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We investigate the point process of moduli of the Ginibre and hyperbolic
ensembles. We show that far from the origin and at an appropriate scale,
these processes exhibit Gaussian and Poisson fluctuations. Among the pos-
sible Gaussian fluctuations, we can find white noise but also fluctuations
with non-trivial covariance at a particular scale.
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1. Formulation of the main results

The main results of this paper, Theorems 1.3-1.8, establish limit theorems
for additive statistics of the Ginibre ensemble and the hyperbolic ensembles,
introduced by Krishnapur, including the determinantal point process with the
Bergman kernel, which, by the Peres—Virdg theorem, is the zero set of the Gaus-
sian analytic function on the unit disc.

In this section, we begin by recalling the notion of determinantal point process,
which are point processes where the correlation functions take the form of a
determinant. Afterwards, the specific examples we are interested in, namely the
Ginibre point process and the hyperbolic ensembles, are discussed. Finally, we
state the main results of this note, Theorems 1.3-1.8.

1.1. Determinantal point process. Let X be a locally compact Polish
space and By(X) the collection of all pre-compact Borel subsets of X. We shall
denote by Conf(X), the space of all locally finite configurations over X, that is,

Conf(X) :={{ =304, : Vi,z; € X and £(A) < oo for all A € By(X)}.

We shall consider this set endowed with the vague topology, i.e., the weakest
topology on Conf(X) such that for any compactly supported continuous function
f on X, the map Conf(X) > ¢ — [, fd¢ is continuous. It can be seen that
the configuration space Conf(X) equipped with the vague topology turns out to
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be a Polish space. Additionally, it can be seen that the Borel o- algebra F on
Conf(X) is generated by the cylinder sets C2 = {{ € Conf(X = n}
where n € N ={0,1,2,...} and A € By(X). Finally, a point process on X will
be a measurable map

2 (Q, F(Q),P) = (Conf(X), F),

where (2, F(Q2),P) is any probability space. For further background, see [5,10,13].

A point process 2 is called simple if it almost surely assigns at most measure
one to singletons. In the simple case, 2 can be identified with a random discrete
subset of X and for any Borel set A on X, the number 2 (A) € NU{oo} represents
the number of points of this discrete subset that fall in A. So, for instance, we
will use the notation {T'(x) : € 2"} instead of the usual pushforward notation
T, Z for simplicity.

Determinantal point processes have been introduced by Odile Macchi [14]
in the seventies. We recall the definition. Let p be a Radon measure on X
and let K : X x X — C be a measurable function. A simple point process
% is called determinantal on X associated to the kernel K with respect to the

reference measure p if, for every £k € N; and any family of mutually disjoint
subsets A1, Ag, ..., Ay € By(X),

k
E [H (A

See, e.g., [1-4,9,15-18] for further background of determinantal point process.

The moments of the linear statistics Y. 5 f(z) := [y fd.2Z under a deter-
minantal point process can be calculated from (1. 1) For instance, when the
kernel K is Hermitian and satisfies the reproducing property, i.e., it represents
an orthogonal projection, then

] /f K (,7) dp(w), (1.2)
xG%

= / det [K(mi’xj)]lgi,jgk dp(xy) -+ -dp(xg).  (1.1)
A1 XX Ag

E

and

ar<zf<x>):§/x2[f<x>— o)’|K @) du(@) du(y).  (13)

zeX

See, e.g., [6, Proposition 4.1], [7, Lemma 8.5] and [18, formulas (4) and (5)].

1.2. The Ginibre ensemble. Consider the Gaussian measure y on the
whole plane C given by

1
du(z) = —e”dm(z),
0
where dm is the usual Lebesgue measure. We also need to consider the space

O(A) of holomorphic functions on an open set A C C.
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In the finite-dimensional setting, the Ginibre ensemble was introduced by
Ginibre [8] as a model based on the eigenvalues of non-Hermitian random ma-
trices, and the infinite Ginibre ensemble is obtained as a weak limit of these
finite-dimensional point processes. The infinite Ginibre ensemble can be defined
as follows.

Definition 1.1 (Ginibre ensemble). The Ginibre ensemble G is the determi-
nantal point process associated to the Fock kernel, i.e., the kernel of the orthog-
onal projection of L?(C,u) onto L*(C, u) N O(C), with respect to the reference
measure /.

Equivalently, the Ginibre ensemble is the point process G on C such that for
any pairwise disjoint measurable subsets A1, Ao, ..., Ay of C, we have that

E

k
HQ(AZ-)] = /A i det [Kg(zi,zj)]lgingk dm(z1) - -dm(zg),

i=1
where Kg : C x C — C is given by

o0
1 A T P L U 1 122 |w?

1.3. The hyperbolic ensembles. For each o > 0, consider the probability
measure fi, on the unit disc D given by

djia(z) = ~(1 = [*)* Ndm(2),

and recall that O(D) denotes the space of holomorphic functions on D.

Definition 1.2 (Hyperbolic ensemble). For a > 0, the a-hyperbolic ensemble
He is the determinantal point process associated to the po-weighted Bergman
kernel, i.e., the kernel of the orthogonal projection of L?(D, 1) onto the closed
subspace L%(D, o) N O(D), with respect to the reference measure .

Equivalently, the a-hyperbolic ensemble is the point process H, on I such
that for any pairwise disjoint measurable subsets A1, Ag, ..., Ag of D,

k
E [H Ha(Ai)
i=1

where Ky, : D x D — C is given by

= / det [ Ky, (21, 25)] L<i<k dm(z1) - - -dm(zg),
A XX Ay - V=

[e]

Ko, (2,w) = Zk-“” P1— 2T (1= w?) T

a1l (- wP)T

7r (1 — zw)ot! ’
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while
ale+1)---(a+n) T(a+n+1)

n! - T(a)T(n+1)
For a = 1, Peres and Virag [15] showed that the zeros of the random analytic
function

k() =

d(2) = ap +arz +agz® + -,

where ay, k > 0, are independent and identically distributed standard complex
Gaussian random variables, follow the law of the 1-hyperbolic ensemble H;. Kr-
ishnapur [12] extended the result of Peres and Virdg to positive integer o = m,
showing that, if Gg, k& > 0, are independent and identically distributed m x m
matrices, each with independent and identically distributed standard complex
Gaussian entries, then the zeros of the random analytic function

®(2) = det(Go + G12 + Goz* + -+ )

follow the law of the m-hyperbolic ensemble H,,.

1.4. Main results. Recall that the unit disc D endowed with the metric
dpq is the Poincaré model for the Lobachevsky plane. Our results involve the
point process formed by {|z| : z € G} and the one formed by {|z|, : 2 € Ha}, @ >
0, where
1+ |z|
1— 2|
is the hyperbolic distance from z to the origin.

