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Necessary and sufficient conditions for null-controllability and approxi-
mate null-controllability are obtained for the wave equation on a half-plane.
Controls solving these problems are found explicitly. Moreover bang-bang
controls solving the approximate null-controllability problem are constructed
with the aid of the Markov power moment problem.

0. Introduction

Controllability problems for hyperbolic partial differential equation were in-
vestigated in a number of papers (see, e.g., the references in [1]).

One of the most generally accepted ways to study control systems with dis-
tributed parameters is their interpretation in the form

ij—v; = Aw + Bu, t e (0,7T), (0.1)
where T > 0, w : (0,7) — H is an unknown function, v : (0,7) — H is
a control, H, H are Banach spaces, A is an infinitesimal operator in H, B :
H — M is a linear bounded operator. An important advantage of this approach
is a possibility to employ ideas and technique of the semigroup operator theory.
At the same time it should be noticed that the most substantial and important for
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applications results on operator semigroups deal with the case when the semigroup
generator A has a discrete spectrum or a compact resolvent and therefore the
semigroup may be treated by means of eigenelements of A. These assumptions
correspond to differential equations in bounded domains only.

In this paper we consider the wave equation on a half-plane. We should note
that most of papers studied controllability problems for the wave equation dealt
with this equation on bounded domains and controllability problems considered in
context of L2-controllability or, more generally, LP-controllability (2 < p < 400)
[2-6]. But only L*-controls can be realized practically. Moreover, such controls
should be bounded by a hard constant (like in restriction (0.4)) for practical
purposes. Furthermore classical control theory started precisely from this point
view as switching controls are the ones realized in a concrete system. That is why
we build also bang-bang controls solving approximate null-controllability problem
in this paper.

Controllability problems for the wave equation on a half-axis in context of
bounded of a hard constant controls were investigated in [9, 10].

Consider the wave equation on a half-plane

— = Aw, z1 €R, x93 >0, t€(0,T), (0.2)
controlled by the boundary condition
w(z1,0,t) = d(z1)u(t), r1 €R, t€(0,T), (0.3)
where T' > 0. We also assume that the control u satisfies the restriction
u € B(0,T) = {v € L*(0,T) | [v(#)| <1 almost everywhere on (0,7)}. (0.4)

All functions appearing in the equation (0.2) are defined for ;1 € R, z9 > 0.
Further, we assume everywhere that they are defined for € R? and vanish for
z9 < 0.
Let us give definitions of the spaces used in our work. Let & be the Schwartz

space [7]

sz{weom(n@”) | Vm € N

VieN sup{‘Do‘go(x)‘ (1+ |x|2)l |z e R" Alla| < m} < +oo} ,
81 ={p €8 |suppp € R x (0,+00)}

and let 8, 8’ be the dual spaces, here D = (—id/0x,...,—i0/0z,), a =
(a1, ... ap) is multi-index, |a| =aq + -+ + ayp, | - | is the Euclidean norm.
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Denote by Hj the following Sobolev spaces:
o = {pes'| (1+1P)"” 1+IDP)"pe L @)},
1/2

dr

s 2
Il |

[ a+1e) 0+ PP oto)

Let F: 8 — 8’ be the Fourier transform operator. For ¢ € § we have

F0) () = (2m) 12 [ g0
Rn™
where (-,-) is the scalar product in R™ corresponding to the Euclidean norm. It
is well known [8, Ch. 1] that FHg = H? and ||o||5 = || Fe||°, if ¢ € Hf.
A distribution f € §' is said to be odd if (f,p(&)) = —(f, p(=¢&)), p € S.
Further, we assume throughout the paper that s < 0 and use the spaces

M = {peHxH ' |pes AJp(+0) € R},
H® = {p e H§ x H{ | ¢ is odd with resp. to T2}

1/2
with the norm ||o||® = ((H(ngS)Q + (||<,01||[5]71)2> and also the space

H, = {o e H) x HY_, | ¢ is odd with resp. to o2}

1/2
with the norm Tl = ((Ieol9)” + (le12-1)°)

Denote by A the following operator

A= ( g (1) ) . AR B, DA) =B (0.5)

and by B the operator

0
B= ( —26(21)8' ()

where § is the Dirac function. Then the system (0.2), (0.3) is reduced to the form
(0.1) with these operators A and B.

