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of the classification of 4-dimensional indecomposable real Lie algebras and
the classification of the manifolds under study is established. The basic
geometrical characteristics of the constructed manifolds are studied in the
frame of the mentioned classification of Lie algebras.

Key words: almost hypercomplex structure, Hermitian metric, Norden
metric, Lie group, Lie algebra

Mathematical Subject Classification 2010: 53C15, 53C50, 22E60, 22E15,
53C55

1. Introduction

A triad of anticommuting almost complex structures such that each of them
is a composition of the other two structures is called an almost hypercomplex
structure H on a 4n-dimensional smooth manifold M.

If the almost hypercomplex manifold is equipped with a Hermitian metric, it
is known that the derived metric structure is hyper-Hermitian, i.e., it consists of
the given Hermitian metric with respect to the three almost complex structures
and the three associated Kähler forms [1]. Almost hypercomplex structures with
Hermitian metrics have been widely studied (e.g., [4, 15]).

An object of our interest in this work is a metric structure on (M, H) derived
by a Norden metric. Then the existence of a Norden metric with respect to one
of the three almost complex structures implies the existence of one more Norden
metric and a Hermitian metric with respect to the other two almost complex
structures. Such a metric is called a Hermitian–Norden metric on an almost
hypercomplex manifold. The considered type of manifolds is the only possible
way to involve Norden-type metrics on almost hypercomplex manifolds. The
structure H can be equipped with a metric structure of Hermitian–Norden type
generated by a pseudo-Riemannian metric g of neutral signature [8, 9]. In this
case, in each tangent fibre, one of the almost complex structures of H acts as
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an isometry and the other two act as anti-isometries with respect to g. The
metric g is Hermitian with respect to one of almost complex structures of H and
g is a Norden metric regarding the other two. Then we have three associated
(0,2)-tensors to the metric g - a Kähler form and two Norden metrics.

The manifoldM, equipped with the considered structures, is called an almost
hypercomplex manifold with Hermitian-Norden metrics. The same manifolds
were studied in [8, 9] under the name almost hypercomplex pseudo-Hermitian
manifolds and in [12, 13] as almost hypercomplex manifolds with Hermitian and
anti-Hermitian metrics.

Almost hypercomplex manifolds with Hermitian-Norden metrics can be con-
structed on Lie groups. In this work, we use the classification of 4-dimensional
indecomposable Lie algebras known from [6]. The goal of this paper is to find
a relation between the classes in this classification and the corresponding man-
ifolds to the classifications given in [7] and [5], which are derived by the tensor
structures and metrics of the respective manifolds. This correspondence would
provide a wide horizon of combining the results derived for the different struc-
tures. Moreover, the present work gives the basic geometrical characteristics of
the considered manifolds in each case.

The author’s intention with this article is to complete the considered problem
for all classes of the mentioned classification and thus to generalize the results
from [10] and [11].

Smooth manifolds with similar structures on Lie groups were studied in [3,
14,15,17,21].

2. Almost hypercomplex manifolds with Hermitian-Norden
metrics

The subject of our study are almost hypercomplex manifolds with Hermitian-
Norden metrics ( [9]). A differentiable manifoldM of this type has dimension 4n
and it is denoted by (M, H,G), where (H,G) is an almost hypercomplex struc-
ture with Hermitian-Norden metrics. More precisely, the almost hypercomplex
structure H = (J1, J2, J3) has the following properties:

Jα = Jβ ◦ Jγ = −Jγ ◦ Jβ, J2
α = −I,

for all cyclic permutations (α, β, γ) of (1, 2, 3) and the identity I. The quadru-
plet G = (g, g1, g2, g3) consists of a neutral metric g, associated 2-form g1 and
associated neutral metrics g2 and g3 on (M, H) having the properties

g(·, ·) = εαg(Jα·, Jα·), (2.1)

gα(·, ·) = g(Jα·, ·) = −εαg(·, Jα·). (2.2)

where

εα =

{
1, α = 1

−1, α = 2, 3
.

Here and further, α will run over the range {1, 2, 3} unless otherwise is stated.
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Let us remark that the considered type of manifolds is the only possible way
to involve Norden-type metrics on almost hypercomplex manifolds.

The following three tensors of type (0, 3) are the fundamental tensors of the
almost hypercomplex manifold with Hermitian–Norden metrics ( [9]),

Fα(x, y, z) = g
(
(∇xJα) y, z

)
=
(
∇xgα

)
(y, z) , (2.3)

where ∇ is the Levi-Civita connection of g. These tensors have the properties

Fα(x, y, z) = −εαFα(x, z, y) = −εαFα(x, Jαy, Jαz) (2.4)

and they are related to each other as follows:

F1(x, y, z) = F2(x, J3y, z) + F3(x, y, J2z),

F2(x, y, z) = F3(x, J1y, z) + F1(x, y, J3z),

F3(x, y, z) = F1(x, J2y, z)− F2(x, y, J1z).

