for (2.4),

ICT@®)zollo = m (> 18+ > Inl?

k€Z\{kn} ke{kn}
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tm2 D lmBlP D IkBet (ke + ) Yo
keZ\{kn—1,kn} ke{kn,—1}

2
+ Z B — (s + i) Y [* +2 Z | i
k‘e{kn—l} ka{k’n}

in particular,

ICT W20l =m (2 > wbBel® + D B+ (s + i) v
KEZ\ {kn—1,kn} ke {kn—1}

2
+ Z kB — (1 + o) Yos | 42 Z |\ ™ |- (2.7)
ke{kn—1} ke {Fon}

Now we estimate the right-hand side of inequality (1.2). Let us consider the
norm of the arbitrary state zp € H. Due to the normalized expansion (2.2)), it is
obvious that the norm of the state zy is given by

z0llFe = lowl*.
kez

From (2.3), we can derive the formulas for the coefficients ay:

1
ap=—0, fork#k,—1k, (2.8a)

Ck

and
1 1
ap. 1= P 2.8b
T G <Bkn Y, — ,ukn—lfYkn> (280)
1 1

g, = Yk (2.8C)

Cho Mky — Mhep—1

for remaining cases. Then the norm of the state zy can be presented as

2 2
2ol = 3 e

kez
1 1 2
. M S ()
keZ\{kn 1kn} ke{kn—1} ' ¥ Fh+1 = Hi
2
+ — %
Z Ck ke — Hk—1

ke{kn}

1 1
< Z 2 |Bk’2 + Z 2 2 |Bk’2
} |Ck\ Gl

ke€Z\{kn—1,kn ke{kn—1}

1 1 )
; < ) el (2.9)
Z Cr1]? \Cicl2 2

ke{kn} ‘,UJk - ,U/k71|
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where the sequences

1 1
|C|? |Ce |
2 ’ 2
|k | 7y
keZ\{kn—1,kn} ke{kn—1}

and

1 91 4 1 >
bk —pi—1 | ( |Ch1l® ' |Ck|?

212
i ke {kn}
are bounded, so there exists a constant ¢ given by
1 : L
2 2
2 =max{ = sup |C’“|27 |Ck|2’
2 per\{kn—1kn} [1k]" kE{kn—1} |1k ]
1 1 1
? )
1 sup |Hk—Mk—1|2 ( \Ck_l\g + |Ck|2
212
2 kefkn) ||

Continuing to estimate the norm of the state zp of (2.9), we obtain

lol* <2 > lml 1Bl

kEZ\ {kn—1,kn}

+20 5 wlPIBP 2 Y e el

ke{kn—1} ke{kn}

=12 > s

kEZ\{kpn—1,kn}

1
+3 Z 12008 B> + 2 Z |Mi‘2’7k|2

ke{k,—1} ke{kn}
=c|2 Z i) 1B
keZ\{kn—1,kn}

1
) Z kB + (k1 + 1) Yot +1iBr — (s + b)) Ve |
ke{kn—1}

+2 % [kl
ke{kn}

<2 Y mlPIsP DD B+ (k4 ) o]
KEZA (ko —1,kn} ke{kn—1}
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2
+ Z kB — (1 + k) Yera | +2 Z A7 A )
ke{kn—1} ke{kn}

Let k* = 2. Combining estimations (2.7) and (2.10), we obtain

ol <m |2 Y Gl I8

kEZN{kn—1,kn}

+ Z &3 kB + (1 + b)) Yo
ke{kn—1}

2
+ Y A lukBr — (ks + ) oD +2 > Al el
ke {kn—1} ke {kn}

< ICT (t)20l13

which means that system (1.1) is O — H exactly observable for time 7' = Tp. [

3. On the sharpness of the O —H exact observability conditions

Let T = Ty. Comparing the previous results from [20], namely H? (0,T) —
‘H exact observability, and Theorem 2.2, that is, O — H exact observability, we
see that Theorem 2.2 is a significant improvement in our analysis. Now we are
to prove that the estimation of the norm (2.1) cannot be improved any more. To
this end, we will show that any further weakening of the left-hand side topology
of (1.2) makes system (1.1) be not exactly observable anymore, in other words,
it lacks of N — H exact observability.

