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Function of Large Erdős–Rényi Random
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Using recent results on the concentration of the largest eigenvalue and
maximal vertex degree of large random graphs, we show that the infinite
sequence of Erdős–Rényi random graphs G(n, ρn/n) such that ρn/ log n in-
finitely increases as n → ∞ verifies a version of the graph theory Riemann
Hypothesis.
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1. Ihara zeta function and graph theory Riemann hypothesis

Given a finite connected non-oriented graph Γ = (V,E) with the vertex set
V = (α1, . . . , αn) and the edge set E, the Ihara zeta function (IZF) ZΓ(u) is
determined for sufficiently small |u| by the equality

ZΓ(u) =
∏
[C]

(
1− uν(C)

)−1
, (1.1)

where [C] denotes the equivalence class of closed primitive backtrackless tailless
paths C and ν(C) = k − 1, k being the length of C [19]. The k-step path over
the graph C = (αi1 , αi2 , . . . , αik−1

, αik), {αil , αil+1
} ∈ E is closed when αik = αi1 .

The path C is backtrackless if αil−1
6= αil+1

for all l = 2, . . . , k − 1. The path
C is tailless if αi2 6= αik−1

. The equivalence class [C] includes C and all paths
obtained from C with the help of all cyclic permutation of its elements. The
closed path C is primitive if there is no smaller path C̃ such that C = C̃k.

Zeta function (1.1) was introduced by Y. Ihara in the algebraic context [19].
Ihara’s theorem says that the IZF (1.1) is the reciprocal of a polynomial and that
for sufficiently small |u|,

ZΓ(u)−1 = (1− u2)r−1 det
(
I + u2(B − I)− uA

)
, u ∈ C, (1.2)
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where A = (aij)i,j=1,...,N is the adjacency matrix of Γ, B = diag
(∑N

j=1 aij

)
and

r − 1 = Tr(B − 2I)/2. (1.3)

Let us note that the Ihara zeta function can also be determined as the exponential
expression [30],

ZΓ(u) = exp

{∑
k≥1

Nk
k
uk

}
, (1.4)

where Nk is the number of classes of closed backtrackless tailless primitive paths
of the length k over the edges of Γ. The Ihara’s theorem was proved initially
for q + 1-regular graphs then it was generalized by Bass to the cases of possibly
irregular graphs [2] (see also [12]).

There exists an analog of the Riemann hypothesis formulated for q+1-regular
graphs Γ = X(q+1) with the help of the Ihara zeta function. According to the
definition by Stark and Terras [28], a graph X(q+1) verifies the graph theory
Riemann hypothesis (GTRH) iff its Ihara zeta function is such that

Re s ∈ (0, 1) and
(
ZX(q+1)

(
q−s
))−1

= 0 imply Re s =
1

2
. (1.5)

This relation means that the graph X(q+1) is such that there is no poles of the
Ihara zeta function ZX(u) in the disk 1/q < |u| < 1 excepting those situated
on the circle |u| = 1/

√
q. The following statement is formulated by Stark and

Terras [28] as a corollary of the formula (1.2).

Lemma 1.1. A finite (q + 1)-regular graph X(q+1) satisfies the Riemann
hypothesis iff for every eigenvalue λ of its adjacency matrix AX , we have

|λ| 6= q + 1 implies |λ| ≤ 2
√
q. (1.6)

We reproduce the proof of this lemma in Section 4 of the present paper. It is
fairly simple and uses an elementary observation that in the case of q+ 1-regular
graphs, relations (1.2) and (1.5) reduce the problem to the study of zeroes of the
quadratic equation

1 + qu2 − λu = 0,

whose discriminant is negative if and only if |λ| < 2
√
q.

Relation (1.5) can be reformulated in a more convenient for us form as follows:

for any complex v ∈ Dq,

Dq =

{
z ∈ C :

1
√
q
< |z| < √q

}
, (1.7)

the statement (
ZX(q+1)

(
v
√
q

))−1

= 0 implies |v| = 1 (1.8)
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is true. This means that the regular graph X(q+1) verifies the GTRH if and only
if the function

Φ(q+1)(v) = ZX(q+1)

(
v
√
q

)
(1.9)

has no poles in the region v ∈ D(q)
1 ∪D

(q)
2 , where

D
(q)
1 = {v ∈ C : 1/

√
q < |v| < 1} and D

(q)
2 = {v ∈ C : 1 < |v| < √q} . (1.10)

Relation (1.6) represents a widely known in graph theory and applications
the second eigenvalue conjecture (see [1] and references therein). This condition
means that the distance between the maximal and the second maximal in absolute
value eigenvalues of a q + 1-regular graph is greater than q + 1 − 2

√
q. The

(q + 1)-regular graphs that satisfy condition (1.6) are determined by Lubotzky,
Phillips and Sarnak as the Ramanujan graphs [23] (see also the review [26] and
references therein). The Ramanujan graphs are known to be good expanders
that make good communication networks (see, e.g., [11, 26]). This property can
be explained by the observation that the diameter of a (q + 1)-regular graph is
minimized by minimizing the second maximal eigenvalue because the maximal
eigenvalue is always equal to q + 1 [8, 26, 27]. It is proved by Friedman [13, 14]
that the proportion of q+ 1-regular graphs with n vertices such that (1.6) is true
with 2

√
q replaced by 2

√
q + ε goes to 1 as n→∞ for any ε > 0.

The notion of the Ramanujan graphs mostly concerns regular graphs. Several
extensions of this notion were considered in [24,28]. A definition of the Ramanu-
jan graphs in the case of non-regular graphs was proposed by Lubotzky [24]. It
is given in terms of the eigenvalues of the adjacency matrix of a graph Γ, its
spectral radius and the spectral radius of the adjacency operator on the universal
covering tree of Γ.

The case when Γ is chosen at random from the set of all possible graphs of n
vertices was considered in [20]. More precisely, the eigenvalue distribution of the
matrix I + H(u) = I + u2(B − I) − uA was studied, where A is the adjacency
matrix of the Erdős–Rényi random graphs G(n, ρn/n) (see the next section for
the rigorous definition of the ensemble G(n, p)). It is shown that in the limit n→
∞ and ρn/ log n→∞ the limiting eigenvalue distribution of H(u) with properly
normalized parameter u = v/

√
ρn exists and its density is given by a shift of the

Wigner semi-circle distribution. Then one can show that the limit of the mean
value of 1

n logZΓ(v/
√
ρn), if it exists, satisfies the version of (1.5).

Another approach allowing to include the case of non-regular random graphs
into consideration is based on the following representation of zeta function (1.1):

ZΓ(u)−1 = det(I − uWΓ), (1.11)

where WΓ is the non-backtracking matrix of Γ (see [16,28] and references therein).
Representation (1.11) is known as the Ihara–Bass formula and can serve as the
basis of the proof of the Ihara theorem (1.2) for connected graphs.

