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We investigate the point process of moduli of the Ginibre and hyperbolic
ensembles. We show that far from the origin and at an appropriate scale,
these processes exhibit Gaussian and Poisson fluctuations. Among the pos-
sible Gaussian fluctuations, we can find white noise but also fluctuations
with non-trivial covariance at a particular scale.
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1. Formulation of the main results

The main results of this paper, Theorems 1.3–1.8, establish limit theorems
for additive statistics of the Ginibre ensemble and the hyperbolic ensembles,
introduced by Krishnapur, including the determinantal point process with the
Bergman kernel, which, by the Peres–Virág theorem, is the zero set of the Gaus-
sian analytic function on the unit disc.

In this section, we begin by recalling the notion of determinantal point process,
which are point processes where the correlation functions take the form of a
determinant. Afterwards, the specific examples we are interested in, namely the
Ginibre point process and the hyperbolic ensembles, are discussed. Finally, we
state the main results of this note, Theorems 1.3–1.8.

1.1. Determinantal point process. Let X be a locally compact Polish
space and B0(X) the collection of all pre-compact Borel subsets of X. We shall
denote by Conf(X), the space of all locally finite configurations over X, that is,

Conf(X) :=
{
ξ =

∑
i δxi : ∀i, xi ∈ X and ξ(∆) <∞ for all ∆ ∈ B0(X)

}
.

We shall consider this set endowed with the vague topology, i.e., the weakest
topology on Conf(X) such that for any compactly supported continuous function
f on X, the map Conf(X) 3 ξ 7→

∫
X fdξ is continuous. It can be seen that

the configuration space Conf(X) equipped with the vague topology turns out to
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be a Polish space. Additionally, it can be seen that the Borel σ-algebra F on
Conf(X) is generated by the cylinder sets C∆

n =
{
ξ ∈ Conf(X) : ξ(∆) = n

}
,

where n ∈ N = {0, 1, 2, . . .} and ∆ ∈ B0(X). Finally, a point process on X will
be a measurable map

X : (Ω,F(Ω),P)→ (Conf(X),F),

where (Ω,F(Ω),P) is any probability space. For further background, see [5,10,13].
A point process X is called simple if it almost surely assigns at most measure

one to singletons. In the simple case, X can be identified with a random discrete
subset ofX and for any Borel set ∆ onX, the number X (∆) ∈ N∪{∞} represents
the number of points of this discrete subset that fall in ∆. So, for instance, we
will use the notation {T (x) : x ∈ X } instead of the usual pushforward notation
T∗X for simplicity.

Determinantal point processes have been introduced by Odile Macchi [14]
in the seventies. We recall the definition. Let µ be a Radon measure on X
and let K : X × X → C be a measurable function. A simple point process
X is called determinantal on X associated to the kernel K with respect to the
reference measure µ if, for every k ∈ N+ and any family of mutually disjoint
subsets ∆1,∆2, . . . ,∆k ∈ B0(X),

E

[
k∏
i=1

X (∆i)

]
=

∫
∆1×···×∆k

det
[
K(xi, xj)

]
1≤i,j≤k dµ(x1) · · · dµ(xk). (1.1)

See, e.g., [1–4,9, 15–18] for further background of determinantal point process.
The moments of the linear statistics

∑
x∈X f(x) :=

∫
X fdX under a deter-

minantal point process can be calculated from (1.1). For instance, when the
kernel K is Hermitian and satisfies the reproducing property, i.e., it represents
an orthogonal projection, then

E

[∑
x∈X

f(x)

]
=

∫
X
f(x)K(x, x) dµ(x), (1.2)

and

Var

(∑
x∈X

f(x)

)
=

1

2

∫
X2

[
f(x)− f(y)

]2∣∣K(x, y)
∣∣2 dµ(x) dµ(y). (1.3)

See, e.g., [6, Proposition 4.1], [7, Lemma 8.5] and [18, formulas (4) and (5)].

1.2. The Ginibre ensemble. Consider the Gaussian measure µ on the
whole plane C given by

dµ(z) =
1

π
e−|z|

2
dm(z),

where dm is the usual Lebesgue measure. We also need to consider the space
O(Λ) of holomorphic functions on an open set Λ ⊂ C.
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In the finite-dimensional setting, the Ginibre ensemble was introduced by
Ginibre [8] as a model based on the eigenvalues of non-Hermitian random ma-
trices, and the infinite Ginibre ensemble is obtained as a weak limit of these
finite-dimensional point processes. The infinite Ginibre ensemble can be defined
as follows.

Definition 1.1 (Ginibre ensemble). The Ginibre ensemble G is the determi-
nantal point process associated to the Fock kernel, i.e., the kernel of the orthog-
onal projection of L2(C, µ) onto L2(C, µ) ∩ O(C), with respect to the reference
measure µ.

Equivalently, the Ginibre ensemble is the point process G on C such that for
any pairwise disjoint measurable subsets ∆1,∆2, . . . ,∆k of C, we have that

E

[
k∏
i=1

G(∆i)

]
=

∫
∆1×···×∆k

det
[
KG(zi, zj)

]
1≤i,j≤k dm(z1) · · · dm(zk),

where KG : C× C→ C is given by

KG(z, w) =
1

π

∞∑
n=0

znwn

n!
e−
|z|2
2 e−

|w|2
2 =

1

π
ezw−

|z|2
2
− |w|

2

2 .

1.3. The hyperbolic ensembles. For each α > 0, consider the probability
measure µα on the unit disc D given by

dµα(z) =
α

π
(1− |z|2)α−1dm(z),

and recall that O(D) denotes the space of holomorphic functions on D.

Definition 1.2 (Hyperbolic ensemble). For α > 0, the α-hyperbolic ensemble
Hα is the determinantal point process associated to the µα-weighted Bergman
kernel, i.e., the kernel of the orthogonal projection of L2(D, µα) onto the closed
subspace L2(D, µα) ∩ O(D), with respect to the reference measure µα.

Equivalently, the α-hyperbolic ensemble is the point process Hα on D such
that for any pairwise disjoint measurable subsets ∆1,∆2, . . . ,∆k of D,

E

[
k∏
i=1

Hα(∆i)

]
=

∫
∆1×···×∆k

det
[
KHα(zi, zj)

]
1≤i,j≤k dm(z1) · · · dm(zk),

where KHα : D× D→ C is given by

KHα(z, w) =
1

π

∞∑
n=0

k(α)
n znwn(1− |z|2)

α−1
2 (1− |w|2)

α−1
2

=
α

π

(1− |z|2)
α−1
2 (1− |w|2)

α−1
2

(1− zw)α+1
,
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while

k(α)
n =

α(α+ 1) · · · (α+ n)

n!
=

Γ(α+ n+ 1)

Γ(α)Γ(n+ 1)
.

For α = 1, Peres and Virág [15] showed that the zeros of the random analytic
function

φ(z) = a0 + a1z + a2z
2 + · · · ,

where ak, k ≥ 0, are independent and identically distributed standard complex
Gaussian random variables, follow the law of the 1-hyperbolic ensemble H1. Kr-
ishnapur [12] extended the result of Peres and Virág to positive integer α = m,
showing that, if Gk, k ≥ 0, are independent and identically distributed m ×m
matrices, each with independent and identically distributed standard complex
Gaussian entries, then the zeros of the random analytic function

Φ(z) = det(G0 +G1z +G2z
2 + · · · )

follow the law of the m-hyperbolic ensemble Hm.

1.4. Main results. Recall that the unit disc D endowed with the metric
dµα is the Poincaré model for the Lobachevsky plane. Our results involve the
point process formed by {|z| : z ∈ G} and the one formed by {|z|h : z ∈ Hα}, α >
0, where

|z|h = log
1 + |z|
1− |z|

is the hyperbolic distance from z to the origin.
By [9, Theorem 4.7.1], which was first noticed by Kostlan [11, Lemma 1.4] in

the case of a finite number of particles, the point process {|z| : z ∈ G} follows
the law of {ρn : n ∈ N}, where (ρn)n≥0 is a family of non-negative independent
random variables such that

ρn ∼
2r2n+1e−r

2

n!
dr.

Similarly, from [9, Theorem 4.7.1], see also [12] and [15], for α > 0, the point

process {|z| : z ∈ Hα} follows the law of {ρ(α)
n : n ∈ N}, where (ρ

(α)
n )n≥0 is a

family of independent random variables taking values in [0, 1] such that

ρ(α)
n ∼ 2

Γ(α+ n+ 1)

Γ(α)Γ(n+ 1)
r2n+1(1− r2)α−1 dr.