By [9, Theorem 4.7.1], which was first noticed by Kostlan [11, Lemma 1.4] in
the case of a finite number of particles, the point process {|z| : z € G} follows
the law of {p, : n € N}, where (py)n>0 is a family of non-negative independent
random variables such that

|z|n = log

2
2T2n+16—r
Pn ™~ —— dr.
n.

Similarly, from [9, Theorem 4.7.1], see also [12] and [15], for a > 0, the point

process {|z| : z € Hq} follows the law of {p%a) : n € N}, where (pﬁla))nzo is a
family of independent random variables taking values in [0, 1] such that

(@) 2F(a tn+1) o

P Wr (1—r2)>tdr

The asymptotic behavior of {|z| — R: z € G} and of {|z|n — R : z € Ha},
a > 0, as R goes to infinity and under different scalings is described in the
theorems below. Theorem 1.3 and Theorem 1.4 deal with a convergence of the
normalized process towards a Gaussian field whose covariance kernel is not the
one of the white noise. Theorem 1.5 and Theorem 1.6 deal with the intermediate
case of a convergence towards the white noise. Finally, the last two theorems,
Theorem 1.7 and Theorem 1.8, deal with the extreme case of the convergence
towards a homogeneous Poisson process.
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1.4.1. Convergence towards a non-trivial Gaussian limit

Theorem 1.3. Denote C](%a) = ael*/8 for each a > 0. Then for any bounded
measurable and compactly supported function f : R — R,

\/72;: f(zh—R 2\/7/f e dx ~_>—+;?J\/'<O,Vf(a)),

where

V(a) 1 2 e(a+1)(:l:+y) dud
f _B(Oz,a—i—l)/Rz [f(x)—f(y)] W €ray.

Theorem 1.4. For any bounded measurable and compactly supported func-
tion f: R — R,

law
fgf 1= R) =2V [ f(a)de 220 NO.V))

where
1

77 Jes

1.4.2. Convergence towards white noise

V= [f(z) = f(y)) e dzdy.

Theorem 1.5. Suppose that ag satisfies 1 < ar < e® as R — +00. Denote
C'l(ga) = ael'/8 for each a > 0. Then for any bounded measurable and compactly
supported function f: R — R,

RN Flan(lzh — R))

CR 2€Ha
C(a) s 1
-2 R/f(x)e“R dz LN(O,Q/fQ(x)daO.
ar Jr R—+o0 R

Theorem 1.6. Suppose that ar satisfies 1 < ap < R as R — 400. Then
for any bounded measurable and compactly supported function f: R — R,

a R aw
\/T%Zf (ar(|z] - —2\/;/Rf(:c)dx mN(OJ/RfQ(x)dm).

z€G

Theorems 1.3—1.6 will be obtained as corollaries of the central limit theorem
of Soshnikov.

1.4.3. Convergence towards a Poisson point process

Theorem 1.7. Let P,y be the Poisson point process on R with constant
intensity a/4, a > 0. Then,

R - . law
{6 (|Z|h R) A Hoz} m Pa/4'
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Theorem 1.8. Let Py be the Poisson point process on R with constant in-
tensity 2. Then,

{R(]z| ~R): 2 € G} —= P,
R—+00
Remark 1.9. An analog of the theorems above is the case of an independent
and identically distributed sequence (X;);>1 of real random variables that follows
a probability distribution . The analogue of Theorem 1.3 and Theorem 1.4 is
the classical central limit theorem that tells us that, for any compactly supported

function f: R — R, we have

S f(Xa) = [ fdp taw | 1
L5 S n (03 [ @)~ FP duta) dutw)).

If these random variables admit a density p which is continuous at 0, we have the
convergence towards a Poisson point process, the analogue of Theorem 1.7 and
Theorem 1.8,

(nX;:1<i<n} —2 Py

n—-4o00

Notice that we can also see, at intermediate scalings, a convergence towards the
white noise for the centered linear statistics.

2. The hyperbolic process proof of Theorem 1.3
To study the limiting behavior of the linear statistics

Z f(|Z|h - R)?

ZEHOA

we start by understanding the asymptotics of its expected value. Later, we study
its limiting variance and conclude by Soshnikov’s central limit theorem [18, The-
orem 1].

We prepare two lemmas that contain some bounds that we will use.

Lemma 2.1. There exists two constants C, M > 0 such that, for every
y>M andt >0,
2|ty +1
(1_2> Lty] g
y+1

where |ty| is the biggest integer that does not exceed ty.

< Ce /¢
Y

i

Proof of Lemma 2.1. We can use Lagrange’s mean value theorem to control
the difference

’(1 2 >2Ltyj+1 it

y+1

_22[ty]+1)

y+1 y+1
1 2 _2(2[ty]+1) _2(2[ty]+1) Ly
< 1+ ——— —e€ y+1 + |e y+1 —e
y+l 4

2
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y+1

2(2|ty| + 1) 1 < 1 ) 2
= I+ —e| +e
y+1 572@%“41 vl

where £ > e and n < —A(t + 1) for some fixed positive constant A < 4 and y
large enough. The asymptotics of each of these terms as y goes to +o0o gives us
the result.

Now, notice that there exist two constants C', M > 0 such that, for every
y > M and t > 0, we have the bounds

— 4t

2(2[ty] +1) 1 e
o T ot 1), ¢« 5 < Ce /O,
y+1 %_’_1
y;l
o (141 — —e gg o "< Cet/C
y+1 ) )
il y
C(t+1)

. ‘2(2Ltyj+1)

+1 4t‘§
y

Y

The lemma follows by noticing that there exists C > 0 such that, for ¢t > 0, the
inequality (C® + C?)(t + 1)e~ /¢ < Ce~*/¢ holds. O

For the next lemma, we recall the notation

po) _ Tlatnt+l)
" MNa)T'(n+1)

Lemma 2.2. There exists a constant C > 0 such that

G y €[0,1]
| Oyt ye[l,+oo)

(e

where |y| is the biggest integer that does not exceed y.

Proof of Lemma 2.2. This is a consequence of Stirling’s series that tells us

that I D
@ _ Hlatntl) = n® a-1
ky TaT(n+1) ~ T(a) +0(n*") asn — oo.

The piecewise inequality comes from the fact that kéa) # 0. O

With these lemmas, it is easier to understand the asymptotics of the expected
value.

