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In this paper, we classify the connected Lie groups up to conjugacy within
Iso(R2,2), which act isometrically on the four-dimensional pseudo-Euclidean
space R2,2 in such a way that there is a three-dimensional induced orbit in
R2,2. Then we give the list of the acting groups in both cases, proper and
nonproper actions. When the action is proper, we determine the explicit
representation of the acting group in SO(2, 2) n R2,2 and then we specify
the orbits and the orbit spaces.
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1. Introduction and preliminaries

The concept of a cohomogeneity one action on a manifold was introduced by
P.S. Mostert in his paper [17] in 1956. According to this paper, an action of a Lie
grpoup G on a manifold M is said to be of cohomogeneity one if there exists an
induced orbit in M of codimension one. He assumed that the acting Lie group
G is a compact subgroup of Diff(M), the group of diffeomorphisms of M , and
then studied the orbit space M/G. He showed that the space is homeomorphic to
one of (i) a circle, (ii) an open interval, (iii) a half-open interval or (iv) a closed
interval. The compactness of the acting group was crucial in the study since
it implied that the induced orbits were closed embedded submanifolds and the
orbit space was Hausdorff. The generalization of the study was done by L. Berard
Bergery [10] for closed subgroups of a Riemannian manifold. More precisely, he
assumed that G is a closed Lie subgroup of Iso(M), where M is a Riemannian
manifold, acting on M isometrically and with cohomogeneity one. Then he got
the same results about the orbit space. Thereafter, the topic “cohomogeneity one
Riemannian manifolds” has been studied by many mathematicians with different
approaches (see, for instance, [3, 10, 12–14,16,18–23]). However, if the metric on
M is indefinite, i.e., M is a pseudo-Riemannian manifold, then the closedness of
the acting group in the isometry group Iso(M) does not imply that the orbits are
closed and the quotient space is Haussdorff.
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Let G be a Lie group which acts on a connected smooth manifold M . For each
point x in M , G(x) denotes the orbit of x and Gx is the stabilizer in G of x. The
action is said to be proper if the mapping ϕ : G×M →M×M , where ϕ((g, x)) =
(g.x, x), is proper. Equivalently, for any sequences xn in M and gn in G, gnxn →
y and xn → x imply that gn has a convergent subsequence. The action of G on
M is nonproper if it is not proper. Equivalently, there are sequences gn in G
and xn in M such that xn and gnxn converge in M and gn → ∞, i.e., gn leaves
compact subsets. For instance, if G is compact, the action is obviously proper.
The orbit space M/G of a proper action of G on M is Hausdorff, the orbits are
closed embedded submanifolds, and the stabilizers are compact (see [1]).

By a result of D.V. Alekseevsky in [2], for a Lie group G, there exists a com-
plete G invariant Riemannian metric g on M if and only if the action of G on M
is proper. Furthermore, in this case the Lie group G would be a closed subgroup
of the Riemannian isometry group Iso(M, g). This theorem makes a link between
proper actions and Riemannian G-manifolds. Also, it clarifies the importance of
cohomogeneity one proper actions on pseudo-Riemannian manifolds.

This paper which deals with cohomogeneity one actions on four-dimensional
pseudo-Euclidean space R2,2, the real vector space R4 with the quadratic form
q = dx21 + dx22 − dx23 − dx24, is the continuation of our study of cohomogeneity
one pseudo-Riemannian manifolds (see, for instance, [4–9,15]). In the main The-
orem 2.5 of the paper, we determine all the Lie subgroups of Iso(R2,2) acting
with cohomogeneity one on R2,2 up to conjugacy. As a remarkable consequence
of Theorem 2.5, we prove that any connected Lie subgroup of Iso(R2,2) acting
linearly and with cohomogeneity one preserves a maximal totally isotropic sub-
space (Corollary 2.7). Then we specify the subgroups acting properly and those
acting nonproperly in Theorem 3.1. When the action is proper, we give the ex-
plicit representation of the acting group in Iso(R2,2), up to conjugacy, and then
we determine the induced orbits and the orbit space. As a result of Theorem 3.1,
we prove that the linear projection of the groups acting properly preserves ei-
ther a two-dimensional definite subspace or a maximal totally isotropic subspace
(Corollaries 3.2 and 3.4).

2. Groups acting with cohomogeneity one on R2,2

The (p+q)-dimensional pseudo-Euclidean space Rp,q is the (p+q)-dimensional
real vector space Rp+q with the line element ds2 = dx21 + · · · + dx2p − dx2p+1 −
· · · − dx2p+q. Let Iso(Rp,q) denote the group of isometries of Rp,q, that is, the
group O(p, q) n Rp,q. The multiplication and inversion on Iso(Rp,q) is given by
(V, v)(U, u) = (V U, v + V (u)) and (V, v)−1 = (V −1,−V −1(v)) and the action
of Iso(Rp,q) on Rp,q is given by Iso(Rp,q) × Rp,q → Rp,q, ((V, v), x) 7→ V (x) +
v. The isometry group Iso(Rp,q) has four connected components. The identity
component of Iso(Rp,q) is denoted by Iso◦(Rp,q) = SO◦(p, q) nRp,q.

To simplify computations in determining the Lie groups acting isometrically
and with cohomogeneity one on R2,2, we consider the four-dimensional vector
space of 2 × 2 real matrices M(2,R) endowed with the line element defined by
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the determinant. Let Eij denote the 2 × 2 matrix whose (i, j) entry is 1 and
whose other entries are zero. Then {e′1, e′2, e′3, e′4} is a basis for M(2,R), where

e′1 = E11 + E22, e′2 = −E12 + E21, e′3 = E12 + E21, e′4 = E11 − E22.

If {e1, e2, e3, e4} is the standard basis of R4, then the linear function Ψ : R2,2 →
(M(2,R),det), defined by ei 7→ e′i for 1 ≤ i ≤ 4, is a linear isometry. Hence
we denote M(2,R) endowed with the determinant line element by M2,2. Let
Iso◦(M

2,2) denote the identity component of the isometry group of M2,2. If X ∈
M2,2, the translation TX sending Y to X + Y is an isometry. Then TX ◦ TZ =
TX+Z = TZ ◦ TX , and since T0 is the identity, TX

−1 = T−X . It follows that
the set of all translations of M is a commutative subgroup of Iso◦(M

2,2) and is
isomorphic to M(2,R), the additive Lie group of 2 × 2 real matrices, via TX ↔
X. The following Lemma gives an explicit representation of Iso◦(M

2,2).

Lemma 2.1. Considering M(2,R) as the commutative Lie group of all trans-
lations of M2,2, we have

Iso◦(M
2,2) =

SL(2,R)× SL(2,R)

Z2
nϕM(2,R),

where ϕ(JA,BK)(TX) = TAXB−1.

Proof. First we determine the identity component of the Lie group of linear
isometries of M2,2, say L◦(M

2,2), that preserves the origin. Let G = SL(2,R)×
SL(2,R). The homomorphism

θ : G→ Iso◦(M
2,2)

with
θ(A,B)(X) = AXB−1, X ∈M2,2,

defines an isometric action of G on M2,2, and

ker θ = {(−I,−I), (I, I)},

where I denotes the identity matrix. Then θ induces a faithful linear action of
G/Z2 on M2,2 given by JA,BKX = AXB−1. Hence G/Z2 ⊆ L◦(M

2,2). On the
other hand, the isomorphism SO◦(2, 2) → L◦(M

2,2) given by g 7→ Ψ ◦ g ◦ Ψ−1,
implies that dimL◦(M

2,2) = 6. Thus (SL(2,R)× SL(2,R))/Z2 = L◦(M
2,2).

Now, if f ∈ Iso◦(M
2,2), let X = f(0) ∈ M2,2. Thus T−X ◦ f(0) = 0. Hence

T−X ◦ f ∈ L◦(M2,2), and so f = TX ◦ JA,BK for some A,B ∈ SL(2,R). Clearly,
this expression of f as TX ◦ JA,BK is unique.

For all Z ∈M2,2,

JA,BK ◦ TX)(Z) = AXB−1 +AZB−1 = (TJA,BKX ◦ JA,BK)(Z).

Hence, JA,BKTX = TJA,BKX ◦ JA,BK that determines the multiplication rule on
Iso◦(M

2,2) as

(JA,BK, TX) · (JC,DK, TY ) = (JAC,BDK, TAY B−1+X).
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This rule shows that the group of all translations of M2,2 is a normal subgroup of
Iso◦(M

2,2). If we define ϕ : G/Z2 → Aut(M(2,R)) by ϕ(JA,BK)(TX) = TAXB−1 ,
then the function (JA,BK, TX) → TX ◦ JA,BK is a Lie group isomorphism from
G/Z2 nϕM(2,R) onto Iso◦(M

2,2).

By the proof of Lemma 2.1, we may consider any element of Iso◦(M
2,2) of

the from (JA,BK, X) ∈ (SL(2,R) × SL(2,R))/Z2 nϕ M(2,R). The action of
Iso◦(M

2,2) on M2,2 is given by

(JA,BK, X)Y = AY B−1 +X.

The Lie algebra of Iso◦(M
2,2) is I = (⊕) ⊕φ M, where M denotes the space of

2 × 2 real matrices on which the bracket is identically zero, and φ(V,W )(x) =
V x− xW . Thus the bracket on I is

[(U, V ) + x, (W,Z) + y] = (UW −WU,V Z − ZV ) + φ(U, V )(y)− φ(W,Z)(x),

and hence the adjoint action of Iso◦(M
2,2) on its Lie algebra is given as follows:

Ad(JA,BK,X)((V,W )+y) = (AV A−1, BWB−1)−AV A−1X+XBWB−1+AyB−1.

Therefore, to determine the Lie groups acting with cohomogeneity one on
R2,2, we may specify the connected Lie subgroups of (SL(2,R) × SL(2,R)) nϕ

M(2,R) that act with cohomogeneity one on M2,2.

It is known that any one-parameter Lie subgroup of SL(2,R) is conjugate to
one of the groups (see [3], p.436),

• A = {At = etE11 + e−tE22 | t ∈ R},
• N = {Nt = E11 + E22 + tE12 | t ∈ R},
• K = {Kt = (cos t)(E11 + E22) + (sin t)(E21 − E12) | t ∈ R},
The Lie groups A, N and K are one-parameter subgroups defined by

Ya = E11 − E22, Yn = E12, Yk = E21 − E12,

respectively. The set {Ya, Yn, Yk} is a basis for sl(2,R) and we fix this basis
throughout the paper. The decomposition SL(2,R) = KAN is known as the
Iwasawa decomposition of the simple group SL(2,R).

Each two-dimensional connected Lie subgroup of SL(2,R) is conjugate to

{At,s = etE11 + e−tE22 + sE12 | t, s ∈ R},

which is isomorphic to Aff◦(R), the identity component of the group of affine
transformations of the real line R. Henceforth, we denote this group by Aff◦(R)
in the paper.