Regarding representation (1.11), Stark and Terras defined Γ to satisfy the
graph theory Riemann hypothesis if the matrix WΓ has no eigenvalues with ab-
solute values inside the interval (

√
rWΓ

, rWΓ
), where rWΓ

is the Perron–Frobenius
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eigenvalue of WΓ. In the paper [5], the spectral properties of the non-backtracking
matrix WΓ of the the Erdős–Rényi random graphs Γ ∈ G(n, pn) were studied. It
is shown that the graphs Γ ∈ G(n, α/n) verify a weak Ramanujan property in
the sense that in the limit n → ∞ they satisfy with high probability the graph
theory Riemann hypothesis formulated above [18]. More precisely, it is proved
that rWΓ

∼ α and all other eigenvalues λ of WΓ verify |λ| ≤
√
α + o(1) with

high probability as n → ∞. It is stated that in this sense, the Erdős–Rényi
random graphs G(n, α/n) asymptotically satisfy the graph theory Riemann hy-
pothesis [5]. In this work, the term “with high probability” is used to indicate
the situation when one or another statement is true with probability 1 + o(1),
n → ∞, i.e., tending to 1 as n infinitely increases. This shows that the results
of [5] are much in the spirit of Friedman’s statements cited above. It should also
be noted that the results of [5] as well as those of [13, 14] are obtained with the
help of the study of moments of non-backtracking matrix WΓ.

The limiting eigenvalue distribution of non-backtracking matrices WΓ of
Erdős–Rényi random graphs G(n, p) were also studied in the asymptotic regimes
when either p ≈ const or p = o(1) as n → ∞ [31]. More fine spectral charac-
teristics of WΓ such as the presence of isolated eigenvalues inside and outside of
the bulk of the spectrum of WΓ were considered in [9] for a generalization of the
Erdős–Rényi random graphs G(n, α/n) in the case when α/ log n → ∞ as n →
∞. It is shown, in particular, that with probability 1−o(1) all eigenvalues of WΓ

are located on the distance o(
√
α) of a circle of radius

√
α− 1 excepting two ones

that are close to 1 and α as n→∞. Since eigenvalues of WΓ determine uniquely
the poles of ZΓ(u) (1.11), the results of [9] can be interpreted in the sense that
the proportion of Erdős–Rényi random graphs that verify the graph theory Rie-
mann hypothesis (1.5) tends to one as n → ∞. This formulation put [9] in line
with the works [13, 14] and [5]. The results of [9] are obtained on the base of
the known facts from spectral properties of the adjacency matrices AΓ of ran-
dom graphs combined with the concentration results on the elements of B and
perturbation theorems by Bauer and Fike allowing one to study the spectrum
of the non-backtracking matrix WΓ on the base of the knowledge of that of the
adjacency matrix AΓ (see also [5]).

In this paper, we follow the approach of [20] based on the study of the spec-
trum of I + u2(B − I)− uA of the right-hand side of (1.2). This method seems
to be more simple and transparent than that using the non-backtracking matrix
WΓ. Using classical perturbation theorems of the Weyl type for singular values
of matrices, concentration properties of B [21] and recent results on the concen-
tration of the maximal eigenvalue of AΓ [25], we prove a statement that can be
regarded as an improvement of that of [9]. Namely, we show that the infinite se-
ries of probabilities of the events that the normalized zeta function ZΓ(v/

√
ρn) of

the Erdős–Rényi random graphs G(n, ρn/n) in the asymptotic regime when ρn �
log n has a pole in any domain close to D = {v ∈ C : |v| 6= 1} converges. The
result obtained in the present paper can be regarded as a one more confirmation
of the conjecture that almost all Erdős–Rényi random graphs {G(n, pn)}n≥1 sat-
isfy, in the limit n→∞, npn/ log n→∞, a version of the graph theory Riemann
hypothesis.
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2. Ihara zeta function of Erdős–Rényi random graphs

Let us consider a family of jointly independent random variables

An,ρ = {a(n,ρ)
ij , 1 ≤ i < j ≤ n}

that have the probability distribution

a
(n,ρ)
ij =

{
1 with probabilitypn = ρ/n

0 with probability 1− ρ/n
, 0 < ρ < n.

We assume that the family An,ρ is determined on a probability space Ωn,ρ and
denote by E = En,ρ the mathematical expectation with respect to the probability
measure P = Pn,ρ generated by An,ρ.

The ensemble of real symmetric random matrices A(n,ρ) with elements

(
A(n,ρ)

)
ij

=


a

(n,ρ)
ij if i < j

a
(n,ρ)
ji if i > j

0 if i = j

, i, j ∈ {1, . . . , n}, (2.1)

can be regarded as the adjacency matrix of a non-oriented random graph Γ(n,ρ).
The family of such random graphs {Γ(n,ρ)} is usually denoted by G(n, pn), where
we have taken pn = ρ/n. This family is equivalent in many aspects to the
ensemble of random Erdős–Rényi graphs [10] and is often referred to simply as
the Erdős–Rényi random graphs (see monograph [4]).

Given Γ(n,ρ), we consider the corresponding right-hand side of (1.2) an say
that it determines the Ihara zeta function of Γ(n,ρ) despite of the fact that this
graph can be disconnected,

(1− u2)r−1 det
(
I + u2(B(n,ρ) − I)− uA(n,ρ)

)
= (ZΓ(n,ρ)(u))−1 , u ∈ C, (2.2)

where (
B(n,ρ)

)
ij

= δij

n∑
k=1

a
(n,ρ)
ik . (2.3)

According to (1.3), we denote in (2.2)

r =
1

2

n∑
i,j=1

a
(n,ρ)
ij − n+ 1. (2.4)

We study IZF (2.2) in the limiting transition n→∞ when the average value
of the vertex degree of Γ(n,ρn) given by (B(n,ρn))ii (2.3) goes to infinity more
rapidly than log n. This means that

n→∞, ρn/ log n = χn →∞. (2.5)

We denote this limiting transition by (ρ, χ)n → ∞. Writing (2.5), we assume
that an infinite sequence (χn)n≥1 is determined and ρn is given by the relation

ρn = χn log n, n ≥ 1.
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In what follows, we omit the subscript in ρn when no confusion can arise.
In the paper [20], it is shown that in the limit (2.5), it is natural to consider

(2.4) with the spectral parameter u normalized by the square root of ρ = ρn.
Thereby we introduce a normalized version of Ihara zeta function (2.2) with the
spectral parameter u = v/

√
ρ,

Z̃(n,ρ)(v, ω) = ZΓ(n,ρ)(ω)

(
v
√
ρ

)
, ω ∈ Ωn,ρn , v ∈ C,

where (
ZΓ(n,ρ)

(
v
√
ρ

))−1

=

(
1− v2

ρ

)r−1

det
(
−vH(n,ρ)

)
, (2.6)

where

H(n,ρ)(v) = I +
v2

ρ

(
B(n,ρ) − I

)
− 1
√
ρ
A(n,ρ).