In Section 1 we obtain necessary and sufficient conditions for null-controllabi-
lity and approximate null-controllability for the system (0.2), (0.3) with restric-
tions (0.4) on the control. Controls solving the problems of null-controllability
and approximate null-controllability are found explicitly. But these controls may
have a rather complicated form.

> , B:R— H2  D(B)=R, (0.6)
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The main goal of the Section 2 is to build bang-bang controls solving the
approximate null-controllability problem. We show that this problem can be
reduced to a system of Markov power moment problems. They may be solved
by the method given in [9]. Further, we prove that solutions of the Markov
power moment problems give us solutions of the approximate null-controllability
problem (Theorems 2.3, 2.4).

In Sections 3 and 4 some auxiliary statements are proved.

1. Null-controllability problems
Consider the control system (0.2), (0.3) with the initial conditions

w(z,0) = wi(z
{ 8w(x,0)/8t _ ’U)(l) 1 €R, 3 >0, (1.1)

and the steering conditions

w(@ T) = wg(x)

0
w w : .
where w" = < w% € M5, wl = ( wOT ) € J{°. We consider solutions of the

1 i
problem (0.2), (0.3) in the space H*.

Let T > 0, w® € 3*. Denote by Ry (w®) the set of states w! € H* for which
there exists a control u € B(0,7T) such that the problem (0.2), (0.3), (1.1), (1.2)
has a unique solution.

Definition 1.1. A state w® € H* is called null-controllable at a given time
T > 0 if 0 belongs to Rr(w®) and approzimately null-controllable at a given time
T > 0 if 0 belongs to the closure of Ry(w®) in 3.

w(-, 1)
ow(-,t)/0t
the odd-extension operator with respect to zs. Evidently, w" € ETS, wl € ETS,
w(-,t) € H® (t € (0,T)). It is easy to see that control problem (0.2), (0.3), (1.1),
(1.2) is equivalent to the following problem for system (0.1):

Let w0 = Qou®, wl' = Quw’, w(-,t) = Qg( >, where € is

w(z,0) = w°, (1.3)
w(z,T) = w'.
Let us investigate this new problem. First we analyze the following auxiliary
Cauchy problem: system (0.1) with an arbitrary parameter u € B(0,7") under
initial condition (1.3).
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Applying the Fourier transform with respect to z to problem (0.1), (1.3), we
obtain the following Cauchy problem in Hg:

dv 0 1 10 0
E:(_MQ 0>v—72<1>u, te (0,T), (1.5)

v(-,0) = VU? (1.6)
where v(-,t) = Fw(-,t), t € [0,T], v° = Fw". Then the function

t
v(o,t) = X(|o|,t) vo(0) — — /2(|0|,—7’) < (1) >u(7‘) dr |, t€[0,T], (1.7)
0

sin(pt) .
_ cos(pt) —— | _ a/ot 1 sin(pt)
St = —psin(pt) cos?pt) - < (0/01) ofot > P

is a unique solut1on of (1.5), (1.6) in H,.

Put E(|z],t) = F,'2(|o],t)/(27). Tt is well known that
L [sin(olt)], ., signt H (4] — |a])
P [ - = "

where H is the Heaviside function: H({) = 1 if £ > 0 and H(£) = 0 otherwise.
Then we have

B(r. 1) = s ( a/ot 1 >signtH(|t|—|$|).

(0/ot)® ofot NG
It follows from (1.7) that
. [ sin(|olt)
w(z,T) = E(|z|, T)x wU(;r,)——gﬁ‘*1 / o] u(t)dt || . (1.9)
T2 0 cos(|o|t)

Here and further * is the convolution with respect to . With regard to Lemma
4.1 we get

wlo ) = B(ol. 7)o [Woe) - <=2 (4 ) (a] . (110)
where U(t) = u(t) (H(t) - H(t - T)), t € R
Denote for w° € H®

Rew?) = { Bal, 1)+ [W0) - =20 (1) al)] 1w e 0D}

Then Definition 1.1 is equivalent to
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Definition 1.2. A state w° € H* is called null-controllable at a given time
T > 0 if 0 belongs to Rp(w®) and approzimately null-controllable at a given time
T > 0 if 0 belongs to the closure of Ry(wP) in H®.

Obviously, the following two statements are true.

