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1. Introduction

In this paper, we consider the following 3D magnetic Bénard problem [9]:

1
O+ (u-V u+V(7T+§\b\2)—,uAu: (b- V)b + Oes, (1.1)
b+ (u-V)b=(b-V)u+ nAb, (1.2)
00 + (u- V)0 — kA = ues, (1.3)
divu =divb=0 in Q x (0, 00), (1.4)
u:O,b-nzo,rotbxn:O,ggzo on 0 x (0,00), (1.5)
n
(u,b,0)(-,0) = (ug,bo,0)(-) in QCR. (1.6)

Here u, the fluid velocity field, w, the pressure, b, the magnetic field, and 6, the
temperature, are the unknowns, es := (0,0, 1)%, 1 is the viscosity coefficient, 7 is
the resistivity coefficient, k is the heat conductivity coefficient, €2 is a bounded
and simply connected domain in R? with smooth boundary 0%, n is the unit
outward normal vector to 0f).

When b = 0, the system reduces to the well-known Boussinesq system. Lai—
Pan—Zhao [12] and K. Zhao [20] showed the global well-posedness of smooth
solutions with 4 = 0,k = 1 or p = 1,k = 0. Jin—Fan—Nakamura—Zhou [11]
studied the partial vanishing viscosity limit.

Zhou-Fan—Nakamura [21] showed the global well-posedness of smooth solution
to the problem (1.1)—(1.6) when k = 0 and €2 := R? for large initial data by but
with positive resistivity. For other studies of magnetic Bénard problem, we refer
readers to [4-8,16,18,19].

The aim of this paper is to prove some uniform regularity estimates. We will
prove the following.
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Theorem 1.1. Let 0 < n,k < 1,00 € Wt® ug € H} N H% by € H? with
bo-n =0, rotbyg x n =0 on IN and divug = divbg = 0 in .

Then there exists a small time T independent of n,k > 0 and a unique strong
solution u,0,b to the initial boundary value problem (1.1)—(1.6) such that

uw € L®0,T; H) N L2(0,T;W?%),  w; € L®(0,T; L*) N L*(0,T; H),
b,6 € L0, T; W5, by, 0, € L=(0,T; L?), \/nb,Vk# € L>(0,T; H*), (1.7)

with the corresponding norms that are uniformly bounded with respect to n and
k.

Theorem 1.1 will be proved by using the Banach fixed point theorem. We
denote the nonempty set by

A:={ueA; u(-,0) =wug, diva =0, |al]|4a <A}
with the norm
Nl = |Gl oo 0,112 + |8l 220, 772.6) + 106t]| Loo (0,7:22) + 10kl 20,7171

Let 4 € A be given, we consider the following linear problems:

Qb+ - Vb—b- Vii = nAb, (1.8)
divh =0, (1.9)
b(-,0) = by, (1.10)
b-n=0,rotbxn=0 on 900 x (0,7), (1.11)
00+ - VO — kAO = tes, (1.12)
0(-,0) = by, (1.13)
9 =0 on 909 x (0,7); (1.14)
on

ou+u-Vu+ V1t — pAu=>5b-Vb— %V|b|2+9€3, (1.15)
u(+,0) = ug, (1.16)
u=0 on 90 x (0,7). (1.17)

Let u be a unique strong solution to the above problem, we define the fixed
point map F : 4 € A — u € A with 4(-,0) = up and & = 0 on 92 x (0,7). We
are to prove that the map F' maps A into A for a suitable constant A and a small
T and F is a contraction mapping on A. Thus F has a unique fixed point in A.
This proves Theorem 1.1.

2. Preliminaries

In this section, we will collect some lemmas which will be used in the proof.
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Lemma 2.1 (Poincaré inequality). Let 2 be a bounded simple connected
domain with smooth boundary and let w be a smooth vector satisfying w-n =0
on the boundary 02. Then

[wl[zr < Cl[Vw]|Le (2.1)
holds for 2 < p < 0.

Proof. For p = 2, the proof was given in Lions [13, (6.47), page 75]. We
assume 2 < p < oco. Using the Gagliardo—Nirenberg inequality and the case p =
2, we see that

lwllze < Clwl R IVwlie + Cllwllz < CIVw| R [Vwlls + Ol Vw2
< OVl 5 IIVwlfs + ClI Ve < C|[VwllLe.