2.1. Expected value calculation for Theorem 1.3. We will show a bit
more than it is needed about the expected value asymptotics. We will see that

> f(lzlh—R)

ZEHO(

E

—zcg’)/Rf(x)edeou).
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We begin by writing

B [Z I(E)

z2EH

ZE[ P~ R)]
1 +: B R) 2]{7(1&)7“2%1(1 . r2)a_1dr,

:nz:o/o f<10g1_

where we recall the notation kﬁf” = % If v = log 1 1” — R, we get
6R+x -1 2€R+x
T:76R+a:+1 and dr:7(6R+I+1)2dw,
so that
> f(zh—R
2EHq
0o " a—1
4Z/+Oo Fae (=1 T ety G
pr— — J— e — N m
—=J r "o\efttr 41 efite 41 (efite 4-1)2
+oo 2 2+l ca(R+x)
= 40& k(a) 1 - -
/_R nE_ﬁf(x) n ( eRtz 4 1> (efire + 1)2a dz
+oo © 92 2n+1 —a(R+)
_ o (@) - €
4 /—R nz:% @)k (1 efttr 4 1> (1 + e~ (Bta))2a de.

Notice that we have interchanged the summation and integration here which is
possible since f is bounded and compactly supported. Therefore, by taking n =
[tefite ]| we get

e 'R Z f(lzlh =R
2€Ha
+o00 OO 2n+1 —a(R+x
/ km)( _mf) R g
e +1 (1 + e~ (F+w)
“+o0o +oo
o [ o
9 2| tefite |41 e—a(R-‘r:l?) dtd 91
X - tdx. .
( elb+z + 1) (1 +e—(R+m))2a €T ( )

We define the functions ©; and O3 of (z,¢, R) and the function O3 of (x, R) by

(@) tozea(R—i-m)
kLteR"'zJ = Ta)‘i‘@l(x,t,R), (22)
2 2| teftte |41
< - W) =e Y+ Oy(z,1, R), (2.3)
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1
(1 + e (BFo))2a

=1+ 0s(z, R). (2.4)

By Lemma 2.2 and Lemma 2.1 (and by a standard fact for (2.4)), there exists a
constant C' > 0 such that, for R large enough,

C, (x,t) € supp f x [0, %)
<
|©1(z,t, R)| < { Cto=1e0-DR (1) € supp f x [e~ &, +00)
©2(,t, R)| < Ce /O R, (z,t) € supp f x [0, +00),
©3(x, R)| < Ce™F, x € supp f.

The inequality involving ©; deserves some explanation. Lemma 2.2 implies
that for any a,b > 0, not necessarily a < b (in fact, we will need to use it in the
case a > b) there exists a constant C' > 0 that depends on a and b and such that

(67

(@ _ Y
-

e y € [0,q]
Cy*~ ', ye[b+oo)

Let a > 0 be such that ¢* < a for every = € supp f and let b > 0 be such that
b < e” for every x € supp f. Then, we have

o et G tef+* € [0, d]
[tefi+e | F(a) = C(teR—l—x)a—l’ tefte c [b, +oo)
In particular,
PCO I Cciaiio S IO X} tef € [0,1]
[tefte] D(a) |~ | Ctetr®)o=t tef € [1,+00)

whenever = € supp f. By bounding (e*)*~! by a constant for x € supp f and
choosing, in this way, a larger constant C' > 0, the inequality for ©; is obtained.
With the help of the estimates (2.2), (2.3) and (2.4), it follows from (2.1) that

e PR Z f(]z|h —R
2€EH o
+00 +oo el a(R+x)
/ / 2! L eMeeBHE) qrdr + O (e_R)
['(a)
a “+o00 it
= ta_dt/f )etdxz + O
i ) )
= a/ f(x)e*dx + O (e_ ).
4 Jr
That is,

E[ S F(l2h —R)} = QC](%O‘)/Rf(m)e”da:—irO(l).

ZGH&
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2.2. Variance calculation for Theorem 1.3. We now turn to calculate
the variance of the linear statistics Y. f(|z[n — R),

ar (zZH f(|z|h— ) ZVM( |Pn In — ))
—ZE[F o] — B)] - ZE[ (1p — B)).

Due to the asymptotics in Lemma 2.1 and Lemma 2.2 we can obtain a bit more

than what it is needed. For the first term > >° E[fQ(\pgla”h — R)], by Subsec-
tion 2.1, we have

ZE[P(\p&“)Ih = R)} = 20 /Rf2(:c)exdx +0(1).
n=0
As for the second term 2 | E [ f (| p%a) Ih— R)] 2, we can study it in a similar way,

S s[4 ]

= 4% / k() <1 - > dz | .
nz:;) < R f(JU) eR+z +1 (1 + e—(R+x))2a X

Notice that the summation is outside the integration. Setting n = |te’], we have
R () ?
Z E|f (1ol — F)|

-~ [T () 2 il gmalR+a) "k
— 4 [e4 a 1 _ —
Z /—R f(x)kn < 6R—i—z + 1) (1 + 67(R+w))2a dz €

n=0

+o0 +o00 9 2[tef|+1 e—a(R+z) ?
— 4204 (@) 1— .
/0 </_R f(l')k‘)tteRJ < eR—i—x + 1) (1 _‘_67(R+a:))2adm dt

We define the function ©4 of (¢, R) and the function ©5 of (z,t, R) by

a,aR
() t%e
k[teRJ ( )

2 2teR|+1 P
() e o,

+ 04(t, R),

so that, by Lemma 2.2 and Lemma 2.1, there exists a constant C' > 0 such that,
for R large enough, we have the bounds

C, t€[0,e F)
<
Oult. I < { Ghargiain, ye o ey
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95(2,t, R)| < Ce e R, (2,1) € supp f x [0, +00).

With the help of these estimates and recalling the standard estimate (2.4), it
follows that

TS B[ - B)]
n=0

+o0 +00 taeaR . 2
= 42a/ (/ f(zx) (@) e~ dte ea(Rer)dm) dt+ 0 (e*R)
0 -R @

420 / B /+oo (et -
a(z+y) 200, —4t(e""+eY) R

= — T e t““e dtdedy + O (e
T2(a) RQf( () ; y (e™)

1 o—alaty)

- ) /R2 f(z)f(y) (@ + e-v)2atl

(a+1)(z+y)
_O‘/ f(x)f(y)eﬂ—ﬂ/dxdy+0(e_R)7
R? (

+00
/ u?e " dudrdy + O (e_R)
0

4B(a, 4+ 1) e? + ev)2tl
that is,
00 9 20(0‘) elat1)(z+y)
(), _ - __ YR =
;E[mp" b= = BaatD /R ey ey O

Therefore, we obtain

W(Zﬂmrm>

ZEHa

(@) (a+1)(z+y)
_ (a) 2 x o 2q13/ e—
=2C, /Rf (z)e” d Bloa D Ju f(2)f(y) EEvE dz dy + O(1).