The corresponding 1-forms θα of Fα, known as Lee forms, are determined by

θα(·) = gijFα(ei, ej , ·), (2.5)

where {e1, e2, . . . , e4n} is an arbitrary basis of TpM, p ∈ M and gij are the
corresponding components of the inverse matrix of g.

According to (2.1), (M, J1, g) is an almost Hermitian manifold whereas the
manifolds (M, J2, g) and (M, J3, g) are almost complex manifolds with Norden
metric. These two types of manifolds are classified in [7] and [5], respectively.
In the case of the lowest dimension 4, the four basic classes of almost Hermitian
manifolds with respect to J1 are restricted to two classes—the class AK of almost
Kähler manifolds and the class H of Hermitian manifolds:

AK : S
x,y,z

{
F1(x, y, z)

}
= 0;

H : F1(x, y, z) =
1

2
{g(x, y)θ1(z)− g(x, J1y)θ1(J1z)

−g(x, z)θ1(y) + g(x, J1z)θ1(J1y)} , (2.6)

where S is the cyclic sum by three arguments. In the 4-dimensional case, the
basic classes of almost Norden manifolds (α = 2 or 3) are determined as follows:

W1(Jα) : Fα(x, y, z) =
1

4

{
g(x, y)θα(z) + g(x, Jαy)θα(Jαz)

+g(x, z)θα(y) + g(x, Jαz)θα(Jαy)
}

;

W2(Jα) : S
x,y,z

{
Fα(x, y, Jαz)

}
= 0, θα = 0;

W3(Jα) : S
x,y,z

{
Fα(x, y, z)

}
= 0. (2.7)

Let us notice that K andW0 are the denotations of the classes of the Kähler type
manifolds in the Hermitian case and the Norden case, respectively. Moreover,



420 Hristo Manev

for the considered lowest dimension 4, the class H is the only basic class with
integrable almost complex structure. As a counterpart, in terms of almost Norden
manifolds, this integrable class is W1 ⊕W2 ( [5, 7]).

The observed integrable class of almost hypercomplex manifolds with
Hermitian–Norden metrics, H(J1)∩W1(J2)⊕W2(J2)∩W1(J3)⊕W2(J3), is known
as the class of hypercomplex manifolds with Hermitian–Norden metrics ( [8]).

On the other hand, for dimension 4, the basic classes of non-integrable man-
ifolds in the both cases are AK and W3 ( [5, 7]).

The curvature (1,3)-tensor of ∇ is defined as usual by R = [∇,∇] − ∇[ , ].
The corresponding curvature (0,4)-tensor with respect to g is denoted by the
same letter, i.e.,

R(x, y, z, w) = g(R(x, y)z, w), (2.8)

and it has the following well-known properties:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z), (2.9)

R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0. (2.10)

The Ricci tensor ρ and the scalar curvature τ for R as well as their associated
quantities ρ∗, τ∗α and τ∗∗α are defined by

ρ(y, z) = gijR(ei, y, z, ej), ρ∗α(y, z) = gijR(ei, y, z, Jαej),

τ = gijρ(ei, ej), τ∗α = gijρ∗α(ei, ej), τ∗∗α = gijρ∗α(ei, Jαej).

The following properties for ρ and ρ∗α are valid:

ρjk = ρkj , (ρ∗α)jk = −εα(ρ∗α)kj , (2.11)

where ρjk = ρ(ej , ek) and (ρ∗α)jk = ρ∗α(ej , ek) are the basic components of ρ and
ρ∗α.

Let µ be a non-degenerate 2-plane with a basis {x, y} in TpM, p ∈ M. The
sectional curvature of µ with respect to g and R is defined by

k(µ; p) =
R(x, y, y, x)

g(x, x)g(y, y)− g(x, y)2
.

A 2-plane µ is called holomorphic (resp., totally real) if the condition µ = Jαµ
(resp., µ ⊥ Jαµ 6= µ with respect to g) holds. The sectional curvature of a
holomorphic (resp., totally real) 2-plane is called holomorphic (resp., totally real)
sectional curvature. The 2-plane µ and its sectional curvature k(µ; p) are called a
basic 2-plane and a basic sectional curvature, respectively, if µ has a basis {ei, ej}
(i, j ∈ {1, 2, . . . , 4n}, i 6= j) for a basis {e1, e2, . . . , e4n} of TpM. In the latter case
we denote kij .

3. Four-dimensional indecomposable real Lie algebras

Different authors have studied real 4-dimensional indecomposable Lie alge-
bras. Firstly, a classification was given in [16], which can be easily found in [18]
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and [6]. The object of investigation in [2] were 4-dimensional solvable real Lie
algebras. The authors of this work establish the one-to-one correspondence be-
tween their classification and the classifications in [16] and [18]. In all of the cited
works, the basic classes are described by the non-zero Lie brackets with respect to
a basis {e1, e2, e3, e4}. In Table 3.1, the correspondence between the mentioned
classifications is shown.