This completes the proof. ]
Lemma 2.2 ([17]). There holds
|Vw| e < C(||divw||zr + |[rot w]zr) (2.2)

for any smooth vector w satisfying w-n =0 orwxn =0 on 92 and 1 < p < co.

Lemma 2.3 ([3]). There holds
- [ arfipae = [ 15Vt
Q Q

P2 B2 g — 2. 9)f
e /QIVIfI " dz /mfl” (n-V)f-fds (2.3)

+4

for any smooth vector f and 1 < p < oo.

Lemma 2.4 ([2, Lemma 2.2]). Assume that b is sufficiently smooth and
satisfies the boundary condition b-n = 0,rotbxn =0 on 0. Then the following
identity holds for J := rotb:

oJ
— 8771 -J = (61]';96157 + €25k€28y + 63]'}{;6357)Jngakn,y (2.4)

on 022, where €55, denotes the totally anti-symmetric tensor such that (a xb); =
Eijka]’bk.

Lemma 2.5 ([1, Lemma 7.44] and [14, Corollary 1.7]). There holds

1—1 1
1 linom) < Ol 1l (2.5)
for any smooth f and 1 < p < oo.
Proof. We have

1 1

1_, ES
17100 < CUNy 30y < O iy 191 0y m

Q)
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Lemma 2.6 ([10]). Let b be a solution to the Poisson equation
-Ab=f in Q
with the boundary condition
b-n=0, rotbxn=0 on ON.

Then it holds
[0l g2 < C[lfllz2 + CIVO| 2. (2.6)

Lemma 2.7 ([15]). For the bounded domain 2 and 0 € C?(Q), satisfying
% =0 on 0N, we have

iwe\? < 2K|VO|* on 09, (2.7)
on
where K = K(Q) is an upper bound for the curvatures of Of).

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.

Lemma 3.1. Let u € A be given. Then the problem (1.8)—(1.11) has a unique
solution b satisfying

[rot bl| (o) < C, (3.1)
10:b(-, )| 2 < C, (3.2)

Villrot bl 20,122y < C, (3.3)
Vallb(, )| g2 < O+ CA. (3.4)

for some small 0 < T < 1.

Proof. Since equations (1.8)—(1.11) are linear with regular @, the existence
and uniqueness are well known, we only need to show a priori estimates.
Denoting
J :=rot b,

applying rot to (1.8), we observe that

OpJ +1-VJ —nAJ =g:= = Vii; x 9+ rot (b- V). (3.5)

Testing (3.5) by |J|*J, using (2.3), (2.4), (2.2), and (2.5), we have

1d 4
/ J!ﬁdern/ |J\4]VJ]2dx+n/ VPR da
6dt Jq 0 9" J,,

= 77/ || (e1jk€18, + €2k€28y + €35k€38+)TjT50kn AS + / glJ|*J dz
o9 Q
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<Cn /asz | 71°dS + C|[Va o1 G o) + Cllbll o @IV 2l Loy |11 2o
< CnllT P2 IVII P n2) + CUIVEl oo () + HV27-LHL6(Q))HJH%G(Q)

1 5 N
< §77HVU’3H%2(Q) + C(1+ |V ooy + HVQ’U'”LG(Q))HJH(;LG(Q)a

which gives (3.1):

T
[T lIzs(0) < 1Joll Lo (o) exp <C/0 (1+Val L~ + |!V2ﬂ||L6)dt)
C

< Cexp(CVTA) < (3.6)
if VTA<1.
Here we have used the estimate
[0l e < C([|bl[ s + [[Vb]|Ls) < Cl[Vb][1s < C[[T| 6. (3.7)

Taking 0; to (1.8), testing by O;b, using (3.6) and (3.7), we derive

;;t/|8tb|2dx+n/]rot6tb]2dx: —/a.vatb.atbdmr/atb.va.atbda;
< O V|| o< [|0ed]|72 + C|1yil| .o | VD]l 231830 2 + CIbl| o< |V Be 2 [|0b 12,

which gives

d _ _
q10lze = ClIVall = [|9:bl 2 + ClIV O] 2. (3.8)

Whence we obtain (3.2):