By noticing that

1 cla1)(e+y)
/ 5ot W = ¢,
B(OK,OL—Fl) R(€$+€y) «

we may conclude that

W<warm)

ZGH&

cle) , elatD)@+y)
= B(WEM/HQ2 [f(1'> _f(y)] mdl’dy—}—O(l).

2.3. Soshnikov’s conditions and conclusion of the proof. We will use
the following central limit theorem, derived by Soshnikov [18, Theorem 1], to
prove Theorem 1.3.
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Theorem 2.3 (The central limit theorem of Soshnikov). For L > 0, suppose
that Z7, is a determinantal point process on a locally compact Polish space X,
with Hermitian kernel Ky with respect to the reference Radon measure pr. By
slightly abusing the notation, also denote Ky, the associated integral operator with
integral kernel K on L?(Xp,ur), that is, Kp : L*(Xp,pur) — L*(Xp,pur) is
defined by

Kpf(z) = . Ki(z,9)fy)duc(y), f e L* (XL, pr),

and suppose that for any pre-compact Borel set A C Xy, the operator Ky, xa is
trace-class, where xa denotes the multiplication operator by the indicator of A.

Let fr be a real-valued bounded measurable function on Xy with compact
support and consider the linear statistics Sy = c o fr(z). If

e VarSy, — +00 as L — +o0,
e sup,cy, |fo(z)] = o((Var fr)?) as L — +oo for any ¢ > 0 and
o ES|;, | =O((VarSy,)?) as L — +oo for some § > 0,

then the centered normalized linear statistics converges in law to the standard
normal distribution, i.e.,

Sp, —ESp, law
/Var Sy, L—oo

When R — +oo, with the help of Subsection 2.1 and Subsection 2.2, we have

> 1f(zh = R)|

ZEHa

N(0,1).

E

NQC’;%O‘)/ |f(z)|e"dx,
R

and

Var ( Z f(z[n — R)) ~ C’g%a)Vfa).

z€EHa

Applying Soshnikov’s Theorem 2.3 to > 4, f(|z|h — R), we get
Zze’}-[af(|z|h_R) _E[ZzGHafOZ’h_R)] law

VVar (Z.ep, f(12h — R)) e

This gives that
1 1

Z f(zlh — R) —
VO e ol

Moreover, it follows from Subsection 2.1 that

> f(lzlh - R) —2\/055)/Rf(a:)ew dz —— 0,

R—+o00
ZGH&

E

Z f(zln — R)

zEH

Ef—_“:;?/\f (o,vf‘“)) .

1

E
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hence

\/7 Z f(zln — R —2\/7/f e dxm/\/((),vf(a)).

ZEHa

This completes the proof of Theorem 1.3.

3. The Ginibre process proof of Theorem 1.4

The proof of Theorem 1.4 follows the same ideas as the proof of Theorem 1.3.
Moreover, the calculation of the variance can be nicely done using the same Rie-
mann sum’s argument as before. Nevertheless, we have decided to use formulas
(1.2) and (1.3) to emphasize a slightly different way.

3.1. Expected value calculation for Theorem 1.4. For the expectation
of the random variable __ . f(|2| — R), notice that, since Kg(z,2) = 1/, we
have

E Zf(\z|—R

z€G

= [ £(el = R)Eolz.z) dm(e)

1
= 7T/(Cf(|z| — R) dm(z).

By using polar coordinates and making a variable substitution, we get

B [Zf(w -

z€G

+o0
=2 f(r—R)rdr
0

- 2R/+OO fz)da + 2/+°° of(z)dz,

-R -R

that is,

E [Zmzr -

= 2R/ f(x)dz + O(1).

z€G R
3.2. Variance calculation for Theorem 1.4. For the variance of the

random variable Y, f(|z| — R), we use that

1 7|wa|2

[Ko(zw)* = e P

to obtain

ar (;jf(!d —R))

1

=5 /(C [£(121 = B) = f(lw| = R)]?|Kg(z,w)|* dm(z) dm(w)
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= oo [ 1 R~ £l — B dm ) dm ).
(CQ

By using polar coordinates, we get

ar (;g £(12] —R)>

1 e +ee T T 2 0 ip|2
- 27T2/ / / / [f(r—R) = f(p—R)]"e I~ I"rpdo dp dr dp
0 0 - J -7
1 +oo +0o0 g ) 7|7«ei9,p|2
:7T/0 /0 / [f(r—R)— f(p—R)|e rpdf de dr

2 I I 2 —r2_p? " 2rpcos 6
~r [fr=R)=f(p—R)]"e" Frp [ ePe=Cdodrdp.
™ Jo 0 0

By the change of variables x = r — R and y = p — R, we have

ar (gf(lz! —R))

_g +oo  p+oo o) 26_(R z)2—(R+y)? T
=2 [ @ - e T (R ) (R )

% / 2(R+m)(R+y) cos 6 de dz dy

/+Oo /+oo F@)]2e Y (R + 2)(R+y)

/ —4(R+z)(R+y) sin? 2 do dz dy
0

Setting 0 = t/+/(R + z)(R + y), we obtain

“+oo +oo 5
ar (Z 712 —R)) = ) / @ = ) e R )

z€G

T (B+2)(B+Y)  _y(Rta in2 —__t
X/ . 4(R+)(Rty)s %m dt dz dy.
0

Consider the integral

_ in2 t
4(R+z)(R+vy) sin WD)

/Rg [F@) = )] e A+ 2/R) 1+ y/R) e

XX [or R ()X [~ R,+00) (B)X [~ R +00) (¥) dt dz dy.

When R is sufficiently large, the integrand is dominated by

(@) = F@)] e @ A+ )T+ [yl e 72 o100 (£),
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hence by the dominated convergence theorem, as R — +o0, the integral converges

to
V[ @)~ f) e dray,
RQ

It follows that, when R — +o0,

z€G

3.3. Soshnikov’s conditions and conclusion of the proof. When R —
+o00, with the help of Subsection 3.1 and Subsection 3.2, we have

E|> |f(=l -

z€G

~ 2R /R ()] da,

and

ar (Z f(lz] = R)) ~ RV;.

z€G

Applying Soshnikov’s Theorem 2.3 to > f(]z] = R), we get

Zzég f(|Z‘ B ) 7E|:ZZEQ f(’Z| B R)] law
VVar (L £(I2 - R)) fiee

This gives that

Zfr\— —fE

zEg

> F(lzl -

z€G

4%/\/'(0 Vf)

Moreover, it follows from Subsection 3.1 that

E > f(lz] -

z€G

—2\/E/Rf(m)dx mo,

hence

1 law
\/ng(m —R) —NE/Rf(x) dz m/\f(o,vf).