Firstly, we introduce an operator that allows us to describe the elements of
space O in terms of convergence of series.

Definition 3.1. Let us recall that an arbitrary element f € L? (0,7p) can be
decomposed in the Riesz basis (1.3) (see condition (A3)) as

= > e+ Y p——————

keZ\{kn} ke{kn}

ekt _ otptp—1t

Mk — Hk—1
Let S: L%(0,7) — 2 be a coefficient operator defined by

/Bk ikaZ\{k?n},

(S ()i = {% the (b,

where (-), denotes the k-th coeflicient of a given sequence. The set O is called
an optimal coefficient observable state space and is given by

~{rer2o.m | 1913 < 00
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with accompanying norm
115 = 1K1 (S (f)llZe + 152 (S (f2))l|72

= S kPSP DD R Il

keZ\{kn} ke{kn}
where K, : (2 — 2, K, (ag) = (KPay).

One can observe that the norm |-||,, is equivalent to the norm || |5, which

means that O = O. Thus, O —H exact observability is equivalent to O —H exact
observability and the lack of N — H exact observability would give us sharpness
of the obtained result.

Theorem 3.2. The result of Theorem 2.2 is sharp, i.e., there is no weaker
norm of the left-hand side of inequality (1.2) for which system (1.1) is exactly
observable.

Proof. For every pair € = (£1,€2), €1, €2 = 0, &2 + &3 > 0, let us define a
subspace N. C L2 (0,Ty) with accompanying norm

1£1% = 1K1 —ey (S (F)[22 + 1 K2—cy (S (f2))lI72
= Z ’k1_81’2|ﬁk|2+ Z ‘k2_62‘2|’7k|2- (31)

keZ\{kn} ke{kn}

For proving that system (1.1) is not ./\75 — H exactly observable for any choice of
parameters €1, €9, we consider 3 cases.

Case 1. In the first considered case we assume that e;1 > 0 and 9 = 0. Then
the norm of an arbitrary element f € N; is given by

A% = S0 = P18 + 30 |82 bl

The second term of the above sum is not changed by passing from O to /\78
Therefore, we will look for a counterexample for which «; = 0. Consider the

sequence {zy } ycy, Where
N

ZN = Z OzkYk.
k=1
k¢{kn}
Using (2.8), we obtain
— 1Y
Z c /Bk k-
k¢{kn}
Hence, the norm of zy can be expressed as

2 AN 2
HZNH’}-[: Z ‘C 2’/8’6‘ :
= |Ckl
k¢{kn}
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Letting 8y = k=3 and using condition (A4), i.e., |Ck| < |—,1€|, we estimate the norm

N N
2 2], 312 1
lenll, = > Ik \k =S kT s oo as N o oo,
k=1 k=1

Now we proceed with the estimation of the norm of Kz,

N
IKenll = S K== 18
ke )

N
<Y T 5 (14 261)  as N — oo,
k=1

where ( (-) is the Riemann zeta function. Then

IKzn %
72/\/8 —0 as N — oo.
[

Thus, inequality (1.2) cannot hold, hence system (1.1) is not N —H exactly
observable in time T" = Ty, which finishes the proof for Case 1.

Case 2. Here we assume that €1 = 0 and 5 > 0. Considerations in this case
are similar to those of the previous case. The norm of an arbitrary element f €
/\75 is given by

1% = S0 kP18 + Y (K222 e

kkn k=kn

Now we will look for a counterexample for which 8 = 0. Consider the sequence
{2~} yen, Where

N
ZN = Z apYy.

k=1
ke{kn}
From (2.8), we obtain
N
1 1
N = — Y,
o ; Cr i — fe—1 * "
ke{kn}

Thus, the norm of zy can be expressed as

w2, = i ! L P
=GP ik el
ke{kn}
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_5
2