The asymptotic behavior of {|z| − R : z ∈ G} and of {|z|h − R : z ∈ Hα},
α > 0, as R goes to infinity and under different scalings is described in the
theorems below. Theorem 1.3 and Theorem 1.4 deal with a convergence of the
normalized process towards a Gaussian field whose covariance kernel is not the
one of the white noise. Theorem 1.5 and Theorem 1.6 deal with the intermediate
case of a convergence towards the white noise. Finally, the last two theorems,
Theorem 1.7 and Theorem 1.8, deal with the extreme case of the convergence
towards a homogeneous Poisson process.
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1.4.1. Convergence towards a non-trivial Gaussian limit

Theorem 1.3. Denote C
(α)
R = αeR/8 for each α > 0. Then for any bounded

measurable and compactly supported function f : R→ R,

1√
C

(α)
R

∑
z∈Hα

f
(
|z|h −R

)
− 2

√
C

(α)
R

∫
R
f(x)ex dx

law−−−−−→
R→+∞

N
(

0, V
(α)
f

)
,

where

V
(α)
f =

1

B(α, α+ 1)

∫
R2

[
f(x)− f(y)

]2 e(α+1)(x+y)

(ex + ey)2α+1 dx dy.

Theorem 1.4. For any bounded measurable and compactly supported func-
tion f : R→ R,

1√
R

∑
z∈G

f
(
|z| −R

)
− 2
√
R

∫
R
f(x) dx

law−−−−−→
R→+∞

N (0, Vf ),

where

Vf =
1√
π

∫
R2

[
f(x)− f(y)

]2
e−(x−y)2 dx dy.

1.4.2. Convergence towards white noise

Theorem 1.5. Suppose that aR satisfies 1� aR � eR as R→ +∞. Denote

C
(α)
R = αeR/8 for each α > 0. Then for any bounded measurable and compactly

supported function f : R→ R,√
aR

C
(α)
R

∑
z∈Hα

f
(
aR(|z|h −R)

)

− 2

√
C

(α)
R

aR

∫
R
f(x)e

x
aR dx

law−−−−−→
R→+∞

N
(

0, 2

∫
R
f2(x) dx

)
.

Theorem 1.6. Suppose that aR satisfies 1 � aR � R as R → +∞. Then
for any bounded measurable and compactly supported function f : R→ R,√

aR
R

∑
z∈G

f
(
aR(|z| −R)

)
− 2

√
R

aR

∫
R
f(x) dx

law−−−−−→
R→+∞

N
(

0, 2

∫
R
f2(x) dx

)
.

Theorems 1.3–1.6 will be obtained as corollaries of the central limit theorem
of Soshnikov.

1.4.3. Convergence towards a Poisson point process

Theorem 1.7. Let Pα/4 be the Poisson point process on R with constant
intensity α/4, α > 0. Then,{

eR(|z|h −R) : z ∈ Hα
} law−−−−−→

R→+∞
Pα/4.
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Theorem 1.8. Let P2 be the Poisson point process on R with constant in-
tensity 2. Then, {

R(|z| −R) : z ∈ G
} law−−−−−→

R→+∞
P2.

Remark 1.9. An analog of the theorems above is the case of an independent
and identically distributed sequence (Xi)i≥1 of real random variables that follows
a probability distribution µ. The analogue of Theorem 1.3 and Theorem 1.4 is
the classical central limit theorem that tells us that, for any compactly supported
function f : R→ R, we have∑n

i=1 f(Xi)− n
∫
f dµ√

n

law−−−−−→
n→+∞

N
(

0,
1

2

∫
R2

[f(x)− f(y)]2 dµ(x) dµ(y)

)
.

If these random variables admit a density ρ which is continuous at 0, we have the
convergence towards a Poisson point process, the analogue of Theorem 1.7 and
Theorem 1.8,

{nXi : 1 ≤ i ≤ n} law−−−−−→
n→+∞

Pρ(0).

Notice that we can also see, at intermediate scalings, a convergence towards the
white noise for the centered linear statistics.

2. The hyperbolic process proof of Theorem 1.3

To study the limiting behavior of the linear statistics∑
z∈Hα

f
(
|z|h −R

)
,

we start by understanding the asymptotics of its expected value. Later, we study
its limiting variance and conclude by Soshnikov’s central limit theorem [18, The-
orem 1].

We prepare two lemmas that contain some bounds that we will use.

Lemma 2.1. There exists two constants C,M > 0 such that, for every
y ≥M and t ≥ 0, ∣∣∣∣∣

(
1− 2

y + 1

)2btyc+1

− e−4t

∣∣∣∣∣ ≤ Ce−t/C

y
,

where btyc is the biggest integer that does not exceed ty.

Proof of Lemma 2.1. We can use Lagrange’s mean value theorem to control
the difference∣∣∣∣(1− 2

y + 1

)2btyc+1
− e−4t

∣∣∣∣
≤

∣∣∣∣∣∣∣∣
(1 +

1
y+1

2 − 1

) y+1
2

−
2(2btyc+1)

y+1

− e−
2(2btyc+1)

y+1

∣∣∣∣∣∣∣∣+

∣∣∣∣e− 2(2btyc+1)
y+1 − e−4t

∣∣∣∣
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=
2(2btyc+ 1)

y + 1

1

ξ
2(2btyc+1)

y+1
+1

(1 +
1

y+1
2 − 1

) y+1
2

− e

+ eη
∣∣∣∣2(2btyc+ 1)

y + 1
− 4t

∣∣∣∣ ,
where ξ ≥ e and η ≤ −A(t + 1) for some fixed positive constant A < 4 and y
large enough. The asymptotics of each of these terms as y goes to +∞ gives us
the result.

Now, notice that there exist two constants C,M > 0 such that, for every
y ≥M and t ≥ 0, we have the bounds

• 2(2btyc+ 1)

y + 1
≤ C(t+ 1), • 1

ξ
2(2btyc+1)

y+1
+1
≤ Ce−t/C ,

•

(1 +
1

y+1
2 − 1

) y+1
2

− e

 ≤ C

y
, • eη ≤ Ce−t/C ,

•
∣∣∣∣2(2btyc+ 1)

y + 1
− 4t

∣∣∣∣ ≤ C(t+ 1)

y
.

The lemma follows by noticing that there exists C̃ > 0 such that, for t ≥ 0, the

inequality (C3 + C2)(t+ 1)e−t/C ≤ C̃e−t/C̃ holds.

For the next lemma, we recall the notation

k(α)
n =

Γ(α+ n+ 1)

Γ(α)Γ(n+ 1)
.

Lemma 2.2. There exists a constant C > 0 such that∣∣∣∣k(α)
byc −

yα

Γ(α)

∣∣∣∣ ≤ { C, y ∈ [0, 1]
Cyα−1, y ∈ [1,+∞)

,

where byc is the biggest integer that does not exceed y.

Proof of Lemma 2.2. This is a consequence of Stirling’s series that tells us
that

k(α)
n =

Γ(α+ n+ 1)

Γ(α)Γ(n+ 1)
=

nα

Γ(α)
+O(nα−1) as n→∞.

The piecewise inequality comes from the fact that k
(α)
0 6= 0.

With these lemmas, it is easier to understand the asymptotics of the expected
value.

2.1. Expected value calculation for Theorem 1.3. We will show a bit
more than it is needed about the expected value asymptotics. We will see that

E

[ ∑
z∈Hα

f
(
|z|h −R

)]
= 2C

(α)
R

∫
R
f(x)ex dx+O(1).
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We begin by writing

E

[ ∑
z∈Hα

f
(
|z|h −R

)]
=
∞∑
n=0

E
[
f
(
|ρ(α)
n |h −R

)]
=

∞∑
n=0

∫ 1

0
f

(
log

1 + r

1− r
−R

)
2k(α)

n r2n+1(1− r2)α−1dr,

where we recall the notation k
(α)
n = Γ(α+n+1)

Γ(α)Γ(n+1) . If x = log 1+r
1−r −R, we get

r =
eR+x − 1

eR+x + 1
and dr =

2eR+x

(eR+x + 1)2
dx,

so that

E

[ ∑
z∈Hα

f
(
|z|h −R

)]

= 4

∞∑
n=0

∫ +∞

−R
f(x)k(α)

n

(
eR+x − 1

eR+x + 1

)2n+1
[

1−
(
eR+x − 1

eR+x + 1

)2
]α−1

eR+x

(eR+x + 1)2
dx

= 4α
∫ +∞

−R

∞∑
n=0

f(x)k(α)
n

(
1− 2

eR+x + 1

)2n+1 eα(R+x)

(eR+x + 1)2α
dx

= 4α
∫ +∞

−R

∞∑
n=0

f(x)k(α)
n

(
1− 2

eR+x + 1

)2n+1 e−α(R+x)

(1 + e−(R+x))2α
dx.