The bracket rule on sl(2,R) implies that

[Yk, Ya] = 2Yk + 4Yn, [Yk, Yn] = −Ya, [Ya, Yn] = 2Yn. (2.1)
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Let (Yk, 0)+u, (Ya, 0)+v, (Yn, 0)+w, (0, Yk)+x, (0, Ya)+y and (0, Yn)+z belong
to a subalgebra h ⊆ I, where u, v, w, x, y, z ∈ M. Then the following vectors
should belong to h:

[(Yk, 0) + u, (Ya, 0) + v] = (2Yk + 4Yn, 0) + (Ykv − Yau),

[(Yk, 0) + u, (Yn, 0) + w] = (−Ya, 0) + (Ykw − Ynu),

[(Ya, 0) + v, (Yn, 0) + w] = (2Yn, 0) + (Yaw − Ynv),

[(0, Yk) + x, (0, Ya) + y] = (0, 2Yk + 4Yn) + (Yky − Yax),

[(0, Yk) + x, (0, Yn) + z] = (0,−Ya) + (Ykz − Ynx),

[(0, Ya) + y, (0, Ya) + z] = (0, 2Yn) + (Yaz − Yay). (2.2)

By the fact that {(Yk, 0), (Ya, 0), (Yn, 0), (0, Yk), (0, Ya), (0, Yn)} is a basis for
sl(2,R)⊕ sl(2,R), we have

Ykv − Yau = 2u+ 4w, Ykw − Ynu = −v, Yaw − Ynv = 2w,

Yky − Yax = 2x+ 4z, Ykz − Ynx = −y, Yaz − Yny = 2z (2.3)

The relations (2) and (3) are key relations in determining the Lie algebras of Lie
groups acting with cohomogeneity one on M2,2 (see the proof of Theorem 2.5).

Finally, we define the following subspaces in M2,2:

• the lightlike line ` = R(e′2 − e′3),
• the spacelike plane M2,0 = Re′1 ⊕ Re′2,
• the timelike plane M0,2 = Re′3 ⊕ Re′4,
• the Lorentz plane M1,1 = Re′2 ⊕ Re′3,
• the degenerate plane W2 = Re′1 ⊕ `,
• the totally isotropic plane V2 = R(e′1 − e′4)⊕ `.
The first step in classifying cohomogeneity one actions on M2,2 is to determine
Lie subgroups of SL(2,R) × SL(2,R) acting linearly up to conjugacy. First, we
define the indefinite unitary group of signature (1, 1) to be

U(1, 1) = {X ∈M(2,C) | X?JX = J},

where J = E11 − E22. The special indefinite unitary group of signature (1, 1) is
SU(1, 1) = U(1, 1) ∩ SL(2,C). Their Lie algebras are spanned by {X1, X2, X3}
for SU(1, 1) and these three plus {X4} for U(1, 1), where

X1 = i(E11−E22), X2 = E12 +E21, X3 = i(E12−E21), X4 = i(E11 +E22).

Equivalently, u(1, 1) = {X | X?J + JX = 0} and su(1, 1) = {X | X?J + JX =
0,Tr(X) = 0}. Thus U(1, 1) and SU(1, 1) are connected Lie groups of dimension
4 and 3, respectively.

Consider the linear map ψ : u(1, 1)→ sl(2,R)⊕ k defined by

X1 7→ (Yk, 0), X2 7→ (Ya, 0), X3 7→ (Yk + 2Yn, 0), X4 7→ (0, Yk).

It is easy to see that ψ is an injective Lie algebra homomorphism. This gives
an explicit Lie algebra embedding of u(1, 1) into sl(2,R) ⊕ sl(2,R). By this
embedding, the following theorem from [11] is easily understood.
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Theorem 2.2 ( [11]). Let H ⊂ SO(2, n) be a connected Lie group that acts
irreducibly on R2,n. Then H is conjugate to one of the following Lie groups:

(1) for arbitrary n ≥ 1: SO◦(2, n),

(2) for n = 2p : U(1, p), SU(1, p) or S1.SO◦(1, p) if p > 1,

(3) for n = 3: SO◦(1, 2) ⊂ SO(2, 3).

Lemma 2.3. Let H be a connected Lie subgroup of SL(2,R)×SL(2,R) whose
action is reducible on M2,2. Then H is conjugate to some subgroup of one of the
Lie groups SL(2,R)×Aff◦(R) or diag(SL(2,R)×SL(2,R)). Furthermore, if the
action is of cohomogeneity one, then H ⊆ SL(2, R)×Aff◦(R) up to conjugacy.

Proof. By Theorem 2.2, if H acts irreducibly on M2,2, then H is conjugate to
SL(2,R)×SL(2,R) or U(1, 1). Due to this theorem, every other connected proper
Lie subgroup of SO◦(2, 2) preserves a nontrivial linear subspace of M2,2. Every
one-dimensional spacelike, timelike or lightlike subspace of M2,2 is congruent by
an element of SL(2,R)× SL(2,R) to Re′1, Re′4 or `, respectively. Let H be a Lie
subgroup of SL(2,R)× SL(2,R) which acts on M2,2 isometrically and preserves
a one-dimensional linear subspace L .

• If L = Re′1, then H ⊆ diag(SL(2,R)× SL(2,R)),

• If L = Re′4, then H ⊆ {(P, e′4Pe
′−1
4 ) | P ∈ SL(2,R)},

• If L = `, then H ⊆ Aff◦(R)×Aff◦(R).

We notice that {(P, e′4Pe
′−1
4 ) | P ∈ SL(2,R)} is conjugate to diag(SL(2,R) ×

SL(2,R)).
And any two-dimensional spacelike, timelike, Lorentzian, degenerate or to-

tally isotropic subspace of M2,2 is congruent to M2,0, M0,2, M1,1, W2 or V2,
respectively.

• If L is either M2,0 or M0,2 , then H ⊆ K×K,

• If L is M1,1, then H ⊆ A×A,

• If L = W2, then H ⊆ {(At,s, At,s′)|t, s, s′ ∈ R},
• If L = V2, then H ⊆ SL(2,R)×Aff◦(R).

If H preserves a three-dimensional subspace, then it should preserve its orthog-
onal complement that is considered above.

To complete the proof, we show that the group diag(SL(2,R)×SL(2,R)) does
not act with cohomogeneity one on M2,2. Let H = diag(SL(2,R) × SL(2,R)).
Since H fixes Re′1, it preserves the subspace Π = Re′⊥1 as well. The hyperplane
Π = {T ∈M2,2 | trace(T ) = 0} is isometric to the Minkowski space R1,2 and the
induced action of H on Π is linear and isometric, so it preserves the hyperquadrics
contained in Π that are two- dimensional. Therefore the action of H on Π has
no open orbit, i.e., its action on M2,2 is not of cohomogeneity one.

Now we are going to get the list of the groups acting linearly and with coho-
mogeneity one on M2,2 up to conjugacy. Let pi : SL(2,R)×SL(2,R)→ SL(2, R)
be the projection map on the first and second factor, where i ∈ {1, 2}, that is a
Lie group homomorphism. For any Lie subgroup H of SL(2,R) × SL(2,R), we
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denote by pi the restriction of pi to H as well. Clearly, a product group p1(H)×
p2(H) is conjugate to p2(H) × p1(H) by an element of Iso(M2,2) (considering
H as a subgroup of SO◦(2, 2), they are conjugate by an element of SO(2, 2)).
Hence, to determine linear actions on M2,2, we consider only the Lie subgroups
H of SL(2,R)× SL(2,R) with dim p1(H) > dim p2(H).

Proposition 2.4. Let H be a connected Lie subgroup of SL(2,R)×SL(2,R)
acting linearly and with cohomogeneity one on M2,2. Then the following state-
ments hold.

(i) If the action is irreducible, then H is conjugate to one of the groups
SL(2,R)× SL(2,R) or U(1, 1).

(ii) If the action is reducible, then H is conjugate to one of the following Lie
groups:

SL(2, R)×Aff◦(R), SL(2,R)× {I}, SL(2,R)×A,

SL(2,R)×N, SL(2,R)×K, Aff◦(R)×Aff◦(R),

Aff◦(R)×A, Aff◦(R)×N, Aff◦(R)×K,

or {(At,s, Aαt,s′) | t, s, s′ ∈ R},

where α is a fixed real number.

Proof. If the action of H is irreducible, then H is conjugate to either
SL(2,R)× SL(2,R) or U(1, 1) ∼= SL(2,R)×K by Theorem 2.2 . The actions of
these groups are of cohomogeneity one since both of them act on the hyperquadric
{x ∈M2,2 | det(x) = 1} transitively.

Now assume that the action of H is reducible. By Lemma 2.3, it should be a
subgroup of SL(2, R)×Aff◦(R) up to conjugacy.

• Let dim p1(H) = 3, i.e., p1(H) = SL(2,R). Then H = p1(H) × p2(H) since
p1(H) is simple and p2(H) is solvable. Hence, H is one of the groups:

SL(2, R)×Aff◦(R), SL(2,R)× {I}, SL(2,R)×A, SL(2,R)×N,

up to conjugacy.

• Let dim p1(H) = 2, i.e., p1(H) = Aff◦(R). First, assume that dim p2(H) =
1. The action is of cohomogeneity one, so dim(ker p1) = 1 and we have
ker p1 = p2(H). Hence H = p1(H) × p2(H). By the well-known fact about
one-dimensional subgroups of SL(2,R), the Lie group H can be conjugate to
one of the groups Aff◦(R)×A, Aff◦(R)×N or Aff◦(R)×K.

Now suppose that dim p2(H) = 2. If dimH = 3, then ker p1 is a one-
dimensional normal Lie subgroup of {I} × p2(H), so

ker p1 = {I} ×N = exp({0} ⊕ {tYn | t ∈ R}). (2.4)

The Lie algebra h is a three-dimensional subalgebra of

aff(R)⊕ aff(R) = {(tYa + sYn, t
′Ya + s′Yn) | t, t′, s, s′ ∈ R}.
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Combining this with relation (2.4) implies that the projection (tYa+sYn, t
′Ya+

s′Yn) 7→ (t, s, s′) is a linear isomorphism from h onto R3. Thus t′ = t′(t, s) is
a linear function t′ : R2 → R. So there are fixed real numbers α and β such
that t′(t, s) = αt+βs. The closedness under the bracket of h implies that β =
0. Therefore, h has the form {(tYa + sYn, αtYa + s′Yn) | t, s, s′ ∈ R}, and thus
H = {(At,s, Aαt,s′) | t, s, s′ ∈ R}.

If dimH = 4, then p1(h) = p2(h) = Aff◦(R) and ker p1 is a two-dimensional
normal subgroup of {I} ×Aff◦(R). So, ker p1 = {0} ×Aff◦(R), and thus H =
Aff◦(R)×Aff◦(R).

The theorem is proved.

Let L : (SL(2,R) × SL(2,R)) nM(2,R) → SL(2,R) × SL(2,R) be the pro-
jection map, ((g1, g2), x) 7→ (g1, g2), which is a Lie group homomorphism. Let H
be a Lie subgroup of (SL(2,R)×SL(2,R))nM(2,R). Then kerL|H is a normal
subgroup of H that is called the translation part of H. The Lie subgroup L(H) is
called the linear projection of H in SL(2,R)× SL(2,R). We use the same nota-
tion L : (sl(2,R)⊕ sl(2,R))⊕φ M→ (sl(2,R)⊕ sl(2,R)), given by ((V,W ), y) 7→
(V,W ), to denote the projection on the first factor as well. Let h be the Lie
algebra of H. Then L(h) is a subalgebra of sl(2,R)⊕ sl(2,R), kerL|h is an ideal
of h and, obviously, kerL|h = h ∩M. Hence L(h) preserves h ∩M, i.e., L(h)(h ∩
M) ⊆ h ∩M. By the normalizer of h ∩M in sl(2,R) ⊕ sl(2,R), we mean the
maximal Lie subalgebra of sl(2,R)⊕sl(2,R) preserving h∩M. Now we are ready
to state our main theorem.

