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1. Introduction

The general solution of the differential equation

∆u+ e2u = 0 (1.1)

in a simply connected region in the plane was written by Liouville as

u = log
2|f ′|

1 + |f |2
, (1.2)

where f is a meromorphic local homeomorphism, that is a meromorphic function
with only simple poles which satisfies f ′(z) 6= 0. The geometric interpretation is
that the metric σ with the line element

2|f ′(z)|
1 + |f(z)|2

|dz|

is the pull-back of the standard metric on the unit sphere via f . Here f is
called the developing map of the metric, and the relation (1.2) will be assumed
throughout the paper.

Expression (1.2) is due to J. Liouville [15, 16], though the equivalent result
that every two metrics of the same constant curvature are locally isometric is
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contained in the earlier paper of F. Minding [17]. Formula (1.2) for the general
solution of (1.1) is widely used in modern literature, see, for example [4, 14].

In this paper, we discuss equation (1.1) in the plane.

In [5, Theorem 1.6], solutions of (1.1) which are bounded from above are
completely described: they are exactly those for which f in (1.2) is either linear-
fractional or of the form

f(z) = L(eaz+b), (1.3)

where L is a linear-fractional transformation and a, b ∈ C, a 6= 0. It was noticed
in [5] that all solutions of (1.1) with developing map of the form (1.3) are one-
dimensional: after a complex affine change of the variable, they depend on one
real variable only.

In this paper we prove two conjectures stated in [5]. Our first theorem proves
Conjecture 2 of that paper.

Theorem 1.1. If u is concave, then f is of the form (1.3).

This was proved in [5] under the additional condition that u is bounded from
above. In Section 2, we give a direct proof of Theorem 1.1, but an alternative
approach via differential equations delivers a stronger conclusion when f is tran-
scendental. A function h : C→ R is called quasiconcave if, for any a1, a2 ∈ C, we
have h(z) ≥ min{h(a1), h(a2)} on the line segment from a1 to a2: this is equiva-
lent to the condition that, for every c ∈ R, the set {z : h(z) ≥ c} is convex. If f
is linear-fractional then via a rotation of the Riemann sphere it may be assumed
that f(∞) =∞, so that each set {z : u(z) ≥ c} is a disk and u is quasiconcave.

Theorem 1.2. If u is quasiconcave, then f is linear-fractional or of the form
(1.3). Indeed, for transcendental f not of the form (1.3), and for any M > 0,
there exist a1, a2 ∈ C such that

u

(
a1 + a2

2

)
< min{u(a1), u(a2)} −M. (1.4)

If f is linear-fractional or of the form f = φ(eaz+b), where φ is a rotation of
the sphere, then the diameter of the plane with respect to the metric σ is π. It
was conjectured in [7, Question 8.1], [5, Conjecture 1] that the diameter is strictly
greater than π otherwise. We shall prove the following stronger result.

Theorem 1.3. The diameter of the plane with respect to the metric σ is at
least 4π/3 unless f is linear-fractional or of the form (1.3).

It is proved in [5, Corollary 3.4] that if f(z) = ez + t, then the diameter is
equal to π + 2 arctan |t|. So it can be any number in [π, 2π).

We do not know whether the estimate 4π/3 in Theorem 1.3 is the best possi-
ble. At the end of the paper we give an example of a metric σ such that the plane
with this metric has infinite diameter. This example answers another question
asked in [7, Question 8.1].



On Conformal Metrics of Constant Positive Curvature in the Plane 61

2. Proof of Theorem 1.1

Since the case when u is bounded from above has been treated in [5], we may
assume that u is unbounded from above. We distinguish the cases whether f in
(1.2) has finite or infinite order, see [6, Section 2.1] for the definition of the order
of a meromorphic function. The asymptotic formula (1.6) in [5, Theorem 1.9]
shows that u cannot be concave when f is of finite order, unless f is of the form
(1.3); for further details in this case, see Section 3.

Thus we limit ourselves to the case that f is of infinite order. Let us call a
point a ∈ C exceptional if f(z)→ a as z →∞ uniformly with respect to arg z in
a sector of opening π/3. Since there can be at most 6 exceptional points, we can
apply a rotation of the sphere to f to ensure that ∞ is not exceptional.