Notice that we have interchanged the summation and integration here which is
possible since f is bounded and compactly supported. Therefore, by taking n =
bteR+xc, we get

e−R E

[ ∑
z∈Hα

f
(
|z|h −R

)]

= 4α
∫ +∞

−R

∞∑
n=0

f(x)exk(α)
n

(
1− 2

eR+x + 1

)2n+1 e−α(R+x)(
1 + e−(R+x)

)2α e−(R+x) dx

= 4α
∫ +∞

−R

∫ +∞

0
f(x)exk

(α)

bteR+xc

×
(

1− 2

eR+x + 1

)2bteR+xc+1 e−α(R+x)(
1 + e−(R+x)

)2α dtdx. (2.1)

We define the functions Θ1 and Θ2 of (x, t, R) and the function Θ3 of (x,R) by

k
(α)

bteR+xc =
tαeα(R+x)

Γ(α)
+ Θ1(x, t, R), (2.2)(

1− 2

eR+x + 1

)2bteR+xc+1
= e−4t + Θ2(x, t, R), (2.3)
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1

(1 + e−(R+x))2α
= 1 + Θ3(x,R). (2.4)

By Lemma 2.2 and Lemma 2.1 (and by a standard fact for (2.4)), there exists a
constant C > 0 such that, for R large enough,

|Θ1(x, t, R)| ≤
{
C, (x, t) ∈ supp f × [0, e−R)

Ctα−1e(α−1)R, (x, t) ∈ supp f × [e−R,+∞)
,

|Θ2(x, t, R)| ≤ Ce−t/Ce−R, (x, t) ∈ supp f × [0,+∞),

|Θ3(x,R)| ≤ Ce−R, x ∈ supp f.

The inequality involving Θ1 deserves some explanation. Lemma 2.2 implies
that for any a, b > 0, not necessarily a ≤ b (in fact, we will need to use it in the
case a > b) there exists a constant C > 0 that depends on a and b and such that∣∣∣∣k(α)

byc −
yα

Γ(α)

∣∣∣∣ ≤ { C, y ∈ [0, a]
Cyα−1, y ∈ [b,+∞)

.

Let a > 0 be such that ex ≤ a for every x ∈ supp f and let b > 0 be such that
b ≤ ex for every x ∈ supp f . Then, we have∣∣∣∣k(α)

bteR+xc −
(teR+x)α

Γ(α)

∣∣∣∣ ≤ { C, teR+x ∈ [0, a]
C(teR+x)α−1, teR+x ∈ [b,+∞)

.

In particular,∣∣∣∣k(α)

bteR+xc −
(teR+x)α

Γ(α)

∣∣∣∣ ≤ { C, teR ∈ [0, 1]
C(teR+x)α−1, teR ∈ [1,+∞)

whenever x ∈ supp f . By bounding (ex)α−1 by a constant for x ∈ supp f and
choosing, in this way, a larger constant C > 0, the inequality for Θ1 is obtained.

With the help of the estimates (2.2), (2.3) and (2.4), it follows from (2.1) that

e−R E

[ ∑
z∈Hα

f
(
|z|h −R

)]

= 4α
∫ +∞

−R

∫ +∞

0
f(x)ex

tαeα(R+x)

Γ(α)
e−4te−α(R+x) dtdx+O

(
e−R

)
=

4α

Γ(α)

∫ +∞

0
tαe−4tdt

∫
R
f(x)ex dx+O

(
e−R

)
=
α

4

∫
R
f(x)exdx+O

(
e−R

)
.

That is,

E
[ ∑
z∈Hα

f
(
|z|h −R

)]
= 2C

(α)
R

∫
R
f(x)exdx+O(1).
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2.2. Variance calculation for Theorem 1.3. We now turn to calculate
the variance of the linear statistics

∑
z∈Hα f

(
|z|h −R

)
,

Var

(∑
z∈Hα

f
(
|z|h −R

))
=
∞∑
n=0

Var
(
f
(
|ρ(α)
n |h −R

))
=
∞∑
n=0

E
[
f2
(
|ρ(α)
n |h −R

)]
−
∞∑
n=0

E
[
f
(
|ρ(α)
n |h −R

)]2
.

Due to the asymptotics in Lemma 2.1 and Lemma 2.2 we can obtain a bit more

than what it is needed. For the first term
∑∞

n=0 E
[
f2
(
|ρ(α)
n |h − R

)]
, by Subsec-

tion 2.1, we have

∞∑
n=0

E
[
f2
(
|ρ(α)
n |h −R

)]
= 2C

(α)
R

∫
R
f2(x)exdx+O(1).

As for the second term
∑∞

n=0 E
[
f
(
|ρ(α)
n |h−R

)]2
, we can study it in a similar way,

∞∑
n=0

E
[
f
(
|ρ(α)
n |h −R

)]2

= 42α
∞∑
n=0

(∫ +∞

−R
f(x)k(α)

n

(
1− 2

eR+x + 1

)2n+1 e−α(R+x)(
1 + e−(R+x)

)2αdx

)2

.

Notice that the summation is outside the integration. Setting n = bteRc, we have

e−R
∞∑
n=0

E
[
f
(
|ρ(α)
n |h −R

)]2

= 42α
∞∑
n=0

(∫ +∞

−R
f(x)k(α)

n

(
1− 2

eR+x + 1

)2n+1 e−α(R+x)(
1 + e−(R+x)

)2αdx

)2

e−R

= 42α

∫ +∞

0

(∫ +∞

−R
f(x)k

(α)

bteRc

(
1− 2

eR+x + 1

)2bteRc+1 e−α(R+x)(
1 + e−(R+x)

)2αdx

)2

dt.

We define the function Θ4 of (t, R) and the function Θ5 of (x, t, R) by

k
(α)

bteRc =
tαeαR

Γ(α)
+ Θ4(t, R),(

1− 2

eR+x + 1

)2bteRc+1
= e−4te−x + Θ5(x, t, R),

so that, by Lemma 2.2 and Lemma 2.1, there exists a constant C > 0 such that,
for R large enough, we have the bounds

|Θ4(t, R)| ≤
{
C, t ∈ [0, e−R)

Ctα−1e(α−1)R, t ∈ [e−R,+∞)
,
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|Θ5(x, t, R)| ≤ Ce−t/Ce−R, (x, t) ∈ supp f × [0,+∞).

With the help of these estimates and recalling the standard estimate (2.4), it
follows that

e−R
∞∑
n=0

E
[
f
(
|ρ(α)
n |h −R

)]2

= 42α

∫ +∞

0

(∫ +∞

−R
f(x)

tαeαR

Γ(α)
e−4te−xe−α(R+x)dx

)2

dt+O
(
e−R

)
=

42α

Γ2(α)

∫
R2

f(x)f(y)e−α(x+y)

∫ +∞

0
t2αe−4t(e−x+e−y) dt dx dy +O

(
e−R

)
=

1

4Γ2(α)

∫
R2

f(x)f(y)
e−α(x+y)

(e−x + e−y)2α+1

∫ +∞

0
u2αe−u dudx dy +O

(
e−R

)
=

α

4B(α, α+ 1)

∫
R2

f(x)f(y)
e(α+1)(x+y)

(ex + ey)2α+1 dx dy +O
(
e−R

)
,

that is,

∞∑
n=0

E
[
f
(
|ρ(α)
n |h −R

)]2
=

2C
(α)
R

B(α, α+ 1)

∫
R2

f(x)f(y)
e(α+1)(x+y)

(ex + ey)2α+1 dxdy +O(1).

Therefore, we obtain

Var

(∑
z∈Hα

f
(
|z|h −R

))

= 2C
(α)
R

∫
R
f2(x)ex dx−

2C
(α)
R

B(α, α+ 1)

∫
R2

f(x)f(y)
e(α+1)(x+y)

(ex + ey)2α+1 dx dy +O(1).

By noticing that

1

B(α, α+ 1)

∫
R

e(α+1)(x+y)

(ex + ey)2α+1 dy = ex,

we may conclude that

Var

(∑
z∈Hα

f
(
|z|h −R

))

=
C

(α)
R

B(α, α+ 1)

∫
R2

[
f(x)− f(y)

]2 e(α+1)(x+y)

(ex + ey)2α+1 dx dy +O(1).

2.3. Soshnikov’s conditions and conclusion of the proof. We will use
the following central limit theorem, derived by Soshnikov [18, Theorem 1], to
prove Theorem 1.3.
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Theorem 2.3 (The central limit theorem of Soshnikov). For L > 0, suppose
that XL is a determinantal point process on a locally compact Polish space XL

with Hermitian kernel KL with respect to the reference Radon measure µL. By
slightly abusing the notation, also denote KL the associated integral operator with
integral kernel KL on L2(XL, µL), that is, KL : L2(XL, µL) → L2(XL, µL) is
defined by

KLf(x) =

∫
XL

KL(x, y)f(y)dµL(y), f ∈ L2(XL, µL),

and suppose that for any pre-compact Borel set ∆ ⊂ XL, the operator KL χ∆ is
trace-class, where χ∆ denotes the multiplication operator by the indicator of ∆.

Let fL be a real-valued bounded measurable function on XL with compact
support and consider the linear statistics SfL =

∑
x∈XL

fL(x). If

• VarSfL → +∞ as L→ +∞,

• supx∈XL |fL(x)| = o((Var fL)ε) as L→ +∞ for any ε > 0 and

• ES|fL| = O((VarSfL)δ) as L→ +∞ for some δ > 0,

then the centered normalized linear statistics converges in law to the standard
normal distribution, i.e.,

SfL − ESfL√
VarSfL

law−−−−→
L→∞

N (0, 1).

When R→ +∞, with the help of Subsection 2.1 and Subsection 2.2, we have

E

[ ∑
z∈Hα

∣∣f(|z|h −R)∣∣
]
∼ 2C

(α)
R

∫
R
|f(x)|exdx,

and

Var

(∑
z∈Hα

f
(
|z|h −R

))
∼ C(α)

R V
(α)
f .