T T
fo0llz < (100002 + [ 199t adt) exp (€ [ [Vilzmar)
0 0
< C(1+VTA)exp(CVTA) < C (3.9)
if VTA < 1. Now it is obvious that (3.3) and (3.4) hold. The lemma is proved. [J

Lemma 3.2. Let u € A be given. Then the problem (1.12)—(1.14) has a
unique solution 6 satisfying

/|V0|6dx <C, (3.10)
[0:(, )|z < C, (3.11)
VEIIVO 2007512) + VENO oo go,rm2) < C (3.12)

for some small 0 <T < 1.
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Proof. Since equation (1.12) is linear with regular @, the existence and unique-
ness are well known, we only need to establish a priori estimates.
Since

¢
w(z,t) = up(x) +/ Oruds,
0
we have

T
@]l oo 0.1:6) < lluollzs + /O 104t s dt < C + CVTA < C (3.13)

if AVT < 1.
Testing (1.12) by € and using (3.13), we deduce

1d
2dt
which yields

02 dm—i—k:/ VO d = /ﬁegﬁdx < il 2|11l < CI16] 2,

T
/92da:+k/ /yv9|2da:dt§0.
0

Taking V to (1.12), testing by |V6|*V#, using (2.3), (2.5), and (2.7), we derive

é(i/|V0|6dx+k:/|V9|4|V29]2dm+;lk/|V|V0|3|2da:
< Ck [ 9078+ Vil (1+ [ 98] 10) V0]
< Ck[IVO|I76oIVIVOP |l L2() + ClIVall o (1 + (VO] o) [ VO] 76
< %/<?||V|V9|3||%2 +C|IV]$6 + ClI V|| oo (1 + VO] 16) VO] s,
which implies (3.10):

/]V0|6dx < Cexp(CVTA) < C (3.14)

if VTA<1.
Applying 0; to (1.12), testing by 6; and using (3.14), we have

1
2;/0t2dx+k/|v0t]2dx:/ﬂtegﬂtdx—/at-VH-thm

< el L2106l 22 + llacll Lo VO] 3 10 2
< Al|0cl[ 2 + ClI V]| L2 (10| 2

Whence q
0ellze = A+ ClIVael 2,

which implies (3.11):
16:(-,8)]| 2 < C + AT + CVTA < C (3.15)

if AT <1and AVT < 1.
Similarly to (3.3) and (3.4), we have (3.12). The lemma is proved. O
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Lemma 3.3. Let @ € A be given. Then the problem (1.15)—(1.17) has a
unique solution u satisfying

[wl oo 0,7 12) + 1wl L2 0,726y + l|wel| Loo 0,702y + lutll 20,051y < C1 o (3.16)

for some small 0 < T < 1. Here C} is a positive constant independent of 0,k
and A.

Proof. Since equation (1.15) is linear with regular @, b, 6, the existence and
uniqueness are well known, we only need to establish (3.16).
Testing (1.15) by u and using Lemmas 3.1 and 3.2, we see that

1d
2dt/u|2dx—|—/u|Vu|2d:L‘:/b-Vb-udx+/963ud:c

< IVollzslbllzsllullz + 0]l 2llull 2 < Cllull L2,

T
/yudeJr/ /!Vu\zdxdtg C. (3.17)
0

Testing (1.15) by u; and using Lemmas 3.1 and 3.2, we find that

which gives

1d

lda 2 2
5 & w|Vul dx+/!ut| dz

:—/fL-Vu‘utdx+/b'Vb-utdx+/963utdx

IN

1 _
1 / [ue*dz + Cllal|Z< | Vull72 + CIVOI p2llbll oo e 2 + 1161l lluel 22

IN

1
3 / lug|*dz + CA?||Vul|3, + C + C A%

which implies
T
/|Vu|2d:n+/ /|ut|2dxdt§ C (3.18)
0

if A2T < 1.
Applying 9; to (1.15), testing by wu¢, using Lemmas 3.1, 3.2 and (3.18), we

have
1d
th/\ut]zdx+/u|Vut\2dx

:/ﬂtoVu-utdx/at(b®b):Vutdx+/9t63utda:

<l s [IVull 2 lluel s + ClOI Loe (102 ]| L2 [Vl 2 + (10| L2 |uell 2
< CAljut|lps + Clltiel s [luell s + ClIVue| 2