Then f ′ is a meromorphic function of infinite order without zeros, so f ′ =
1/w, where w is entire of infinite order, that is

lim sup
z→∞

log log |w(z)|
log |z|

=∞. (2.1)

Consider the sets

E = {z : u(z) ≥ 0} and D = C\E.

Since u is concave, E is convex. Since u is unbounded from above, E is un-
bounded. Let us assume without loss of generality that 0 ∈ E and

u(0) > 0.

This can be achieved by translation of the independent variable. Since E is
unbounded, closed and convex, and contains 0, there is at least one ray

`θ = {z = teiθ : t ≥ 0}

contained in E. Let I be the set of arguments θ ∈ R/(2πZ) of the rays `θ which
are contained in E. Unless E is a parallel strip, in which case I consists of two
points, I is a closed interval of length at most π.

Let us call θ0 ∈ R/(2πZ) a direction of fast decrease if there is a sequence
(zn) tending to ∞ such that

lim
n→∞

log+(−u(zn))

log |zn|
=∞ and arg zn → θ0. (2.2)

Since
u(z) ≤ log 2|f ′(z)| = − log |w(z)|+ log 2, (2.3)

(2.1) implies that there exists a direction of fast decrease.
We claim that there exists a direction of fast decrease which does not belong

to I. Clearly an interior point of I cannot be a direction of fast decrease, so
the claim will follow if we show that there are more than two directions of fast
decrease. Let (zn) be a sequence which satisfies (2.2), and let θ0 ∈ (θ1, θ2) where
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|θ1 − θ2| < π. Draw a segment [an, bn] through zn such that arg an = θ1 and
arg bn = θ2. By concavity, the minimum of u on [an, bn] is attained either at an
or at bn, so one of θ1 and θ2 is also a direction of fast decrease. Since θ1 and θ2

can be chosen in many ways there are many directions of fast decrease.
We conclude that there is a half-plane H ⊂ D which contains a ray in a

direction of fast decrease.
By rotating the independent variable, we assume that H is a left half-plane,

say H = {z : Re z < −c} where c > 0.
Considering the restriction of u to the intervals [−c + iy, 0], we see that the

derivatives (d/dt)u((−c + iy)t) are negative somewhere in these intervals. The
concavity of u implies that for every ε > 0 we have

u(reiθ) ≤ −kr, |θ − π| ≤ π

2
− ε, r > r0, (2.4)

where k and r0 are some positive constants that depend on ε. We denote the
angular sector in (2.4) by A, and fix ε so that A contains a ray of fast decrease.

Consider now the set G = {z : |w(z)| > 2}. By (2.3) we have G ⊂ D. On the
other hand, we claim that

log |w(z)| ≥ −u(z)− C, z ∈ A, (2.5)

if r0 is large enough. Here C is a positive constant. To prove (2.5) we first notice
that for every sequence (zn) in A, tending to infinity, the sequence (f(zn)) on
the Riemann sphere is a Cauchy sequence (with respect to the spherical metric).
This follows from the estimate of the spherical distance

dist(f(zn), f(zm)) ≤
∫ zn

zm

eu(z)|dz|,

and the estimate (2.4). Therefore there exists a ∈ C such that f(z)→ a as z →
∞, z ∈ A. This limit a is an exceptional point as defined in the beginning of the
proof, and thus a 6=∞. Using (2.4) we see that

dist(a, f(z)) ≤
∫ z

−∞
eu(z)|dz| ≤ 1

k
e−kr0 .

Choosing r0 large enough, we achieve that there exists a constant C1 such that
|f(z)| ≤ C1 for z ∈ A. Thus

u(z) ≥ log(2|f ′(z)|)− log
(
1 + C2

1

)
= − log |w(z)|+ log 2− log

(
1 + C2

1

)
for z ∈ A and we obtain (2.5).