Applying Soshnikov’s Theorem 2.3 to
∑

z∈Hα f
(
|z|h −R

)
, we get∑

z∈Hα f
(
|z|h −R

)
− E

[∑
z∈Hα f

(
|z|h −R

)]√
Var

(∑
z∈Hα f

(
|z|h −R

)) law−−−−−→
R→+∞

N (0, 1).

This gives that

1√
C

(α)
R

∑
z∈Hα

f
(
|z|h −R

)
− 1√

C
(α)
R

E

[ ∑
z∈Hα

f
(
|z|h −R

)] law−−−−−→
R→+∞

N
(

0, V
(α)
f

)
.

Moreover, it follows from Subsection 2.1 that

1√
C

(α)
R

E

[ ∑
z∈Hα

f
(
|z|h −R

)]
− 2

√
C

(α)
R

∫
R
f(x)ex dx −−−−−→

R→+∞
0,
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hence

1√
C

(α)
R

∑
z∈Hα

f
(
|z|h −R

)
− 2

√
C

(α)
R

∫
R
f(x)ex dx

law−−−−−→
R→+∞

N
(

0, V
(α)
f

)
.

This completes the proof of Theorem 1.3.

3. The Ginibre process proof of Theorem 1.4

The proof of Theorem 1.4 follows the same ideas as the proof of Theorem 1.3.
Moreover, the calculation of the variance can be nicely done using the same Rie-
mann sum’s argument as before. Nevertheless, we have decided to use formulas
(1.2) and (1.3) to emphasize a slightly different way.

3.1. Expected value calculation for Theorem 1.4. For the expectation
of the random variable

∑
z∈G f

(
|z| − R

)
, notice that, since KG(z, z) = 1/π, we

have

E

[∑
z∈G

f
(
|z| −R

)]
=

∫
C
f
(
|z| −R

)
KG(z, z) dm(z)

=
1

π

∫
C
f
(
|z| −R

)
dm(z).

By using polar coordinates and making a variable substitution, we get

E

[∑
z∈G

f
(
|z| −R

)]
= 2

∫ +∞

0
f(r −R)r dr

= 2R

∫ +∞

−R
f(x) dx+ 2

∫ +∞

−R
xf(x) dx,

that is,

E

[∑
z∈G

f
(
|z| −R

)]
= 2R

∫
R
f(x)dx+O(1).

3.2. Variance calculation for Theorem 1.4. For the variance of the
random variable

∑
z∈G f

(
|z| −R

)
, we use that

∣∣KG(z, w)
∣∣2 =

1

π2
e−|z−w|

2
,

to obtain

Var

(∑
z∈G

f
(
|z| −R

))

=
1

2

∫
C2

[
f
(
|z| −R

)
− f

(
|w| −R

)]2∣∣KG(z, w)
∣∣2 dm(z) dm(w)
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=
1

2π2

∫
C2

[
f
(
|z| −R

)
− f

(
|w| −R

)]2
e−|z−w|

2
dm(z) dm(w).

By using polar coordinates, we get

Var

(∑
z∈G

f
(
|z| −R

))

=
1

2π2

∫ +∞

0

∫ +∞

0

∫ π

−π

∫ π

−π

[
f(r −R)− f(ρ−R)

]2
e−|re

iθ−ρeiϕ|2rρdθ dϕdr dρ

=
1

π

∫ +∞

0

∫ +∞

0

∫ π

−π

[
f(r −R)− f(ρ−R)

]2
e−|re

iθ−ρ|2rρdθ dϕdr

=
2

π

∫ +∞

0

∫ +∞

0

[
f(r −R)− f(ρ−R)

]2
e−r

2−ρ2rρ

∫ π

0
e2rρ cos θ dθ dr dρ.

By the change of variables x = r −R and y = ρ−R, we have

Var

(∑
z∈G

f
(
|z| −R

))

=
2

π

∫ +∞

−R

∫ +∞

−R

[
f(x)− f(y)

]2
e−(R+x)2−(R+y)2(R+ x)(R+ y)

×
∫ π

0
e2(R+x)(R+y) cos θ dθ dx dy

=
2

π

∫ +∞

−R

∫ +∞

−R

[
f(x)− f(y)

]2
e−(x−y)2(R+ x)(R+ y)

×
∫ π

0
e−4(R+x)(R+y) sin2 θ

2 dθ dx dy.

Setting θ = t/
√

(R+ x)(R+ y), we obtain

Var

(∑
z∈G

f
(
|z| −R

))
=

2

π

∫ +∞

−R

∫ +∞

−R

[
f(x)− f(y)

]2
e−(x−y)2

√
(R+ x)(R+ y)

×
∫ π
√

(R+x)(R+y)

0
e
−4(R+x)(R+y) sin2 t

2
√

(R+x)(R+y) dt dx dy.

Consider the integral∫
R3

[
f(x)− f(y)

]2
e−(x−y)2

√
(1 + x/R)(1 + y/R) e

−4(R+x)(R+y) sin2 t

2
√

(R+x)(R+y)

× χ[
0,π
√

(R+x)(R+y)
](t)χ[−R,+∞)(x)χ[−R,+∞)(y) dt dx dy.

When R is sufficiently large, the integrand is dominated by[
f(x)− f(y)

]2
e−(x−y)2

√
(1 + |x|)(1 + |y|) e−

4
π2
t2χ[0,+∞](t),



88 Alexander I. Bufetov, David Garćıa-Zelada, and Zhaofeng Lin

hence by the dominated convergence theorem, as R→ +∞, the integral converges
to √

π

2

∫
R2

[
f(x)− f(y)

]2
e−(x−y)2 dx dy.

It follows that, when R→ +∞,

Var

(∑
z∈G

f
(
|z| −R

))
∼ R√

π

∫
R2

[
f(x)− f(y)

]2
e−(x−y)2 dx dy.

3.3. Soshnikov’s conditions and conclusion of the proof. When R→
+∞, with the help of Subsection 3.1 and Subsection 3.2, we have

E

[∑
z∈G

∣∣f(|z| −R)∣∣] ∼ 2R

∫
R
|f(x)| dx,

and

Var

(∑
z∈G

f
(
|z| −R

))
∼ RVf .

Applying Soshnikov’s Theorem 2.3 to
∑

z∈G f
(
|z| −R

)
, we get

∑
z∈G f

(
|z| −R

)
− E

[∑
z∈G f

(
|z| −R

)]√
Var

(∑
z∈G f

(
|z| −R

)) law−−−−−→
R→+∞

N (0, 1).

This gives that

1√
R

∑
z∈G

f
(
|z| −R

)
− 1√

R
E

[∑
z∈G

f
(
|z| −R

)] law−−−−−→
R→+∞

N (0, Vf ).

Moreover, it follows from Subsection 3.1 that

1√
R
E

[∑
z∈G

f
(
|z| −R

)]
− 2
√
R

∫
R
f(x) dx −−−−−→

R→+∞
0,

hence

1√
R

∑
z∈G

f
(
|z| −R

)
− 2
√
R

∫
R
f(x) dx

law−−−−−→
R→+∞

N (0, Vf ).

This completes the proof of Theorem 1.4.
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4. Proof of Theorem 1.5 (hyperbolic case)

In the case 1 � aR � eR as R → +∞, the proof of Theorem 1.5 follows the
same steps as the proof of Theorem 1.3: first we need to understand the expected
value, then to calculate the limiting variance, and finally to use Soshnikov’s The-
orem 2.3.

Let us begin by writing

E

[ ∑
z∈Hα

f
(
aR(|z|h −R)

)]

= 4α
∫ +∞

−R

∞∑
n=0

f(aRy)k(α)
n

(
1− 2

eR+y + 1

)2n+1 e−α(R+y)

(1 + e−(R+y))2α
dy

= 4α
∫ +∞

−RaR

∞∑
n=0

f(x)k(α)
n

(
1− 2

e
R+ x

aR + 1

)2n+1
e
−α(R+ x

aR
)(

1 + e
−(R+ x

aR
))2α dx

aR
.

By taking n = bteR+x/aRc, we get

aR
eR

E

[ ∑
z∈Hα

f
(
aR(|z|h −R)

)]

= 4α
∫ +∞

−RaR

∞∑
n=0

f(x)e
x
aR k(α)

n

(
1− 2

e
R+ x

aR + 1

)2n+1

× e
−α
(
R+ x

aR

)
(

1 + e
−
(
R+ x

aR

))2α e
−
(
R+ x

aR

)
dx

= 4α
∫ +∞

−RaR

∫ +∞

0
f(x)e

x
aR k

(α)⌊
te
R+ x

aR

⌋ (1− 2

e
R+ x

aR + 1

)2
⌊
te
R+ x

aR

⌋
+1

× e
−α
(
R+ x

aR

)
(1 + e

−
(
R+ x

aR

)
)2α

dtdx.