Statement 1.1. A state wy € H?® is null-controllable at a given time T > 0
iff the state w° = Qow? is null-controllable at this time.

Statement 1.2. A state wg € H?® is approzimately null-controllable at a given
time T > 0 iff the state w° = Qow® is approzimately null-controllable at this time.

Further we consider the (approximate) null-controllability problem for the
system (0.1) where w® is an odd function with respect to zs.

The following theorem give us sufficient conditions for (approximate) null-
controllability.

Theorem 1.1. For a state w® € H® assume that there exists W° € 8' such
that following conditions hold:

w0 = |$—2|W0(|x|) in HE x HS™, (1.11)
T
suppw® C [0, 7], (1.12)
T
—0
wy(r)| < a.e. on (0,T), 1.13
‘ 0( )‘ — ﬂ_r\/m ( ) ( )
d o
W) =2 (W) + [ whEk(Er)de| (1.14)
w/2 )
2 i d
where k(&,r) = —H (£(§ — 1)) Sl ada Then the state w° is
T / V€ sin? o + r2 cos? a

null-controllable at the time T. Moreover, the solution of the null-controllability
problem. (the control u) is unique and

T
wy(r) dr
u(t) :215/\/% a.e. on (0,T).
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Proof. Put )
U= ﬁ@wg. (1.15)

It follows from (1.12) and Lemma 3.2 that suppY C (0,T) and

U(t) =2t a.e. on (0,7).

T

/Wg( ) dr
/ 2 — 2
Denote u(t) =U(t), t € (0,T). Due to (1.13) we obtain |u(t)| < 1 a.e. on (0,7T).
Applying Lemma 4.2 and (1.15), we have

_ d |_ _ d
W= o [ whon(e ) | = oo ivg -

L

U
V2T

—0o0

Finally, taking into account (1.10), (1.11), (1.15), we get that w(z,T) = 0 for
the found control u where w is a solution of the Cauchy problem (0.1), (1.3).
Invertibility of the operator ® (see Sect. 4) implies uniqueness of the control u
solving the null-controllability problem.

Thus the state w® is null-controllable at the time T that was to be proved.

The following theorem asserts that conditions (1.11)—(1.14) are not only suf-
ficient but also necessary for (approximate) null-controllability.

Theorem 1.2. If a state w° € HS is approzimately null controllable at a given
time T > 0 then there exists W° € 8' such that conditions (1.11)—(1.14) hold.

Proof Foreach n € N there exists a state w* € Rp(w) such that
lw"™||* < 1/n. With regard to (1.10) for some u,, € B(0,T’) we have

Wa) = B(ol. 7)o« [we) - o= (0 Y|, tem

where U, (t) = up(t) (H(t) — H(t — T)). Using Lemma 4.4, we obtain

1 z2 un 0 . o
—_— H. 1.1
o] <UT,L>(|(L‘|)—>W as n — 0o in (1.16)
0_ %20

Therefore w ﬂw (Jz]). According to the Lemma 3.2 suppwy C [0,7]. Thus
x

(1.11), (1.12) are true. Denote ®U,, = h{}, ®U), = h}. Taking into account Lemma

4.3, we obtain
T

hy| < ———
wrvT? — r2

, r e (0,7). (1.17)
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Let an arbitrary € > 0 be fixed, V(¢) = {z € R? | |z| < e}. Tt follows from (1.16)
that
A (|z]) — W (|z)) asn —» oo in §'. (1.18)

Since hZ(|z|) € L? (R?\V (¢)) and § is dense in L? (R?) we obtain
hg(lz)) — wh(jz])  as n — oo in (L2 (R*\V(e)))".

By the Riesz theorem we conclude that wy(|z|) € L? (R?\V(e)) and
Wy € L?(e,+00). Taking into account arbitrariness of € > 0 and (1.17), we get

d
(1.13). We have A} = @5@—%3. Due to Lemmas 3.1, 4.2 and (1.17) we get

(1.14). The theorem is proved.
2. Bang-bang controls and the Markov power moment problem

The solution of the null-controllability problem (i.e., the control) found in
Sect. 1 may be too complicated for the practical purposes. In this section we
find bang-bang controls solving the approximate null-controllability problem.We
consider a system of Markov power moment problems and show that their bang-
bang solutions are solutions of the approximate null-controllability problem.