Since u(z) → −∞ in A we conclude from (2.5) that log |w| is bounded from
below in A, say log |w(z)| ≥ C2 for z ∈ A. Thus v = log |w| − C2 is a positive
harmonic function in A. It follows (see [18, p. 87]) that in any proper subsector of
A, the function v cannot grow faster than a power. In particular, for a sequence
(zn) as in (2.2), where θ0 is a direction of fast decrease with `θ0 ⊂ A, we have
v(zn) ≤ |zn|C3 for some C3 > 0. Together with (2.5) this yields that

−u(zn) ≤ log |w(zn)|+ C = v(zn) + C2 + C ≤ |zn|C3 + C2 + C,

contradicting (2.2).
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3. Proof of Theorem 1.2

Assume that f is transcendental but not of the form (1.3). Then the Schwar-
zian 2A of f is a non-constant entire function [10,12] and

f =
f1

f2
, (3.1)

where f1, f2 are linearly independent solutions of

w′′ +Aw = 0. (3.2)

Suppose first that A is a polynomial of degree d > 0. Then by the classical
theory of asymptotic integration [5, 10] there are d + 2 equally spaced Stokes
rays which divide the plane into open sectors, on each of which f(z) tends to
some asymptotic value, these values being different on adjacent sectors. Thus by
a rotation of the independent variable it may be assumed that f(z) tends to a
finite asymptotic value on a sector of opening 2π/(d + 2), symmetric about the
positive real axis. Hence the sectorial asymptotics for (3.2) give a constant c > 0
with the following property. Let M, δ be positive constants with δ small: then

u(reiθ) = −cr(d+2)/2 cos

(
(d+ 2)θ

2

)
+ o

(
r(d+2)/2

)
as r → ∞, uniformly for real θ with |θ| ≤ π/(d + 2) − δ (see [10] and [5, The-
orem 1.9, formula (1.6)]). Since δ is small it is then clear that (1.4) holds with
aj = r exp((−1)ji(π/(d+ 2)− δ)) and r sufficiently large.

Assume henceforth that A is transcendental. The proof will use estimates,
analogous to the sectorial asymptotics in the polynomial case, which were proved
in [11–13] for solutions of (3.2) on a neighborhood of a maximum modulus point
of A. Let N(r) be the central index of A, and take φ(r) = N(r)1/3 in the notation
of [12, Sections 2, 3]. Let r > 0 be large and lie outside the exceptional set E0

arising from applying the Wiman-Valiron theory [8] to A, and take zr with |zr| =
r and |A(zr)| = M(r,A). Then

φ(r) = N(r)1/3 = o(log |A(zr)|) (3.3)

and

A(z) ∼
(
z

zr

)N
A(zr),

A′(z)

A(z)
∼ N

z
,

A′′(z)

A(z)
∼ N2

z2
, N = N(r), (3.4)

for z ∈ D(zr, 8), where D(zr, L) denotes the logarithmic rectangle

D(zr, L) = {zreτ : |Re τ | ≤ LN(r)−2/3, | Im τ | ≤ LN(r)−2/3}. (3.5)

Let wr = zr exp(−4N(r)−2/3); then [12, formula (10)] gives, on D(zr, 4),

Z =
2wrA(wr)

1/2

N + 2
+

∫ z

wr

A(t)1/2 dt
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∼ 2zA(z)1/2

N + 2
∼ Z(zr)

(
z

zr

)(N+2)/2

,

log
Z(z)

Z(zr)
=
N + 2

2
log

z

zr
+ o(1),

d logZ

log z
=
zA(z)1/2

Z
∼ N + 2

2
. (3.6)

As in the previous case, fix M > 0 and let δ be small and positive. The following
is a slightly stronger assertion than [12, Lemma 3.1].

Lemma 3.1. Let Q be a large positive integer, and let r 6∈ E0 be large.
Then logZ is a univalent function of log z on D(zr, 7/2) and there exist at least
Q pairwise disjoint simple islands Hq in D(zr, 3) each mapped univalently by Z
onto the closed logarithmic rectangle

J1 = {Z : R ≤ |Z| ≤ S, | argZ| ≤ π − δ} ,
in which

R = |Z(zr)| exp
(
−N(r)1/3

)
, S = |Z(zr)| exp

(
N(r)1/3

)
,

while R and S/R are both large.