This completes the proof of Theorem 1.4.
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4. Proof of Theorem 1.5 (hyperbolic case)

In the case 1 < ar < ef' as R — +00, the proof of Theorem 1.5 follows the
same steps as the proof of Theorem 1.3: first we need to understand the expected
value, then to calculate the limiting variance, and finally to use Soshnikov’s The-
orem 2.3.

Let us begin by writing

> flar(zlh — R))

ZGHa

= ZOO @) 9\ olRy

00 2n+1 —a(R+-%)
+o0 2 e (R+3% dx
:46*/ Fl@)k® |1 - - —
~Rag nz::O ean 11 (14 Fran))*ar

By taking n = |tef"T%/9R | we get

g [ > flar(zlh — R))

ZeHa
+oo i - 9 antl
:4a/ f@)erk@ (1- ——=2
7RG/R n=0 " R+ *R + 1
—a(R+2)

e (R+ “R) dz

R+#J+1

+oo ) 9 2|fe
o T (R
Rapg t aRJ +‘7‘R —|—1

(Rm)

v c ——— dtda.
(1+ e*(’”a?,))m

This can be done in the same way as in Subsection 2.1. Notice that = € supp f
and 1 < ag < ef® as R — +00. We can show that for sufficiently large R,

U [Z f(ar(l2ln = R))

ZeHa

+OO toc a(R+ )
—— T a(f+3%) dtdz + O
I ey ™)

:F(a)/o ta—‘“dt/Rf()aRdx+o( k)




90 Alexander 1. Bufetov, David Garcia-Zelada, and Zhaofeng Lin

= Z/Rf(x)e“gj? dz + O (e_R) ,

that is,

> flar(zlh — R))

2EHa

20 i’ 1
:R/f(:v)e“Rdx—l—O<> .
ar Jr aRr

As for the variance

. ( S Flanleh - R)))

zEH o
= SB[ anl - B)] - ZE[ axpih ~ )]
n=0

the first term satisfies

;E[ﬂ(m(mg%mﬂ / Pt aro(L)

(@)
/j2 m+0<c )
CLR

The second term can be dealt with in the same way as in Subsection 2.2,

0 2
ZE[f(aR(!P%a)lh - R))}
n=0
. oo 5 2+l a(R+a) 2
_ 20 @ (1_ v
S ([ s (1 et s g

2n+1 RJFL)
42a /+OO 2 ea( R
=5 > F@)k (1 - . dz
a%% n=0 —Rag " €R+ °r + 1 (€R+G + 1>2a

set n = [te?], then

ZE{ f(ar(lpin - R))]2

B 420461% 400 400 k(a) , 9 2| tef |41
B CL% /O /RaR fe) Lte] - RJFEQ; +1

ea(R—l—i)
X 3 dx | dt.
( R+E i 1)
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Hence when R — +o0,
2
ZE[ F(ar(lp — R)) |
J2a oR oo +00 a,aR 2
~ 26 / (/ f(x)t ¢ e_4te_2aReaRdx> dt
a’R 0 —RCLR F(Oé)
420 ¢ R 400 ) o 2
—_ t*%e™o'dt (/ f(z) dx)
- R/
@)
o) o(%
222C‘+3B (o, + 1) a% |’

Therefore, we obtain
C(Oé)
xz)dx + O
R

20(0‘)
ar ( Z flar(|zlh — R))>
ZGHQ
In the case 1 < ap < ef as R — +o0, applying Soshnikov’s Theorem 2.3,
the above calculations yield that
Zeeno S (0nlleh — B)) ~ B[ ¥.cn, flonleh = B)] e |y
VVar (Xc, f(arlzh — R))) fiee

This gives that

S5 Y Hlanllh —R) - 25
R z€Ha R

9 2
R—H—oo <0 / f dl‘)
Moreover,
[ZfaRMh— —2\/ /f “Rd$—>0
R z€EH AR

hence
C(a > flar(lzln - R —2\/ /f err dz
2EH
2
R—>+oo (0 2/ f dx> ’

E| > flar(zlh — R))

ZGHQ

This completes the proof of Theorem 1.5.
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5. Proof of Theorem 1.6 (Ginibre case)

In the case 1 < ap < R as R — 400, the proof of Theorem 1.6 follows the
same steps as the proof of Theorem 1.4.
For the expectation of the random variable >, . f(ar(|z| — R)), we have

+00 +00

E Zf(aR(]z]—R)) =2R f(aR:c)dx—i—Q/ zf(arz)dz
z€G —-R —R

2R [te° 2 [teo

= un _RaRf( )dx—f—aR/_RaRxf(x)dx,
that is,
2R 1
E ;f(aR(|z| _R)| = aR/Rf(x) dz+0 (@)

As for the variance of the random variable Y ¢ f(ar(|z] — R)), we have

. (z Fan(ll - R>>)

z€G

+o00 +00 2 ?
/ / flarz) = flary)] e/ (R+ 2)(R +y)
/ 7/ (R+z)(R+y) —4(R+x)(R+y) sin?
e

.t
X 2V (Eta) (Bty) dt do dy

_=yp?
_ / —fw)’e \/(f”x) (]“”y)
7TGJR R(lR R(ZR ar “
1n £
/ m R+("R R+aR>S \/<R+#)( +L Y ) dtdxdy

R
I(R) — I(R),

where

hif = m% o / an / ﬂmﬁme”f
\/<1 " RR> (1 - RZR>

—4(R+ai) (R+ai) sin? ¢
X e ’ ’ 2\/(R+#>( ik ) dtdxdy

_ m/ /ﬂm Paye G
Ragr

7TCLR
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—4(R+ % )(R+u) sin?

-t
R+-Z)(R+u
X e 2 Itag) it )dtdxdu,

and

R+a - _(==v)?
I p—— / / / D) e
7T7TCLR Ragr Ragr

() ()

() )

R+

) () 4t d dy.

X e

Consider the integral

/RS fQ(x)e_(%_“y\/(l + RaR) (1+%)

~4( Rt ) (Rtu) sin® W

X e

8 [0,71' (R—i—%)(R—i—u)

When R is sufficiently large, the integrand is dominated by

_ 4 42
2 2 (x)e” =0 /T4 [2[) (T + [ul) ™ =2 X000 (8),

where [ = max |z|. Here we used the fact that when z € supp f,
xEsupp f

} (t)X[—RaR,—l-oo) ($)X[_R7+Oo) (u) dt dz du.