Consider control system (0.1), (1.3) and assume that for 7 > 0 and w° € H*
conditions (1.11)—(1.14) hold. According to Theorem 1.1 there exists u € B(0,T)

such that
—0 1
w0 —

v (<I>Z/l>( ), (2.1)

where U(t) = (t) [H(t) — H(t — T)]. With regard to Lemma 4.1 and (1.11) we
get

1 T [ sin(|olt)
V(o) = Lo / ol | d,
T 0 cos(|o|t)
where v° = FQouw?. Put
1 T [ sin(pt)
= E/ (w(t) — u(t)) dt. (2.2)
0 cos

Then for system (1.5), (1.6) we get
v(0,T) = X(|o|, T)iozh(|o], u).

With regard to (1.7) and Lemma 4.4 we conclude that

Iv(o,T)[, < VAT? + 6 [lioah(lo|, u)], -
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We have
9 o0
(llioahs (ol ;)" = / (1+0%)" |hillolwpPdp,  j=0,1.
0

Hence
1/2

1% .
oD, < VAT 46 [ 3 [ (142) P hsllol wlP ot dp ) . (23
0

Thus we have proved

Theorem 2.1. Assume that T > 0 and for a state w® € H* conditions (1.11)-
(1.14) are fulfilled. Then the following two assertions hold:

i. w0 is null-controllable at the time T iff there exists u € B(0,T) such that
h(p,u) =0 on R;

ii. w¥ is approvimately null-controllable at the time T iff for each € > 0 there

ezists us € B(0,T) such that

(L4 0%)"7 |hj(|ol, u)|? p?dp < €2, j=0,1. (2.4)

Moreover, if estimate (2.4) is true then

Iw (-, T)I” = [v(, T)], < meV4T? + 6, (2.5)
where w and v are solutions of (0.1), (1.3) and (1.5), (1.6), respectively.
Due to the Wiener—Paley theorem we conclude that h(p,u) is an entire func-

tion with respect to p. Let us expand it in the Taylor series. To do this we
calculate h(™(0,u) (we consider the derivatives with respect to p). Put

T sin(pt)
Po=t [T Jawa Wl =5, @)
0 cos(pt)

Evidently ¥ is also entire. With regard to (1.11) and Lemma 4.1 we get
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According to (1.11), (1.12) and (1.14), we conclude that

(1) dt

wo(r) = (H(r)—H(r—T)) N (2.8)
W) = W)+ / W(E)k(E ) de. (2.9)

Obviously, supp w) C [0,T]. It follows from (1.12) that suppw} C [0, T]. Taking
into account

T /2
2T/ / sin? a do e
™ E\/T? — &2 / VE2sin? o + 12 cos? o
T
T 1 T+ VT2 — r?
r — T — _
/ &/T7—¢ z
and (1.13), (1.14), we get
[d T TV’
t
~0
[wo(r)| < —— =—In|[—— (-) -1], re(0,7T), (2.11)
12 — 2 r r
/ V r
T w/2
T 1 da
~0
()| < 7+—/ de
[#itr)] mrVT?2 —r2  m ) qf\/T? — &2 / VE2sin? a + 72 cos? o
T
T T+ VT2 —r?
L Y s e B O A (2.12)
ar/T2 —r2  2r —VT? — 72

Taking into account (2.11), (2.12), (2.6), we obtain ¥°(2™+1)(0) = 0:

1 d2m

~0(2m)
v (0) T dem

/irpcoscpd(p WO(T)dT
p=0

m

/cos wdyp | r*"%0(r) dr

[\
e 10

™

_ ED"p <m +% %) Zoﬁmﬂwo(r) dr, (2.13)
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where B(:,-) is the Euler beta-function. Therefore

o

soem) gy - D™ g 11 /2m+2—0

v ™ (0) T@mt2) +2 5 r wo(r) dr.
0

With regard to (2.9) we have

oo
_1\m
wem gy = D B(m+1 1) / r?" g0 (r) dr
0

+ [ PP W(ER(E, ) dE dr
[ ]

r

Since )
/2
/\/§2sm a+r?cos?ada = / t* di
\/52 _ t2\/t2 )
then
£ £ 5
/r2m+1k(f rydr = =2 4 gli/ 2m—H/ f d dr
J ) wédé / \/52—t2\/t2—7"2
w/2 w/2
2m+1 2 1d 2m+3 2m+3 2m+1
—£ £d£ ¢ Q/Jdi/) sin pdyp
——£2m+1+MB m+1,1 B m+2,1 :
2m 2 2
Therefore
~ —-1)™(2m + 3 11 1 1
e = CEEB (ma i) B (m1.g) B ()
o0
X /r2m+1W8(7’) dr.
0
Put