Our main result is given by the following statement.

Theorem 2.1. Let Dε,ε′ with ε, ε′ > 0 be a union of two complex domains

D
(1)
ε,ε′ = {z ∈ C : ε′ < |z| < 1− ε} and D

(2)
ε,ε′ = {z ∈ C : 1 + ε < |z| < 1/ε′}. (2.7)

We consider two subsets Φ
(1)
n,ρ (ε, ε′) and Φ

(2)
n,ρ (ε, ε′) determined by the relation

Φ(i)
n,ρ

(
ε, ε′

)
=

{
ω ∈ Ω : there exists v ∈ D(i)

ε,ε′ such that
(
Z̃(n,ρ)(v, ω)

)−1
= 0

}
,

(2.8)
for i = 1 and i = 2. With the choice of

εn =
2

(χn)1/8
and ε′n =

1
√
ρn(1− κ)

, κ > 0, (2.9)

the following series of probabilities converge,∑
n≥1

Pn,ρn

(
Φ(i)
n,ρn

(
εn, ε

′
n

))
<∞, i = 1, 2 (2.10)

under asymptotic condition (2.5).

We prove Theorem 2.1 in Section 3 below. Let us note that we can prove

slightly more powerful statement by adding to the complex domains D
(i)
ε,ε′ (2.7)

real intervals

I
(1)
ε̂,ε′ = {v ∈ R : ε′ < v < 1− ε̂} and I

(2)
ε̂,ε′ = {v ∈ R : 1 + ε̂ < v < 1/ε′},

where ε′ = ε′n is given by (2.9) and

ε̂n =
ĥ

(χn)1/4
(2.11)

with sufficiently large ĥ > 0. We concentrate ourselves on the main case of
complex domains, the case of real v is briefly discussed at the end of Section 3.

Let us formulate a corollary of Theorem 2.1 that characterizes the points of
the complex plane in the form close to (1.10).
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Corollary 2.2. For any given

v ∈ D(1) ∪D(2) = {z : z ∈ C, 0 < |z| < 1} ∪ {z : z ∈ C, 1 < |z|},

the following series of probabilities converges,∑
n≥1

Pn,ρn

({
ω ∈ Ωn,ρn :

(
Z̃(n,ρn)(v, ω)

)−1
= 0

})
<∞, (2.12)

where ρn = χn log n, χn →∞ as n→∞.

The proof of this statement follows immediately from the proof of Theo-
rem 2.1.

Let us note that the statement of Corollary 2.2 can be formulated in its
equivalent form,

∑
n≥1

Pn,ρn

({
ω :

(
ZΓ(n,ρn)

(
v
√
ρ
n

))−1

= 0

})
= +∞ implies |v| = 1.

(2.13)
This shows that Corollary 2.2 can be regarded as a direct analog of the statement
(1.8) in the case of large random graphs.

Let us outline the proof of Theorem 2.1. Definition (2.6) shows that if v2 6=
ρ, then the function ZΓ(n,ρ) has a pole at v if and only if

v

(
1− 1

ρ

)
+ v − λj

(
1
√
ρ
A+ v

(
1

ρ
B − I

))
= 0 (2.14)

for some j, where λj(M) denotes the j-th eigenvalue of M . If one accepts that
the expression in last braces asymptotically vanishes∥∥∥∥1

ρ
B − I

∥∥∥∥ = o(1), (2.15)

then it can be regarded as a small perturbation of the eigenvalues of Ã = A/
√
ρ.

Neglecting the corresponding term in the right-hand side of (2.14) as well as the
vanishing term −1/ρ in the first braces of (2.14), one could say that (2.14) is
equivalent to the condition that

1

v
+ v − λj(Ã) = 0 (2.16)

for some j ∈ {1, . . . , n}. It is known from [15, 22] that the normalized adjacency
matrices of the Erdős–Rényi random graphs G(n, ρ/n) have all eigenvalues, ex-
cepting the maximal one λ1(Ã), asymptotically bounded in absolute value by 2+
δn in the limit n → ∞, ρ � log n, where δn tends to zero. Therefore the proba-
bility of the event (2.16) rapidly decays for all j ∈ {2, . . . , n} as n→∞ for any v
verifying |v| 6= 1. It is worthy to note that the important part of this proposition
is that it can be proved uniformly with respect to complex v belonging to growing
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domains D(1) and D(2) (2.7). To do this, we use an important property of the
ellipsoidal curves of the form

Er =

{
w(z) = z +

1

z
, z = reiϕ, 0 ≤ ϕ < 2π

}
(2.17)

and the distance between the points of real axis and Er.
To establish the convergence of the series (2.10), we use recent results on the

concentration properties of eigenvalues of adjacency matrices of random graphs
[3, 25]. Relation (2.15) reflects the concentration property of diagonal elements
of B − I,

max
1≤i≤n

∣∣∣∣1ρ (B(n,ρ)
)
ii
− 1

∣∣∣∣ = o(1), n, ρ→∞, (2.18)

that is also well known in the literature (see, for example, the monograph [4]
and the paper [21]). The convergence (2.18) can be interpreted as an asymptotic
regularity of the Erdős–Rényi random graphs when the average vertex degree
goes to infinity. Taking into account this observation, one can say that the proof
of Theorem 2.1 is equivalent in certain sense to the proof of a stochastic version
of Lemma 1.1 by Stark and Terras.

3. Proof of Theorem 2.1

Let us rewrite definition (2.7) in the form

H(n,ρn)(v) = Ã(n,ρn) − γ(n,ρn)(v)I − vB̂(n,ρn), (3.1)

where B̂ = B̃ − I(n− 1)/n,(
B̃(n,ρ)

)
ij

=
1

ρ

(
B(n,ρ)

)
ij

and (
Ã(n,ρ)

)
ij

=
1
√
ρ
a

(n,ρ)
ij , i, j ∈ {1, . . . , n}.

We also denote

γ(n,ρn)(v) =
1− v2/ρ

v
+
v(n− 1)

n
= v +

1

v
− v

(
1

n
+

1

ρn

)
.

The poles of Z̃(n,ρ)(v, ω) (2.6) with v2 6= ρ correspond to zeroes of the determinant
of H(n,ρ). Introducing the subset

Φn,ρ(v) = {ω : det(H(n,ρ)(v)) = 0}, (3.2)

we can write that the subsets Φ(i) of (2.8) are given by the relations

Φ(i)
n,ρ(εn, ε

′
n) =

⋃
v∈D(i)

εn,ε
′
n

Φn,ρ(v), i = 1, 2.
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It should be noted that Φ(1) and Φ(2) are determined as uncountable unions
of measurable events; since the probability space Ωn,ρ generated by (2.1) can
be viewed as a discrete set, we conclude that Φ(i) are both measurable. In what
follows, we replace denotations of events {ω : Υ(ω)} simply by {Υ}. We will omit
the superscripts n and ρ in H(n,ρ) and everywhere below, when no confusion can
arise. We prove relation (2.10) with i = 2 in the full extent. The proof of (2.10)
for the case of i = 1 is given in less detail.