This can be done in the same way as in Subsection 2.1. Notice that x ∈ supp f
and 1� aR � eR as R→ +∞. We can show that for sufficiently large R,

aR
eR

E

[ ∑
z∈Hα

f
(
aR(|z|h −R)

)]

= 4α
∫ +∞

−RaR

∫ +∞

0
f(x)e

x
aR
tαe

α(R+ x
aR

)

Γ(α)
e−4te

−α(R+ x
aR

)
dt dx+O

(
e−R

)
=

4α

Γ(α)

∫ +∞

0
tαe−4t dt

∫
R
f(x)e

x
aR dx+O

(
e−R

)
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=
α

4

∫
R
f(x)e

x
aR dx+O

(
e−R

)
,

that is,

E

[ ∑
z∈Hα

f
(
aR(|z|h −R)

)]
=

2C
(α)
R

aR

∫
R
f(x)e

x
aR dx+O

(
1

aR

)
.

As for the variance

Var

(∑
z∈Hα

f
(
aR(|z|h −R)

))

=
∞∑
n=0

E
[
f2
(
aR(|ρ(α)

n |h −R)
)]
−
∞∑
n=0

E
[
f
(
aR(|ρ(α)

n |h −R)
)]2

,

the first term satisfies

∞∑
n=0

E
[
f2
(
aR(|ρ(α)

n |h −R)
)]

=
2C

(α)
R

aR

∫
R
f2(x)e

x
aR dx+O

(
1

aR

)

=
2C

(α)
R

aR

∫
R
f2(x) dx+O

(
C

(α)
R

a2
R

)
.

The second term can be dealt with in the same way as in Subsection 2.2,

∞∑
n=0

E
[
f
(
aR(|ρ(α)

n |h −R)
)]2

= 42α
∞∑
n=0

(∫ +∞

−R
f(aRx)k(α)

n

(
1− 2

eR+x + 1

)2n+1 eα(R+x)

(eR+x + 1)2α
dx

)2

=
42α

a2
R

∞∑
n=0

∫ +∞

−RaR
f(x)k(α)

n

(
1− 2

e
R+ x

aR + 1

)2n+1
e
α
(
R+ x

aR

)
(
e
R+ x

aR + 1
)2αdx


2

,

set n = bteRc, then

∞∑
n=0

E
[
f
(
aR(|ρ(α)

n |h −R)
)]2

=
42αeR

a2
R

∫ +∞

0

∫ +∞

−RaR
f(x)k

(α)

bteRc

(
1− 2

e
R+ x

aR + 1

)2bteRc+1

× e
α
(
R+ x

aR

)
(
e
R+ x

aR + 1
)2α dx


2

dt.
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Hence when R→ +∞,

∞∑
n=0

E
[
f
(
aR(|ρ(α)

n |h −R)
)]2

∼ 42α eR

a2
R

∫ +∞

0

(∫ +∞

−RaR
f(x)

tαeαR

Γ(α)
e−4te−2αReαR dx

)2

dt

=
42α eR

Γ2(α) a2
R

∫ +∞

0
t2αe−8tdt

(∫
R
f(x) dx

)2

=
eRα

a2
R22α+3B(α, α+ 1)

(∫
R
f(x) dx

)2

= O

(
C

(α)
R

a2
R

)
.

Therefore, we obtain

Var

(∑
z∈Hα

f
(
aR(|z|h −R)

))
=

2C
(α)
R

aR

∫
R
f2(x) dx+O

(
C

(α)
R

a2
R

)
.

In the case 1 � aR � eR as R → +∞, applying Soshnikov’s Theorem 2.3,
the above calculations yield that∑

z∈Hα f
(
aR(|z|h −R)

)
− E

[∑
z∈Hα f

(
aR(|z|h −R)

)]√
Var

(∑
z∈Hα f

(
aR(|z|h −R)

)) law−−−−−→
R→+∞

N (0, 1).

This gives that√
aR

C
(α)
R

∑
z∈Hα

f
(
aR(|z|h −R)

)
−
√

aR

C
(α)
R

E

[ ∑
z∈Hα

f
(
aR(|z|h −R)

)]
law−−−−−→

R→+∞
N
(

0, 2

∫
R
f2(x) dx

)
.

Moreover,

√
aR

C
(α)
R

E

[ ∑
z∈Hα

f
(
aR(|z|h −R)

)]
− 2

√
C

(α)
R

aR

∫
R
f(x)e

x
aR dx −−−−−→

R→+∞
0,

hence√
aR

C
(α)
R

∑
z∈Hα

f
(
aR(|z|h −R)

)
− 2

√
C

(α)
R

aR

∫
R
f(x)e

x
aR dx

law−−−−−→
R→+∞

N
(

0, 2

∫
R
f2(x)dx

)
,

This completes the proof of Theorem 1.5.
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5. Proof of Theorem 1.6 (Ginibre case)

In the case 1 � aR � R as R → +∞, the proof of Theorem 1.6 follows the
same steps as the proof of Theorem 1.4.

For the expectation of the random variable
∑

z∈G f
(
aR(|z| −R)

)
, we have

E

[∑
z∈G

f
(
aR(|z| −R)

)]
= 2R

∫ +∞

−R
f(aRx) dx+ 2

∫ +∞

−R
xf(aRx) dx

=
2R

aR

∫ +∞

−RaR
f(x) dx+

2

a2
R

∫ +∞

−RaR
xf(x) dx,

that is,

E

[∑
z∈G

f
(
aR(|z| −R)

)]
=

2R

aR

∫
R
f(x) dx+O

(
1

a2
R

)
.

As for the variance of the random variable
∑

z∈G f
(
aR(|z| −R)

)
, we have

Var

(∑
z∈G

f
(
aR(|z| −R)

))

=
2

π

∫ +∞

−R

∫ +∞

−R

[
f(aRx)− f(aRy)

]2
e−(x−y)2

√
(R+ x)(R+ y)

×
∫ π
√

(R+x)(R+y)

0
e
−4(R+x)(R+y) sin2 t

2
√

(R+x)(R+y) dtdx dy

=
2

πa2
R

∫ +∞

−RaR

∫ +∞

−RaR

[
f(x)− f(y)

]2
e
− (x−y)2

a2
R

√(
R+

x

aR

)(
R+

y

aR

)

×
∫ π

√(
R+ x

aR

)(
R+ y

aR

)
0

e

−4
(
R+ x

aR

)(
R+ y

aR

)
sin2 t

2

√(
R+ x

aR

)(
R+

y
aR

)
dtdx dy

= I1(R)− I2(R),

where

I1(R) =
4R

πa2
R

∫ +∞

−RaR

∫ +∞

−RaR

∫ π

√(
R+ x

aR

)(
R+ y

aR

)
0

f2(x)e
− (x−y)2

a2
R

×

√(
1 +

x

RaR

)(
1 +

y

RaR

)

× e
−4
(
R+ x

aR

)(
R+ y

aR

)
sin2 t

2

√(
R+ x

aR

)(
R+

y
aR

)
dtdx dy

=
4R

πaR

∫ +∞

−R

∫ +∞

−RaR

∫ π

√(
R+ x

aR

)
(R+u)

0
f2(x)e

−
(
x
aR
−u
)2
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×

√(
1 +

x

RaR

)(
1 +

u

R

)
× e
−4(R+ x

aR
)(R+u) sin2 t

2
√

(R+ x
aR

)(R+u)
dtdx du,

and

I2(R) =
4

π

4R

πa2
R

∫ +∞

−RaR

∫ +∞

−RaR

∫ π

√(
R+ x

aR

)(
R+ y

aR

)
0

f(x)f(y)e
− (x−y)2

a2
R

×

√(
1 +

x

RaR

)(
1 +

y

RaR

)

× e
−4
(
R+ x

aR

)(
R+ y

aR

)
sin2 t

2

√(
R+ x

aR

)(
R+

y
aR

)
dtdx dy.

Consider the integral∫
R3

f2(x)e
−
(
x
aR
−u
)2√(

1 +
x

RaR

)(
1 +

u

R

)

× e
−4
(
R+ x

aR

)
(R+u) sin2 t

2

√(
R+ x

aR

)
(R+u)

× χ[
0,π

√(
R+ x

aR

)
(R+u)

](t)χ[−RaR,+∞)(x)χ[−R,+∞)(u) dt dx du.

When R is sufficiently large, the integrand is dominated by

e2l2f2(x)e−(|u|−l)2√(1 + |x|)(1 + |u|) e−
4
π2
t2χ[0,+∞)(t),

where l = max
x∈supp f

|x|. Here we used the fact that when x ∈ supp f ,

e
−
(
x
aR
−u
)2

= e
−u2+2u x

aR
− x2

a2
R ≤ e−u2+2|u||x|+|x|2 ≤ e−u2+2|u|l+l2 = e2l2e−(|u|−l)2 .

Hence by the dominated convergence theorem, as R → +∞, the integral con-
verges to ∫

R3

f2(x)e−u
2
e−t

2
χ[0,+∞)(t) dt dx du =

π

2

∫
R
f2(x) dx.

It follows that when R→ +∞,

I1(R) ∼ 2R

aR

∫
R
f2(x) dx.