In the present work, we use the notation of the classes from [6], namely

g4,1 : [e2, e4] = e1, [e3, e4] = e2;

g4,2 : [e1, e4] = me1, [e2, e4] = e2,

[e3, e4] = e2 + e3, (m 6= 0);

g4,3 : [e1, e4] = e1, [e3, e4] = e2;

g4,4 : [e1, e4] = e1, [e2, e4] = e1 + e2,

[e3, e4] = e2 + e3;

g4,5 : [e1, e4] = e1, [e2, e4] = a1e2,

[e3, e4] = a2e3, (a1 6= 0, a2 6= 0);

g4,6 : [e1, e4] = b1e1, [e2, e4] = b2e2 − e3,
[e3, e4] = e2 + b2e3, (b1 6= 0, b2 ≥ 0);

g4,7 : [e1, e4] = 2e1, [e2, e3] = e1,

[e2, e4] = e2, [e3, e4] = e2 + e3;

g4,8 : [e2, e3] = e1, [e2, e4] = e2,

[e3, e4] = −e3;
g4,9 : [e1, e4] = (p+ 1)e1, [e2, e3] = e1,

[e2, e4] = e2, [e3, e4] = pe3, (−1 < p ≤ 1);

g4,10 : [e2, e3] = e1, [e2, e4] = −e3,
[e3, e4] = e2;

g4,11 : [e1, e4] = 2qe1, [e2, e3] = e1,

[e2, e4] = qe2 − e3, [e3, e4] = e2 + qe3, (q > 0);

g4,12 : [e1, e3] = e1, [e1, e4] = −e2,
[e2, e3] = e2, [e2, e4] = e1, (3.1)

where a1, a2, b1, b2, m, p, q ∈ R.

4. Lie groups as almost hypercomplex manifolds with
Hermitian–Norden metrics

Let L be a simply connected 4-dimensional real Lie group with corresponding
Lie algebra l. A standard hypercomplex structure on l for its basis {e1, e2, e3, e4}
is defined as in [19]:

J1e1 = e2, J1e2 = −e1, J1e3 = −e4, J1e4 = e3;

J2e1 = e3, J2e2 = e4, J2e3 = −e1, J2e4 = −e2;



422 Hristo Manev

[6] [2] [16] [18]

g4,1 n4 g4,1 A4,1

g4,2 r4,a g4,2 Aa4,2
g4,3 r4,0 g4,3 A4,3

g4,4 r4 g4,4 A4,4

g4,5 r4,a,b g4,5 Aa,b4,5

g4,6 r′4,a,b g4,6 Aa,b4,6

g4,7 h4 g4,7 A4,7

g4,8 d4 g4,8(−1) A4,8

g4,9 d4,1/1+b g4,8 Ab4,9
g4,10 d′4,0 g4,9(0) A4,10

g4,11 d′4,a g4,9 Aa4,11
g4,12 aff(C) g4,10 A4,12

Table 3.1: Correspondence between some classifications of Lie algebras

J3e1 = −e4, J3e2 = e3, J3e3 = −e2, J3e4 = e1. (4.1)

Let g be a pseudo-Riemannian metric of neutral signature for x(x1, x2, x3, x4),
y(y1, y2, y3, y4) ∈ l defined by

g(x, y) = x1y1 + x2y2 − x3y3 − x4y4.

Bearing in mind the latter equality, it is valid that

g(e1, e1) = g(e2, e2) = −g(e3, e3) = −g(e4, e4) = 1,

g(ei, ej) = 0, i 6= j ∈ {1, 2, 3, 4}. (4.2)

Let us note that further the indices i, j, k, l run over the range {1, 2, 3, 4}.
According to (2.1) and (2.2), the metric g generates an almost hypercomplex
structure with Hermitian–Norden metrics on l. Then (L, H,G) is an almost
hypercomplex manifold with Hermitian–Norden metrics.

Theorem 4.1. Let (L, H,G) be a 4-dimensional almost hypercomplex man-
ifold with Hermitian–Norden metrics. Then the manifold (L, H,G), which is
corresponding to the different classes of 4-dimensional Lie algebras g4,i, (i =
1, . . . , 12), belongs to a certain class regarding Jα given in Table 4.1, where we
denote for brevity Wi ⊕Wj and Wi ⊕Wj ⊕Wk by Wij and Wijk, respectively.

Moreover, we have:

• for each a1 6= 0 and a2 6= 0, (L, H,G) does not belong to neither of K for J1;
W0, W3, W1 ⊕W3 for J2; W0, W1, W3, W1 ⊕W3 for J3;

• for each b1 6= 0, b2 ≥ 0, (L, H,G) does not belong to neither of K, AK, H for
J1; W0, W1, W2, W3, W1⊕W2, W1⊕W3, W2⊕W3 for J2; W0, W1, W2 for
J3;