7<ifu>2 —u2+2ui—% 2 2 2 2 2 2
e \ag —e AR af <L U +2|ul|z|+|x| <e v +2[uli+1* _ €2l e—(|u\—l) )

Hence by the dominated convergence theorem, as R — 400, the integral con-

verges to

[ e e gm0 dtdzdu=7 [ o)
R3 ’ 2 Jr

It follows that when R — 400,
2R
L(R) ~ — [ f*(z)da.
aRr JR

Consider the integral

[ f(x)f(y)e_@‘:g\/ (14 ) (14 )
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—4(R+ 2 ) (R4 2L ) sin? t

R R x i)
v o)

- - dt dz dy.
XX|:0,71' <R+%)(R+%>:| (t)X[ RaR7+oo)(.T)X[ RGR,-I—OO)(U) tdx dy

When R is sufficiently large, the integrand is dominated by

DIV F 2D+ ) € 72 Xo.400) (6)-

Hence by the dominated convergence theorem, as R — 400, the integral con-
verges to

[ 1@ g dtardy = ( [ o) dx>2

It follows that when R — 400,

i~ 2 (L) =o(55).

Therefore, when R — 400,

ax (Z Flar(l] - R))) ~ 2 /R P (@) d.

a
z€G R

In the case 1 € ap < R as R — 400, applying Soshnikov’s Theorem 2.3, the
above calculations yield that

Zzeg f(aR(|Z’ - R)) - E[Zzeg f(aR(|Z’ - R))] law
\/Var zegf ar(|z| — ))) R—r+oo

N(0,1).
This gives that

\/EZJ"@RZ\ \/7

> f(ar(lz| - R))

2€G z€G
LN Ve (0,2 2(x) dx)
R—+o00 R
Moreover,

hence

\/EZfaR (2] — )—2\/2/]&]0(1‘)(1‘@

z€G

R—+o00 R

N (0,2 F2(z) dx) .

This completes the proof of Theorem 1.6.
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6. Proof of Theorem 1.7 and Theorem 1.8

6.1. A Lemma of convergence towards the Poisson point process.
The main reason why a Poisson point process appears is because we are dealing
with independent particles. Nevertheless, this is not enough. We need that each
particle escapes every bounded set and we need this to be done in a uniform way.
More precisely, we use the following lemma.

Lemma 6.1. For each R > 0, let {XéR) :n € N} be a sequence of independent
real-valued random variables. Suppose that for every compact K C R,

supP (X,SR) € K) — 0,
n>0 R—+4o00

and suppose that there is a positive Radon measure v on R such that

SECTD —

for every measurable compactly supported function f : R — [0,1). Then for every
measurable compactly supported function f: R — [0,1),

T (17 (54))| g om (- [ ra0).

Proof. For every measurable compactly supported function f : R — [0, 1), by
independence, we have

E

3 M1 1 (x7)] =TT 1 (7)) = TT (-5 ()

logE

IT (17 (34)) | = e (11 (x47)]).

n=

We can use the fact that log(l — z) = —2 + ©(x), where O(z) = O(2?) as
x — 0, to obtain that

> s (1[5 (x49)]) =~ L 1 (7)) + o (= 1 (x4)]).

|7 (X47)] < upP (X0 € swww 1) 70

and the convergence of ) >° | E [ f (X,(LR))}, we get

> (e[s (xim)]) -0 (3= s (xio)])
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0 <supE [f (Xgm)]) — .

n>0 R—+o00

This implies that

S e (1B [ ()]) - f 10

Therefore,
_ (R) _
E [go (1 Fx¢ ))] ——exp ( /Rfdz/> .
This completes the proof of Lemma 6.1. O

Corollary 6.2 (Convergence towards a PPP). Under the conditions of

Lemma 6.1. If, moreover, XF) = {X; R p e N} is a point process on R
for each R > 0. Then

x@B Y p
R—+o0

where P, is the Poisson point process on R with mean measure or intensity v.

6.2. Proof of Theorem 1.7 (hyperbolic case). Recall that (p,(la))nzo,
a > 0, is a family of non-negative independent random variables such that

Na+n+1) 201

(@) , g Llatn+1)
P R T+ 1)

(1—r)tar.

Fix a > 0, if we define x{P = (\pn )’h — R) for each R > 0 and n € N, we can
obtain that

{eF(jz]n — R) : 2 € Ho} ~ {XF) . n € N}.

We are going to show that

(X nenf Py,

For every measurable compactly supported function f : R — [0,1), a similar
argument as Section 4 gives that

[e'¢) +oo
E[f (x(0)] / / Jer/ <" ()

5 2t/ M |41 a(Rta/eR)
X <1 N elta/elt o 1) (eR—i-x/eR 4 1)20c

Q/Rf(m) dz.

R
R—+oco 4

dtdzx
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Hence by Corollary 6.2, we shall prove that for every T' > 0,

supP (X® e [-T,T]) —— 0.
n
n>0 R—+o00

When R is large enough, we have

P(X® e [-T,T])

n

4 T TD(a+n+1) (1 2 )2"“ eo(Rte/ef)
A Tl '~ e 1)
_ 2T Ta+n+1) 2 2+l 1
- e T(a)l(n+1) <  eRAT/eR 1) ca(R—T/eR)
4a+1p P(a—l—n—l— 1) <1 - 1>2n+1 L
el T(a)l(n+1) 2elt el

<

eR+z/el 4 1)2a

dx

Notice that there exists a constant C' > 0 depending only on « such that for any

n €N,
MNa+n+1)
— << (On“
T(@)l(n+1) =
and
2041
1\ 20t 1 2eR7 T 2R e
1—— = {14+ —— <e ™ME,
< 26R> < +2€R—1> =
Hence tot10
2% T
P(X() e [-T,T)) < =—== (n/ef)" e /"
elt
Since z%e~* is bounded for z > 0, we get

sup P (X,@ e [-T, T]) =0(eh).
n>0

This completes the proof of Theorem 1.7.

6.3. Proof of Theorem 1.8 (Ginibre case). Recall that (p,),>0 is a

family of non-negative independent random variables such that

2T2n+1 6—7’2

pp ~ —————dr.
n!

If we define X}LR) = R(pn — R) for each R > 0 and n € N, we can obtain that

{R(|z|—R);zeg}~{X,gR> :neN}.
We are going to show that

{X,@ n e N} # Py
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For every measurable compactly supported function f : R — [0, 1), a similar
argument as Section 5 gives that

S [ror()] =2
n=0

Hence by Corollary 6.2, we shall prove that for every T' > 0,

—+00

S )dx+;2/+oo of(x dx4>2/f

R—+o00

sup P (X,@ e [-T, T]) — 0.
n>0 R—4o0

When R is large enough, we have

n

2 T (R+ £)2n+1 T \2
(R) ¢ 1_ _2 [ BER)TT re
]P’(X e[T,T]>_R/_T B (R da

2 T 2n
41-3”(1+@) B_RQ/T _gp_ 22

' e RrZ dx
n: -T
2nT

R2n6 ‘RZ P2
S 8T 2T7€ R
n!

e [E)

n! ¢
Notice that

2T

] ()" e e
] ( )

n! {R%%ﬂ! [R%% R

where we used the Stirling’s approximation. It follows that

sup P (X,QR) c[-T, T]) — O(R7Y).
n>0

This completes the proof of Theorem 1.8.