Consider the integral∫
R3

f(x)f(y)e
− (x−y)2

a2
R

√(
1 +

x

RaR

)(
1 +

y

RaR

)
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×e
−4
(
R+ x

aR

)(
R+ y

aR

)
sin2 t

2

√(
R+ x

aR

)(
R+

y
aR

)

× χ[
0,π

√(
R+ x

aR

)(
R+ y

aR

)](t)χ[−RaR,+∞)(x)χ[−RaR,+∞)(u) dt dx dy.

When R is sufficiently large, the integrand is dominated by

|f(x)f(y)|
√

(1 + |x|)(1 + |y|) e−
4
π2
t2χ[0,+∞)(t).

Hence by the dominated convergence theorem, as R → +∞, the integral con-
verges to ∫

R3

f(x)f(y)e−t
2
χ[0,+∞)(t) dtdx dy =

√
π

2

(∫
R
f(x) dx

)2

.

It follows that when R→ +∞,

I2(R) ∼ 2R√
πa2

R

(∫
R
f(x) dx

)2

= o

(
R

aR

)
.

Therefore, when R→ +∞,

Var

(∑
z∈G

f
(
aR(|z| −R)

))
∼ 2R

aR

∫
R
f2(x) dx.

In the case 1� aR � R as R→ +∞, applying Soshnikov’s Theorem 2.3, the
above calculations yield that∑

z∈G f
(
aR(|z| −R)

)
− E

[∑
z∈G f

(
aR(|z| −R)

)]√
Var

(∑
z∈G f

(
aR(|z| −R)

)) law−−−−−→
R→+∞

N (0, 1).

This gives that√
aR
R

∑
z∈G

f
(
aR(|z| −R)

)
−
√
aR
R

E

[∑
z∈G

f
(
aR(|z| −R)

)]
law−−−−−→

R→+∞
N
(

0, 2

∫
R
f2(x) dx

)
.

Moreover,√
aR
R

E

[∑
z∈G

f
(
aR(|z| −R)

)]
− 2

√
R

aR

∫
R
f(x) dx −−−−−→

R→+∞
0,

hence√
aR
R

∑
z∈G

f
(
aR(|z| −R)

)
− 2

√
R

aR

∫
R
f(x) dx

law−−−−−→
R→+∞

N
(

0, 2

∫
R
f2(x) dx

)
.

This completes the proof of Theorem 1.6.



Fluctuations of Moduli for Ginibre and Hyperbolic Ensembles 95

6. Proof of Theorem 1.7 and Theorem 1.8

6.1. A Lemma of convergence towards the Poisson point process.
The main reason why a Poisson point process appears is because we are dealing
with independent particles. Nevertheless, this is not enough. We need that each
particle escapes every bounded set and we need this to be done in a uniform way.
More precisely, we use the following lemma.

Lemma 6.1. For each R > 0, let {X(R)
n : n ∈ N} be a sequence of independent

real-valued random variables. Suppose that for every compact K ⊂ R,

sup
n≥0

P
(
X(R)
n ∈ K

)
−−−−−→
R→+∞

0,

and suppose that there is a positive Radon measure ν on R such that

∞∑
n=0

E
[
f
(
X(R)
n

)]
−−−−−→
R→+∞

∫
R
f dν

for every measurable compactly supported function f : R→ [0, 1). Then for every
measurable compactly supported function f : R→ [0, 1),

E

[ ∞∏
n=0

(
1− f

(
X(R)
n

))]
−−−−−→
R→+∞

exp

(
−
∫
R
f dν

)
.

Proof. For every measurable compactly supported function f : R→ [0, 1), by
independence, we have

E

[ ∞∏
n=0

(
1− f

(
X(R)
n

))]
=

∞∏
n=0

E
[
1− f

(
X(R)
n

)]
=

∞∏
n=0

(
1− E

[
f
(
X(R)
n

)])
,

and then

logE

[ ∞∏
n=0

(
1− f

(
X(R)
n

))]
=
∞∑
n=0

log
(

1− E
[
f
(
X(R)
n

)])
.

We can use the fact that log(1 − x) = −x + Θ(x), where Θ(x) = O(x2) as
x→ 0, to obtain that

∞∑
n=0

log
(

1− E
[
f
(
X(R)
n

)])
= −

∞∑
n=0

E
[
f
(
X(R)
n

)]
+

∞∑
n=0

Θ
(
E
[
f
(
X(R)
n

)])
.

Note that

sup
n≥0

E
[
f
(
X(R)
n

)]
≤ sup

n≥0
P
(
X(R)
n ∈ supp f

)
−−−−−→
R→+∞

0,

and the convergence of
∑∞

n=0 E
[
f
(
X

(R)
n

)]
, we get

∞∑
n=0

Θ
(
E
[
f
(
X(R)
n

)])
= O

( ∞∑
n=0

E
[
f
(
X(R)
n

)]2
)
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= O

(
sup
n≥0

E
[
f
(
X(R)
n

)])
−−−−−→
R→+∞

0.

This implies that

∞∑
n=0

log
(

1− E
[
f
(
X(R)
n

)])
−−−−−→
R→+∞

−
∫
R
f dν.

Therefore,

E

[ ∞∏
n=0

(
1− f(X(R)

n )
)]
−−−−−→
R→+∞

exp

(
−
∫
R
f dν

)
.

This completes the proof of Lemma 6.1.

Corollary 6.2 (Convergence towards a PPP). Under the conditions of

Lemma 6.1. If, moreover, X (R) = {X(R)
n : n ∈ N} is a point process on R

for each R > 0. Then

X (R) law−−−−−→
R→+∞

Pν ,

where Pν is the Poisson point process on R with mean measure or intensity ν.

6.2. Proof of Theorem 1.7 (hyperbolic case). Recall that (ρ
(α)
n )n≥0,

α > 0, is a family of non-negative independent random variables such that

ρ(α)
n ∼ 2

Γ(α+ n+ 1)

Γ(α)Γ(n+ 1)
r2n+1(1− r2)α−1 dr.

Fix α > 0, if we define X
(R)
n = eR(|ρ(α)

n |h −R) for each R > 0 and n ∈ N, we can
obtain that {

eR(|z|h −R) : z ∈ Hα
}
∼ {X(R)

n : n ∈ N}.

We are going to show that{
X(R)
n : n ∈ N

}
law−−−−−→

R→+∞
Pα/4.

For every measurable compactly supported function f : R → [0, 1), a similar
argument as Section 4 gives that

∞∑
n=0

E
[
f
(
X(R)
n

)]
= 4α

∫ +∞

−ReR

∫ +∞

0
f(x)ex/e

R
k

(α)

bteR+x/eRc

×
(

1− 2

eR+x/eR + 1

)2bteR+x/eRc+1 eα(R+x/eR)

(eR+x/eR + 1)2α
dt dx

−−−−−→
R→+∞

α

4

∫
R
f(x) dx.
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Hence by Corollary 6.2, we shall prove that for every T > 0,

sup
n≥0

P
(
X(R)
n ∈ [−T, T ]

)
−−−−−→
R→+∞

0.

When R is large enough, we have

P(X(R)
n ∈ [−T, T ])

=
4α

eR

∫ T

−T

Γ(α+ n+ 1)

Γ(α)Γ(n+ 1)

(
1− 2

eR+x/eR + 1

)2n+1 eα(R+x/eR)

(eR+x/eR + 1)2α
dx

≤ 22α+1T

eR
Γ(α+ n+ 1)

Γ(α)Γ(n+ 1)

(
1− 2

eR+T/eR + 1

)2n+1 1

eα(R−T/eR)

≤ 24α+1T

eR
Γ(α+ n+ 1)

Γ(α)Γ(n+ 1)

(
1− 1

2eR

)2n+1 1

eαR
.

Notice that there exists a constant C > 0 depending only on α such that for any
n ∈ N,

Γ(α+ n+ 1)

Γ(α)Γ(n+ 1)
≤ Cnα,

and (
1− 1

2eR

)2n+1

=

[(
1 +

1

2eR − 1

)2eR
]− 2n+1

2eR

≤ e−n/eR .

Hence

P(X(R)
n ∈ [−T, T ]) ≤ 24α+1CT

eR
(
n/eR

)α
e−n/e

R
.

Since xαe−x is bounded for x > 0, we get

sup
n≥0

P
(
X(R)
n ∈ [−T, T ]

)
= O

(
e−R

)
.

This completes the proof of Theorem 1.7.

6.3. Proof of Theorem 1.8 (Ginibre case). Recall that (ρn)n≥0 is a
family of non-negative independent random variables such that

ρn ∼
2r2n+1e−r

2

n!
dr.

If we define X
(R)
n = R(ρn −R) for each R > 0 and n ∈ N, we can obtain that

{R(|z| −R) : z ∈ G} ∼
{
X(R)
n : n ∈ N

}
.

We are going to show that{
X(R)
n : n ∈ N

}
law−−−−−→

R→+∞
P2.
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For every measurable compactly supported function f : R → [0, 1), a similar
argument as Section 5 gives that

∞∑
n=0

E
[
f(X(R)

n )
]

= 2

∫ +∞

−R2

f(x)dx+
2

R2

∫ +∞

−R2

xf(x) dx −−−−−→
R→+∞

2

∫
R
f(x) dx.