Wy, = /’I“n+1W8(’F) dr. (2.14)
0
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Hence
~0(2m) _ o pym Cm =1
~0(2m) _ (=)™ (@2m 42!
i (0) T (2m+ DI (2.16)
We have
R (0,u) =0, (2.17)
and h(®™)(0,u) = 0 iff
(" f
—  350(2m) — 2m+1
0 vo " (0) + o+ 1 /t u(t) dt, (2.18)
0
T
0 = e Q) (—1)m / 2ma(t) dt. (2.19)
0
Thus
R (0,u) =0, (2.20)
iff
T
/t”u(t) dt = Wy, n =0, 0o, (2.21)
0
where
_ _ (@2m+2)!
wom = mfmm ) (2-22)
_ 2m + 1)!!
Wom—+1 wu&m—i—l . (2.23)

According to Theorem 2.1, we obtain that the state w” is null-controllable at
the time 7T iff (2.21) is valid.

The problem of determination of a function v € B(0,T) satisfying condition
(2.21) for a given {w, },~, and T > 0 is called a Markov power moment problem
on (0,T) for the infinite sequence {@p},~,.

Uniqueness of the solution of the null-controllability problem yields uniqueness
of the solution of the Markov moment problem (2.21) (see Theorem 1.1). Hence
u = U is the unique solution of this Markov moment problem.

Thus we have proved
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Theorem 2.2. Assume that T > 0 and for a state w® € H* conditions (1.11)-
(1.14). Assume also that {@w,} 2 is defined by (2.14), (2.22), (2.23). Then
Markov power moment problem (2.21) on (0,T) for {wy},>, has a unique solu-
tion. Moreover, this solution is a solution of the null-controllability problem for
w? at the time T.

Consider (2.21) for a finite set of n:

T
/t”u(t) dt = Wy, n=0,N. (2.24)
0

The problem of determination of a function u € B(0,T') satisfying condition
(2.24) for a given {wn}r]:fzo and T > 0 is called a Markov power moment problem
on (0,T) for the finite sequence {@,}_,.

Obviously, v = @ is a solution of this problem, but it is not unique.

Let us show that solutions of moment problem (2.24) for various N give us
controls solving the approximate null-controllability problem.

Theorem 2.3. Let T > 0, w’ € H*, s < —1. Let also conditions (1.11)-
(1.14) be fulfilled and {wy,},-, be defined by (2.14), (2.22), (2.23). Then Ye >0
there exists N > 0 such that for each solution uy € B(0,T) of moment problem
(2.24) the corresponding solution w of control system (0.1), (1.3) satisfies the
condition ||w(-,T)|° < .

Proof Let N=2K+1, uy € B(0,T) be a solution of problem (2.24).
With regard to (2.20) and (2.21) for the function h(p,u) defined by (2.2) we get

R™M(0,uy) =0, n=0,2K+1.

By the Taylor formula for |p| < a we obtain

2K 42
1-jp a 1-j1 . (2K+2) .
P Ihj(pyun)| < oy sup | (& 7R (&un)|,  7=0,1
‘ J ‘ (2K+2)! €|<a ( ])
Taking into account (2.2), we conclude that
2K 43
15y, (2K+2)‘ T —0.1
‘(5 ](ga’U'N)) _7T(2K—|-3), J )
Hence (Ta)2+2
; T (Ta
=ip. DG St 1 =0,1 <a.
‘p ](pauN)‘_ﬂ_(2K+3)!a J )L |p|—a’
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Then

a (Ta)2K+3

a
[ @) by unl? o do <
0
With regard to (2.2) we get

|p' hi(pun)| <=,  §=0,1, p>0.