7. The case of superexponential growth

7.1. Fluctuations in the hyperbolic case. Theorem 1.7 explains that
the limiting behavior of the point process {ef!(|z|, — R) : z € Ha} is Poisson
when R — 4o00. For a bounded measurable compactly supported function f on
R, Theorem 1.3 tells that the limiting behavior of _ 5, f(|2|n — R) is Gaussian
when R — +o00. In the case 1 < ap < eff as R — 400, Theorem 1.5 shows that
the limiting behavior of Y., f(ar(|z|ln — R)) is also Gaussian. For complete-
ness, we continue to consider the limiting behavior of >, f (ar(]zln — R)) in
the case ar > eff and ap < 1 as R — +o0.
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In the case ar > eff as R — 400, for a bounded measurable and compactly
supported function f : R — R, the limiting behavior of »_ _,, f f(ar(]zln — R))
is zero. This can be seen by

ar ( > flar(zh - R))) ———0.

ZEHC!

In fact, a similar argument as in Section 4 implies that

i X slontien ) < 3 w2 - )

z€EHa ZE'HOL

/f2 ydz —— 0.
4aR

R—+o00

We now turn to consider the case ag < 1 as R — 4oo. For a bounded
measurable and compactly supported function f : R — R, denote M the essential
right endpoint of supp f, that is,

My :=inf {M € R: f(z) = 0 almost everywhere on [M,+0o0)}.

Theorem 7.1. Suppose that ar > 0 satisfies ap < 1 as R — 4+00. Let f be
a real-valued bounded measurable function on R with compact support such that
f(M;) == lim f(z) exists and is non-zero. If R+ My/ar — 400 as R — +o0,
M,
f

then for each a > 0,
Zze?—la f(CLR(|Z|h - R)) —E [Zzeya f(aR(|z|h _ R))} -
\/V&r (Zzeﬂa f(aR(\Z|h - R))) R—+00

With the help of Theorem 7.1, we can do a more detailed discussion when
ar < 1as R — +oo.

N(0,1).

(i) In the case R™! < ap < 1, we always have R + My/ap — +0o0, so the
limiting behavior of }__ 5, f(ar(|zln — R)) is Gaussian when f(M ;) exists
and is non-zero.

(ii) Inthe case ar = R™',if My < —1, since ag(|z|n— R) > —1 except for z = 0,
doenn | (R™Y(|z]n — R)) is almost surely the zero random variable for every
R > 0;if My > —1, we have R+ M /ar — +00, so the limiting behavior of
Do eH. f(R7!(|z]n — R)) is Gaussian when f(M ;) exists and is non-zero.

(iii) In the case ag < R™L, if My < 0, since aR(|z|h — R) > —Rapr — 0 except
2 =0, .cy. f(ar(|z]n — R)) is almost surely the zero random variable for
sufficiently large R; if My > 0, we have R + My/ar — 400, so the limiting
behavior of 3., f(ar(|zln — R)) is Gaussian when f(M) exists and is
non-zero.

Question 1. For the hyperbolic situation, in the case ar = R~! and
My > —1, or agp < R~! and My > 0, does the central limit theorem also
holds without the condition that f(M ) exists and is non-zero?
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Proof of Theorem 7.1. We will use Soshnikov’s Theorem 2.3 to prove this
theorem. The calculations are similar as Section 4.
Let us first calculate the expectation

a, R +oo
> [Ganteh - )| =2 [ [ et
2€H,, Ragr \_te GRJ
(1 5 >2{t6 +WJ+1 . <R+QR)
X N —

Frar 1

Make a variable substitution by = = ary + M}, then

Iﬂzvmwrmﬂ

ZGH&

0 +o00
:4aeR+Mf/aR/ / flagy + M eyk( @)
R—My /ag /! 2 { R+Mf/aR+yJ

R+]Wf/aR+yJ +1

2 2{1‘/6 e(R+My /ar+y)
x|\1-—= 55 dt dy.
eftMy/arty 4 1 (efHMyfarcty 4 1)

Hence B
alf (M) R My /an
1 .

~

> | f(ar(zlh — R))]

z€EH

Next we shall calculate the variance

M(zﬂwwrmﬂ

2€Hq
— SB[ (anlh — B)] - ZE[ oo~ )]
n=0

For the first term, we have

.- -2
ZE[fz (ar(lp{n — R))} ~ CWQRJer/aR'
n=0

As for the second term

ZE{ ar(|p\®n — ))}2

42a > Mg 2 ntl O‘(R'i'ai)
= — Z / F@)kl (1 — R+> ( ; Z - de |
(&

2
aR =0 —Rag aR 4 1 +E + 1) «@
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set n = |teftMs/ar ]| then
2
ZE[ ar(lpl — B))]

_42aeR+Mf/aR /’+OO /Mf f( )k(a)
a af 0 —Rag ! VEMMNGRJ

R+M;/a -
( 2 >2pe S
X|1———5——

RJFE 1 (eRJr% + 1)2a

dx | dt.

Make a variable substitution by z = ary + My, so

ZE[ ar(|pi|n — R))]2

2a R+M;y/ar +oo 0 ()
=47 /0 </RMf/aR f(aRy + Mf)k{ R+Mf/aRJ
9 2{t€R+NIf/aRJ+1 oo (R+Mj fanty) 2
. <1  eR+tMyjapty | 1) (6R+Mf/aR+y n 1)2a y| dt

+1)(a+
o oRMyfag AT / / el dz dy.
4Baa+1 (e® + ev)2a+1

Notice that
+o0 (a—f—l)(z-‘,—y)
drdy =1
aa+1 / / 6"74—692““ y ’

we conclude that

. ( S Flanlleh - R>>>

ZEHC!

R+M;y/ ‘2 e el Dy
~ flap " J 70
c 4B (v, a+ / / (e + ev)2atl (e 1 av)part Y-

The above calculations yield that when R — +o0,

~0 (Var (;H: flar(|zl — R>)>> :

and then we can use Soshnikov’s Theorem 2.3 directly to get the central limit
theorem.