Hence by Corollary 6.2, we shall prove that for every T > 0,

sup
n≥0

P
(
X(R)
n ∈ [−T, T ]

)
−−−−−→
R→+∞

0.

When R is large enough, we have

P
(
X(R)
n ∈ [−T, T ]

)
=

2

R

∫ T

−T

(R+ x
R)2n+1

n!
e−(R+ x

R
)2 dx

≤ 4
R2n

(
1 + T

R2

)2n
n!

e−R
2

∫ T

−T
e−2x− x2

R2 dx

≤ 8Te2T R
2ne

2nT
R2

n!
e−R

2

≤ 8Te2T

(⌈
R2e

2T
R2

⌉)n
n!

e−R
2
.

Notice that

⌈
R2e

2T
R2

⌉n
n!

≤

(⌈
R2e

2T
R2

⌉)⌈R2e
2T
R2

⌉
⌈
R2e

2T
R2

⌉
!

= O

 e

⌈
R2e

2T
R2

⌉
√⌈

R2e
2T
R2

⌉
 = O

(
eR

2

R

)
,

where we used the Stirling’s approximation. It follows that

sup
n≥0

P
(
X(R)
n ∈ [−T, T ]

)
= O(R−1).

This completes the proof of Theorem 1.8.

7. The case of superexponential growth

7.1. Fluctuations in the hyperbolic case. Theorem 1.7 explains that
the limiting behavior of the point process {eR(|z|h − R) : z ∈ Hα} is Poisson
when R → +∞. For a bounded measurable compactly supported function f on
R, Theorem 1.3 tells that the limiting behavior of

∑
z∈Hα f(|z|h−R) is Gaussian

when R→ +∞. In the case 1� aR � eR as R→ +∞, Theorem 1.5 shows that
the limiting behavior of

∑
z∈Hα f

(
aR(|z|h −R)

)
is also Gaussian. For complete-

ness, we continue to consider the limiting behavior of
∑

z∈Hα f
(
aR(|z|h −R)

)
in

the case aR � eR and aR � 1 as R→ +∞.
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In the case aR � eR as R → +∞, for a bounded measurable and compactly
supported function f : R → R, the limiting behavior of

∑
z∈Hα f

(
aR(|z|h − R)

)
is zero. This can be seen by

Var

(∑
z∈Hα

f
(
aR(|z|h −R)

))
−−−−−→
R→+∞

0.

In fact, a similar argument as in Section 4 implies that

Var

(∑
z∈Hα

f
(
aR(|z|h −R)

))
≤
∑
z∈Hα

E
[
f2
(
aR(|z|h −R)

)]
∼ αeR

4aR

∫
R
f2(x) dx −−−−−→

R→+∞
0.

We now turn to consider the case aR � 1 as R → +∞. For a bounded
measurable and compactly supported function f : R→ R, denoteMf the essential
right endpoint of supp f , that is,

Mf := inf
{
M ∈ R : f(x) = 0 almost everywhere on [M,+∞)

}
.

Theorem 7.1. Suppose that aR > 0 satisfies aR � 1 as R→ +∞. Let f be
a real-valued bounded measurable function on R with compact support such that
f(M−f ) := lim

x→M−f
f(x) exists and is non-zero. If R+Mf/aR → +∞ as R→ +∞,

then for each α > 0,∑
z∈Hα f

(
aR(|z|h −R)

)
− E

[∑
z∈Hα f

(
aR(|z|h −R)

)]√
Var

(∑
z∈Hα f

(
aR(|z|h −R)

)) law−−−−−→
R→+∞

N (0, 1).

With the help of Theorem 7.1, we can do a more detailed discussion when
aR � 1 as R→ +∞.

(i) In the case R−1 � aR � 1, we always have R + Mf/aR → +∞, so the
limiting behavior of

∑
z∈Hα f

(
aR(|z|h−R)

)
is Gaussian when f(M−f ) exists

and is non-zero.

(ii) In the case aR = R−1, if Mf ≤ −1, since aR(|z|h−R) > −1 except for z = 0,∑
z∈Hα f

(
R−1(|z|h−R)

)
is almost surely the zero random variable for every

R > 0; if Mf > −1, we have R+Mf/aR → +∞, so the limiting behavior of∑
z∈Hα f

(
R−1(|z|h −R)

)
is Gaussian when f(M−f ) exists and is non-zero.

(iii) In the case aR � R−1, if Mf < 0, since aR(|z|h − R) > −RaR → 0 except
z = 0,

∑
z∈Hα f

(
aR(|z|h−R)

)
is almost surely the zero random variable for

sufficiently large R; if Mf ≥ 0, we have R +Mf/aR → +∞, so the limiting
behavior of

∑
z∈Hα f

(
aR(|z|h − R)

)
is Gaussian when f(M−f ) exists and is

non-zero.

Question 1. For the hyperbolic situation, in the case aR = R−1 and
Mf > −1, or aR � R−1 and Mf ≥ 0, does the central limit theorem also
holds without the condition that f(M−f ) exists and is non-zero?
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Proof of Theorem 7.1. We will use Soshnikov’s Theorem 2.3 to prove this
theorem. The calculations are similar as Section 4.

Let us first calculate the expectation

E

[ ∑
z∈Hα

∣∣f(aR(|z|h −R)
)∣∣] =

4αeR

aR

∫ Mf

−RaR

∫ +∞

0
|f(x)|e

x
aR k

(α)

bte
R+ x

aR c

×

(
1− 2

e
R+ x

aR + 1

)2

⌊
te
R+ x

aR

⌋
+1

e
α
(
R+ x

aR

)
(
e
R+ x

aR + 1
)2α dt dx.

Make a variable substitution by x = aRy +Mf , then

E

[ ∑
z∈Hα

∣∣f(aR(|z|h −R)
)∣∣]

= 4αeR+Mf/aR

∫ 0

−R−Mf/aR

∫ +∞

0
|f(aRy +Mf )| eyk(α)⌊

te
R+Mf/aR+y

⌋

×
(

1− 2

eR+Mf/aR+y + 1

)2
⌊
te
R+Mf/aR+y

⌋
+1 eα(R+Mf/aR+y)(

eR+Mf/aR+y + 1
)2α dt dy.

Hence

E

[ ∑
z∈Hα

∣∣f(aR(|z|h −R)
)∣∣] ∼ α|f(M−f )|

4
eR+Mf/aR .

Next we shall calculate the variance

Var

(∑
z∈Hα

f
(
aR(|z|h −R)

))

=
∞∑
n=0

E
[
f2
(
aR(|ρ(α)

n |h −R)
)]
−
∞∑
n=0

E
[
f
(
aR(|ρ(α)

n |h −R)
)]2

.

For the first term, we have

∞∑
n=0

E
[
f2
(
aR(|ρ(α)

n |h −R)
)]
∼
α|f(M−f )|2

4
eR+Mf/aR .

As for the second term

∞∑
n=0

E
[
f
(
aR(|ρ(α)

n |h −R)
)]2

=
42α

a2
R

∞∑
n=0

∫ Mf

−RaR
f(x)k(α)

n

(
1− 2

e
R+ x

aR + 1

)2n+1
e
α
(
R+ x

aR

)
(
e
R+ x

aR + 1
)2α dx


2

,
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set n = bteR+Mf/aRc, then

∞∑
n=0

E
[
f
(
aR(|ρ(α)

n |h −R)
)]2

= 42α e
R+Mf/aR

a2
R

∫ +∞

0

(∫ Mf

−RaR
f(x)k

(α)⌊
te
R+Mf/aR

⌋

×

(
1− 2

e
R+ x

aR + 1

)2
⌊
te
R+Mf/aR

⌋
+1

e
α(R+ x

aR
)

(e
R+ x

aR + 1)2α
dx


2

dt.

Make a variable substitution by x = aRy +Mf , so

∞∑
n=0

E
[
f
(
aR(|ρ(α)

n |h −R)
)]2

= 42αeR+Mf/aR

∫ +∞

0

(∫ 0

−R−Mf/aR

f(aRy +Mf )k
(α)⌊
te
R+Mf/aR

⌋

×
(

1− 2

eR+Mf/aR+y + 1

)2
⌊
te
R+Mf/aR

⌋
+1 eα(R+Mf/aR+y)(

eR+Mf/aR+y + 1
)2α dy

2

dt

∼ eR+Mf/aR
α|f(M−f )|2

4B(α, α+ 1)

∫ 0

−∞

∫ 0

−∞

e(α+1)(x+y)

(ex + ey)2α+1
dx dy.

Notice that
1

B(α, α+ 1)

∫ +∞

−∞

∫ 0

−∞

e(α+1)(x+y)

(ex + ey)2α+1
dx dy = 1,

we conclude that

Var

(∑
z∈Hα

f
(
aR(|z|h −R)

))

∼ eR+Mf/aR
α|f(M−f )|2

4B(α, α+ 1)

∫ +∞

0

∫ 0

−∞

e(α+1)(x+y)

(ex + ey)2α+1
dxdy.