Theorem 2.5. Let H be a connected Lie subgroup of Iso(M2,2) acting on
M2,2 with cohomogeneity one. Then H is conjugate within Iso(M2,2) to one of
the groups in Tables 2.1–2.6.

We consider the proof of Theorem 2.5 according to the translation part of
the acting group. The proof is a direct consequence of Lemmas 2.6–2.10. In any
case, when the obtained group does not act with cohomogeneity one, we indicate
it by determining the dimensions of the induced orbits. For all reminded cases
we have dimH(q) = 3, where q ∈M2,2 with q21 6= 0.

Consider the ordered basis B = (E11, E12, E21, E22) for M. For any q ∈ M,
let q = (q1, q2, q3, q4) be its representation in this basis.

2.1. Subgroups with trivial translation part Here we assume that the
translation part of the acting group H is trivial, and so M ∩ h = {0}.

Lemma 2.6. Let H be a connected Lie subgroup of Iso(M2,2) acting on M2,2

with cohomogeneity one. If the translation part of H is trivial, then H is conjugate
within Iso(M2,2) to one of the groups in Table 2.1.

Proof. The translation part of H is trivial, so dim(h ∩M) = 0. The coho-
mogeneity one assumption implies that dimL(h) ≥ 3. By Proposition 2.4, L(H)
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Subgroups with trivial translation part

SL(2,R)
×SL(2,R)

U(1, 1)
= SL(2,R)×K

SL(2, R)×A SL(2,R)×N

{(At,s, Aαt,s′)|
t, s, s′ ∈ R}

Aff◦(R)
×Aff◦(R)

Aff◦(R)×A Aff◦(R)×N

SU(1, 1)
= SL(2,R)× {I}

Aff◦(R)×K

Table 2.1: Groups acting linearly and with cohomogeneity one, up to conjugacy
within Iso(M2,2), where α ∈ R.

can be one of the Lie subgroups in Table 2.1. We claim that if L(H) is conjugate
to one of these groups, then H is.

First, assume that L(H) = SL(2,R)× SL(2,R). There exist u, v, w, x, y, z ∈
M such that

h = R((Yk, 0) + u) + R((Ya, 0) + v) + R((Yn, 0) + w)

+ R((0, Yk) + x) + R((0, Ya) + y) + R((0, Yn) + z).

Then the obtained relations in (2.2) and (2.3) show that u, v, w, x, y and z have
the following representations in the basis B:

u = (u1, u2, u3, u4), v = (u3, u4, u1, u2), w = (−u1,−u2, 0, 0),

x = (−u4, u3, u2,−u1), y = (−u3, u4, u1,−u2), z = (0,−u3, 0, u1).

Let p = (u3, u4,−u1,−u2). Then Ad((I, I), p) maps (Yk, 0)+u, (Ya, 0)+v, (Yn, 0)+
w, (0, Yk) + x, (0, Ya) + y and (0, Yn) + z to (Yk, 0), (Ya, 0), (Yn, 0), (0, Yk), (0, Ya)
and (0, Yn), respectively. Hence, Ad((I, I), p)(h) = sl(2,R) ⊕ sl(2,R). Therefore
H is conjugate to SL(2,R)× SL(2,R).

By a similar argument, one can see that if L(H) is one of the remaining Lie
groups, then H itself is conjugate to that group. The key point is in finding a
suitable point p such that Ad((I, I), p) maps h to L(h)⊕ {0}.

Corollary 2.7. Let H be a connected Lie subgroup of Iso(R2,2) acting lin-
early and with cohomogeneity one on R2,2. If the action is reducible, then H ⊆
Stab(V2), where V2 is a maximal totally isotropic vector subspace of R2,2.

Proof. Every group in Table 2.1, except the two groups SL(2,R)× SL(2,R)
and U(1, 1), acts reducibly and preserves one of the maximal totally isotropic
subspace {tE12 + sE22 | t, s ∈ R} or {tE11 + sE12 | t, s ∈ R}.

2.2. Subgroups with a line as the translation part. Every one-
dimensional spacelike, timelike or lightlike subspace of M2,2 is congruent to
Re′1,Re′4 or `, respectively.

Lemma 2.8. Let H be a connected Lie subgroup of Iso(M2,2) acting on M2,2

with cohomogeneity one. If the translation part of H is a line, then H is conjugate
within Iso(M2,2) to one of the groups in Table 2.2.
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Subgroups with a definite line as the translation part

spacelike timelike

diag(SL(2,R)× SL(2,R))× Re′1 {(x, e′4xe
′−1
4 )|x ∈ SL(2,R)} × Re′4

exp(R((Ya, Ya) + λ(E11 + E22)) exp(R((Ya, e
′
4Yae

′−1
4 ) + λ(E11 − E22))

+R(Yn, Yn)) nRe′1 +R(Yn, e
′
4Yne

′−1
4 )) nRe′4

Subgroups with a lightlike line ` as the translation part

exp(R((Ya,−Ya) + λE12) + R(Yn, 0) + R(0, Yn)) n `

exp(R(Ya, 3Ya) + R((Yn, 0) + λE22) + R(0, Yn)) n `

exp(R(Ya,
1
3Ya) + R(Yn, 0) + R((0, Yn) + λE11) n `

(Aff◦(R)×A) n `, (A×Aff◦(R)) n `

exp(R((Ya, Ya) + λ(E11 + E22)) + R(Yn, Yn)) n `

exp(R(Ya, aYa) + R(Yn, 0)) n `

exp(R((Ya, Ya) + λE11) + R(Yn, 0)) n `

exp(R(Ya, 3Ya) + R((Yn, 0) + λE22) n `

exp(R(Ya, bYn) + R(Yn, 0)) n `

(Aff◦(R)× I) n `, (I ×Aff◦(R)) n `

exp(R(aYa, Ya) + R(0, Yn)) n `

exp(R((Ya, Ya) + λE22) + R(0, Yn)) n `

exp(R(3Ya, Ya) + R((0, Yn) + λE11) n `

exp(R(bYn, Ya) + R(0, Yn)) n `

(A×A) n `, (A×N) n `, (N×A) n `

exp(R((Yn, 0) + λE22) + R((0, Yn) + µE11)) n `

Table 2.2: Here ` denotes the lightlike line R(e′2 − e′3) ≤M2,2, λ, µ, a, b are fixed
real numbers, where a ∈ R+ − {1, 3} and b ∈ {±1} .

Proof. We may assume that h ∩M is one of the one-dimensional subspaces
Re′1, Re′4 or `.

Case I: h ∩ M = Re′1. The normalizer of Re′1 in SL(2,R) × SL(2,R) is
diag(SL(2,R)×SL(2,R)), which implies that L(H) ⊆ diag(SL(2,R)×SL(2,R)).
By the assumption h ∩M = Re′1, so dimL(H) > 2.

• If dimL(H) = 3, then h is of the form R((Yk, Yk) + u) + R((Ya, Ya) + v) +
R((Yn, Yn) + w)⊕ Re′1, where u, v, w ∈M2,2. Hence, by using (2.2) and (2.3),
we have

u = (u1, u2, u2,−u1), v = (0, v3 − 2u1, v3, 0), w =

(
−1

2
v3,−u2, 0,

1

2
v3

)
.

Let p =
(
u2,

1
2v3 − u1,−

1
2v3, 0

)
. Then Ad((I, I), p) maps (Yk, Yk)+u, (Ya, Ya)+

v and (Yn, Yn) + w to (Yk, Yk), (Ya, Ya) and (Yn, Yn) respectively. Hence,
Ad((I, I), p)(h) = R(Yk, Yk) + R(Ya, Ya) + R(Yn, Yn) ⊕ Re′1. Therefore H is
conjugate to diag(SL(2,R)× SL(2,R)) nRe′1.

• If dimL(H) = 2, then L(H) = diag(Aff◦(R)×Aff◦(R)) up to conjugacy. Hence
h is of the form R((Ya, Ya) +u) +R((Yn, Yn) + v)⊕Re′1, where u, v ∈M. Then
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(2.2) and (2.3) show that

u = (u1, u2, u3, u1), w =

(
−1

2
u3, v2, 0,

1

2
u3

)
.

Let p =
(
−v2, 12u2,−

1
2u3, 0

)
. Then Ad((I, I), p)(h) = R((Ya, Ya) + u1(E11 +

E22))+R(Yn, Yn)⊕Re′1. Therefore H is conjugate to exp(R((Ya, Ya)+λ(E11 +
E22)) + R(Yn, Yn)) n Re′1, where λ is a fixed real number, (the action of this
later group is orbit-equivalent to that of diag(Aff◦(R)×Aff◦(R)) nRe′1).
Case II: h∩M = Re′4. The normalizer of Re′4 in SL(2,R)×SL(2,R) is G =

{(x, e′4xe
′−1
4 ) | x ∈ SL(2,R)}, which implies that L(H) ⊆ G.

• If dimL(H) = 3, then h is of the form R((Yk, e
′
4Yke

′−1
4 )+u)+R((Ya, e

′
4Yae

′−1
4 )+

v) +R((Yn, e
′
4Yne

′−1
4 ) +w)⊕Re′4, where u, v, w ∈M2,2. By using the relations

obtained in (2.2) and (2.3), one gets that u, v and w have the following repre-
sentations in the basis B:

u = (u1, u2,−u2, u1), v = (0, 2(u1 − u2), 2u2, 0), w = (−u2,−u2, 0,−u2).

Let p = (−u2, u1 − u2,−u2, 0). Then Ad((I, I), p)(h) = R(Yk, e
′
4Yke

′−1
4 ) +

R(Ya, e
′
4Yae

′−1
4 ) + R(Yn, e

′
4Yne

′−1
4 ) ⊕ Re′4. Hence H = {(x, e′4xe

′−1
4 ) | x ∈

SL(2,R)}nRe′4 up to conjugacy.

• If dimL(H) = 2, then L(H) = {(x, e′4xe
′−1
4 ) | x ∈ Aff◦(R)}. Therefore, h is of

the form R((Ya, e
′
4Yae

′−1
4 ) + u) + R((Yn, e

′
4Yne

′−1
4 ) + v)⊕ Re′4 where u, v ∈M.

Then (2.2) and (2.3) show that

u = (u1, u2, u3,−u1), v =

(
−1

2
u3, v2, 0,−

1

2
u3

)
.