<4 [ 190l do + Clla | Vialzz + C.
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which gives
T
/]ut|2dx+/ /\Vut|2da:dt§ Cy (3.19)
0

if A2VT < 1.
We rewrite (1.15) as

— pAu+ V7 = f:=rothbxb— 0u—1u-Vu+ bes. (3.20)
By the H?-theory of elliptic systems, we get

[ullzz < C|lfllz2 < Cllrot b s [0l s + Cl|Opul| 2 + Cllal| s | Vul|Ls + C|0]| L2
< O+ C|| V| 13,

which yields
[wll oo 0,7512) < Ch1- (3.21)

In a similar way, by the W2%-theory of elliptic systems, we obtain

llullwze < C| f]l e
< Cllrot bl| ps[bl| Lo + Cllugllps + Cllal| || VullL + C|0]| o
< C +C||Vul|pe + CA% + C|lug|| 16

1 3
< C + Cl\Vull Lo llull iz + CA? + C|| Vg 2.

Whence
HUHW2,6 <(C+ CA2 + CHVUtHL2,

which yields
lull 20,726y < Ch (3.22)

if A*T < 1. This completes the proof. O

Due to the above Lemmas 2.1-2.3, we can take A := (1, and thus I’ maps
A into A. The following lemma tells us that F' is a contraction mapping in the
sense of a weaker norm.

Lemma 3.4. There is a constant 0 < § < 1 such that for any u; (i = 1,2),
| F'(@1) — F(t2)|l 2 (0,m;m1y < 61|t — G2l z200,7,m7) (3.23)
for some small 0 < T < 1.

Proof. Suppose u;, ;, b;, 0;, i = 1,2, are the solutions to the problem (1.8),
(1.17) corresponding to @; (i = 1,2). Denote

U= up — ug, bZ:blbe, (92:01*92, ﬂ:zﬂlfﬂz.
Then we have

Ob — nAb = —iiy - Vb — @i - Vbo + by - Vi + b - Viig, (3.24)
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00+ 1y -VO+1u-Vlhy — EAO = ties, (3.25)
Ou+ Uy - Vu + V(my — m2) — pAu+ @ - Vue
= div (b1 ®by — by ® bg) + fes. (326)

Testing (3.24) by b, we find that

1d

53 [ 1Plde - [ rotbPdo < OVl bl + IVl abl.s

< e[Vl z. + ClIblIZ: + Cl[Vaz| < [bll7. (3.27)

for any 0 < ¢ < 1.
Testing (3.25) by 6, we have

1d

BT szx+k/]V9]2dx: —/&-V@g-@dx+/ﬂ630dx

< lallps[[VO2ll a0l 2 + (1] 2|0l L2 < ClV | 2 ]|0]] 22
< eo|| V|72 + C|10]32 (3.28)

for any 0 < eg < 1.
Testing (3.26) by u, we deduce that

1 d
2dt/|u|2dx+/uWu|2dx

:—/ﬂ'VUQ-uda:—/(ln@bl—b2®b2):Vuda:—}-/@egudx

< [all 2 [Vuzl s llull s + Clbll 2 (b1l zoe + 102l 2o ) [Vl 2 + [10]] L2 [[ul] 2
I -

< gIIVUH%2 +Cllal g2 llull s + CllblI 72 + Cll6] 72
I -

< JIVullZe + esllaliz + CllulZ: + ClbllZ: + ClO17 (3.29)

for any 0 < e3 < 1.

Combining (3.27)—(3.29) and taking €;, ¢ = 1,2,3, small enough, by using
the Gronwall inequality, we arrive at (3.23) for small 0 < 7" < 1. This completes
the proof. O

Proof of Theorem 1.1. By Lemmas 3.1-3.4 and the Banach fixed point theo-
rem, we finish the proof. O

Acknowledgments

This paper is supported by National Natural Science Foundation of China
(No.: 12171459); The key project of university natural science of Anhui province
(No.: KJ2017A453; No.: KJ2017A454).



Uniform Regularity of the Magnetic Bénard Problem in a Bounded Domain 415

1]

2]

[10]

[11]

References

R.A. Adams and J.J.F. Fournier, Sobolev spaces, 140, Pure and Applied Mathe-
matics (Amsterdam), Elsevier/Academic Press, Amsterdam, 2003.