> | f(ar(lzln — R))]

ZEHQ

This completes the proof of Theorem 7.1. ]
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7.2. Fluctuations in the Ginibre case. Theorem 1.8 explains that the
limiting behavior of the point process {R(|z] — R) : z € G} is Poisson when
R — +o00. For a bounded measurable compactly supported function f on R,
Theorem 1.4 illustrates that the limiting behavior of ) . f(|2| — R) is Gaussian
when R — +o00. In the case 1 < ap < R as R — 400, Theorem 1.6 shows that
the limiting behavior of }__ ¢ f(ar(|z] — R)) is also Gaussian. For completeness,
we continue to consider the limiting behavior of >, . f(ar(|z| — R)) in the case
ar > Rand ap < 1 as R — +oc.

In the case ap > R as R — 400, for a bounded measurable and compactly
supported function f : R — R, the limiting behavior of __ s f(ar(|z] — R)) is
zero. This can be seen by

Var <Z f(ar(|z] - R))) ——0

R—+o00
z€G

In fact, a similar argument as Section 5 implies that

Var (Z f(aR(|Z\ — R))) < ZE [f2(aR(|Z| - R))]

z€G 2€G

2
~ R/ fA(x)dez —— 0.
ar Jr R—+o00

We now turn to consider the case ar < 1 as R — +o0.

Theorem 7.2. Suppose that ar > 0 satisfies ap < 1 as R — 4+00. Let f be
a real-valued bounded measurable function on R with compact support such that
f(M,) == lim f(z) exists and is non-zero. If R+ My/agr — 400 as R — +00,
x—M
f

then,
Y.cg f(ar(z| = R)) —E[X.cq flar(lz] = R))] 1w
\/Va]f (X.eq flar(lz] = R))) R—+400

With the help of Theorem 7.2, we can do a more detailed discussion when
ar < 1as R — +oo.

N(0,1).

(i) In the case R™! < ap < 1, we always have R + My/ap — +0o0, so the
limit.ing behavior of Y. f(ar(]z| — R)) is Gaussian when f(M ;) exists
and is non-zero.

(i) In the case ap = R, if My < —1, since ag(|z| — R) > —1 except for z = 0,
> .cg f(R7(|z| — R)) is almost surely the zero random variable for every
R > 0;if My > —1, we have R+ M /ar — +00, so the limiting behavior of
> .cg f(R7(|z| — R)) is Gaussian when f(M}") exists and is non-zero.

(iii) In the case ar < R™!, if My < 0, since ar(|z] — R) > —Rag — 0 except
z=0,Y.cqf(ar(|z] = R)) is almost surely the zero random variable for
sufficiently large R; if My > 0, we have R + My/ar — 400, so the limiting
behavior of Y. s f(ar(|z] — R)) is Gaussian when f(M}) exists and is
NON-Zero.
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Question 2. For the Ginibre situation, in the case agr = R~ and My > —1,
orar < R~Yand M ¢ = 0, does the central limit theorem also holds without the
condition that f(M ) exists and is non-zero?

Proof of Theorem 7.2. We will use Soshnikov’s Theorem 2.3 to prove this
theorem. The calculations are similar as Section 5.
Let us first calculate the expectation

2R My 9 My
B2 (et =R = 0 _RQR|f<x>|da:+a%/_Raerfu)rdx
N (Rﬂ) aa.
aR —RaR ar

Make a variable substitution by x = ary + M/, then

E [Z | f(ar(|z] = R)|)

0
:2/ |f(ary + Mg)|(R+ My/ag +y) dy
z€G

—R—My/agr

< 2| fllo (R + My /ag)*.

Next we shall calculate the variance
ar (Z flar(lz] - R)))
z€G
m /(B ) (R _e=w?
§ /R / ) o se

_ R
7raR
i) ()
—4(R+ 2 ) (Rt 2L ) sin? :
. R R 2\/ R+$) <R+%> dtdzdy = I1(R) — I(R),
where
s R—i—ai R-i-ai _==y)?
nm= [ ) ) e
R J—Rapr Ragr
() (e )
aR aRr
—4(R+ =) (R 2 ) sin? t
.. R R 2\/(R+#) (R-&-%) dt da dy,
and
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|l 2y (e 2)

() )

) (7 45) 41 4 dy

X e

M M R+-2 ) (R+-L _@—y)?
i Lol ) ) o3
RJ— 0

R(ZR —RaR

) (e 2)

It follows that

Var ( f(aR(\z| - R)))
z€G
T

(e ) (m+2)

—4(R+ 2 ) (R4 2L ) sin? t
x e U () () gy e dy.

| V

Set x = agu + My and y = arv + My, then

. (z lan(ls] - R>>>

z€G
+o00 (R+Mf/aR+u)(R+Mf/aR+v) )
/ / / fz(aRu + Mf)ei(ufv)
R—My/agr

x /(R + My /ap +u)(R + My/ag +v)

—4(R+My/agp+u)(R+Ms/ar+v)sin® L

. 2\/(R+]Mf/aR+u)(R+JMf/aR+u) dt du dv
2 +oo
Nﬁ|f(Mf AR+ My/ag) / / )’ du dv.

The above calculations yield that when R — +o0,

E Y |f(ar(zl - R)|| = ((Var<;faﬁc |2 - ))))2),

z€G
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and then we can use Soshnikov’s Theorem 2.3 directly to get the central limit
theorem.
This completes the proof of Theorem 7.2. O
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dayKryarllil nmporiecy MoayJei aJjis rimep6oJivHoro
ancamb6Jrro Ta ancamo.so 2Kinibpa
Alexander I. Bufetov, David Garcia-Zelada, and Zhaofeng Lin

Mu mocmimkyemo TouxoBuii mpomec MomymiiB ancambiro 2Kimibpa Ta ri-
repbostigHoro ancaMmo6 0. Mu 10BOAMMO, IO BJAJUHI Bifl MOYATKY KOOPIH-
HAT 1 BiJTHOCHO II€BHOI IIKAJIU IIi IIPOIECU BUSBJISIOTH IIyaCCOHOBI 1 raycosi
duaykryarii. Cepell MOXKJIMBUX IayCOBUX (DIIYKTyaIliii MA MOXKEMO 3HANTH
Olnit myM, a TakoxK raycoBi uyKTyalil 3 HeTpHBiaJbHOIO KOBapialieo Ha
JIeSIKUX TTKAJIAX.

KirrouoBi cioBa: ancam6ab 2Kinibpa, rinmepbosiunnit ancambiib, mporiec
MOJTyJIel, HOpMaJIbHUN PO3IIOis, OLIHil IyM, IyacCOHIB TOYKOBU ITPOIIEC
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