The above calculations yield that when R→ +∞,

E

[ ∑
z∈Hα

∣∣f(aR(|z|h −R)
)∣∣] = O

(
Var

(∑
z∈Hα

f
(
aR(|z|h −R)

)))
,

and then we can use Soshnikov’s Theorem 2.3 directly to get the central limit
theorem.

This completes the proof of Theorem 7.1.
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7.2. Fluctuations in the Ginibre case. Theorem 1.8 explains that the
limiting behavior of the point process {R(|z| − R) : z ∈ G} is Poisson when
R → +∞. For a bounded measurable compactly supported function f on R,
Theorem 1.4 illustrates that the limiting behavior of

∑
z∈G f(|z|−R) is Gaussian

when R→ +∞. In the case 1� aR � R as R→ +∞, Theorem 1.6 shows that
the limiting behavior of

∑
z∈G f

(
aR(|z|−R)

)
is also Gaussian. For completeness,

we continue to consider the limiting behavior of
∑

z∈G f
(
aR(|z| −R)

)
in the case

aR � R and aR � 1 as R→ +∞.
In the case aR � R as R → +∞, for a bounded measurable and compactly

supported function f : R → R, the limiting behavior of
∑

z∈G f
(
aR(|z| − R)

)
is

zero. This can be seen by

Var

(∑
z∈G

f
(
aR(|z| −R)

))
−−−−−→
R→+∞

0.

In fact, a similar argument as Section 5 implies that

Var

(∑
z∈G

f
(
aR(|z| −R)

))
≤
∑
z∈G

E
[
f2
(
aR(|z| −R)

)]
∼ 2R

aR

∫
R
f2(x) dx −−−−−→

R→+∞
0.

We now turn to consider the case aR � 1 as R→ +∞.

Theorem 7.2. Suppose that aR > 0 satisfies aR � 1 as R→ +∞. Let f be
a real-valued bounded measurable function on R with compact support such that
f(M−f ) := lim

x→M−f
f(x) exists and is non-zero. If R+Mf/aR → +∞ as R→ +∞,

then, ∑
z∈G f

(
aR(|z| −R)

)
− E

[∑
z∈G f

(
aR(|z| −R)

)]√
Var

(∑
z∈G f

(
aR(|z| −R)

)) law−−−−−→
R→+∞

N (0, 1).

With the help of Theorem 7.2, we can do a more detailed discussion when
aR � 1 as R→ +∞.

(i) In the case R−1 � aR � 1, we always have R + Mf/aR → +∞, so the
limiting behavior of

∑
z∈G f

(
aR(|z| − R)

)
is Gaussian when f(M−f ) exists

and is non-zero.

(ii) In the case aR = R−1, if Mf ≤ −1, since aR(|z| −R) > −1 except for z = 0,∑
z∈G f

(
R−1(|z| − R)

)
is almost surely the zero random variable for every

R > 0; if Mf > −1, we have R+Mf/aR → +∞, so the limiting behavior of∑
z∈G f

(
R−1(|z| −R)

)
is Gaussian when f(M−f ) exists and is non-zero.

(iii) In the case aR � R−1, if Mf < 0, since aR(|z| − R) > −RaR → 0 except
z = 0,

∑
z∈G f

(
aR(|z| − R)

)
is almost surely the zero random variable for

sufficiently large R; if Mf ≥ 0, we have R +Mf/aR → +∞, so the limiting
behavior of

∑
z∈G f

(
aR(|z| − R)

)
is Gaussian when f(M−f ) exists and is

non-zero.
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Question 2. For the Ginibre situation, in the case aR = R−1 and Mf > −1,
or aR � R−1 and Mf ≥ 0, does the central limit theorem also holds without the
condition that f(M−f ) exists and is non-zero?

Proof of Theorem 7.2. We will use Soshnikov’s Theorem 2.3 to prove this
theorem. The calculations are similar as Section 5.

Let us first calculate the expectation

E

[∑
z∈G

∣∣f(aR(|z| −R)
∣∣)] =

2R

aR

∫ Mf

−RaR
|f(x)|dx+

2

a2
R

∫ Mf

−RaR
x|f(x)| dx

=
2

aR

∫ Mf

−RaR
|f(x)|

(
R+

x

aR

)
dx.

Make a variable substitution by x = aRy +Mf , then

E

[∑
z∈G

∣∣f(aR(|z| −R)
∣∣)] = 2

∫ 0

−R−Mf/aR

|f(aRy +Mf )|
(
R+Mf/aR + y

)
dy

≤ 2 ‖f‖∞ (R+Mf/aR)2.

Next we shall calculate the variance

Var

(∑
z∈G

f
(
aR(|z| −R)

))

=
2

πa2
R

∫ +∞

−RaR

∫ +∞

−RaR

∫ π

√(
R+ x

aR

)(
R+ y

aR

)
0

[
f(x)− f(y)

]2
e
− (x−y)2

a2
R

×

√(
R+

x

aR

)(
R+

y

aR

)

× e
−4
(
R+ x

aR

)(
R+ y

aR

)
sin2 t

2

√(
R+ x

aR

)(
R+

y
aR

)
dtdx dy = I1(R)− I2(R),

where

I1(R) =
4

πa2
R

∫ +∞

−RaR

∫ Mf

−RaR

∫ π

√(
R+ x

aR

)(
R+ y

aR

)
0

f2(x)e
− (x−y)2

a2
R

×

√(
R+

x

aR

)(
R+

y

aR

)

× e
−4
(
R+ x

aR

)(
R+ y

aR

)
sin2 t

2

√(
R+ x

aR

)(
R+

y
aR

)
dtdx dy,

and

I2(R) =
4

πa2
R

∫ Mf

−RaR

∫ Mf

−RaR

∫ π

√(
R+ x

aR

)(
R+ y

aR

)
0

f(x)f(y)e
− (x−y)2

a2
R
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×

√(
R+

x

aR

)(
R+

y

aR

)

× e
−4
(
R+ x

aR

)(
R+ y

aR

)
sin2 t

2

√(
R+ x

aR

)(
R+

y
aR

)
dtdx dy

≤ 4

πa2
R

∫ Mf

−RaR

∫ Mf

−RaR

∫ π

√(
R+ x

aR

)(
R+ y

aR

)
0

f2(x)e
− (x−y)2

a2
R

×

√(
R+

x

aR

)(
R+

y

aR

)

× e
−4
(
R+ x

aR

)(
R+ y

aR

)
sin2 t

2

√(
R+ x

aR

)(
R+

y
aR

)
dtdx dy.

It follows that

Var

(∑
z∈G

f
(
aR(|z| −R)

))

≥ 4

πa2
R

∫ +∞

Mf

∫ Mf

−RaR

∫ π

√(
R+ x

aR

)(
R+ y

aR

)
0

f2(x)e
− (x−y)2

a2
R

×

√(
R+

x

aR

)(
R+

y

aR

)

× e
−4
(
R+ x

aR

)(
R+ y

aR

)
sin2 t

2

√(
R+ x

aR

)(
R+

y
aR

)
dt dx dy.

Set x = aRu+Mf and y = aRv +Mf , then

Var

(∑
z∈G

f
(
aR(|z| −R)

))

≥ 4

π

∫ +∞

0

∫ 0

−R−Mf/aR

∫ π
√

(R+Mf/aR+u)(R+Mf/aR+v)

0
f2(aRu+Mf )e−(u−v)2

×
√

(R+Mf/aR + u)(R+Mf/aR + v)

× e
−4(R+Mf/aR+u)(R+Mf/aR+v) sin2 t

2
√

(R+Mf/aR+u)(R+Mf/aR+v)
dtdudv

∼ 2√
π
|f(M−f )|2(R+Mf/aR)

∫ +∞

0

∫ 0

−∞
e−(u−v)2 dudv.

The above calculations yield that when R→ +∞,

E

[∑
z∈G

∣∣f(aR(|z| −R)
)∣∣] = O

(Var

(∑
z∈G

f
(
aR(|z| −R)

)))2
 ,
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and then we can use Soshnikov’s Theorem 2.3 directly to get the central limit
theorem.

This completes the proof of Theorem 7.2.
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Флуктуацiї процесу модулей для гiперболiчного
ансамблю та ансамблю Жiнiбра

Alexander I. Bufetov, David Garćıa-Zelada, and Zhaofeng Lin

Ми дослiджуємо точковий процес модулiв ансамблю Жiнiбра та гi-
перболiчного ансамблю. Ми доводимо, що вдалинi вiд початку коорди-
нат i вiдносно певної шкали цi процеси виявляють пуассоновi i гаусовi
флуктуацiї. Серед можливих гаусових флуктуацiй ми можемо знайти
бiлий шум, а також гаусовi флуктуацiї з нетривiальною коварiацiєю на
деяких шкалах.

Ключовi слова: ансамбль Жiнiбра, гiперболiчний ансамбль, процес
модулей, нормальний розподiл, бiлий шум, пуассонiв точковий процес
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