H. Beirao da Veiga and L. C. Berselli, Navier-Stokes equations: Green’s matrices,
vorticity direction, and regularity up to the boundary, J. Differential Equations 246
(2009), 597-628.

H. Beirao da Veiga and F. Crispo, Sharp inviscid limit results under Navier type
boundary conditions. An LP theory, J. Math. Fluid Mech. 12 (2010), 397-411.

J. Cheng and L. Du, On two-dimensional magnetic Bénard problem with mixed
partial viscosity, J. Math. Fluid Mech. 17 (2015), 769-797.

J. Fan, D. Liu, and Y. Zhou, Uniform global strong solutions of the 2D magnetic
Bénard problem in a bounded domain, Appl. Math. Lett. 86 (2018), 166-172.

J. Fan, L. Wang, and Y. Zhou, Global strong solutions of the 2D density-dependent
incompressible magnetic Bénard problem, Bull. Malays. Math. Sci. Soc. 44 (2021),
1749-1769.

J. Fan and Y. Zhou, Uniform regularity of the density-dependent incompressible
MHD system in a bounded domain, Math. Phys. Anal. Geom. 23 (2020), 39.

J. Fan and Y. Zhou, Uniform regularity of fully compressible Hall-MHD systems,
Electron. J. Differential Equations (2021), 17.

G.P. Galdi and M. Padula, A new approach to energy theory in the stability of fluid
motion, Arch. Rational Mech. Anal. 110 (1990), 187-286.

T. Huang, C. Wang, and H. Wen, Strong solutions of the compressible nematic
liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.

L. Jin, J. Fan, G. Nakamura, and Y. Zhou, Partial vanishing viscosity limit for the
2D Boussinesq system with a slip boundary condition, Bound. Value Probl. 2012
(2012), 20.

M.-J. Lai, R. Pan, and K. Zhao, Initial boundary value problem for two-dimensional
viscous Boussinesq equations, Arch. Ration. Mech. Anal. 199 (2011), 739-760.

P.-L. Lions, Mathematical topics in fluid mechanics, 2: Compressible Models,
Clarendon Press, Oxford, 1998.

A. Lunardi, Interpolation theory, Edizioni della Normale, Pisa, 2009.

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic
Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 851-875.

G. Mulone and S. Rionero, Necessary and sufficient conditions for nonlinear stability
in the magnetic Bénard problem, Arch. Ration. Mech. Anal. 166 (2003), 197-218.

W. von Wahl, Estimating Vu by divu and curlu, Math. Methods Appl. Sci. 15
(1992), 123-143.

K. Yamazaki, Global regularity of generalized magnetic Benard problem, Math.
Methods Appl. Sci. 40 (2017), 2013—-2033.

Z. Ye, Global regularity of the 2D magnetic Bénard system with partial dissipation,
Adv. Differential Equations 23 (2018), 193-238.



416 Shengqi Lu and Miaochao Chen

[20] K. Zhao, 2D inviscid heat conductive Boussinesq equations on a bounded domain,
Michigan Math. J. 59 (2010), 329-352.

[21] Y. Zhou, J. Fan, and G. Nakamura, Global Cauchy problem for a 2D magnetic
Bénard problem with zero thermal conductivity, Appl. Math. Lett. 26 (2013), 627—
630.

Received June 6, 2021, revised May September, 2021.

Shengqi Lu,

Department of Mathematics and Physics, Sanjiang University, Nanjing 210012, P.R.
China ,

E-mail: 001336@sju.edu.cn

Miaochao Chen,

School of Mathematics and Statistics, Chaohu University, Hefei 238000 , P.R. China,
E-mail: chenmiaochao@chu.edu.cn

OmHopigHa peryjgpHICTb MarHiTHOI poodJjieMu
Bepnapaa B oomexkeHiit obJiacTi
Shengqi Lu and Miaochao Chen
V 11iit pobOTi MU JOBOIMMO OTHOPIIHY PETYIAPHICTD MATHITHOT POOIeMU
Bepnapia B oOMexkeHiit 0b1acTi.

KimrogoBi csioBa: marniTHa mupobsema Beprapma, oOMexkeHa 00J/1acTb,
OJTHOPITHA PEryJIsApHICTD


mailto:001336@sju.edu.cn
mailto:chenmiaochao@chu.edu.cn

	Introduction
	Preliminaries
	Proof of Theorem 1.1