Sl R

Therefore

0
/ (1+ %) |hj(p,un)|? o dp
Ta2(s+1)

o0
T 2\ S
<z <0
_7r/(1+p) pp < 2m(s+ 1)’
a

Taking into account (2.25), we obtain

o0
. Ta)2K+3 Ta2(s+1)
1402 |h, 2 g < U - =0,1
0
Due to Theorem 2.1 and (2.3) we conclude that
a(Ta)2K+3 Ta2(s+1)
S|P < V21?2 — 2.2

Applying the Stirling formula, we have

(Ta)?K+3 Tae \*5T3 1
< — ———
2K +3) = (2K+3> V212K + 3)

Setting a = (2K + 3)/(2Te), we obtain from (2.26) that

2K + 3 T 2K + 3\ 2512
(DI < VaT2 3 | 22t ( +) L 0as K oo,

TedK+2 254+ 2\ 2Te¢

(2.27)
The theorem is proved.

Denote

BN0,T7) = {ueB(0,T)|3T, € (0,T)(Ju(t)] =1 ae. on (0,T%))
(u(t) =0 a.e. on (Ty,T))

(u has no more than N discontinuity points on (0,7%))}.
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It is well known [11, 12] that if Markov power moment problem (2.24) is solv-
able then there exists its solution u € BN (0, T). Taking into account Theorem 2.3,
we conclude that under the conditions ot this theorem we can find a solution
ug € BAEFL(0,T) of Markov power moment problem (2.24) for N = 2K + 1
and such solutions {uk}%_; give us bang-bang controls solving the approximate
null-controllability problem (see also (2.27)).

Thus the following theorem is true.

Theorem 2.4. Let T > 0, w° € H®, s < —1. Let also conditions (1.11)~(1.14)
be fulfilled and {@,},> , be defined by (2.14), (2.22), (2.28). Then VK € N there
exists a solution ug € B2K+1(0,T) of moment problem (2.24) with N = 2K +1.
Moreover, for this uk the corresponding solution w of control system (0.1), (1.3)
satisfies the estimate

Iw(, DI” < v2T* +3

— 2.28
TedK+2 25 + 2 2Te ( )

9K + 3 T <2K+3>25+2]

Let us show that the condition s < —1 of Theorems 2.3, 2.3 is essential.
Precisely if —1/2 < s < 0 then 3w’ € H® VT > 0 Yu € UnyenBY(0,7) Jeo > 0
such that for a solution w of (0.1), (1.3), corresponding to the control u we have
Ilw(-,T)|I* > £o. Thus the state w° is not approximate null-controllable at the
time T' by bang-bang controls in space H®, if —1/2 < s <0.

Example 21. Let -1/2<s<0,T >0,

(L‘QT

5 = z|) — H(|z| —
W) = g H(el) — H(e] - 7)),
wi(z) = = [H(je]) ~ H{(|z| ~T)].
2m\/ (T2 — [a]?)°
Obviously, w’(z) = %@ ( g, ) (lz]), where U(t) = %[H(t)—H(t—T)].

Therefore w® € H* satisfies (1.11)—(1.14). Let v € BN (0,T), n € N. Hence

N

u(t) = (~DF[H(E—t) — H(t — tgp1)],
k=0

where a = +1, 0=ty < t; < ty--- <tIN41 =T, <T, Z/l(t) = [H(t) —H(t—T)].

Let w be a solution of (0.1), (1.3) corresponding to the control u. According to

(1.10), we have

VI E(|z],~T) * w(z, T) = %@ < g:Z, ) (2)).
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Put a = n/(12T"). With regard to Lemma 4.4 we get

e ( o ) ()

S

[l (2, T)|I” >

1
V2rVAT? + 6

o0

1 —1/2
ZﬁV4T2+6 /(1+p2) /

0

| T
= v +;/25\/4T2+6 / 0/ sin(pt) (a(t)_u(t)> a dp

oo 1/2
- s | [ @0 )

We have
70 0 (- u) (p)‘Z dp > i /oo (H(t+T) — H(t = T))|? dt = % (2.30)

On the other hand

a a N 2
~ 2 3 1
[lse@-u)w)| a<? | (; > leos(tip) - cos(tk+1p)|> dp
Za a k=0
a 2
= g / z g: sin LH — Ik sin L—H + b d
m o) P 2 P 2 P
k=0
0
a N 9 9 2 9
6 tk+1 - tk 3T a T
< — =) dp< = —. 2.31
= 7r/ (kzo 2 P="9r T3 (2:31)

0
Comparing (2.29), (2.31), we obtain

P> Va
V21T + a2V4AT? 1 6

That was to be proved.