Proof. The first two assertions follow from (3.6), exactly as in [12]. To see
that R is large, use (3.6) to write

logR ≥ 1

2
logM(r,A) + log r − log(N + 2)−N(r)1/3 −O(1),

the right-hand side being large and positive by (3.3).

Next, for z in some Hq, apply to (3.2) the Liouville transformation [10]

W (Z) = A(z)1/4w(z), (3.7)

so that W satisfies
d2W

dZ2
+ (1− F0(Z))W = 0, (3.8)

in which, by (3.4),

F0(Z) =
A′′(z)

4A(z)2
− 5A′(z)2

16A(z)3
, |F0(Z)| ≤ 3

|Z|2
on J1.

Then [13, Lemma 2.1] gives solutions U1(Z), U2(Z) of (3.8) which satisfy

U1(Z) ∼ e−iZ , U2(Z) ∼ eiZ , W (U1, U2) ∼ 2i, (3.9)

uniformly for Z in the set

J2 = J1 \ {Z : ReZ < 0, | ImZ| < R} . (3.10)

The restriction to J2 is a consequence of the method of proof, which requires
removal of the “shadow” of the disk B(0, R) [10]. Hence (3.7) and (3.9) deliver
solutions u1, u2 of (3.2) satisfying

u1(z) ∼ A(z)−1/4e−iZ , u2(z) ∼ A(z)−1/4eiZ , W (u1, u2) ∼ 2i, (3.11)

on the preimage H ′q of J2 in Hq.
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3.1. Two line segments lying in the same H ′q. The next step is to
choose two line segments, both lying in the same H ′q, one of which will be used
to show that u is not concave. By (3.6) there exist p ∈ R and z′r satisfying

− 4π

N + 2
< p <

4π

N + 2
, z′r = zre

ip, |Z(z′r)| ∼ |Z(zr)|, argZ(z′r) = 0. (3.12)

Now set

ζ+
1 = z′re

i4δ/(N+2), ζ+
2 = z′re

i2(π−2δ)/(N+2),

ζ−1 = z′re
−i4δ/(N+2), ζ−2 = z′re

−i2(π−2δ)/(N+2). (3.13)

Let S+ be the line segment from ζ+
1 to ζ+

2 , let S− be that from ζ−1 to ζ−2 , and let
Σ be the arc of the circle |z| = r from ζ+

1 to ζ−1 via z′r: these lie in D(zr, 3), by
(3.5), (3.12) and the fact that N is large. Indeed, elementary trigonometry gives

r ≥ |z| ≥ r cos

(
π − 4δ

N + 2

)
≥ r

(
1−O

(
1

N2

))
for z ∈ S+ ∪ S−,

from which it follows, in view of (3.4) and (3.6), that

|A(z)| ∼ |A(zr)| = M(r,A) and |Z(z)| ∼ T = |Z(zr)| (3.14)

for z ∈ S+ ∪ S− ∪ Σ. On the other hand (3.6), (3.12) and (3.13) also yield

−π + 2δ + o(1) ≤ argZ(z) ≤ π − 2δ + o(1) for z ∈ S+ ∪ S− ∪ Σ.

Combining this estimate with (3.10), (3.14) and the fact that T/R =
√
S/R is

large then shows that S+, S− indeed lie in the same H ′q.

Next, let ζ+
3 be the midpoint of S+, and ζ−3 that of S−. Then (3.6), (3.12)

and (3.13) deliver

arg(Z(ζ±1 )) = ±2δ + o(1),

arg(Z(ζ±2 )) = ±(π − 2δ) + o(1),

arg(Z(ζ±3 )) = ±π
2

+ o(1). (3.15)

3.2. Estimates for u. On that H ′q which contains S+ ∪ S−, write

f1 = C1u1 + C2u2, f2 = D1u1 +D2u2, Cj , Dj ∈ C. (3.16)