• for each m 6= 0, (L, H,G) does not belong to neither of K, AK for J1; W0,
W1, W2, W3, W1 ⊕W2, W1 ⊕W3, W2 ⊕W3 for J2; W0, W1, W2, W3, W1 ⊕
W2, W1 ⊕W3, W2 ⊕W3 for J3;
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Lie algebra Parameters J1 J2 J3
g4,1 – AK ⊕H W123 W123

g4,2
m = 1 H W123 W123

m 6= 0; m 6= 1 AK ⊕H W123 W123

g4,3 – AK ⊕H W123 W123

g4,4 – AK ⊕H W123 W123

g4,5

a1 = −1, a2 = 1 AK W2 W123

a1 = −1, a2 = −1 AK W123 W2

a1 = −1, a2 6= ±1 AK W123 W123

a1 = 1, a2 = 1 H W1 W12

a1 = 1, a2 = −3 H W23 W23

a1 = −1, a2 6= {−3, 1} H W123 W123

a1 6= ±1, a2 = 1 AK ⊕H W12 W123

a1 = −1
3 , a2 = −1

3 AK ⊕H W23 W12

a1 = −1
2(a2 + 1), a2 6= {−3,−1

3 , 1} AK ⊕H W23 W123

a1 = a2, a2 6= {±1,−1
3} AK ⊕H W123 W12

a1 = −a2 − 2, a2 6= {−3,−1} AK ⊕H W123 W23

a1 6= 0, a2 6= 0 AK ⊕H W123 W123

g4,6 b1 6= 0, b2 ≥ 0 AK ⊕H W123 W12

g4,7 – H W123 W123

g4,8 – AK ⊕H W123 W3

g4,9
p = 1 H W12 W12

−1 < p < 1 AK ⊕H W12 W123

g4,10 – AK ⊕H W123 W123

g4,11 q > 0 AK ⊕H W123 W12

g4,12 – H W123 W123

Table 4.1: Correspondence between different classes of Lie algebras and the classes
of almost hypercomplex manifold with Hermitian–Norden metrics

• for each −1 < p ≤ 1, (L, H,G) does not belong to neither of K, AK for J1;
W0, W1, W2 for J2; W0, W1, W2, W3, W1 ⊕W3, W2 ⊕W3 for J3;

• for each q > 0, (L, H,G) does not belong to neither of K, AK, H for J1; W0,
W1, W2, W3, W1 ⊕W2, W1 ⊕W3, W2 ⊕W3 for J2; W0, W1, W2 for J3.

Proof. Now we give our arguments for the case when the corresponding Lie
algebra of (L, H,G) is from g4,1. Then, using (2.1), (3.1), (4.1) and the well-
known Koszul equality

2g (∇eiej , ek) = g ([ei, ej ], ek) + g ([ek, ei], ej) + g ([ek, ej ], ei) ,

we obtain the components of the Levi-Civita connection ∇ for the considered
basis. The non-zeros of them are:

∇e1e2 = ∇e2e1 = ∇e2e3 = ∇e3e2 =
1

2
e4,

∇e1e4 = ∇e3e4 = ∇e4e1 = −∇e4e3 =
1

2
e2,
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∇e2e4 =
1

2
(e1 − e3), ∇e4e2 = −1

2
(e1 + e3). (4.3)

Then we obtain the basic components (Fα)ijk = Fα(ei, ej , ek) of Fα by virtue of
(2.3), (4.1), (4) and (4.3). The non-zeros of them are determined by the following
ones and properties (2.4):

(F1)141 = (F1)213 = (F1)341 = (F1)413 = (F2)212 = (F2)223 = (F2)414

= −(F2)412 =
1

2
(F2)122 =

1

2
(F2)322 = (F3)134 = −(F3)213

= (F3)334 = (F3)413 = −1

2
(F3)211 = −1

2
(F3)422 =

1

2
. (4.4)

Using (2.5) and (4.4), we establish the basic components (θα)i = (θα)(ei) of the
corresponding Lee forms and the non-zeros are

(θ1)2 = (θ2)3 = −(θ3)2 = −(θ3)4 = 1.

After that, bearing in mind the classification conditions (2.6) and (2.7) for
dimension 4, we conclude that in this case the manifold (L, H,G) belongs to

(AK ⊕H)(J1) ∩ (W1 ⊕W2 ⊕W3)(J2) ∩ (W1 ⊕W2 ⊕W3)(J3).

The proofs for the cases of the classes g4,2, g4,5, g4,6, g4,9, and g4,11 are given
in [10] and [11].

In a similar way, we prove the assertions for the other classes using the fol-
lowing results for each case:

g4,3 :

∇e1e1 = 2∇e2e3 = 2∇e3e2 = e4, ∇e1e4 = e1, ∇e2e4 = ∇e4e2 = −1

2
e3,

∇e3e4 = −∇e4e3 =
1

2
e2; (F1)113 = −2(F1)314 = 2(F1)413 = 1,

(F2)112 = (F2)322 = 2(F2)223 = −2(F2)412 = 1,

1

2
(F3)111 = 2(F3)213 = 2(F3)312 = (F3)422 = −1;

(θ1)2 = (θ1)3 = (θ2)2 = (θ2)3 = −1

2
(θ3)1 = −(θ3)4 = 1;

g4,4 :