Let p =
(
v2,

1
2u2,−

1
2u3, 0

)
. Then Ad((I, I), p)(h) = R((Ya, e

′
4Yae

′−1
4 )+u1(E11−

E22)) +R(Yn, e
′
4Yne

′−1
4 )⊕Re′4 and so H is conjugate to exp(R((Ya, e

′
4Yae

′−1
4 ) +

λ(E11 − E22)) + R(Yn, e
′
4Yne

′−1
4 )) n Re′4, where λ is a fixed real number. The

action of this group is orbit-equivalent to that of {(x, e′4xe
′−1
4 ) | x ∈ Aff◦(R)}n

Re′4.
Case III: Let h ∩M = `. The normalizer of ` in SL(2,R) × SL(2,R) is

Aff◦(R)×Aff◦(R), which implies that L(H) ⊆ Aff◦(R)×Aff◦(R).
If dimL(H) = 4, then L(H) = Aff◦(R) × Aff◦(R). Hence h is of the form

R((Ya, 0)+u)+R((Yn, 0)+v)+R((0, Ya)+w)+R((0, Yn)+x)⊕`, where u, v, w, x ∈
M. Thus, the same argument as in the proof of Lemma 2.6 shows that H is
conjugate to (Aff◦(R) × Aff◦(R)) n `. We claim that the action of this group is
not of cohomogeneity one . In fact, for any q ∈M2,2, if q3 6= 0, then dimH(q) =
4, if q3 = 0, then dimH(q) 6 2. Thus, the case h ∩M = `, where L(H) =
Aff◦(R)×Aff◦(R), is excluded.

Subcase III-a: dimL(h) = 3. Since L(H) ⊆ Aff◦(R)×Aff◦(R), then, up to
conjugacy, the following cases may occur:

(i) dim p1(L(H)) = 2,
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(ii) dim p1(L(H)) = 1.

In Case (i), if dim p2(L(H)) = 2, then p1(L(h)) = {tYa + sYn | t, s ∈ R} and
p2(L(h)) = {uYa+vYn | u, v ∈ R}. Since dimL(h) = 3, one of the parameters t, s,
u or v should be a linear function of the others. If v = v(t, s, u) (respectively, s =
s(u, v, t)), then the closedness of the bracket on h implies that v = 0 (respectively,
s = 0).

Let u = at+bs+cv, where a, b, c are fixed real numbers. The relation [h, h] ⊂
h implies that b = c = 0 and so u = at where a ∈ R∗. We claim that a ∈{
−1, 13 , 3

}
.

Proof of the claim.The Lie algebra h is of the form R((Ya, aYa)+u)+R((Yn, 0)+
v) + R((0, Yn) + w) ⊕ ` where u, v, w ∈ M. We consider the following different
cases for a and in each case we use (2.2) and (2.3) to obtain a simple form of the
group up to conjugacy.

If a /∈
{
1
3 , ±1, 3

}
, then

u = (u1, u2, u3, u4),

v =

(
− 1

a+ 1
u3,

1

a− 1
u4, 0, 0

)
, w =

(
0,

1

a− 1
u1, 0,

1

a+ 1
u3

)
.

Let p =
(

1
1−au1,

1
a+1u2,−

1
a+1u3,

1
a−1u4

)
. Then Ad((I, I), p)(h) = R(Ya, aYa) +

R(Yn, 0) + R(0, Yn)⊕ `. Hence H = exp(R(Ya, aYa) + R(Yn, 0) + R(0, Yn)) n ` up
to conjugacy. Let q ∈M2,2. If q3 6= 0 (respectively, q3 = 0 and q21 + q24 6= 0), then
dimH(q) = 4 (respectively, dimH(q) = 2), and for any other point q we have
dimH(q) = 1. Hence H does not act with cohomogeneity one on M2,2.

If a = 1, then

u = (0, u2, u3, 0), v =

(
−1

2
u3, v2, 0, 0

)
, w =

(
0, w2, 0,

1

2
u3

)
.

Let p =
(
−w2,

1
2u2,−

1
2u3, v2

)
. Then Ad((I, I), p)(h) = R(Ya, Ya) + R(Yn, 0) +

R(0, Yn)⊕` and so H = exp(R(Ya, Ya)+R(Yn, 0)+R(0, Yn))n`. For any q ∈M2,2,
if q3 6= 0 (respectively, q3 = 0), then dimH(q) = 4 (respectively, dimH(q) 6 2).
Hence H does not act with cohomogeneity one on M2,2. Thus a 6= 1.

If a = −1, then a similar argument used for a = 1 shows that H is conjugate
to exp(R((Ya,−Ya) + λE12) + R(Yn, 0) + R(0, Yn)) n `, where λ is a fixed real
number (its action is orbit-equivalent to the action of exp(R(Ya,−Ya)+R(Yn, 0)+
R(0, Yn))n `). For any q ∈M2,2, if λq3 6= 0, then dimH(q) = 3, and thus H acts
with cohomogeneity one on M2,2.

If a = 3, then

u = (u1, u2, u3, u4), v =

(
−1

4
u3,

1

2
u4, 0, v4

)
, w =

(
0,

1

2
u1, 0,

1

4
u3

)
.

Let p =
(
−1

2u1,
1
4u2,−

1
4u3,

1
2u4
)
. Then Ad((I, I), p)(h) = R(Ya, 3Ya)+R((Yn, 0)+

v4E22) + R(0, Yn) ⊕ `. Therefore H is conjugate to exp(R(Ya, 3Ya) + R((Yn, 0) +
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λE22) + R(0, Yn)) n `, where λ is a fixed real number. For any q ∈ M2,2, if q3 6=
0, then dimH(q) = 4, if q3 = 0 and q1q4λ 6= 0, then dimH(q) = 3. Hence H acts
with cohomogeneity one on M2,2 with at least one open orbit.

If a = 1
3 , then

u = (u1, u2, u3, u4), v =

(
−3

4
u3,−

3

2
u4, 0, 0

)
, w =

(
w1,−

3

2
u1, 0,

3

4
u3

)
.

Let p =
(
3
2u1,

3
4u2,−

3
4u3,−

3
2u4
)
. Then Ad((I, I), p)(h) = R(Ya,

1
3Ya) +R(Yn, 0) +

R((0, Yn) + w1E11 ⊕ `, and so H is conjugate to exp(R(3Ya, Ya) + R(Yn, 0) +
R((0, Yn) + λE11) n `, where λ is a fixed real number. For q ∈ M2,2, if q3 6= 0,
then dimH(q) = 4, if q3 = 0 and q1q4λ 6= 0, then dimH(q) = 3. Hence H acts
with cohomogeneity one on M2,2 and there exists at least one open orbit. The
claim is proved.

In Case (ii), if dim p2(L(H)) = 1, then

L(H) ∈ {Aff◦(R)×A,Aff◦(R)×N}.

We claim that L(H) 6= Aff◦(R) × N, otherwise h should be of the form
R((Ya, 0) +u) +R((Yn, 0) +v) +R((0, Yn) +w)⊕ `, where u, v, w ∈M. Then (2.2)
and (2.3) show that

u = (u1, u2, u3, u4), v = (−u3,−u4, 0, 0), w = (−u1, 0, 0, u3).

Let p = (u1, u2,−u3,−u4). Then Ad((I, I), p)(h) = R(Ya, 0)+R(Yn, 0)+R(0, Yn)⊕
`. Therefore H = (Aff◦(R)×N)n ` up to conjugacy. Let q ∈M2,2. If q3 6= 0 (re-
spectively, q3 = 0 and q21 + q24 6= 0), then dimH(q) = 4 (respectively, dimH(q) =
2), and for any other point q we have dimH(q) = 1 . Hence H does not act with
cohomogeneity one on M2,2. Thus L(H) 6= Aff◦(R)×N as it is claimed.

Let L(H) = Aff◦(R)×A. Then a similar argument shows that H is conjugate
to (Aff◦(R)×A) n `.

In Case (ii), dimL(H) = 3 implies that dim p2(L(H)) = 2. Hence the same
argument we used for the previous case shows that H = (A×Aff◦(R))n ` up to
conjugacy.

Subcase III-b: dimL(H) = 2. Considering various cases for dim p1(H) and
dim p2(H), we obtain H up to conjugacy as follows.

? If dim p1(L(H)) = dim p2(L(H)) = 2, then p1(L(H)) = p2(L(H)) = Aff◦(R)
up to conjugacy. Since automorphisms of Aff◦(R) are conjugacies, for each
automorphism ρ ∈ Aut(Aff◦(R)) there is an h ∈ Aff◦(R) such that

ρ : Aff◦(R)→ Aff◦(R), g 7→ h−1gh.

Hence L(H) = {(x, h−1xh) | x ∈ Aff◦(R)} and so

Ad(I, h)(L(H)) = diag(Aff◦(R)×Aff◦(R)).

The same argument we used for the second item of Case I shows that H is
conjugate to exp(R((Ya, Ya)+λ(E11 +E22))+R(Yn, Yn))n `, where λ is a fixed
real number.



316 P. Ahmadi and S. Safari

? If dim p1(L(H)) = 2 and dim p2(L(H)) = 1, then p1(L(H)) = Aff◦(R) and
p2(L(H)) ∈ {A,N} up to conjugacy.

• If p2(L(H)) = A, then

p1(L(h)) = {tYa + sYn | t, s ∈ R}, p2(L(h)) = {rYa|r ∈ R}.

Remind that dimL(h) = 2. Hence r = r(t, s) is a linear function r :
p1(L(h)) → p2(L(h)), i.e., r = at + bs for some a, b ∈ R. But [h, h] ⊂ h
implies that b = 0. Thus L(h) = {(tYa + sYn, atYa) | t, s ∈ R} and a ∈ R∗.
If we denote this Lie algebra by L(h)a, then (I, h)La(h)(I, h)−1 = L−a(h),
where h = E12 − E21. Therefore, it is adequate to consider L(h)a for a ∈
R+. Let us denote by ha the corresponding Lie algebra to L(h)a. Hence ha

is of the form R((Ya, aYa) + u) + R((Yn, 0) + v)⊕ `, where u, v ∈M. Using
(2.2) and (2.3), one gets the following.

If a ∈ R+ − {1, 3}, then

u = (u1, u2, u3, 0), v =

(
− 1

a+ 1
u3,

1

a− 1
u4, 0, 0

)
.

Let p =
(

1
1−au1,

1
a+1u2,−

1
a+1u3,

1
a−1u4

)
. Then we have Ad((I, I), p)(h) =

R((Ya, aYa)) + R(Yn, 0) ⊕ `. Therefore H = exp(R(Ya, aYa) + R(Yn, 0)) n `
up to conjugacy.

If a = 1, then

u = (u1, u2, u3, 0), v =

(
−1

2
u3, v2, 0, 0

)
.

For p = (0, 12u2,−
1
2u3, v2) we have Ad((I, I), p)(h) = R((Ya, Ya) + u1E11) +

R(Yn, 0)⊕ ` and so H is conjugate to exp(R((Ya, Ya) + λE11) + R(Yn, 0)) n
`, where λ is a fixed real number.

If a = 3, then

u = (u1, u2, u3, 0), v =

(
−1

4
u3,

1

2
u4, 0, v4

)
.

Let p =
(
−1

2u1,
1
4u2,−

1
4u3,

1
2u4
)
. Then Ad((I, I), p)(h) = R((Ya, 3Ya)) +

R((Yn, 0)+v4E22)⊕ ` and so H is conjugate to exp(R(Ya, 3Ya)+R((Yn, 0)+
λE22) n `, where λ is a fixed real number.

• If p2(L(H)) = N, then, by the same argument as above, one gets that
L(H) = {(At,s, Nbt) | t, s ∈ R}, where b is a fixed real nonzero number.