Since the spherical derivatives of f and 1/f agree, it may be assumed that, among
C1, C2, D1, D2, either D1 or D2 has maximal modulus. Hence (3.1) and (3.16)
yield constants α, β, γ with

f =
f1

f2
=
αv + β

γv + 1
, max{|α|, |β|, |γ|} ≤ 1, v =

(
u1

u2

)±1

. (3.17)
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Suppose first that D1 has maximal modulus. Then v = u2/u1 and, on H ′q,
(3.11) delivers

log |v| = −2 ImZ + o(1), (3.18)

as well as

f ′ =
(α− βγ)v′

(γv + 1)2
=

(α− βγ)

(γv + 1)2

W (u1, u2)

u2
1

∼
(

α− βγ
(γv + 1)2

)
2i

u2
1

∼
(

α− βγ
(γv + 1)2

)
2iA1/2v. (3.19)

Thus (3.14), (3.15), and (3.18) imply that

log |v(ζ+
1 )| ∼ log |v(ζ+

2 )| ∼ −2T sin(2δ), log |v(ζ+
3 )| ∼ −2T. (3.20)

It then follows from (3.17) that, at the three points ζ+
1 , ζ+

2 , ζ+
3 , both v and f −

β are small, so that,

u(ζ+
j ) = log

|α− βγ|
1 + |β|2

+ log 4 +
1

2
logM(r,A) + log |v(ζ+

j )|+ o(1).

Since δ is small, while T is large, (3.20) now implies that (1.4) holds with aj = ζ+
j .

This completes the proof that u is not quasiconcave, provided that D1 has the
largest modulus among C1, C2, D1, D2. On the other hand, if |D2| is maximal
then the same argument goes through using v = u1/u2 and the points ζ−1 , ζ−2 ,
ζ−3 . �

4. Diameter of the plane with the metric σ. Proof of Theo-
rem 1.3

Since the case of linear-fractional f has been dealt with in [5], and a rational
function of degree greater than 1 cannot be locally univalent in C, we assume f
is transcendental.

We begin by recalling some notation and facts from the theory of singularities
of inverses of meromorphic functions; see, for example, [1–3].

Let a be a point in C. We denote by A(a) the set of all open simply connected
neighborhoods of a. A (transcendental) singularity of f−1 over a is a function
Ω 7→ V (Ω) which assigns to every Ω ∈ A(a) a connected component V (Ω) of the
preimage f−1(Ω) such that

Ω1 ⊂ Ω2 ⇒ V (Ω1) ⊂ V (Ω2),

and ⋂
Ω∈A

V (Ω) = ∅.

A singularity over a exists if and only if a is an asymptotic value; that is, there
exists a curve γ : [0, 1)→ C such that γ(t)→∞ and f(γ(t))→ a as t→ 1.
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If a region D ⊂ C contains no asymptotic values, then the restriction of f on
any component of f−1(D) is a covering.

Singularities can be considered as elements of a completion of C with respect
to a certain metric adapted to f , see [2]. The open sets V (Ω) are called neigh-
borhoods of a singularity. A singularity is isolated if it has a neighborhood V (Ω)
which is not a neighborhood of any other singularity. This condition implies that
the restriction

f : V (Ω)\f−1(a)→ Ω\{a} (4.1)

is a covering. So it must be a universal covering, since we assumed that f has
an essential singularity at ∞. Singularities for which (4.1) is a universal covering
are called the logarithmic singularities of f−1 in the classical literature.

In the case when all singularities are isolated, the metric completion of (C, σ)
consists of C and one point for each singularity. In the general case of non-
isolated singularities, the singularities can also be interpreted as elements of a
metric completion, but with respect to a different metric; see [2]. We will denote
the metric completion of (C, σ) by C̃. It will be used only in the case when all
singularities are isolated.

We will need several lemmas.

Lemma 4.1. Let f be a non-constant meromorphic function and γ a simple
curve which consists of two asymptotic curves with common starting point and
distinct asymptotic values. Let D be one of the two components of C\γ. Then
the restriction f |D has a dense image in C.

Proof. A theorem of Lindelöf (see [6, p. 179] or [18, p. 81]) yields that f |D
cannot be bounded. Applying this to 1/(f − a) shows that f |D cannot omit a
neighborhood of a point a ∈ C.