3.1. Proof of Theorem 2.1 for the case i = 2. The following elementary
statement shows that the study of det(H(v)) (3.1) can be reduced to the study
of the product of singular values of H(v). We denote these singular values by

σ1(H(v)) ≤ σ2(H(v)) ≤ · · · ≤ σn(H(v)). (3.3)

Here and below we omit the superscripts n and ρn everywhere when no confusion
can arise.

Lemma 3.1. For any v ∈ C, the equivalence

det(H(v)) 6= 0 ⇐⇒
n∏
k=1

σk(H(v)) 6= 0 (3.4)

is true.

Proof. Since Ã is a real symmetric matrix and B̂ is a real diagonal one, then
we can write for hermitian conjugate that(

H(v)
)∗
ij

=
(
H(v)

)
ji

= (1− δji)Ãji − v̄δjiB̂ii − γ(v) =
(
H(v̄)

)
ij
,

and therefore

H∗(v) = H(v̄) and H(v) = H(v̄).

It is easy to see that λ(v) is an eigenvalue of H(v) if and only if λ(v) is the
eigenvalue of H(v̄). Then

det(H(v)) 6= 0 ⇐⇒ det(H(v̄)) 6= 0 ⇐⇒ det(H∗(v)H(v)) 6= 0.

The last statement is equal to that of the right-hand side of (3.4). Let us note
that the last condition of (3.4) is equivalent to σ1(H(v)) 6= 0 because of (3.3)
and due to positivity of σi(H(v)), 1 ≤ i ≤ n. Lemma 3.1 is proved.

The study of singular values of H(v) (3.3) can be reduced to the study of
singular values of Ã − γ(v)I (3.1) due to the concentration property (2.15) of
the diagonal matrix B̂. Using the Weyl’s inequality for singular values of n-
dimensional matrices X and Y (see [7] and [29], Exercice 22),

|σi(X + Y )− σi(X)| ≤ ‖Y ‖, i = 1, . . . , n, (3.5)
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where ‖Y ‖ is the operator norm of Y , we obtain that

|σi(H(n,ρ)(v))− σi(Ã(n,ρ) − γ(n,ρ)(v)I)| ≤ ‖vB̂‖

= |v| max
i=1,...,n

|∆̂(n,ρ)
i |, i = 1, . . . , n, (3.6)

where

∆̂
(n,ρ)
i = b̃

(n,ρ)
ii − n− 1

n
=

1

ρ

∑
j∈{1,...,n},

j 6=i

(
a

(n,ρ)
ij − ρ

n

)
.

We denote

∆̂(n,ρ)
max = max

i=1,...,n
|∆̂(n,ρ)

i |. (3.7)

We have seen above that Φ(v) = {σ1(H(v)) = 0} and that

{σ1(H(v)) = 0} ⊆
{
σ1(Ã− γ(n,ρ)(v)I) ≤ |v|∆̂(n,ρ)

max

}
. (3.8)

Elementary calculation shows that

σi(Ã− γ(n,ρ)(v)I) = λi
(
(Ã− γ(n,ρ)(v)I)(Ã− γ(n,ρ)(v)I)∗

)
= λi

(
(Ã− α(v)I)2

)
+ β(v)2, (3.9)

where α(v) and β(v) are the real and the imaginary parts of γ(v). Diagonalizing
Ã− α(v)I, we deduce from (3.9) that

σi(Ã− γ(n,ρ)(v)I) =
(
λi(Ã)− α(v)

)2
+ β(v)2 = |λi(Ã)− γ(v)|2. (3.10)

It follows from (3.8) and (3.10) that for any v ∈ D(2)
ε,ε′ ,

Φn,ρ(v) ⊆

{
min

i=1,...,n

|λi(Ã)− γ(n,ρ)(v)|2

|v|
≤ ∆̂(n,ρ)

max

}

⊆

 inf
v∈D(2)

ε,ε′

min
i=1,...,n

|λi(Ã)− γ(n,ρ)(v)|2

|v|
≤ ∆̂(n,ρ)

max

 = R(n,ρ)(ε, ε′). (3.11)

Then

Φ(2)
n,ρ(ε, ε

′) = ∪
v∈D(2)

ε,ε′
{σ1(H(v)) = 0} ⊆ R(n,ρ)(ε, ε′), (3.12)

where we omitted ε and ε′ in R. Let us note that the minimums of (3.11) can be
taken in arbitrary order, in particular, such that

inf
v∈D(2)

ε,ε′

= inf
1+ε<r<1/ε′

inf
0≤ϕ<2π

.

We denote these minimums by M
(2)
r and Mϕ, respectively.



392 Oleksiy Khorunzhiy

In (3.11), the term |λi(Ã)− γ(n,ρ)(v)|2 is a squared distance between the real
λi(Ã) and the complex number

γ(n,ρ)(v) = v(1− τ) +
1

v
, τ =

1

n
+

1

ρ
. (3.13)

Let us note that the application γ(n,ρ)(·) : C → C can be viewed as a slightly
modified version of the Zhukovsky transform w(z) (2.17). For given r, the points

E(ȧ, ḃ) =
{
γ(n,ρ)(reiϕ), 0 ≤ ϕ < 2π

}
form an ellipsoid in the complex plane R2 = {(x, y) : x = Rew, y = Imw}. An
important property of the minimal distance from an ellipsoid to a given real point
λ is studied in Section 4.

We write that
R(n,ρ)(ε, ε′) ⊆ R(n,ρ)

1 ∪R(n,ρ)
2 , (3.14)

where

R
(n,ρ)
1 =

{
M (2)
r Mϕ

|λ1(Ã)− γ(reiϕ)|2

r
≤ ∆̂(n,ρ)

max

}
and

R
(n,ρ)
2 =

{
M (2)
r Mϕ min

i=2,...,n

|λi(Ã)− γ(reiϕ)|2

r
≤ ∆̂(n,ρ)

max

}
.

Let us study first the term R
(n,ρ)
2 . To do this, we consider the matrix

Ă(n,ρ) =
1− δij√

ρ

(
a

(n,ρ)
ij − ρ

n

)
. (3.15)

It is known [15] that

λ1(Ă) ≥ λ2(Ã) ≥ · · · ≥ λn(Ã) ≥ λn(Ă). (3.16)

For completeness, we reproduce the proof of (3.16) by Füredi and Komlós [15] in
Section 4. It follows from (3.16) that

min
i=2,...,n

|λi(Ã)− γ(reiϕ)|2

r
≥ min

i=1,...,n

|λi(Ă)− γ(reiϕ)|2

r
.