∇e1e1 = 2∇e1e2 = 2∇e2e1 = ∇e2e2 = 2∇e2e3 = 2∇e3e2 = −∇e3e3 = e4,

∇e1e4 = e1 +
1

2
e2, ∇e2e4 =

1

2
e1 + e2 −

1

2
e3, ∇e3e4 =

1

2
e2 + e3,

∇e4e1 = −∇e4e3 =
1

2
e2, ∇e4e2 = −1

2
e1 −

1

2
e3;

1

2
(F1)113 = −(F1)114 = (F1)213 = −1

2
(F1)214 = −(F1)314 = (F1)413 =

1

2
,

(F2)112 = (F2)122 = 2(F2)212 = −2(F2)214 =
1

2
(F2)222
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= (F2)314 = (F2)322 = −2(F2)412 = 2(F2)414 = 1,

1

2
(F3)111 = 2(F3)112 = (F3)211 = (F3)212 = 2(F3)213

= 2(F3)312 = −(F3)313 = −2(F3)413 = (F3)422 = −1;

2(θ1)2 = (θ1)3 =
1

2
(θ2)2 = 2(θ2)3 = −1

2
(θ3)1 = −2(θ3)2 = −2(θ3)4 = 2;

g4,7 :

1

2
∇e1e1 = ∇e2e2 = −∇e3e3 = e4, ∇e1e2 = ∇e2e1 = −∇e4e2 =

1

2
e3,

∇e1e3 = ∇e3e1 = −∇e4e3 =
1

2
e2, ∇e1e4 = 2e1, ∇e2e3 =

1

2
e1 +

1

2
e4,

∇e2e4 = e2 −
1

2
e3, ∇e3e2 = −1

2
e1 +

1

2
e4, ∇e3e4 =

1

2
e2 + e3;

(F1)113 = −(F1)214 = −3(F1)314 = 3(F1)413 =
3

2
,

2

5
(F2)112 = (F2)211 = −2(F2)214 =

1

2
(F2)222

=
2

3
(F2)314 = (F2)322 = −2(F2)412 = 1,

1

4
(F3)111 = −(F3)122 = 2(F3)212 = 2(F3)213

= 2(F3)312 = −2

3
(F3)313 = (F3)422 = −1;

(θ1)2 =
1

3
(θ1)3 =

1

6
(θ2)2 = (θ2)3 = −1

4
(θ3)1 = −(θ3)4 = 1;

g4,8 :

∇e1e2 = ∇e2e1 = −1

2
∇e3e4 =

1

2
e3, ∇e1e3 =

1

2
∇e2e4 = ∇e3e1 =

1

2
e2,

∇e2e2 = ∇e3e3 = e4, ∇e2e3 = −∇e3e2 =
1

2
e1;

(F1)113 =
1

3
(F1)214 = −1

2
, (F3)122 = −2(F3)212 = −2(F3)313 = 1,

2(F2)112 = (F2)211 =
1

2
(F2)222 = −2(F2)314 = 1; (θ1)3 =

1

2
(θ2)2 = 1;

g4,10 :

∇e1e2 = ∇e2e1 = −1

2
∇e2e4 =

1

2
e3, ∇e1e3 = ∇e3e1 =

1

2
∇e3e4 =

1

2
e2,

∇e2e3 =
1

2
e1 + e4, ∇e3e2 = −1

2
e1 + e4;

(F1)113 = (F1)214 =
1

2
(F1)314 = −1

2
,

(F2)112 =
1

2
(F2)211 = −1

2
(F2)214 = (F2)314 =

1

4
(F2)322 =

1

2
,

(F3)122 = 2(F3)212 = −(F3)213 = −(F3)312 = 2(F3)313 = 1;
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(θ1)2 = (θ2)2 = (θ2)3 = −1

2
(θ3)4 = 1;

g4,12 :

∇e1e1 = ∇e2e2 = e3, ∇e1e3 = −∇e4e2 = e1, ∇e2e3 = ∇e4e1 = e2,

(F1)114 =
3

2
(F1)213 = −3

2
,

1

2
(F2)111 = (F2)212 = (F2)414 = 1,

(F3)112 =
1

2
(F3)222 = (F3)413 = 1, (θ1)4 = −(θ2)1 = −(θ3)2 = −2.

The theorem is proved.

5. Curvature properties of the manifolds under study

In this section, we determine some geometric characteristics of the manifolds
(L, H,G) in all the classes considered in the previous section. The focus of the
considerations in [10] and [11] are the classes of the classification of 4-dimensional
indecomposable real Lie algebras, given in (3.1), depending on real parameters.
Actually, these five classes are the families of manifolds whose properties are
functions of the parameters. The curvature properties of the considered manifolds
are summarized in the following

Theorem 5.1. Let (L, H,G) be a 4-dimensional almost hypercomplex man-
ifold with Hermitian–Norden metrics, and let the corresponding Lie algebra l of
L be from the class g4,i, (i = 1, . . . , 12) given in (3.1). Then the following propo-
sitions are valid:

1. Every (L, H,G) is non-flat;

2. An (L, H,G) is an Einstein manifold if and only if l belongs to:

a) g4,5
(
a1 = a2 = 1

)
,

b) g4,6
(
b1 = −2b2 = −2

√
3

3

)
;