Let b ∈ R+. Then, for hb = 1√
b
E11 +

√
bE22 ∈ SL(2,R), Ad(I, hb) maps

bE12 to E12. If b ∈ R−, then Ad(I, h−b) maps bE12 to −E12. Hence we
have the two cases {(At,s, Nt) | t, s ∈ R} and {(At,s, N−t) | t, s ∈ R} for
L(H) up to conjugacy. This implies that h is of the form R((Ya, bYn)+u)+
R((Yn, 0) +v)⊕ `, where u, v ∈M and b ∈ {±1}. The relations in (2.2) and
(2.3) show that

u = (u1, u2, u3, u4), v = (−u3, bu3 − u4, 0, 0).
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Let p = (u1, bu1 + u2,−u3, bu3 − u4). Then Ad((I, I), p)(h) = R(Ya, bYn) +
R(Yn, 0) ⊕ `. Therefore H is conjugate to exp(R(Ya, bYn) + R(Yn, 0)) n `,
where b ∈ {±1}.

? If dim p1(L(H)) = 2 and dim p2(L(H)) = 0, then L(H) = Aff◦(R)×I, where I
denotes the trivial subgroup. Hence h is of the form R((Ya, 0)+u)+R((Yn, 0)+
v)⊕ `, where u, v ∈M. Then (2.2) and (2.3) show that

u = (u1, u2, u3, u4), v = (−u3,−u4, 0, 0).

Let p = (u1, u2,−u3,−u4). Then Ad((I, I), p)(h) = R(Ya, 0) + R(Yn, 0) ⊕ `,
and so H = (Aff◦(R) × I) n ` up to conjugacy. If L(H) = I × Aff◦(R), then
the same argument shows that H = (I ×Aff◦(R)) n `.

? If dim p1(L(H)) = 1 and dim p2(L(H)) = 2, then, up to conjugacy, we have
p1(L(H)) ∈ {A,N} and p2(L(H)) = Aff◦(R). Thus, the same argument as
that of the case, where dim p1(L(H)) = 2 and dim p2(L(H)) = 1, of Subcase
III-b shows that H is conjugate to one of the following groups:

• exp(R((Ya, Ya) + λE22) + R(0, Yn)) n `.

• exp(R(3Ya, Ya) + R((0, Yn) + λE11) n `.

• exp(R(aYa, Ya) + R(0, Yn)) n ` if a ∈ R+ − {1, 3}.
• exp(R(bYn, Ya) + R(0, Yn)) n ` and b ∈ {±1}.

? If dim p1(L(H)) = dim p2(L(H)) = 1, then

L(H) ∈ {A×A,A×N,N×A,N×N}.

• L(H) = A×A. Hence h is of the form R((Ya, 0) + u) + R((0, Ya) + v)⊕ `,
where u, v ∈M. By using (2.2) and (2.3), one gets that

u = (u1, u2, u3, u4), v = (−u1, u2, u3,−u4).

Let p = (u1, u2,−u3,−u4). Then Ad((I, I), p)(h) = R(Ya, 0) + R(0, Ya)⊕ `
and so H = (A×A) n ` up to conjugacy. A similar argument shows that
if L(H) is one of the groups A×N or N×A, then H is conjugate to (A×
N) n ` or (N×A) n `, respectively.

• L(H) = N×N. Hence h is of the form R((Yn, 0) + u) + R((0, Yn) + v)⊕ `,
where u, v ∈M. Then (2.2) and (2.3) show that

u = (u1, u2, 0, u4), v = (v1, v2, 0,−u1).

Let p = (−v2, 0, u1, u2). Then Ad((I, I), p)(h) = R((Yn, 0) + u4E22) +
R((0, Yn) + v1E11) ⊕ `, and so H is conjugate to exp(R((Yn, 0) + λE22) +
R((0, Yn) + µE11)) n `, where λ and µ are fixed real numbers.

The theorem is proved.

2.3. Subgroups with a plane as the translation part. Every two-
dimensional spacelike, timelike, Lorentzian, degenerate or totally isotropic sub-
space of M2,2 is congruent to M2,0, M0,2, M1,1, W2 or V2, respectively.
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Lemma 2.9. Let H be a connected Lie subgroup of Iso(M2,2) acting on M2,2

with cohomogeneity one. If the translation part of H is a plane, then H is con-
jugate within Iso(M2,2) to one of the groups in Tables 2.3, 2.4 or 2.5.

Subgroups with a definite plane as the translation part

spacelike timelike

(K×K) nM2,0 (K×K) nM0,2

{(Kt,Kat) | t ∈ R}nM2,0 {(Kt,Kat) | t ∈ R}nM0,2

exp(R((Yk,−Yk) + λE21 + µE22)) exp(R((Yk,−Yk) + λE21 + µE22))
nM2,0 nM0,2

(I ×K) nM2,0 (I ×K) nM0,2

Table 2.3: Here M2,0 and M0,2 denote the subspaces Re′1 ⊕ Re′2 and Re′3 ⊕ Re′4,
respectively, and a, λ, µ ∈ R are fixed numbers and a 6= −1.

Subgroups with a Lorentzian plane as the translation part

(A×A) nM1,1

{(At, Aat) | t ∈ R}nM1,1

exp(R((Ya, Ya) + λE11 + µE22)) nM1,1

exp(R((Ya,−Ya) + λE12 + µE21)) nM1,1

(I ×A) nM1,1

Table 2.4: Here M1,1 denotes the subspace Re′2 ⊕ Re′3 and a, λ, µ ∈ R are fixed
numbers and a 6= ±1.

Proof. We may assume that h ∩M is equal to one of the two-dimensional
subspaces M2,0, M0,2, M1,1, W2 or V2.

Case I: h ∩M = M2,0. The normalizer of M2,0 in SL(2,R) × SL(2,R) is
equal to K×K, which implies that L(H) ⊆ K×K.

? If dimL(H) = 2, then L(H) = K × K. Hence h is of the form R((Yk, 0) +
u) + R((0, Yk) + v) ⊕M2,0, where u, v ∈ M. By a simple computation and
using relations in (2.2) and (2.3), one can see that h is conjugate to R(Yk, 0) +
R(0, Yk)⊕M2,0 and so H = (K×K) nM2,0 up to conjugacy.

? If dimL(H) = 1, then, up to conjugacy, L(H) is one of the Lie groups
{(Kt,Kat) | t ∈ R} or I × K, where a ∈ R. In the first case, h is of the
form R((Yk, aYk) + u)⊕M2,0, where u ∈M. Let u = (u1, u2, u3, u4).

If a 6= ±1, then Ad((I, I), p)(h) = R(Yk, aYk)⊕M2,0, where

p =

(
au2 − u3
a2 − 1

,
au1 + u4
1− a2

,
au4 − u1
a2 − 1

,
au3 − u2
1− a2

)
.

Hence H = {(Kt,Kat) | t ∈ R}nM2,0 up to conjugacy.
If a = ±1, then, for p = (−u2, u1, 0, 0), we have Ad((I, I), p)(h) =

R((Yk,∓Yk) + (u3 ± u2)E21 + (u4 ∓ u1)E22) ⊕ M2,0. This implies that H
is conjugate to exp(R((Yk, aYk) + λE21 + µE22)) nM2,0, where λ and µ are
fixed real numbers and a ∈ {±1}. However, for the case a = +1, we have
Ad((I, I), p)(R((Yk, Yk) + λE21 +µE22)⊕M2,0) = R(Yk, Yk)⊕M2,0, where p =
1
2(−λ,−µ, µ, λ).
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Subgroups with a plane as the translation part

degenerate totally degenerate

exp(R((Ya, Ya) + λE11 + bλE22) +
R(Yn, bYn)) nW2

Aff◦(R)×Aff◦(R) nV2

exp(R((Ya, Ya) +λE22) +R(0, Yn))n
W2

exp(R(cYa, Ya)+R(Yn, 0)+R(0, Yn))n
V2

exp(R((Yn, 0) + λE22) + R((0, Yn) +
µE11)) nW2

exp(R(3Ya, Ya)+R(Yn, 0)+R((0, Yn)+
λE11) nV2

exp(R((Ya, Ya)+λE11 +µE22))nW2 (Aff◦(R)×A)nV2, (Aff◦(R)×N)n
V2

exp(R((Yn, aYn) + λE21 + µE22)) n
W2

(A×Aff◦(R))nV2, (N×Aff◦(R))n
V2

(I ×N) nW2 (K×Aff◦(R)) nV2

exp(R((Ya, Ya) + λ(E11 + E22)) +
R(Yn, Yn)) nV2

exp(R(Ya, a
′Ya) + R(Yn, 0)) nV2

exp(R((Ya, Ya)+λE11)+R(Yn, 0))nV2

exp(R(Ya, b
′Yn) + R(Yn, 0)) nV2

(Aff◦(R) × I) n V2, (I × Aff◦(R)) n
V2

exp(R(dYa, Ya) + R(0, Yn)) nV2

exp(R(3Ya, Ya) + R((0, Yn) + λE11) n
V2

exp(R(b′Yn, Ya) + R(0, Yn)) nV2

exp(R(Yk, aYa) + R(0, Yn)) nV2

(A × A) n V2, (K × N) n V2, (A ×
N) nV2

(N×A) nV2, (K×A) nV2

exp(R((Yn, 0) + λE22) + R((0, Yn) +
µE11)) nV2

exp(R(Yk, λYa)) nV2,
exp(R(Yk, λYn)) nV2

exp(R(Ya, λYa)) nV2,
exp(R(Ya, λYn)) nV2

exp(R(Yn, λYa)) nV2

exp(R((Ya, Ya) + λE11 + µE22)) nV2

exp(R((Yn, aYn) + λE21 + µE22))nV2

(A× I)× V2, (N× I)× V2,
(I ×A)× V2

(K× I)× V2, (I ×N)× V2

Table 2.5: Here W2 and V2 denote the degenerate plane Re′1 ⊕ ` and the totally
isotropic plane R(e′1 − e′4)⊕ `, respectively, and a, b, c, a′, b′, c′, λ, µ ∈ R are fixed
numbers and b 6= 1, c 6= 3, a′ ∈ R+ − {1}, b′ ∈ {±1} and c′ ∈ R+ − {3}.
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Case II: h∩M = M0,2. Since the normalizer of M0,2 in SL(2,R)×SL(2,R)
is equal to K×K, the same argument as in Case I shows thatH is conjugate to one
of the Lie groups (K×K)nM0,2, {(Kt,Kat) | t ∈ R}nM0,2, exp(R((Yk,−Yk) +
λE21 + µE22)) nM0,2 or (I ×K) nM0,2.

Case III: h ∩M = M1,1. The normalizer of M1,1 in SL(2,R)× SL(2,R) is
A×A, which shows that L(H) ⊆ A×A.

? If dimL(H) = 2, then L(H) = A×A. Thus, using the same argument as in
the fifth item of Subcase III-b of the proof of Lemma 2.8, one can see that H =
(A×A)nM1,1 up to conjugacy. Let q ∈M2,2. If q1 6= 0, then dimH(q) = 3,
and thus H acts with cohomogeneity one on M2,2.

? If dimL(H) = 1, then, up to conjugacy, L(H) is one of the Lie group I ×A
or {(At, Aat) | t ∈ R}, where a ∈ R. In the first, H = (I × A) nM1,1 and
in the later, h is of the form R((Ya, aYa) + u)⊕M1,1, where u ∈M. Let u =
(u1, u2, u3, u4).