Let us introduce the set

Υδ = {ω : λmax(Ă) ≤ 2 + δ}, δ > 0.

Then we can write an obvious inclusion

R
(n,ρ)
2 ⊆ (R

(n,ρ)
2 ∩Υδ) ∪ Ῡδ. (3.17)

We choose δ and ε such that the point 2 + δ lies inside the minimal ellipsoid,

2 + δ < min
1+ε<r

γ(r),
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(see relation (4.9) of Section 4 for more details). In Section 4, we show that (see
Lemma 4.2)

Mϕ|λi(Ă)− γ(reiϕ)|2IΥδ ≥Mϕ|λmax(Ă)− γ(reiϕ)|2IΥδ ,

where Iυ is the indicator function of Υ. It is also proved in Lemma 4.2 that
the minimal distance between λmax(Ă) and the ellipsoid E(ȧ, ḃ) is attained at the
right extremum of E(ȧ, ḃ) given by ȧ = γ(r) (see (4.7)),

Mϕ|λmax(Ă)− γ(reiϕ)|2IΥδ = |λmax(Ă)− γ(r)|2IΥδ ≥ |(2 + δ)− γ(r)|2.

Finally, the minimal value of |(2 + δ)− γ(r)|2/r with respect to r ∈ (1 + ε, 1/ε′)
is given by the value

min
1+ε<r<1/ε′

|(2 + δ)− γ(r)|2

r
= F (1)(2 + δ, ε, ε′, τ) =

(ε2 − δ(1 + ε)− τ(1 + ε)2)2

(1 + ε)3
,

(see Lemma 4.2). Taking into account obvious inclusion,

R
(n,ρ)
2 ∩Υδ ⊆

{
M (2)
r Mϕ

|λmax(Ă)− γ(reiϕ)|2

r
IΥδ ≤ ∆̂(n,ρ)

max

}
,

we can write that

P
(
R

(n,ρ)
2 ∩Υδ

)
≤ P

(
∆̂(n,ρ)

max ≥ F (1)(2 + δ, ε, ε′, τ)
)
. (3.18)

It is proved in [21] that if ρn = χn log n with χn → ∞ as n → ∞, then for
any positive ν the following upper bound holds:

P
(

∆̂(n,ρn)
max > ν

)
≤ 1

nlog(ν
√
χn(1+o(1)))

, n→∞. (3.19)

We see that in the limit (2.5), when χn infinitely increases, we can consider (3.19)
with vanishing νn → 0 such that νn ≥ 3/

√
χn. This allows us to choose ε in the

right-hand side of (3.18) such that ε → 0 as n → ∞. In this case, F (1)(2 +
δ, ε, ε′, τ) = ε4(1 + o(1)) for vanishing δ such that δ = o(ε2) (see relation (4.13)

of Section 4). Then the choice of εn = 2χ
−1/8
n (2.9) is sufficient to conclude that

∞∑
n=1

P (R
(n,ρn)
2 ∩Υδn) <∞, δn = o(ε2

n), (3.20)

where ρn satisfies conditions (2.5).

Let us show that ∑
n≥1

P (Ῡδn) <∞ with δn =
1

χ
3/8
n

. (3.21)
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It is easy to see that starting from some n0, the random matrix Ă(n,ρn) (3.15)
satisfies the conditions of Theorem 2.7 of [3]. According to this theorem, there
exists a constant C > 0 such that

E‖Ă(n,ρ)‖ < 2 +
C
√
χn
, (ρ, χ)n →∞. (3.22)

Adding to this result the general concentration inequality

P
(∣∣∣‖Ă(n,ρ)‖ − E‖Ă(n,ρ)‖

∣∣∣ ≥ t) ≤ 2

ncχnt2
, t > 0, (3.23)

with some c > 0 [6], we get the following asymptotic upper bound:

P
(
‖Ă‖ ≥ 2 + δ

)
≤ P

(∣∣∣‖Ă‖ − E‖Ă‖
∣∣∣ ≥ δ − C

√
χn

)
≤ 2

ncχn(δ/2)2 . (3.24)

It follows from (3.22) that

Ῡδ = {λmax(Ă) > 2 + δ} ⊆ {λmax(Ă)− Eλmax(Ă) > δ − C/√χn}.

Then, using (3.23), we get

P (Ῡδ) ≤
(
|λmax(Ă)− Eλmax(Ă)| > δ − C/√χn

)
≤ 2n2δcC

√
χn

ncχnδ2 · ncC2 . (3.25)

Relation (3.25) shows that (3.21) is true as well as (3.20). Then it follows from
(3.17) that ∑

n≥1

P
(
R

(n,ρn)
2

)
<∞. (3.26)

Let us study the subset R
(n,ρ)
1 (3.14). We denote

Ψκ =
{
λ1(Ã) ≥ √ρ(1− κ)

}
and observe that

R
(n,ρ)
1 ⊆ (R

(n,ρ)
1 ∩Ψκ) ∪ Ψ̄κ. (3.27)

Regarding the subset R
(n,ρ)
1 ∩Ψκ, we can repeat the previous reasoning based on

the properties of an ellipsoid and write that

R
(n,ρ)
1 ∩Ψκ ⊆

{
min

1+ε<r<1/ε′

|√ρ(1− κ)− γ(r)|2

r
≤ ∆̂(n,ρ)

max

}
. (3.28)

With the help of the second part of Lemma 4.2, we deduce from (3.28) that

P (R
(n,ρ)
1 ∩Ψκ) ≤ P

(
∆̂(n,ρ)

max ≥ F (2)(
√
ρ(1− κ), ε, ε′, τ)

)
, (3.29)

where
F (2)

(√
ρ(1− κ), ε, ε′, τ)

)
= ε′

(
(ε′)2(1− τ)− qε′ + 1

)2
,
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under condition

1/ε′ <
q +

√
q2 − 4(1− τ)

2
, q =

√
ρ(1− κ). (3.30)

If ε′ = (
√
ρ(1− h))−1 and κ < h, then (3.30) is verified and

F (2)
(√
ρ(1− κ), ε, ε′, τ)

)
,=
√
ρ(h− κ)2(1 + o(1)).

Substituting this relation into the right-hand side of (3.29), we obtain the follow-
ing upper bound:

P (R
(n,ρ)
1 ∩Ψκ) ≤ P

(
∆̂(n,ρ)

max ≥
√
ρ(h− κ)2

)
.

It follows from the last estimate and (3.19) that for any h > κ we have

P (R
(n,ρ)
1 ∩Ψκ) ≤ 1

nlog(
√
χnρn(h−κ)2(1+o(1))

.