T

> g (232
= a@rr 1ot 0 (2:32)

/T T
2 8

lIw (-, T)

108 Journal of Mathematical Physics, Analysis, Geometry , 2005, v. 1, No. 1



On controllability problems for the wave equation on a half-plane

3. Operators ¢ and ¢*

In this section we introduce and study operators ® and ®*.
Let the operator ®* : § — & be defined by the rule

\f/ H(r tZt__:Z o (r)ydr,  pES. (3.1)

Obviously, (®*p \/7/ '(tsina) da, ¢ € 8. Hence ®*p € 8, if ¢ € 8.
It is easy to see that ®*7" : § — 8 can be defined by the rule

(2 1) \f/H r__; bty dt,  peS. (3.2)

It is clear that @* L \/7 / Y(tsina)sinadao, ¢ € 8, and ®* 1) €

S, if ¢ € 8. Thus
d*(8) =8 = d* ().

Let the operator @ : 8’ — 8’ be defined by the rule
(@f,0) = (f,2%p), pes, fes.

Obviously, ®~! is defined by

(@ 'f,9) = (f, <I>*’1<p) . pes, fes.

Thus
o8 =8=a1(8).
One can easily show that the following three lemmas are true.

Lemma 3.1. If f,, — f asn — oo in §' then ®f, — ®f and ®~'f, —
O~ 'f asn — oo in 8.

Lemma 3.2. Let 0 < A < +oo, f € §, suppf C [0,A] and Va € (0,A)
f € L'(a, A). Then supp®f C [0, A] and

\/5 \/ﬂi r € (0,4).
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Lemma 3.3. Let 0 < A < +o0, g € §, suppg C [0,A] and Va € (0, A)
g € L'(a, A). Then supp®~'g C [0, A] and

f/m, t € (0,A).

4. Auxiliary statements

In this section we denote by 8, the space of functions ¢ € § defined on R” | if
we want to indicate the dimension. For each functional f € 8/, supp f C [0, 4+00),
we can define f(|z|) € 8, by the rule

(f (=), ¥ (=) = (f(r),rS:[¢]) (4.1)

where S,.[¢] = fozﬁz/)(r cos a, rsina) da, r € R. Obviously, if 1) € 89 then S,[¢] €
81.

To prove conditions for (approximate) null-controllability we need the follow-
ing four lemmas.

Lemma 4.1. Let T > 0, u € B(0,T), U(t) = u(t) [H(t) — H(t — T)], o € R?,
z € R2. Then

T [ sin(|oft) e 2
g1 iag/ o] u(t)dt| = §H<I> ( 0 > (|z]). (4.2)

0 cos(|olt)
sin(pt)
Proof. Denoteh(p,t)=| H(p). We have
cos(pt)

T T
g1 [iag/h(a,t)u(t) dt] _ 8%9—1 |:/h(a,t)u(t) dt] . 43
0

0

For each ¢ € 89 we get

T T
(3*1 {/ h(|ol, t)ul(t) dt] ,w) = (/ h(p, t)u(t) di, pS, ["ﬂpl)
0 0

00 T
= / ( / h(p, t)u(t) dt) pSp [Fel dp,
0 0
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where Z means the complex conjugation of z. Since pS, [F¢| € 81 we obtain

T 00 o0
(3‘1 L/ h(|o|, t)u(t) dt] ,w) = 0/Ll(t)o/h(p,t)U(t)pSp [Feldpdt
- (uof), [ o.tuttps, 5 dp)
= - < Z/Ll{/((tt)) > a/Sin(pt)Sp [§W] dp)
0
_ U(t) sin(|ot)
() / o T91) d“)

_ < i)/gv [Smaat](m)go(x)dx>.(4.4)

With regard to (4.4) and (1.8) that gives

T 00
(91 |:/h(g,t)u(t) dt] ,¢> __ (( L?/lf,(é)) ) / %T&M dr) .

0
(4.5)

Consider the operator ¥* : § — § such that
w/2

,u(r) dr = / p(tsina) de, W ES.
0

_ [ H(t—r)

It is clear that if 4 € 8 then U*y € 8. Denote by ¥ the operator ¥ : § — §
such that

(Uf,p) = (f,¥*u), pes, fes.