3. An (L, H,G) is scalar flat if and only if l belongs to:

a) g4,1,

b) g4,6
(
b1 = −b2 ±

√
1− 2b22, 0 ≤ b2 ≤

√
2
2 , b2 6=

√
3
3

)
,

c) g4,11
(
q =

√
3
6

)
;

4. An (L, H,G) has positive scalar curvature if and only if l belongs to:

a) g4,i
(
i = 2, 3, 4, 5, 7, 8, 9, 11, 12

)
,

b) g4,6
(
b1 6= 0, b2 >

√
2
2

)
,

c) g4,11
(
q >

√
3
6

)
;

5. An (L, H,G) has negative scalar curvature if and only if l belongs to:

a) g4,10,

b) g4,11
(
0 < q <

√
3
6

)
;
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6. Every (L, H,G) is ∗-scalar flat w.r.t. J1 and J2;

7. An (L, H,G) is ∗-scalar flat w.r.t. J3 if and only if l belongs to:

a) g4,i
(
i = 1, 5, 8, 9, 10, 12

)
,

b) g4,2
(
m = −2

)
,

c) g4,6
(
b1 = −2b2

)
;

8. An (L, H,G) is ∗∗-scalar flat w.r.t. J1 if and only if l belongs to:

a) g4,2
(
m = −1

4

)
,

b) g4,5
(
a1 = −a22

)
,

c) g4,6
(
b1 = b−12 − b2

)
,

d) g4,11
(
q =

√
15
6

)
;

9. An (L, H,G) is ∗∗-scalar flat w.r.t. J2 if and only if l belongs to:

a) g4,2
(
m = −5

4

)
,

b) g4,5
(
a2 = −a21

)
,

c) g4,6
(
b1 = b−12 − b2

)
,

d) g4,11
(
q =

√
15
6

)
;

10. An (L, H,G) is ∗∗-scalar flat w.r.t. J3 if and only if l belongs to:

a) g4,1,

b) g4,9
(
p =

√
2−3
2

)
;

11. An (L, H,G) has positive basic holomorphic sectional curvatures w.r.t. J1
(i.e., k12 and k34) if and only if l belongs to:

a) g4,i
(
i = 4, 7

)
,

b) g4,2
(
m > 0

)
,

c) g4,5
(
a1 > 0

)
,

d) g4,6
(
b1 > 0, b2 > 1

)
,

e) g4,9
(
−3

4 < p ≤ 1, p 6= 0
)
,

f) g4,11
(
q > 1

)
;

12. An (L, H,G) has positive basic holomorphic sectional curvatures w.r.t. J2
(i.e., k13 and k24) if and only if l belongs to:

a) g4,i
(
i = 4, 7

)
,

b) g4,2
(
m > 0

)
,

c) g4,5
(
a2 > 0

)
,

d) g4,6
(
b1 > 0, b2 > 1

)
,

e) g4,9
(√

2−1
2 < p ≤ 1

)
,

f) g4,11
(
q > 1

)
;
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13. An (L, H,G) has positive basic holomorphic sectional curvatures w.r.t. J3
(i.e., k14 and k23) if and only if l belongs to:

a) g4,i
(
i = 2, 3, 4, 6, 7, 11

)
,

b) g4,5
(
a1a2 > 0

)
,

c) g4,9
(
−3

4 < p ≤ 1, p 6= 0
)
;

14. An (L, H,G) has negative basic holomorphic sectional curvatures w.r.t. J1
(i.e., k12 and k34) if and only if l belongs to:

a) g4,1,

b) g4,6
(
b1 < 0, 0 < b2 < 1

)
,

c) g4,11
(
0 < q <

√
2
4

)
;

15. An (L, H,G) has negative basic holomorphic sectional curvatures w.r.t. J2
(i.e., k13 and k24) if and only if l belongs to:

a) g4,6
(
b1 < 0, 0 < b2 < 1

)
,

b) g4,11
(
0 < q <

√
2
4

)
;

16. Every (L, H,G) has non-negative basic holomorphic sectional curvatures
w.r.t. J3 (i.e., k14 and k23);

17. An (L, H,G) has positive basic totally real sectional curvatures w.r.t. J1
(i.e., k13, k14, k23 and k24) if and only if l belongs to:

a) g4,i
(
i = 4, 7

)
,

b) g4,2
(
m > 0

)
,

c) g4,5
(
a1 > 0, a2 > 0

)
,

d) g4,6
(
b1 > 0, b2 > 1

)
,

e) g4,9
(√

2−1
2 < p ≤ 1

)
,

f) g4,11
(
q > 1

)
;

18. An (L, H,G) has positive basic totally real sectional curvatures w.r.t. J2
(i.e., k12, k14, k23 and k34) if and only if l belongs to:

a) g4,i
(
i = 4, 7

)
,

b) g4,2
(
m > 0

)
,

c) g4,5
(
a1 > 0, a2 > 0

)
,

d) g4,6
(
b1 > 0, b2 > 1

)
,

e) g4,9
(
−3

4 < p ≤ 1, p 6= 0
)
,

f) g4,11
(
q > 1

)
;