Therefore, we can write that∑
n≥1

P (R
(n,ρ)
1 ∩Ψκ) <∞. (3.31)

Let us estimate the probability of Ψ̄κ. The maximal eigenvalue of the
adjacency matrix A(n,ρn) (2.1) of the Erdős–Rényi random graphs G(n, pn)
was studied by Krivelevich and Sudakov [22]. It follows from the results of
[22] that with large probability, the maximal eigenvalue is greater than (1 +
o(1)) max

(√
Dmax, npn

)
, where Dmax is the maximal vertex degree of the graph

Γ(n,ρn), that is,

P

{
ω : λ1

(
A(n,ρn)(ω)

)
≥ max

(√
max
i=1,...,n

b
(n,ρn)
ii , ρn

)
(1 + o(1))

}
→ 1

in the limit (ρ, χ)n →∞ (2.5). Then we can write that

Eλ1(Ã(n,ρn)) ≥ (1 + o(1))
√
ρn, (ρ, χ)n →∞. (3.32)

In the paper [25], the inequality

P

(
sup

ρn>C logn

∣∣∣λ1(Ã(n,ρn))− Eλ1(Ã(n,ρn))
∣∣∣ > t
√
ρn

)
≤ 4e−t

2/32 (3.33)

is proved for all t > C. Taking into account that ρn = χn log n and choosing t2 =
s2ρn, we deduce from (3.33) that

P
(∣∣∣λ1(Ã(n,ρn))− Eλ1(Ã(n,ρn))

∣∣∣ > s
)
≤ 4

nχns2/32
. (3.34)
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It follows from (3.32) that

Ψ̄κ ⊆
{
λ1(Ã) ≤ √ρ(1− κ)

}
⊆
{
Eλ1(Ã)− λ1(Ã) ≤ √ρκ(1 + o(1))

}
.

Then (3.34) implies the following upper bound:

P
(
Ψ̄κ

)
≤ P

(
|Eλ1(Ã)− λ1(Ã)| ≥ √ρκ(1 + o(1))

)
≤ 4

nχnρnκ2(1+o(1))/32
.

Then, clearly. ∑
n≥1

P (Ψ̄κ) <∞

for any κ > 0. Taking into account this convergence, as well as (3.27), (3.31),
and (3.34), we conclude that ∑

n≥1

P
(
R

(n,ρn)
1

)
<∞.

Combining this relation with (3.26) and remembering (3.12), we conclude that
relation (2.10) is true for the case i = 2.

3.2. Proof of Theorem 2.1 for the case i = 1. In analogy with (3.11),
we can write that

Φ(v) ⊆

 inf
v∈D(1)

ε,ε′

min
i=1,...,n

|λi(Ã)− γ(n,ρ)(v)|2

|v|
≤ ∆̂(n,ρ)

max

 = S(n,ρ)(ε, ε′). (3.35)

We introduce the subsets S
(n,ρ)
1 and S

(n,ρ)
2 similarly to (3.14) and (3.15), where

the minimum M
(2)
r is replaced by M

(1)
r = infε′<r<1−ε. Then we can write that

S
(n,ρ)
2 ∩Υδ ⊆

{
M (1)
r Mϕ

|λmax(Ă)− γ(reiϕ)|2

r
IΥδ ≤ ∆̂(n,ρ)

max

}
,

and therefore

P (S
(n,ρ)
2 ∩Υδ) ≤ P (∆̂(n,ρ)

max ≥ G(1)(2 + δ, ε, ε′, τ)). (3.36)

Relation (4.19) shows that G(1)(2 + δ, ε, ε′, τ) = ε4(1 + o(1)) as ε→ 0 and then

∞∑
n=1

P (S
(n,ρ)
2 ∩Υδ) <∞ (3.37)

with the same choice of εn = 2(χn)−1/8 (2.9) and δn = (χn)−3/8 as in the previous
subsection.

Let us study S
(n,ρ)
1 . Repeating the arguments of the previous subsection, we

can write that

S
(n,ρ)
1 ∩Ψκ ⊆

{
min

ε′<r<1−ε

|√ρ(1− κ)− γ(r)|2

r
≤ ∆̂(n,ρ)

max

}
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and, by Lemma 4.3, we have

P (S
(n,ρ)
1 ∩Ψκ) ≤ P

(
∆̂(n,ρ)

max ≥ G(2)(
√
ρ(1− κ), ε, ε′, τ)

)
. (3.38)

Choosing 1/ε′ =
√
ρ(1−h), we obtain with the help of (4.20) an upper estimate,

P (S
(n,ρ)
1 ∩Ψκ) ≤ P

(
∆̂(n,ρ)

max ≥ ρ3/2(1− h)(h− κ)2
)
.

Then (3.19) implies the convergence∑
n≥1

P (S
(n,ρ)
1 ∩Ψκ) <∞. (3.39)

The upper bounds for the probabilities P (Ῡδ) and P (Ψ̄κ) for the case i = 1
are the same as for the case i = 2. Relations (3.37), (3.39) together with (3.21)
and (3.34) show that convergence (2.10) is true for the case i = 1. Theorem 2.1
is proved.

3.3. The case of real v. Regarding the particular case v ∈ R, we can use
the following inequalities instead of (3.6):

|λi(H(n,ρ)(v))− λi(Ã(n,ρ) − γ(n,ρ)(v)I)| ≤ |v|∆̂(n,ρ)
max , i = 1, . . . , n, (3.40)

where eigenvalues of H(n,ρ) and Ã(n,ρ) are ordered in, say, decreasing order. Rela-
tion (3.40) is a corollary of more precise Weyl’s inequality for hermitian matrices
(see, e.g., [17]). Using (3.40), we can write that

{ω : det(H(v)) = 0} =
n⋃
i=1

{ω : λi(H(v)) = 0}

and

{ω : λi(H(v)) = 0} ⊆

{
|λi(Ã)− γ(v)|

|v|
≤ ∆̂(n,ρ)

max

}
.

Then, in complete analogy with (3.2), (3.11) and (3.12), we get the inclusions

Φ̂(2)
n,ρ(ε̂, ε

′) = ∪1+ε̂<v<1/ε′ {ω : det(H(v)) = 0} ⊆ R̂(n,ρ)
1 ∪R(n,ρ)

2 ,

where

R̂
(n,ρ)
1 =

{
M (2)
v

|λ1(Ã)− γ(v)|
|v|

≤ ∆̂(n,ρ)
max

}
and

R̂
(n,ρ)
2 =

{
M (2)
v min

i=2,...,n

|λi(Ã)− γ(v)|
|v|

≤ ∆̂(n,ρ)
max

}
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with M
(2)
v = min1+ε̂<v<1/ε′ . Regarding the last event, we can repeat all compu-

tations of the previous subsection with F (1)(2 + δ, ε, ε′, τ) replaced by

F̂ (1)(2 + δ, ε̂, ε′, τ) =
ε2 − δ(1 + ε)− τ(1 + ε)2

(1 + ε)3
= O(ε̂2), ε̂→ 0,

in the asymptotic regime when δ = ε̂2/h with sufficiently large h. In this case,
relations (3.18) and (3.19) take the form

P (R̂
(n,ρ)
2 ∩Υδ) ≤ P

(
∆̂(n,ρ)

max ≥ ε̂2
)
≤ 1

nlog(ε̂2
√
χn(1+o(1)))

, n→∞. (3.41)

It is easy to see that (2.11) is sufficient for the convergence of the series (3.41),∑
n≥1

P
(
R̂

(n,ρn)
2 ∩Υδn

)
<∞, δn = ε̂2

n/h. (3.42)

It follows from the upper bound (3.25) that to have the series of P (Ῡδn) conver-
gent, we need to make the value χnδ

2
n sufficiently large. This observation together

with the last condition of (3.42) shows that the rate (2.11) is close to the optimal
one from the technical point of view.