Letting 7, = k™2 and taking into account conditions (A2) and (A4), ie.,
|k, — pg, —1| =< \Tln| and |Cy| < |—,1€|, we estimate the norm

N
1 512
2 2 3
lenli3e= Y2 Ik = |53
k=1 k|2 k=1
ke {kn} ke{kn}

N
= Z k™' = 0 as N — oo

Now we estimate the left-hand side of inequality (1.2),
N N

||ICzN||j2\7E = Z ’k2_52’2 |’>’k\2 < Z ]k‘|_1_262 —((1+2e) as N — oo.
k=1 k=1
ke{kn} ke{kn}
Then )
KConl,

5~ >0 as N — oco.
Iz 113
Thus, inequality (1.2) cannot hold, hence system (1.1) is not N —H exactly
observable in time T' = Ty, which finishes the proof for Case 2.
Case 3. In the last considered case we assumed that €1 > 0 and €5 > 0 and
the norm of an arbitrary element f & N is given by (3.1). Let us consider the
sequence {zy } ycy, Where

N
ZN = E ak}%.
k=1

From (2.8), we obtain

N 1 N 1
IN = —BiYy + — <5k - % 1) Y

; Ck ; % [t — i
ke {kn—1,kn} ke{kn—1}

N

1 1

+ —_ Vi Yk

; Cr e — HE—1

ke{kn}

Thus, the norm of zy is given by

) al 12 Yoo 1 2
”ZNHH = ; ‘C’kﬂk + ; ‘Ok <Bk - Nkﬂ—ﬂkwﬂ)

k¢ {kn—1,kn} ke{kn—1}

N 2

1 1

+ %

; Ci g — -1 7

ke{kn}

3

Let us assume that S, = k72, v = (ux — tk—1) (kK — 1)7 2 and taking into ac-
count conditions (A2) and (A4), we estimate the norm of zy,

N
2 20, —3
lanllp, = > Ikl |k
k=1

_3
2

=

1

k=1 k|2

N

2 1 2

+Z|k\2—‘ 73‘ :Z]krl—M)o as N — co.
k=1
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Now we show the boundedness of the norm of Kz,

N
Kanl% = 3 = P18+ D[22 el
K Thn) ke )

N N
S Z‘k’_l_%l +Z‘k’_1_2€2
k=1 k=1

— ((142e1) + (14 2e2) as N — oo.

Then

IKzn %
72% — 0 as N — oo.
2 1%

It means that inequality (1.2) cannot hold, hence system (1.1) is not N —
exactly observable in time T = Tj, which finishes the proof for Case 3. O

Remark 3.3. After considering a suitable operator form of system (1.4)—(1.6),
one can apply Theorems 2.2 and 3.2 and deduce that this system is O —H exactly

observable in time Ty = 2 (1 + %) and is not N/ — H exactly observable for any

subspace N with a weaker topology than O (see [12] for the minimal time Tj
derivation).

Remark 3.4. One should notice that even for concrete examples it is hard to
provide a precise form of the subspaces V7 and V5. It is an open problem that
requires further investigations. For example, the subspace V; consists of all the
possible infinite sums of the form f1(t) = Y 70 __ Bre’*t. Thus, the assumption
of fi € Vi N H' is hard to examine because it requires considering infinite sums

of this form, as all finite sums (Z,QV:_N ﬁkei“kt> belong to Vi N H*.

One may expect to be able to describe the subspaces Vi and V5 exploiting
some special properties of families spanning those subspaces, that is, {ei“kt} and
{ ettt _gihk—1t

Mk —Hk—1
Vi € L?(0,4) consists of 2-periodic functions. In this case, the function

}. For example, if one assumes that pp = 2km, it is obvious that

1
1622 for0<z < T
1\? 1 3
-1 - = 2 for — <<,
6<:U 2>+ 01"4 T 1
3 5
ft) =1 16(z —1)* for © <a <2,
4 4
3\ ? 5 7
—16<x—2> +2 forzéxgz,
16(z — 2)* f0r£<x<2
\
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belongs to V4 N H', but not to V; N H?, which means that it is an example
presenting the possible usage of sharpness of the O —H exact observability result
as oppose to the previously found H? — H result [20]. The family spanning
subspace V5 is much harder to be analyzed even in the simplest cases, it remains
an open problem for future investigations.