• For a 6= ±1, let p =
(

1
1−au1,

1
a+1u2,−

1
a+1u3,

1
a−1u4

)
. Then we have

Ad((I, I), p)(h) = R(Ya, aYa) ⊕M1,1, which implies that H = {(At, Aat) |
t ∈ R}nM1,1 up to conjugacy. Let q ∈ M2,2. If q1 6= 0, then dimH(q) =
3, and thus H acts with cohomogeneity one on M2,2.

• For a = 1, let p =
(
0, 12u2,−

1
2u3, 0

)
. Then Ad((I, I), p)(h) = R((Ya, Ya) +

u1E11+u4E22)⊕M1,1. Therefore H is conjugate to exp(R((Ya, Ya)+λE11+
µE22)) nM1,1, where λ and µ are fixed real numbers. Let q ∈ M2,2. If
q1 6= 0 and λ2 + µ2 6= 0, then dimH(q) = 3.

• For a = −1, let p =
(
1
2u1, 0, 0,−

1
2u4
)
. Therefore Ad((I, I), p)(h) =

R((Ya,−Ya) + u2E12 + u3E21) ⊕ M1,1. Hence H is conjugate to
exp(R((Ya,−Ya) + λE12 + µE21)) n M1,1, where λ and µ are fixed real
numbers. Let q ∈M2,2. If q1 6= 0 and λ2 +µ2 6= 0, then dimH(q) = 3, and
thus H acts with cohomogeneity one on M2,2.

Case IV: h ∩M = W2. The identity component of the normalizer of W2 in
SL(2,R)× SL(2,R) is

G = {(At,s, At,s′) | t, s, s′ ∈ R},

which implies that L(H) ⊆ G.
We claim that dimL(H) ≤ 2. Otherwise, if dimL(H) = 3, then L(H) = G.

An argument simimlar to that of the proof of Lemma 2.6 shows that H = (At,s×
At,s′) nW2 up to conjugacy. Let q ∈M2,2. If q3 6= 0 (respectively, q3 = 0), then
dimH(q) = 4 (respectively, dimH(q) = 2), which is in contradiction with the
cohomogeneity one assumption.

Subcase IV-a: dim(L(H)) = 2.

• If dim p1(L(H)) = 2, then L(h) ⊆ {(tYa + sYn, tYa + uYn) | t, s, u ∈ R}. Since
dimL(H) = 2, we may assume that u = u(t, s) is a linear function u : R2 →
R, i.e., u = at+ bs for some a, b ∈ R.

Let g =
(
1, 12a, 0, 1

)
. Then Ad((I, g)) maps (Ya, Ya + aYn) and (Yn, bYn)

to (Ya, Ya) and (Yn, bYn), respectively. Thus, L(h) = {(tYa + sYn, tYa + bsYn) |
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t, s ∈ R}. Note that if b 6= 0 (respectively, b = 0), then dim p2(L(H)) =
2 (respectively, dim p2(L(H)) = 1). We claim that b 6= 1. Otherwise H is
conjugate to diag(Aff◦(R)×Aff◦(R))nW2. Then, for any q ∈M2,2, if q3 6= 0
(respectively q3 = 0), then dimH(q) = 4 (respectively, dimH(q) = 2), which
is a contradiction to the cohomogeneity one assumption. Thus b 6= 1 and so h
is of the form R((Ya, Ya) + u) + R((Yn, bYn) + v)⊕W2, where u, v ∈M. Using
the relations (2.2) and (2.3), one gets

u = (u1, u2, u3, bu1), v =

(
−1

2
u3, v2, 0,

1

2
bu3

)
.

Let p =
(
0, 12u2,−

1
2u3, v2

)
. Then Ad((I, I), p)(h) = R((Ya, Ya) + u1E11 +

bu1E22) + R(Yn, bYn) ⊕W2. Henceforth H is conjugate to exp(R((Ya, Ya) +
λE11 + bλE22) + R(Yn, bYn)) n W2, where λ is a fixed real number. Let q ∈
M2,2. If q3 6= 0 and b 6= −1 (respectively, (q3 6= 0 and b = −1) or (q3 = 0 and
λ 6= 0)), then dimH(q) = 4 (respectively, dimH(q) = 3) and so H acts with
cohomogeneity one with at least one open orbit in M2,2.

• Let dim p1(L(H)) = 1.

? If dim p2(L(H)) = 2, then the same argument as above shows that H is
conjugate to exp(R((Ya, Ya) + λE22) + R(0, Yn)) n W2, where λ is a fixed
real number. Here H also acts with cohomogeneity one on M2,2 with at
least one open orbit.

? If dim p2(L(H)) = 1, then, by the fact that dimL(H) = 2, one gets that
L(h) = {(sYn, s′Yn) | s, s′ ∈ R}. Hence h is of the form R((Yn, 0) + u) +
R((0, Yn) + v) ⊕W2, where u, v ∈ M. By using the same argument as in
the last item of Subcase III-b of the proof of Lemma 2.8, it is seen that H
is conjugate to exp(R((Yn, 0) + λE22) + R((0, Yn) + µE11)) nW2, where λ
and µ are fixed real numbers. Let q ∈ M2,2. If q3 = 0 and λ2 + µ2 6= 0,
then dimH(q) = 3, and thus H acts with cohomogeneity one on M2,2.

Subcase IV-b: dimL(H) = 1. When depending on the dimension of
p1(L(H)) and p2(L(H)), the Lie group L(H) is conjugate to one of the following
groups:

(i) {(At, At) | t ∈ R},
(ii) {(Nt, Nat) | t ∈ R}, a ∈ R,

(iii)I ×N .

In Case (i), h is of the form R((Ya, Ya) + u) ⊕W2, where u ∈ M. By using the
same argument as in the second item of Case III of the proof of Lemma 2.9, one
can see that H is conjugate to exp(R((Ya, Ya)+λE11 +µE22))nW2, where λ and
µ are fixed real numbers.

In case (ii), h is of the form R((Yn, aYn)+u)⊕W2, where u = (u1, u2, u3, u4) ∈
M. We consider the cases a 6= −1 and a = −1 separately.

• For a 6= −1, let p =
(

0, 0, 1
a+1(u1 − u4), u2

)
. Then Ad((I, I), p)(h) =

R((Yn, aYn) + u3E21 + (u4 + au1)E22) ⊕ W2, and so H is conjugate to
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exp(R((Yn, aYn) + λE21 + µE22)) n W2, where λ and µ are fixed real num-
bers.

• For a = −1, let p = (0, 0, u1, u2). Then Ad((I, I), p)(h) = R((Yn,−Yn) +
u3E21 + (u4 − u1)E22)⊕W2. Therefore H is conjugate to exp(R((Yn,−Yn) +
λE21 + µE22)) nW2, where λ and µ are fixed real numbers.

Altogether, Case (ii) leads to the group exp(R((Yn, aYn)+λE21 +µE22))n
W2, where a, λ and µ are fixed real numbers. This group acts with cohomo-
geneity one if λ2 + µ2 6= 0.

Finally, in Case (iii), it is easily seen that H is conjugate to (I ×N) nW2.

Case V: h ∩M = V2. The normalizer of V2 in SL(2,R)× SL(2,R) is equal
to SL(2,R)×Aff◦(R), which implies that L(H) ⊆ SL(2,R)×Aff◦(R).

If L(H) = SL(2,R)×Aff◦(R), then h is of the form R((Yk, 0)+u)+R((Ya, 0)+
v)+R((Yn, 0)+w)+R((0, Ya)+x)+R((0, Yn)+y)⊕V2, where u, v, w, x, y ∈M. An
argument similar to that of the proof of Lemma 2.6 shows that H = (SL(2,R)×
Aff◦(R)) n V2 up to conjugacy. Let q ∈ M2,2. If q1q3 6= 0 (respectively, q1 and
q3 are equal to zero), then dimH(q) = 4 (respectively, dimH(q) = 2). Hence H
does not act with cohomogeneity one on M2,2. Therefore, L(H) $ SL(2,R) ×
Aff◦(R).

Subcase V-a: dim(L(H)) = 4. We claim that dim p1(L(H)) 6= 3. Oth-
erwise there should be a Lie group homomorphism φ : SL(2,R) → Aff◦(R),
with dim ker(φ) 6= 0, which contradicts the fact that SL(2,R) is simple. Thus
p1(L(H)) and p2(L(H)) are two-dimensional, and so L(H) = Aff◦(R)×Aff◦(R).
The same argument as that used in the proof of Lemma 2.6 shows that H =
Aff◦(R) × Aff◦(R) n V2 up to conjugacy. Let q ∈ M2,2. If q3 6= 0 (respectively,
q3 = 0 and q1 6= 0), then dimH(q) = 4 (respectively, dimH(q) = 3). Hence H
acts with cohomogeneity one on M2,2.

Subcase V-b: dimL(H) = 3.

• If p1(L(H)) = SL(2,R), then p2(L(H)) = {I} since SL(2,R) is simple. Hence
h is of the form R((Yk, 0) + u) + R((Ya, 0) + v) + R((Yn, 0) + w) ⊕ V2, where
u, v, w ∈M. Using (2.2) and (2.3) show that

u = (u1, u2, u3, u4), v = (u3, u4, u1, u2), w = (−u1,−u2, 0, 0).

Let p = (u3, u4,−u1,−u2). Then Ad((I, I), p)(h) = R(Yk, 0) + R(Ya, 0) +
R(Yn, 0)⊕ V2 and so H = (SL(2,R)× I) nV2. Let q ∈M2,2. If q1 or q3 6= 0,
then dimH(q) = 4. If both q1 and q3 are equal to zero, then dimH(q) = 2.
Hence H does not act with cohomogeneity one on M2,2 and the case h∩M =
V2, where L(H) = SL(2,R)× I, is excluded.

• If dim p1(L(H)) = dim p2(L(H)) = 2, then, up to conjugacy, p1(L(H)) =
p2(L(H)) = Aff◦(R). Using the same argument as in the first item of Subcase
III-b of the proof of Lemma 2.8 shows that H is conjugate to one of the
following Lie subgroups:

? exp(R(Ya, cYa) + R(Yn, 0) + R(0, Yn)) nV2, if c ∈ R− {13}.
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? exp(R(Ya,
1
3Ya) + R(Yn, 0) + R((0, Yn) + λE11) nV2, where λ is a fixed real

number.

In all of the above cases, for any q ∈ M2,2, if q3 6= 0, then dimH(q) = 4, if
q3 = 0 and q1 6= 0, then dimH(q) = 3. Hence H acts with cohomogeneity one
on M2,2 and there exists at least one open orbit.

• dim p1(L(H)) = 2 and dim p2(L(H)) = 1. Then, up to cojugacy, L(H) is one
of the groups Aff◦(R)×A or Aff◦(R)×N. By using the same argument as in
the second item of Subcase III-a of the proof of Lemma 2.8, one can see that
H is conjugate to one of the Lie subgroups (Aff◦(R)×A) nV2 or (Aff◦(R)×
N) n V2. In both cases, if q3 6= 0, then dimH(q) = 4, and if q3 = 0 and q1 6=
0, then dimH(q) = 3. Hence H acts with cohomogeneity one with at least
one open orbit in M2,2.