4. Auxiliary results and statements

4.1. Proof of Lemma 1.1 by Stark and Terras. We reproduce here the
proof of Lemma 1.1 given by Stark and Terras [28]. It is based on the observation
that for a finite (q + 1)-regular graph, relation (1.3) takes the form

(ZX(q+1)(u))−1 = (1− u2)r−1
n∏
j=1

(
1− uλj + qu2

)
, (4.1)

where λ1 ≤ · · · ≤ λn are eigenvalues of A. Then the poles of ZX(q+1)(u) are given
by zeros of quadratic polynomials 1− uλj + qu2, 1 ≤ j ≤ n.

One can write
1− uλj + qu2 = (1− αju)(1− βju)

with αjβj = q and αj + βj = λj . Then αj and βj are given by the roots of the
quadratic equation

x2 − λjx+ q = 0,

and therefore

αj , βj =
λj +

√
λ2
j − 4q

2
. (4.2)

Thus, the values αj and βj are complex conjugate if and only if

|λj | ≤ 2
√
q, (4.3)

and in this case,
|αj |2 = |βj |2 = q.
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The last equalities mean that if s = σ + iτ is such that

qs = αj or qs = βj , (4.4)

then Re(s) = σ = 1/2. If |λj | = q + 1, then it follows from (4.2) and (4.3)
that Re(s) = 0 or 1. Finally, if |λj | 6= q + 1, then |λj | < q + 1 that therefore
(4.4) implies inequalities 0 < Re(s) < 1. This argument completes the proof of
equivalence between (1.5) and (1.6).

4.2. Distance property of ellipsoid. Let E(a, b) denote the family of
points on R2,

E(a, b) =

{
(s, t) : s, t ∈ R,

(s
a

)2
+

(
t

b

)2

= 1

}
.

We assume that b < a. Given x ∈ [0, a], we determine the distance D(x) between
the point (x, 0) and the ellipse E(a, b) by the formula

D(x)2 = min
(s,t)∈E(a,b)

((s− x)2 + t2) = min
s∈[−a,a]

φ(x, s),

where

φ(x, s) = (s− x)2 + b2 − b2s2/a2.

Lemma 4.1. There exists a critical point x0 = a(1− b2/a2) such that

D(x)2 =

b2
(

1− x2

a2 − b2
)

if 0 ≤ x ≤ x0

(a− x)2 if x0 ≤ x ≤ a
. (4.5)

Proof. The proof of Lemma 4.1 is based on the elementary analysis of the
derivative

∂

∂s
φ(x, s) = 2(s− x)− 2b2s/a2.

If x ∈ [0, x0], then this derivative equals zero at the point s̃ = s̃(x) = x/(1 −
b2/a2) and

D(x)2 = φ(x, s̃(x)).

If x ∈ [x0, a], then the derivative φ′s(x, s) has no zero on the interval s ∈ [0, a],
and therefore

D(x)2 = φ(x, a) = (a− x)2.

This means that if x < x0, then the corresponding point l̃ = (s̃, t̃) is such that t̃ >
0; if x ≥ x0, then the point s̃ coincides with the right extremity of the ellipsoid,
s̃ = a for all x ≥ x0. The derivative of D(x)2 is a discontinuous function and the
distance D(x)2 shows a kind of “phase transition” of the first order at x = x0.
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Let us point out that the distance D(x) (5.5) is a decreasing function for all
x ∈ [0, a] and for any s ∈ [0, a],

min
x∈[0,s]

D(x) = D(s). (4.6)

Now we turn to the case of γ(n,ρ)(v) (3.13). Denoting s = Re(γ(n,ρ)(v)) and
t = Im(γ(n,ρ)(v)), we observe that the family of points

Ė = E(ȧ, ḃ) =
{
γ(n,ρ)(reiϕ), 0 ≤ ϕ < 2π

}
is given by an ellipsoid with the half-axes

ȧ = r(1− τ) +
1

r
, ḃ = r(1− τ)− 1

r
.

Regarding the difference between λ ∈ R and γ(n,ρ), we see that its absolute value
is bounded from below by the distance (4.5),

|λ− γ(n,ρ)|2 ≥ D(λ)2

with a and b replaced by ȧ and ḃ. Taking into account that

ẋ0 =
ȧ2 − ḃ2

ȧ
=

4(1− τ)

r(1− τ) + 1/r
,

one can easily see that if
ε < 1 and τ < 1,

then ẋ0 < 2 + δ. Therefore we can write a version of (4.6),

min
λ∈[0,2+δ]

min
ϕ∈[0,2π)

|λ− γ(n,ρ)|2 =

(
r(1− τ) +

1

r
− 2− δ

)2

. (4.7)

Elementary analysis of the function

γ(x) = x(1− τ) +
1

x

shows that if

ε >
1√

1− τ
− 1 and ε > ε0 =

(2τ + δ) +
√

4δ + δ2 + 4τ

2(1− τ)
, (4.8)

then
inf

1+ε<x
γ(x) > 2 + δ. (4.9)

Regarding (4.7), we see that it remains to study the minimal value of the
function

f(x) =
1

x

(
x(1− τ) +

1

x
− q
)2

=

(
x2(1− τ)− qx+ 1

)2
x3
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over the interval x ∈ (1+ε, 1/ε′) in the case when q = 2+δ. Elementary analysis
shows that the derivative f ′(x) has four zeroes,

x1,2 =
q ∓

√
q2 − 4(1− τ)

2(1− τ)
and x3,4 =

−q ∓
√
q2 + 12(1− τ)

2(1− τ)
,

such that x3 < 0 < x1 < x4 < 1 and

1 < x2 =
q +

√
q2 − 4(1− τ)

2(1− τ)
.

We will also need to minimize f(x) in the case when q =
√
ρ(1− κ).

Lemma 4.2. Let positive ε and ε′ verify the inequality 1 + ε < 1/ε′. If q is
greater than 2− τ and such that x2 < 1 + ε, then

F (1)(q, ε, ε′, τ) = inf
1+ε<x<1/ε′

f(x) = f(1 + ε) =

(
(1 + ε)2(1− τ)− q(1 + ε) + 1

)2
(1 + ε)3

.