Evidently, if supp f C [0,+0o0) (f € 8') then supp¥f C [0,+00). One can see

d
that @ = —\/Ed—\ll All this implies that
r

-1 |:/Th(g,t)u(t) dt] = —8%2\1/ < LL[{, > (ll) = %%‘1’ ( Z' ) (Iz1)-

0

That was to be proved.
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Lemma 4.2. Let f € §', supp f C [0,+00) and Ya > 0 f € L'(a,+o0). Then

(@i@ 1f>( )= lf(r)—l— / f(g)k(g,r)dg] , (4.6)
sin® avdov
where k(§,r) = E—r) / N T p—

Proof. Foreach ¢ €8 we have

d . d
d—o = — O —PTp | . 4.7
(25507 00) = (2 50 (@)
With regard to (3.1), (3.2) for & > 0 we get

¢ -
<<I>* l%é* )(f) = % ; di {t / @tgr)cig} dt
0

¢
21d d o' (r) dr
= —-— [ V& -t’— —| dt
wfd{()/ ¢ tdtlo V2 — 2
¢
21d/5 ,()/ 2 dt
= —Zz r
nedt Jy ¥ NN
21d ; i
- 222 2 2 cos2
= nide / /\/f sin? o 4 r2 cos? a da dr
0
w/2

. 2 d
= ¢+ / / S ade dodr.
VE2sin® a + r2 cos? a

Taking into account (4.7), we obtain

<<I>jtq> L ) - (faw'(ﬁ)Jr/tp'(r)k(f,r)dr)
— (;i |:f(’f')+ / f(f)k(f,r)d§] ,(p)_ (4.8)

Hence (4.6) holds, and the lemma is proved.
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Lemma 4.3. Let uw € B(0,7), U(t) = u(t)[H(t)—H({t—T). Then
supp ®U C [0,T] and

V2T
[(®U) (r)] < \/WT

Proof. According to the Lemma 3.2, we obtain supp ®U C [0,7"]. We also

have that
2
\/7527 r € (0,T).

€ (0,7). (4.9)

Denote fy(r) = ' (t) f(r)= ' ULS (r € (0,77)
One can see that
fu(r) = f(r) asn — oo, r€(0,T]. (4.10)

First let us prove that Vry € (0,T) Ve € (0,7 — ro) we have
fr(r) = f'(r) as n —» oo, on [rg,T — €. (4.11)

Let Vrg € (0,T) Ve € (0,T — rg) be fixed. We have
T

, u(r) u(t) dt
filr) =~ s l/n)/ e 2
Let n > m > 0 be large enough. Denote
_ u(r)
9:(&) \/7“2 ~ = Ln)?
T

+ (r— l/n)/ s (:‘(_t)ld/tn)2)3/2 , E€[r—1/n,r —1/m)].

r

Applying the mean value theorem to g,(£¢) (with respect to &), we get
[fn(r) = fm()] = lgr(r = 1/n) —gr(r —1/m)|

T
3 +/ t2 +2¢2 11
et 1y | (02— 2P (r2—g2)’2| \m n

IN

m r

26 (r2 — €2) + (T —r) (T% +2¢2) | 2
c o [EE@)r@on i)
gelr—2r—21 | (r? —&?) m
3
< 17T —0 asm — oo, r€rg, T —¢l.

m7/2r,
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With regard to (4.10) we conclude that the consequence {f}},°; uniformly
converges on [rg, T — €] and (4.11) is true.
Finally let us prove (4.9). Due to (4.12) we have Vr € (0,7

1
"(p < —
N T N T as n — oo.

(r—1/n)\/T?2 —(r —1/n)2 VT2 —1r2

Taking into account (4.11), we conclude that (4.9) holds that was to be proved.
Lemma 4.4. If f € Hj x ng and g = Ff then

£z, ) « FII° = D3(o], )9l < V4> + 69l = V4> + 6] FI°, ¢ E(R )
4.13

Proof ©Forall té&R we have

£l 8) « fI° [%(lol, )9l

[H( —I(;Olz(if(hglt) >9°ms + % g1

cos(|o|t)
? 2
) + (llgnl2,)

< 2(#* 4+ 1) we obtain (4.13). The lemma is proved.

IN

S
1/2
sin(joft) ||°
5 91
o]

IN

S

V2190l° + (

: 2
Since (1 + |o?) M‘

o]
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