• dim p1(L(H)) = 1 and dim p2(L(H)) = 2. Then p2(L(H)) = Aff◦(R) and
p1(L(H)) is conjugate to one the Lie groups K, A or N. The later two cases
lead to (A×Aff◦(R))nV2 and (N×Aff◦(R))nV2, those were studied in the
previous case.

Now, let L(H) = K × Aff◦(R). Hence h is of the form R((Yk, 0) + u) +
R((0, Ya) + v) + R((0, Yn) +w)⊕V2, where u, v, w ∈M. Then (2.2) and (2.3)
show that

u = (u1, u2, u3, u4), v = (−u3, u4, u1,−u2), w = (0,−u3, 0, u1).
Let p = (u3, u4,−u1,−u2). Then Ad((I, I), p)(h) = R(Yk, 0) + R(0, Ya) +
R(0, Yn)⊕ V2. Therefore H is conjugate to (K×Aff◦(R)) nV2.

Subcase V-c: dimL(H) = 2. Here we consider various cases for dimensions
pi(L(H)), i = 1, 2.

• dim pi(L(H)) = 2, for i = 1, 2. The same argument as in the first item
of Subcase III-b of the proof of Lemma 2.8 shows that H is conjugate to
exp(R((Ya, Ya) +λ(E11 +E22)) +R(Yn, Yn))nV2, where λ is a fixed real num-
ber (its action is orbit equivalent to the action of exp(R((Ya, Ya) + λE11) +
R(Yn, Yn)) n V2). Let q ∈ M2,2. If q3 6= 0, then dimH(q) = 4, if q3 = 0 and
λ 6= 0, then dimH(q) = 3. Hence H acts with cohomogeneity one on M2,2

with at least one open orbit in M2,2.

• dim p1(L(H)) = 2 and dim p2(L(H)) = 1. The same argument as in the second
item of Subcase III-b of the proof of Lemma 2.8 shows that H is conjugate to
one of the following Lie subgroups:

? exp(R(Ya, a
′Ya) + R(Yn, 0)) nV2 if a′ ∈ R+ − {1}.

? exp(R((Ya, Ya) + λE11) + R(Yn, 0)) nV2, where λ is a fixed real number.

? exp(R(Ya, b
′Yn) + R(Yn, 0)) nV2, where b′ ∈ {±1}.

In all of the above cases for any q ∈ M2,2, if q3 6= 0 (respectively, q3 =
0 and q1 6= 0) then dimH(q) = 4 (respectively, dimH(q) = 3). Henceforth
H acts with cohomogeneity one with at least one open orbit in M2,2.

• dim p1(L(H)) = 2 and dim p2(L(H)) = 0. The same argument as in the third
item of Subcase III-b of the proof of Lemma 2.8 shows that H = (Aff◦(R) ×
I) n V2 up to conjugacy. This group acts with cohomogeneity one on M2,2
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since, for any q ∈ M2,2, dimH(q) = 4 if q3 6= 0, and dimH(q) = 3 if q3 = 0
and q1 6= 0.

• dim p1(L(H)) = 1 and dim p2(L(H)) = 2. Then, up to conjugacy, p1(L(H)) ∈
{K,A,N} and p2(L(H)) = Aff◦(R).

If p1(L(H)) ∈ {A,N}, then the same argument as in the fourth item of
Subcase III-b of the proof of Lemma 2.8 shows that H is conjugate to one of
the following Lie subgroups, those act with cohomogeneity one on M2,2:

? exp(R(c′Ya, Ya) + R(0, Yn)) nV2 if d ∈ R+ and c′ ∈ R+ − {3},
? exp(R(3Ya, Ya) + R((0, Yn) + λE11) nV2,

? exp(R(bYn, Ya) + R(0, Yn)) nV2 and b′ ∈ {±1}.
Now, let p1(L(H)) = K. Then L(h) ⊆ {(tYk, rYa + sYn) | r, s, t ∈ R}. Since
dimL(H) = 2, we may assume that t = u(r, s) is a linear function. Hence t =
ar + bs for some fixed a, b ∈ R, closedness under the bracket on h shows that
b = 0. Hence h is of the form R((Yk, aYa) + u) + R((0, Yn) + v) ⊕ V2, where
u, v ∈M. Then (2.2) and (2.3) show that

u = (u1, u2, u3, u4), v =

(
0,

1

a2 + 1
(au1 − u3), 0, u1 + au3

)
.

Let p = 1
a2+1

(u3 − au1, u4 + au2,−u1 − au3,−u2 + au4)). Then

Ad((I, I), p)(h) = R(Yk, aYa) + R(0, Yn)⊕ V2.

Therefore H is conjugate to exp(R(Yk, aYa) + R(0, Yn)) nV2, where a ∈ R∗.
• dim pi(L(H)) = 1, where i = 1, 2. Then, up to conjugacy,

L(H) ∈ {K×A, K×N, A×A, A×N, N×A, N×N}.

The same argument as in the fifth item of Subcase III-b of the proof of Lemma
2.8 shows that H is conjugate to one of the following Lie subgroups: (A ×
A) n V2, (K ×N) n V2, (A ×N) n V2, (N ×A) n V2, (K ×A) n V2, and
exp(R((Yn, 0) + λE22) + R((0, Yn) + µE11)) n V2, where λ and µ are fixed
real numbers (its action is orbit equivalent to the action of exp(R(Yn, 0) +
R((0, Yn) + λE11)) nV2). In all of the mentioned groups we have dimH(q) =
3 if q3 6= 0, except for the group (K ×A) n V2, where dimH(q) = 3 if q1 −
q3 6= 0.

• dim p1(L(H)) = 0 and dim p2(L(H)) = 2, i.e., H = (I × Aff◦(R)) n V2. Let
q ∈M2,2. If q1 6= 0 or q3 6= 0, then dimH(q) = 3. If both q1 and q3 are equal
to zero, then dimH(q) = 2. This shows that the actions of two groups (I ×
Aff◦(R)) n V2 and (Aff◦(R)× I) n V2 are not orbit equivalent (compare this
item with the third item of Subcase V-c).

Subcase V-d: dimL(H) = 1. An argument similar to that used in Sub-
case V-c shows that if dim pi(H) = 1 for i = 1, 2, then H is conjugate to one of
the following groups:

• exp(R(Yk, λYa)) nV2,
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• exp(R(Yk, λYn)) nV2,

• exp(R(Ya, λYa)) nV2,

• exp(R(Ya, λYn)) nV2,

• exp(R(Yn, λYa)) nV2,

• exp(R((Ya, Ya)+λE11+µE22))nV2, (its action is orbit equivalent to the action
of exp(R((Ya, Ya) + λE11)) nV2),

• exp(R((Yn, aYn) + λE21 + µE22)) n V2, (its action is orbit equivalent to the
action of exp(R((Yn, aYn) + λE21)) nV2).

In all of the above groups λ and µ are fixed real numbers.

If dim pi(H) = 0 for either i = 1 or i = 2, then H is conjugate to one of the
groups (K× I)nV2, (A× I)nV2, (N× I)nV2, (I ×A)nV2, or (I ×N)nV2.

All of the above groups act with cohomogeneity one on M2,2. In fact, for any
of the mentioned groups we have dimH(q) = 3 if q3 6= 0.

2.4. Subgroups with a hyperplane as the translation part. Every
three-dimensional subspace of M2,2 is congruent by an element of SL(2,R) ×
SL(2,R) to one of the subspaces M2,1, M1,2 or W3. For dimension reasons, it
follows that the action of H is orbit equivalent to the action of one of the three
pure translation subgroups M2,1, M1,2 or W3. Let Π be one of these three groups.
The normalizer of Π in SL(2,R) × SL(2,R) should preserve Π and Π⊥ as two
subspaces of M2,2. Therefore, using the proof of Lemma 2.3, one gets that

• if Π = M1,2, then L(H) ⊆ diag(SL(2,R)× SL(2,R));

• if Π = M2,1, then L(H) ⊆ {(P, e′4Pe
′−1
4 )|P ∈ SL(2,R)};

• if Π = W3, then L(H) ⊆ Aff◦(R)×Aff◦(R).

The above discussion determines the acting group H up to conjugacy. Thus, we
get the following result.

Lemma 2.10. Let H be a connected Lie subgroup of Iso(M2,2) acting on
M2,2 with cohomogeneity one. If the translation part of H is a hyperplane, then
H is conjugate within Iso(M2,2) to one of the groups in Table 2.6.

Subgroups with a hyperplane as the translation part

Lorentzian anti-Lorentzian degenerate

G1 nM1,2 G2 nM2,1 G3 nW3

Table 2.6: The groups G1, G2 and G3 can be any linear subgroup of
diag(SL(2,R) × SL(2,R)), {(P, e′4Pe

′−1
4 )|P ∈ SL(2,R)} and Aff◦(R) × Aff◦(R),

respectively.

3. Proper and nonproper actions

In this section, we determine proper and nonproper actions, which are induced
by Lie groups in Tables 2.1 to 2.6. We recall that an action of a Lie group G on
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a manifold M is said to be proper if the mapping ϕ : G×M →M ×M , (g, x) 7→
(gx, x) is proper. Equivalently, for any sequences xn in M and gn in G, gnxn →
y and xn → x imply that gn has a convergent subsequence. In particular, the
stabilizer of any point is compact and the orbit space is Hausdorff.

The Lie groups in Table 2.1 act linearly on M2,2, and so they fix the origin.
Since none of them is compact, their actions are not proper.

Theorem 3.1. Let G be a connected Lie subgroup of Iso(M2,2), which acts
isometrically and with cohomogeneity one on M2,2. Then the action is proper if
and only if G is conjugate to one of the following Lie subgroups of (SL(2,R) ×
SL(2,R)) nϕM(2,R).

(i) Any group in Table 2.6, where its linear projection is either trivial or iso-
morphic to SO(2).

(ii) All of the groups in Table 2.3.

(iii) The following Lie group of Table 2.4:
(1) exp(R((Ya, Ya) + λE11 + µE22)) nM1,1 if λ2 + µ2 6= 0.

(iv) The following Lie groups of Table 2.5:
(2) exp(R((Ya, Ya) + λE11 + µE22)) nW2 if λ 6= µ,
(3) exp(R((Yn, aYn) + λE21 + µE22)) nW2 if λ 6= 0,
(4) exp(R((Ya, Ya) + λE11)) nV2 if λ 6= 0,
(5) exp(R((Yn, aYn) + λE21)) nV2 if λ 6= µ,

where a ∈ R.

(v) The following Lie group in Table 2.2:
(6) exp(R((Yn, 0) + λE22) + R((0, Yn) + µE11)) n ` if λµ > 0,

where a, λ and µ are fixed real numbers.

Proof. (i) If G is one of the groups in Table 2.6, then L(G) = G0. The action
is proper, so L(G) should be compact. By the fact that G, as well as L(G), is
connected and the maximal compact subgroup of any of the groups in Table 2.6
is either trivial or isomorphic to SO(2), one gets the result.

(ii) For the groups in Table 2.3, consider their representations in Iso(R2,2)
using the isometry Ψ : R2,2 → M2,2, ei 7→ e′i, where 1 6 i 6 4, explained in
Section 2. Then any group of Table 2.3 becomes a subgroup of diag[SO(2 ×
SO(2)] n R2,2. These groups preserve the Euclidean metric dx21 + dx22 + dx23 +
dx24, and so do Lie subgroups of SO(4) n R4, which act isometrically and with
cohomogeneity one on the Euclidean space E4. Therefore their actions are proper.