Remark 4.2. Using a deeper result of Heins [9, Theorem 4] one can actually
show that f |D omits at most two values in C.

Lemma 4.3. Let K ⊂ C be a geodesic arc of length t ∈ (0, π): then

sup
z∈C

dist(z,K) = π − t

2
.

Proof. Without loss of generality, we may assume that

K = {eiφ : − t/2 ≤ φ ≤ t/2}.

We claim that the maximal distance from z to K is attained for z = −1. The
conclusion follows from this, since the points in K that are closest to z = −1 are
the points e±it/2, implying that dist(−1,K) = π − t/2.

Since the spherical distance is a strictly increasing function of the chordal
distance, the above claim follows if we show that z = −1 has the maximal chordal
distance from K. Let χ denote the chordal metric and distχ(z,K) the distance
from z to K with respect to this metric.
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By symmetry, it is sufficient to consider the case that |z| ≤ 1 and Im z ≥ 1 so
that z has the form z = reiθ with 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π. If t/2 < θ ≤ π, then,
using that 0 < t < π and hence cos(π − t/2) < 0, we find that

distχ(z,K)2 ≤ χ(z, eit/2)2 =
4|z − eit/2|2

(1 + |z|2)(1 + |eit/2|2)

=
2(1 + r2 − 2r cos(θ − t/2))

1 + r2
= 2− 4r

1 + r2
cos(θ − t/2)

≤ 2− 4r

1 + r2
cos(π − t/2) ≤ 2− 2 cos(π − t/2)

= χ(−1, eit/2)2 = distχ(−1,K)2.

On the other hand, if 0 ≤ θ ≤ t/2, then

distχ(z,K)2 ≤ χ(z, eiθ) = 2− 4r

1 + r2
≤ 2 < distχ(−1,K)2.

It follows that the maximum of distχ(z,K) and hence of dist(z,K) is attained
for z = −1, as claimed above.

Our proof of Theorem 1.3 splits into two parts:

Proposition 4.4. If f has a non-isolated singularity, then the diameter of
(C, σ) is at least 2π.

Proof. By rotating the sphere we may assume that there is a non-isolated
singularity over 0. Let Dε be the open spherical disk of radius ε > 0 about
zero. Then V (Dε) must be a neighborhood of some other singularity. We claim
that this other singularity can be chosen with asymptotic value b 6= 0. Indeed,
if all singularities of which V (Dε) is a neighborhood were to lie over 0, then
f : V (Dε) → D\{0} would be a covering, contradicting our assumption that the
singularity over 0 is not isolated.

Thus there exists a curve γ ⊆ V (Dε), both ends of which tend to ∞ in C,
and which is asymptotic for two values, that is, f(z) → 0 and f(z) → b as z →
∞ along the two ends of γ. By removing any loops we may assume that γ is
simple. So it divides the plane into two parts, which we denote by D1 and D2.
By construction, f(γ) ⊂ Dε.

By Lemma 4.1, f(D1) and f(D2) are dense open subsets of C. Thus there
exists a point w in the spherical disk of radius ε centered at∞ which is contained
in both f(D1) and f(D2), say w = f(zj) where zj ∈ Dj for j = 1, 2. Then
dist(zj , f(γ)) ≥ π − 2ε for j = 1, 2. Hence the distance between z1 and z2 is
at least 2π − 4ε. Since ε > 0 can be taken arbitrarily small, the conclusion
follows.

Proposition 4.5. If all singularities of f are isolated, and there are at least
3 of them, then the diameter of (C, σ) is at least 4π/3.



On Conformal Metrics of Constant Positive Curvature in the Plane 69

Proof. Our strategy is to find a geodesic γ ⊂ C̃ which connects two sin-
gularities, and such that the length of γ is at most 2π/3. Then application of
Lemma 4.1 and Lemma 4.3 will give the required diameter estimate, similar to
the argument in the proof of Proposition 4.4.