(4.10)
If q is greater than 2 + τ and such that 1/ε′ < x2, then

F (2)(q, ε, ε′, τ) = inf
1+ε<x<1/ε′

f(x) = f(1/ε′) =
1

ε′
(
(1− τ)− qε′ + (ε′)2

)2
. (4.11)

Proof. The proof of Lemma 4.2 is based on the observation that f(x) has a
local minimum at x2 and is strictly decreasing on the interval [1, x2) and strictly
increasing on the interval (x2,+∞). Simple computations show that (4.10) and
(4.11) are true.

Regarding our main asymptotic regime when

ε, δ, τ → 0, δ = o(ε2), and τ = o(δ), (4.12)

we conclude that condition (4.8) and the conditions of Lemma 4.2 are satisfied
and deduce from (4.10) that the asymptotic relation

F (1)(2 + δ, ε, ε′, τ) = ε4(1 + o(1)), ε→ 0, (4.13)

is true.
Regarding (4.11), in the case when q =

√
ρ(1− κ) and 1/ε′ =

√
ρ(1− h), we

conclude that in the limit of infinite ρ, the condition κ < h is sufficient for the
inequality 1/ε′ < x2 to hold asymptotically. A simple computation shows that in
this case

F (2)(
√
ρ(1− κ), ε, ε′, τ) =

√
ρ (h− κ)2(1 + o(1)), ρ→∞. (4.14)

Let us study the minimum of γ(x) over the interval r ∈ (ε′, 1− ε). The first
observation is that if

ε >
−(2τ + δ) +

√
δ2 + 4δ + 4τ

2(1− τ)
, (4.15)

then the following analogue of (4.9) is verified:

min
0<x<1−ε

γ(x) > 2 + δ. (4.16)
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Lemma 4.3. Let positive ε and ε′ verify the inequality ε′ < 1 − ε. If q is
greater than 2 + τ and such that 1− ε < x1, then

G(1)(q, ε, ε′, τ) = inf
ε′<x<1−ε

f(x) = f(1− ε) =

(
ε2 − δ(1 + ε)− τ(1 + ε)2

)2
(1− ε)3

.

(4.17)
If q is such that x1 < ε′, then

G(2)(q, ε, ε′, τ) = inf
ε′<x<1−ε

f(x) = f(ε′) =

(
(ε′)2(1− τ)− qε′ + 1

)2
(ε′)3

. (4.18)

Proof. The proof of Lemma 4.3 is based on elementary computations that we
do not present here.

Regarding the asymptotic regime (4.12), we see that condition (4.15) and the
conditions of Lemma 4.3 are verified. Then we conclude that

G(1)(2 + δ, ε, ε′, τ) = ε4(1 + o(1)), ε→ 0. (4.19)

Regarding (4.18), in the case when q =
√
ρ(1− κ) and 1/ε′ =

√
ρ(1− h), we

conclude that in the limit of infinite ρ the condition κ < h is sufficient for the
inequality ε′ > x1 to hold asymptotically. Then the relation

G(2)
(√
ρ(1− κ), ε, ε′, τ

)
= ρ3/2(1− h)(h− κ)2(1 + o(1)) (4.20)

is true in the asymptotic regime (4.12).

4.3. Proof of Füredi–Komlós inequalities. For completeness, we repro-
duce the proof of inequalities (3.16) resulting from two lemmas below [15].

Lemma 4.4. If Ã = (aij) is an n × n real symmetric matrix and Ă = Ã −
tJ (where J is the matrix with all 1 entries), then

λ2(Ã) ≤ λ1(Ă).

Proof. The relation λ1(Ã) = max‖x‖=1 xÃx and the Courant-Fischer theorem
imply that

λ2(Ã) = min
v

max
(x,v)=0, ‖x‖=1

xÃx,

and therefore

λ2(Ã) ≤ max
(x,1)=0, ‖x‖=1

xÃx = max
(x,1)=0, ‖x‖=1

x(Ă+ tJ)x

= max
(x,1)=0, ‖x‖=1

xĂx ≤ λ1(Ă)

since (x,1) = 0 implies Jx = 0. Lemma 4.4 is proved.
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Lemma 4.5. If Ã = (aij) is a real symmetric matrix and Ă = Ã − tJ , t >
0, then

λ−∞(Ã) ≥ λ−∞(Ă).

Proof. For t > 0, the matrix tJ is positive definite (i.e., xtJx ≥ 0 for all x ∈
Rn), and hence

λ−∞(Ã) = min
‖x‖=1

xÃx ≥ min
‖x‖=1

xĂx + min
‖x‖=1

xtJx

≥ min
‖x‖=1

xĂx = λ−∞(Ă).

Lemma 4.5 is proved.
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[15] Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combi-
natorica 1 (1981), 233–241.

[16] K. Hashimoto, Zeta functions of finite graphs and representation of p-adic groups,
Adv. Stud. Pure Math. 15 (1989), 211–280.

[17] R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University Press, 1985.

[18] M.D. Horton, H.M. Stark, and A.A. Terras, What are zeta functions of graphs and
what are they good for? Contemporary Mathematics 415 (2006), 173–190.

[19] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic
fields, J. Math. Soc. Japan 18 (1966) 219–235.

[20] O. Khorunzhiy, On eigenvalue distribution of random matrices of Ihara zeta function
of large random graphs, J. Math. Phys. Anal. Geom. 13 (2017), 268–282.

[21] O. Khorunzhiy, On asymptotic properties of Bell polynomials and concentration of
vertex degree of large random graphs, J. Theor. Probab. 35 (2022), 20–51.

[22] M. Krivelevich and B. Sudakov, The largest eigenvalue of sparse random graphs,
Combin. Probab. Comput. 12 (2003), 61–72.

[23] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988),
261–277.

[24] A. Lubotzky, Cayley graphs: eigenvalues, expanders and random walks, Surveys in
combinatorics, London Math. Soc. Lecture Notes 18 (1995), 155–189.

[25] G. Lugosi, S. Mendelson, and N. Zhivotovsky, Concentration of the spectral norm
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Асимптотична вiдсутнiсть полюсiв дзета функцiї
Iхари для великих випадкових графiв Ердоша–Реньї

Oleksiy Khorunzhiy

Скориставшись результатами про концентрацiю найбiльшого вла-
сного значення i максимального степеня вершини великих випадкових
графiв, ми доводимо, що нескiнченна послiдовнiсть випадкових графiв
Ердоша–Реньї G(n, ρn/n) така, що ρn/ log n нескiнченно зростає, коли
n→∞, задовольняє версiю гiпотези Рiмана для теорiї графiв.

Ключовi слова: випадковi графи, випадковi матрицi, дзета функцiя
Iхари, гiпотеза Рiмана для теорiї графiв
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