19. An (L, H,G) has positive basic totally real sectional curvatures w.r.t. J3
(i.e., k12, k13, k24 and k34) if and only if l belongs to:

a) g4,i
(
i = 4, 7

)
,

b) g4,2
(
m > 0

)
,
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c) g4,5
(
a1 > 0, a2 > 0

)
,

d) g4,6
(
b1 > 0, b2 > 1

)
,

e) g4,9
(√

2−1
2 < p ≤ 1

)
,

f) g4,11
(
q > 1

)
;

20. Every (L, H,G) has non-negative basic totally real sectional curvatures w.r.t.
J1 (i.e., k13, k14, k23 and k24) and J2 (i.e., k12, k14, k23 and k34);

21. An (L, H,G) has negative basic totally real sectional curvatures w.r.t. J3
(i.e., k12, k13, k24 and k34) if and only if l belongs to:

a) g4,6
(
b1 < 0, 0 < b2 < 1

)
,

b) g4,11
(
0 < q <

√
2
4

)
.

Proof. Firstly, we present our proof for the case when the corresponding Lie
algebra of L belongs to g4,1.

Using (2.1), (2.8), (4.1), and the definition of g4,1 in (3.1), we calculate the
basic components Rijkl = R(ei, ej , ek, el) of R. The non-zeros of them are deter-
mined by the following ones and properties (2.9):

R1212 = −R1223 = −R1414 = R1434 = R2323 =
1

4
R2424 =

1

3
R3434 =

1

4
. (5.1)

Bearing in mind the latter equalities, (2.1), (4.1), and (4), we obtain the basic
components ρjk = ρ(ej , ek), (ρ∗α)jk = ρ∗α(ej , ek), as well as the values of τ , τ∗α, τ∗∗α
and kij = k(ei, ej). Having in mind properties (2.11), the non-zeros of them are
determined by

ρ11 = −1

2
ρ22 = −ρ33 = −1

2
, (ρ∗1)12 = (ρ∗1)14 = −(ρ∗1)23 =

1

3
(ρ∗1)34 = −1

4
,

(ρ∗2)22 = −1

2
(ρ∗2)24 = (ρ∗2)44 = −1

2
, (ρ∗3)12 = (ρ∗3)14 = (ρ∗3)23 =

1

4
,

τ∗∗1 = −τ∗∗2 = −2, k12 = k14 = −k23 = −1

4
k24 =

1

3
k34 = −1

4
. (5.2)

By virtue of (5.1) and (5.2), we establish the truthfullness of the statements
for the case of g4,1.

The results for the cases of the classes g4,2, g4,5, g4,6, g4,9 and g4,11, which are
summarized here, are given in [10] and [11].

In a similar way as for g4,1, we obtain the following results for (L, H,G) in
the other cases and we prove the respective assertions:

g4,3 :

− 1

2
R1213 =

1

4
R1414 = R2323 = R2424 =

1

3
R3434 =

1

4
;

1

2
ρ11 = ρ22 = ρ23 = ρ33 = −ρ44 =

1

2
,

− 1

3
(ρ∗1)34 = −1

2
(ρ∗2)12 = (ρ∗2)24 =

1

4
(ρ∗3)11 = −1

4
(ρ∗3)14 = (ρ∗3)23 =

1

4
,
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τ =
3

2
τ∗3 = −τ∗∗1 = 3τ∗∗2 = 5τ∗∗3 =

3

2
,

1

4
k14 = k23 = k24 = −1

3
k34 =

1

4
;

g4,4 :

− 4

3
R1212 = −2R1213 = −4R1223 = R1313 = 2R1323 =

4

3
R1414

= R1424 = 4R1434 =
4

5
R2323 =

1

2
R2424 = R2434 = −4R3434 = 1;

3

5
ρ11 = ρ12 =

3

8
ρ22 = ρ23 = −3

5
ρ33 = −1

2
ρ44 =

3

2
,

1

3
(ρ∗1)12 =

1

2
(ρ∗1)13 = −(ρ∗1)14 = (ρ∗1)23 = −1

4
(ρ∗1)24 = (ρ∗1)34 =

1

4
,

(ρ∗2)12 = −1

2
(ρ∗2)13 = −1

2
(ρ∗2)14 = (ρ∗2)22 = −(ρ∗2)23

= −1

4
(ρ∗2)24 = −1

2
(ρ∗2)34 = (ρ∗2)44 = −1

2
,

(ρ∗3)11 = 4(ρ∗3)12 = 2(ρ∗3)13 = −4

3
(ρ∗3)14 =

4

5
(ρ∗3)23

= −(ρ∗3)24 = −4(ρ∗3)34 = −1

2
(ρ∗3)44 = 1,

τ = 4τ∗3 = 6τ∗∗1 = 2τ∗∗2 = 3τ∗∗3 = 12,

k12 =
4

3
k13 = k14 =

3

5
k23 =

3

8
k24 = 3k34 =

3

4
;

g4,7 :