To do this, it is sufficient to find an open metric disk in C̃ which contains
no singularities, and has at least three singularities on the boundary. Indeed,
since the length of the boundary of any spherical disk is at most 2π, there will be
two singularities with the distance between them at most 2π/3, and the shortest
curve between them (which exists since C̃ is complete) will contain a geodesic
arc of length at most 2π/3 connecting two singularities.

It remains to show that such a disk can be found unless f is an exponential.
We start with some point w∗ ∈ C which has an f -preimage z∗ ∈ C. Let φ be the
germ of f−1 such that φ(w∗) = z∗.

Let D be the open spherical disk of the largest radius centered at w∗ to which
φ has an analytic continuation. Then ∂D contains a singularity w1 of φ. If this
singularity is unique, then using the assumption that singularities are isolated,
we can cover ∂D by finitely many disks, of which only one contains w1. Then
φ has an analytic continuation to a larger disk D′ such that D ⊂ D′ and w1 ∈
∂D′. Among such disks D′ there is one with maximal spherical radius, and its
boundary must contain at least two singularities, w1 and w2. We denote this
maximal disk D′ by D0, and its center by w0. Let φ0 be the germ at w0 obtained
by the analytic continuation of φ that we just described.

If D0 has at least three singularities on the boundary, we are finished.

Otherwise, consider the curve β passing through w0 such that the points on
this curve are at equal distance from the two singularities. This curve is a great
circle. We assume that the curve is parameterized by the arc length and that
β(0) = w0.

Since the disk D0 contains only two singularities w1 and w2 on the boundary,
we can cover the boundary by finitely many disks of which only two contain singu-
larities. Then there is a one-parametric family of disks Dt centered at β(t) whose
radii are equal to the distances from β(t) to w1 and w2. Since we assumed that
the only singularities on ∂D0 are w1 and w2, the germ φ0 admits an immediate
analytic continuation from D0 to Dt with small t.

Now consider the supremum and infimum of the values of t for which this
analytic continuation is possible. If either of them is finite, we obtain a disk with
three singularities on the boundary.

If an analytic continuation is possible to all disks Dt for t ∈ R, we will show
that f is in fact a universal covering of C\{w1, w2}, that is, f is an exponential
function.

To prove this last statement we consider a curve δ : R → C \ {w1, w2} with
δ(0) = w0. We “project” this curve δ onto the curve β as follows: For every
t ∈ R there exists a unique circle which contains w1, w2 and δ(t) and intersects
the circle β orthogonally. (This is easy to see by applying a linear-fractional
transformation which sends the circle β to the equator of the sphere, and sends
the points w1 and w2 to the poles.) The intersection of this circle with the circle



70 Walter Bergweiler, Alexandre Eremenko, and James Langley

β is the projection of δ(t). We thus find a continuous function g : C → C such
that δ(t) projects to β(g(t)). It is clear that the disk Dg(t) contains δ(t). Since φ0

can be continued analytically along β, this shows that an analytic continuation
of φ0 along δ is also possible. This completes the proof of Proposition 4.5 and
Theorem 1.3.

Example 4.6. We construct a locally univalent meromorphic function for
which the diameter of the plane with respect to pull-back metric is infinite.

We define f using a line complex [6, Chap. VII]. Let a, b, c, d be four distinct
points in the Riemann sphere C. We call them the base points. Consider the
cell decomposition Y of C shown in Fig. 4.1 (right). It consists of two vertices ×

×

a b c d· · · · · ·······× × × × × ×

a

bc

d

Fig. 4.1: Line complex of G.

and ◦, four edges and four faces, each face containing exactly one point of the set
{a, b, c, d}. We label the faces by the base points they contain, and denote them
by Da, Db, Dc, Dd. If f is a local homeomorphism C → C whose asymptotic
values are contained in the set {a, b, c, d} then the preimage X = f−1(Y ) is a
partition of the plane into vertices, edges and faces. We label the vertices and
faces of this partition by the same labels as their images.

Two such partitions are considered equivalent if they can be mapped to each
other by a homeomorphism of the plane. Two local homeomorphisms f1 and f2,
whose asymptotic values are contained in the set of base points, with equivalent
partitions, satisfy f1 = f2 ◦ φ where φ is a homeomorphism. A partition X is
completely determined by its 1-skeleton which is called the line complex. This
is a bipartite graph embedded in the plane whose vertices have the same degree,
equal to the number of base points.