(iii) In Table 2.4, we need to consider only the following two groups since any
other group has a noncompact subgroup acting linearly, i.e., the stabilizer of the
origin is noncompact:{

H1 = exp(R((Ya,−Ya) + λE12 + µE21)) nM1,1,

H2 = exp(R((Ya, Ya) + λE11 + µE22)) nM1,1,

where λ and µ are fixed real numbers. We claim that the action of H1 is not
proper. By a simple computation, one gets that
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H1 = {gt,u,v = ((etE11 + e−tE22, e
−tE11 + etE22), (λt+ u)E12 + (µt+ v)E21) |

t, u, v ∈ R)}.

Then the noncompact subgroup {gt,−λt,−µt ∈ H1|t ∈ R} fixes the origin of M2,2,
which proves our claim.

Now we are going to consider the group H2, where

H2 =

{
ht,u,v =

(((
et 0
0 e−t

)
,

(
et 0
0 e−t

))
,

(
λt u
v µt

))∣∣∣∣t, u, v ∈ R
}
.

Let Xn = Σ2
i,j=1x

n
ijEij and htn,un,vn be two arbitrary sequences in M2,2 and H2,

respectively, where Xn → Σ2
i,j=1xijEij and htn,un,vn .Xn → Σ2

i,j=1x
′
ijEij . This

implies that 
λtn → x′11 − x11,
µtn → x′22 − x22,
xn12e

2tn + un → x′12,

xn21e
−2tn + vn → x′21.

Hence, if at least one of λ or µ is nonzero, then tn, as well as un and vn, are
convergent. This shows that the action of H2 on M2,2 is proper if λ2 + µ2 6=
0. On the other hand, if λ = µ = 0, then the stabilizer of the origin is the
noncompact subgroup {ht,0,0 ∈ H2 | t ∈ R}, i.e., the action of H is nonproper.
This completes the study of properness of the actions of groups in Table 2.4.

(iv) and (v). The argument is similar to that of (iii).

To get a better visualization of the groups in Theorem 3.1, we give their
representations in Iso(R2,2) in the following corollary. We use the isometry Ψ :
R2,2 →M2,2, ei 7→ e′i, where 1 6 i 6 4, to compute these representations.

Corollary 3.2. Let H be a connected Lie subgroup of Iso(R2,2), which acts
isometrically and with cohomogeneity one on R2,2. Then the action is proper if
and only if H is conjugate to one of the following Lie groups in SO(2, 2) nR2,2.

(i) The groups obtained from Table 2.6, those are the additive groups R1,2, R2,1

or W3 = Re1⊕R(e2− e3)⊕Re4 up to conjugacy. The groups obtained from
Table 2.3, their actions on R2,2 are orbit equivalent to one of the groups
diag(I, SO(2))× (R2 ⊕ {0}) or diag(SO(2), I)× ({0} ⊕ R2).

(ii) One of the following Lie groups:

(1)





1 0 0 0
0 cosh 2t − sinh 2t 0
0 − sinh 2t cosh 2t 0
0 0 0 1

 ,


λ+µ
2 t
u
v

λ−µ
2 t



∣∣∣∣∣∣∣∣
t, u, v ∈ R

and
λ2 + µ2 6= 0

 ,

(2)





1 0 0 0
0 cosh 2t − sinh 2t 0
0 − sinh 2t cosh 2t 0
0 0 0 1

 ,


λ+µ
2 t+ u
v
−v
λ−µ
2 t



∣∣∣∣∣∣∣∣
t, u, v ∈ R

and
λ 6= µ

 ,
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(3)





1 1−a
2 t 1−a

2 t 0
−1−a

2 t 1 + a
2 t

2 a
2 t

2 1+a
2 t

1−a
2 t −a

2 t
2 1− a

2 t
2 −1+a

2 t
0 1+a

2 t 1+a
2 t 1

 ,


c1−a4 λt2 + u

1
3λt

3 − 1
4µt

2 + 1
2λt+ v

−1
3λt

3 + 1
4µt

2 + 1
2λt− v

1+a
4 λt2 − 1

2µt



∣∣∣∣∣∣∣∣
t, u, v ∈ R

and
λ 6= 0

,

(4)





1 0 0 0
0 cosh 2t − sinh 2t 0
0 − sinh 2t cosh 2t 0
0 0 0 1

 ,


λ
2 t+ u
v
−v

λ
2 t− u



∣∣∣∣∣∣∣∣
t, u, v ∈ R

and
λ 6= 0

 ,

(5)





1 1−a
2 t 1−a

2 t 0
−1−a

2 t 1 + a
2 t

2 a
2 t

2 1+a
2 t

1−a
2 t −a

2 t
2 1− a

2 t
2 −1+a

2 t
0 1+a

2 t 1+a
2 t 1

 ,


1−a
4 λt2 + u

1
3λt

3 + 1
2λt+ v

−1
3λt

3 + 1
2λt− v

1+a
4 λt2 − u



∣∣∣∣∣∣∣∣
t, u, v ∈ R

and
λ 6= 0

,

(6)





1 t−s
2

t−s
2 0

s−t
2 1 + st

2
st
2

s+t
2

t−s
2 − st

2 1− st
2 − s+t

2
0 s+t

2
s+t
2 1

 ,


1
2(µs+ λt)

1
2(µs2 − λt2) + u
−1

2(µs2 − λt2)− u
1
2(µs− λt)


 t, s, u ∈ R

and
λµ > 0

,

where a, λ and µ are fixed real numbers.

Let S be a subspace of R2,2. We define the stabilizer of S as Stab(S) = {g ∈
Iso(R2,2) | gS ⊆ S}. The subspace V2 = R(e1 − e4)⊕ R(e2 − e3) is the maximal
totally isotropic subspace of R2,2 up to conjugacy. We refer the reader to [8] for
the stabilizer of a maximal totally isotropic subspace in general case Rp,q. As a
consequence of Corollary 3.2, we get the following result.

Corollary 3.3. Let H be a connected Lie subgroup of Iso(R2,2), which acts
properly, isometrically and with cohomogeneity one on R2,2. If there is no singular
orbit, then L(H) ⊂ Stab(V2) up to conjugacy, where L : O(2, 2)nR2,2 → O(2, 2)
is the linear projection given by (g, τ) = g.
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3.1. Orbits and orbit spaces of proper actions Here we are going to
determine the orbits and the orbit spaces of the groups obtained in Corollary 3.2.

The orbits of the translation groups R1,2, R2,1 and W3 = Re1 ⊕R(e2 − e3)⊕
Re4 are parallel affine hyperplanes, and so the orbit space is R.

The set of the orbits of diag(I, SO(2)) × (R2 ⊕ {0}) (respectively,
diag(SO(2), I)× ({0}⊕R2)) consists of a unique singular spacelike (respectively,
timelike) orbit, congruent to R2,0 (respectively, R0,2), and the Lorentz cylinders
S1(r) × R2,0 (respectively, S1(r) × R0,2) around the singular orbit, where r > 0.
The orbit space is homeomorphic to [0,+∞).

The actions of the remaining groups from (1) to (6) of Corollary 3.2 are free
since the groups are diffeomorphic to R3 and the actions are proper (stabilizer of
any point is trivial). Hence the orbit space of each of these groups is R.

The orbits of the group (1) of Corollary 3.2. Clearly, the action of this group
is orbit equivalent to that of the translation group Ta,b = {(at, u, v, bt)tr | t, u, v ∈
R}, where a and b are fixed real numbers and ab 6= 0. Depending on the fixed
numbers a and b, the causal character of the orbits may be Lorentzian, anti-
Lorentzian or degenerate. The orbit space is R.

The orbits of the group (2) of Corollary 3.2. Every orbit is a Lorentzian
hypersurface. The orbit of the origin is a degenerate hyperplane and each other
orbit is of the form R × D, where D is a Lorentzian generalized cylinder (see
Theorem 4.1 in [7]).

The orbits of the groups (3), (4), (5), and (6) of Corollary 3.2. We claim
that, for any of the mentioned groups, the tangent space of every induced orbit
has a timelike, a spacelike and a lightlike tangent vector. To prove our claim,
we use the representations of the groups in Theorem 3.1. Let gi denote their
Lie algebras, where 3 6 i 6 6. Let p = ΣxijEij ∈ M2,2 and take the following
vectors:

X3 = (Yn, aYn) + λE21 + µE22 + b(E11 + E22) + cE12 ∈ g3,

X4 = (Ya, Ya) + λE11 + bE12 + cE22 ∈ g4,

X5 = (Yn, aYn) + λE21 + bE12 + cE22 ∈ g5,

X6 = ((Yn, 0) + λE22) + α((0, Yn) + µE11) ∈ g6,

where a, b, c and α are real numbers. Then each of the amounts

det

(
d

dt

∣∣∣∣
t=0

(exp(tX3)p)

)
= (x21 + b)(−ax21 + µ+ b)− λ(−ax11 + x22 + c),

det

(
d

dt

∣∣∣∣
t=0

(exp(tX4)p)

)
= λc+ 2x21(2x12 + b),

det

(
d

dt

∣∣∣∣
t=0

(exp(tX5)p)

)
= x21(c− ax21) + λ(ax11 − x22 − b),

det

(
d

dt

∣∣∣∣
t=0

(exp(tX6)p)

)
= −µλα2 + (µλ− x221)α+ λx21

may be positive, zero or negative for various choices of b, c and α. This proves
our claim. The induced metrics on the obits of (4) and (5) are degenerate since
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the tangent space of any orbit contains the totally isotropic subspace V2. The
induced metric on any orbit of the group (6) is also degenerate since the null
vector d

dt

∣∣
t=0

exp(tX)p, where X = e′2 − e′3, is both tangent and normal to the
orbit at p.

Corollary 3.4. Let H be a Lie subgroup of Iso(R2,2) acting properly, iso-
metrically and with cohomogeneity one on R2,2. If there is a singular orbit, then
it is a two-dimensional totally geodesic subspace on which the induced metric is
definite.
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Дiї на чотиривимiрному псевдоевклiдовому просторi
R2,2 з тривимiрною орбiтою

P. Ahmadi and S. Safari

У цiй роботi ми класифiкуємо зв’язнi групи Лi з точнiстю до спря-
женостi в Iso(R2,2), якi дiють iзометрично на чотиривимiрному псевдо-
евклiдовому просторi R2,2 таким чином, що є тривимiрна iндукована ор-
бiта в R2,2. Потiм ми надаємо перелiк груп, що дiють, у двох випадках:
з власними та невласними дiями. У випадку власної дiї ми визначаємо
явне представлення групи, що дiє, в SO(2, 2)nR2,2 i описуємо орбiти та
простори орбiт.

Ключовi слова: кооднорiднiсть один, iзометрична дiя, псевдо-
евклiдiв простiр

mailto:p.ahmadi@znu.ac.ir
mailto:salim.safari@znu.ac.ir

	Introduction and preliminaries
	Groups acting with cohomogeneity one on R (2,2)
	Subgroups with trivial translation part
	Subgroups with a line as the translation part.
	Subgroups with a plane as the translation part.
	Subgroups with a hyperplane as the translation part.

	Proper and nonproper actions
	Orbits and orbit spaces of proper actions