− 4

7
R1212 = −R1213 = 4R1224 = −2R1234 =

4

7
R1313 = 2R1324 = 4R1334

=
1

4
R1414 = R1423 =

1

2
R2323 =

4

5
R2424 = R2434 = −4R3434 = 1;

2

15
ρ11 =

1

5
ρ22 =

1

2
ρ23 = −1

4
ρ33 = − 2

11
ρ44 = 1,

1

3
(ρ∗1)12 = (ρ∗1)13 = −3

5
(ρ∗1)24 = (ρ∗1)34 =

3

4
,

− 4

5
(ρ∗2)12 =

4

13
(ρ∗2)13 =

4

11
(ρ∗2)24 =

4

3
(ρ∗2)34 = 1,

(ρ∗3)11 = −1

2
(ρ∗3)14 = −4(ρ∗3)22 = (ρ∗3)23 = −4(ρ∗3)33 = −(ρ∗3)44 = 2,

6

11
τ = 3τ∗3 = 3τ∗∗1 = 2τ∗∗2 = τ∗∗3 = 12,

k12 = k13 =
7

16
k14 =

7

8
k23 =

7

5
k24 = 7k34 =

7

4
;

g4,8 :

4R1212 = 2R1234 = −4R1313 = 2R1324 = −4R2323 = R2424 = −R3434 = 1;

ρ11 = −ρ22 = ρ33 =
1

4
ρ44 = −1

2
,

(ρ∗1)12 = −3

2
(ρ∗1)34 = (ρ∗2)13 = −3

2
(ρ∗2)24 = −3

4
(ρ∗3)14 =

3

5
(ρ∗3)23 = −3

4
,
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τ =
5

3
τ∗∗1 =

5

3
τ∗∗2 = −5τ∗∗3 =

5

2
, k12 = k13 = k23 = −1

4
k24 = −1

4
k34 = −1

4
;

g4,10 :

4R1212 = 2R1224 = −4R1313 = 2R1334 =
4

7
R2323 = −R2424 = R3434 = 1;

ρ11 = −ρ22 = ρ33 = −1

4
ρ44 = −1

2
, 4(ρ∗1)12 = 2(ρ∗1)13 = 2(ρ∗1)24 = (ρ∗1)34 = −1,

2(ρ∗2)12 = 4(ρ∗2)13 = (ρ∗2)24 = 2(ρ∗2)34 = −1, (ρ∗3)22 = −4

7
(ρ∗3)23 = (ρ∗3)33 = −1,

τ =
7

10
τ∗∗1 =

7

10
τ∗∗2 = −1

2
τ∗∗3 = −7

4
, k12 = k13 = −1

7
k23 =

1

4
k24 =

1

4
k34 = −1

4
;

g4,12 :

R1212 = −R1313 = −R2323 = −1; ρ11 = ρ22 = −ρ33 = 2,

(ρ∗1)12 = (ρ∗2)13 = (ρ∗3)23 = 1,
1

3
τ = τ∗∗1 = τ∗∗2 = τ∗∗3 = 2, k12 = k13 = k23 = 1.

The theorem is proved.

Let us remark that the author of [20] considers a 4-parametric family of Lie
algebras:

[e1, e2] = λ1e1 + λ2e2, [e2, e3] = λ4e2 − λ1e3,
[e1, e3] = λ4e1 + λ2e3, [e2, e4] = λ3e2 − λ1e4,
[e1, e4] = λ3e1 + λ2e4, [e3, e4] = λ3e3 − λ4e4, (5.3)

where λi ∈ R (i = 1, 2, 3, 4). It is proved that the corresponding Lie groups of
these Lie algebras, equipped with almost complex structure and Norden metric,
form an almost Norden manifold from the class W1. Moreover, it is shown that
the constructed manifold is Einstein. Considering (5.3) for λ3 = 1, λ1 = λ2 =
λ4 = 0, we get the class g4,5 in the case when a1 = a2 = 1. Therefore, the almost
complex structure studied in [20] corresponds to J2 in the almost hypercomplex
structure H = (J1, J2, J3). The results obtained in [20] confirm the assertions
given in Theorem 4.1 and Theorem 5.1 for J2 in the case of g4,5 (a1 = a2 = 1).
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Чотиривимiрнi групи Лi i майже гiперкомплекснi
многовиди з ермiтовою метрикою Нордена

Hristo Manev

У цiй роботi вивчено майже гiперкомплекснi многовиди з ермiтовими
метриками Нордена найменшої розмiрностi. Зазначенi многовиди побу-
довано на чотиривимiрних групах Лi. Установлено зв’язок мiж класами
класифiкацiї нерозкладних чотиривимiрних дiйсних алгебр Лi i класи-
фiкацiї многовидiв, що дослiджуються. У рамках зазначеної класифiка-
цiї алгебр Лi вивчено основнi геометричнi характеристики побудованих
многовидiв.

Ключовi слова: майже гiперкомплексна структура, ермiтова метри-
ка, метрика Нордена, група Лi, алгебра Лi
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