The same construction can be made for a local homeomorphism from C∗ =
C\{0} or C\{0} to C. When drawing a line complex, we usually do not draw
the true preimage f−1(Y ), but an equivalent graph.

We suppose for simplicity that {a, b, c, d} ⊂ C, and consider the function

g1(z) =
b exp(z)− a
exp(z)− 1

which is a universal covering of C\{a, b} by C. Its line complex consists of a
chain infinite in both directions of the form

· · · − ◦ ≡ ×− ◦ ≡ ×− · · · .
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Let B be the region which is the union of Dc and Dd and the edge between them.
This region has infinitely many bounded preimages under g1. We choose one of
them and call it B1.

Similarly, the function

g2(z) =
d exp(1/z)− c
exp(1/z)− 1

performs a universal covering of C\{c, d} by the punctured sphere C\{0}. Its line
complex is similar to that of g1, and we choose a component B2 of the preimage
g−1

2 (C\B).
Since g1 and g2 map ∂B1 and ∂B2\{0} homeomorphically on the same curve

∂B (with opposite orientations), we can glue the restriction of g1 on C\B1 with
the restriction of g1 on C\({0} ∪ B2), along a homeomorphism ψ between the
boundary circles of these punctured disks, such that g1 = g2 ◦ ψ on ∂B1. Since
the homeomorphism ψ is smooth, it has a quasiconformal extension to a quasi-
conformal homeomorphism B1 → C\B2, which we denote by the same letter. We
can arrange that ψ(0) = 0. Thus we obtain a quasiregular local homeomorphism

g(z) =

{
g1(z), z ∈ C\B1,
g2(ψ(z)), z ∈ B1\{0}

.

The line complex of g in C∗ is shown in Fig. 4.1 (left). Since g is quasiregular,
there is a homeomorphism φ such that G = g ◦ φ is meromorphic in C∗.

Next we consider the entire function F (z) = G(exp(iz)). The line complex of
F is shown in Fig. 4.2.

×

a b c d

ab

c d

ab

c d

ab

c d

· · · · · ·

...
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...
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×

×
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×
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×
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×
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×

×
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×

×

×

×

×

×

×

×

×

×

×

Fig. 4.2: Line complex of F .

It remains to show that the pull-back of the spherical metric via F has infinite
diameter. To do this we consider two simple curves in C:
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A curve A from a to d which is contained in the union of faces Da and Dd of Y
with their common boundary edge, and a curve B from b to c which is contained
in the union of faces Db and Dc of Y with their common boundary edge.

Evidently these curves have disjoint closures in C. Each of these curves has
infinitely many disjoint F -preimages which are curves beginning and ending at
∞. Let us call these preimages αj and βj , j ∈ Z, and assume that they are
enumerated in the natural order, so that αk separates all αj , βj with j < k from
βk and all αj , βj with j > k.

Now consider two points p and q in C which are separated by 2N curves αj
and βj . Let γ be any curve with endpoints p and q. Then the image F (γ) must
hit A and B alternately, at least N times each, so the length of this image and
of γ itself is at least (2N − 1)δ where δ is the distance between A and B.

Remark 4.7. One can obtain an explicit representation of the function F . It
can be shown that F is a ratio of two solutions of the Mathieu equation

w′′ + (cos(z/2) + λ)w = 0,

where λ is subject to the condition that this ratio has period 2π.
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Про конформнi метрики додатної кривини в площинi
Walter Bergweiler, Alexandre Eremenko, and James Langley

Доведено три теореми про розв’язки рiвняння ∆u+e2u = 0 в площинi.
Першi двi явно описують усi увiгнутi розв’язки. Третя теорема ствер-
джує, що дiаметр площини з метрикою з лiнiйним елементом eu|dz| не
менше нiж 4π/3, за винятком двох явно описаних сiмей розв’язкiв u.

Ключовi слова: рiвняння Лiувiлля, додатна кривина, мероморфна
функцiя, сферична похiдна
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