4. Conclusions

In this paper, we presented the conditions of exact observability of a general
class of distributed parameter systems in Hilbert spaces in terms of some specific
assumptions on generating operators. We extended some previous results about
analysis of suitable topology for state observation (of left-hand side of inequality
(1.2)). In [20], it was proven that system (1.1) is neither L? (0,T) — H (default
topologies setting), nor H!(0,T) — H exactly observable in any time 7" > 0.
We found a stronger topology for the state observation for which the system
becomes H? (0,T) — H exactly observable in time T' > Ty. A careful analysis of
the obtained results turned out to be not sharp. We considered a question that
naturally arose, what would be the optimal topology of the observable space such
that the system could be ) —H exactly observable and not be exactly observable
for any weaker topology? To this end, we found a subspace O which is proved
to give a sharp O — H exact observability. Our considerations required the usage
of advanced non-harmonic analysis approach connected to the crucial fact that
the time-space Riesz basis does not consist only of exponential functions but also
contains divided differences of these functions.
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OnTumanpHa TonoJioriga Tuimy CoboJieBa y 3aja4i TOYHOIT
CIIOCTEPEXKYBAHOCTI JIJIsi AMHAMIYHUX CUCTEM Y
riibbepToBOMYy mpocCTOpi, NMoB’saA3aHux i3 6azmcom Picca
3 pPO3iJIeHUX Pi3HUIb

Jarostaw Wozniak and Mateusz Firkowski

YV miit crarTri po3miAmaeTbes TPobeMa TOYHOI CIIOCTEPEXKYBAHOCTI
3araJibHOrO KJacy JIHIMHUX CHUCTEM 3 PO3NOJMIJIEHNMU IapaMeTpaMu,
IIOB’sI3aHUX 3 BJIACTUBOCTAMHU Oa3ucy Picca nedakmx ciMeiicTB €KCITOHEHITi-
aJbHUX (QYHKIIH Ta PO3ILIEHNX Pi3HUIB 1UX (QYHKINH, B rbbepToBUX
mpocTopax. 3a JesIKUX IMPUIYIIEHb 00 ACUMITOTUIHOIO CIEKTPAJIHHO-
ro aHajizy audepeHIiaJbHOr0 OMepaTopa CUCTeMH, COOPMYIHOBAHO YMOBU
TOYHOI CIIOCTEPEXKYBAHOCT1 Yy BUIVISJI TOT'O, IO IPOCTOPU TOYHOI CIIOCTE-
PEeKyBaHOCTI € IPSIMOIO CyMOMO Jiesikux crenudivnux mpocropis CoboJiesa.
OcCHOBHUI pe3yJIbTAT HOJISITAE Y JTOBEJIEHH] OIITUMAJIBHOCTI IUX MiIITPOCTOPIB
CIIOCTEPEXKYBAHUX CTaHIB. Pe3ybTar rpyHTYBaBCS Ha IiJIXO/Il POMIUPEHOTO
HETapMOHITHOTO AHAJI3y, IMOB’sI3aHOMY 3 HE3BUYHUM (DAKTOM, IO IACOBO-
npocTopoBuii 6asuc Picca ckIamaeThcsa He JTUINe 3 eKCITOHEHITaIbHIX (DyH-
KITi#f, a #i MicTUTD po3IieHi pizuutl mux OYHKITIH.

KirogoBi cjioBa: TOYHA CHOCTEPEXKYBAHICTD, AU(EPEHIaJIbHI PIBHIHHS
3 9aCTUHHUMU TIOXiTHUME, HeoOMeXKeHi omeparopu, basuc Picca posmisennx
Pi3HUIIL, ONTUMAJIBHICTD IiJIITPOCTOPIB CIIOCTEPEXKYBAHOCTI
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