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Necessary and su�cient conditions for null-controllability and approxi-

mate null-controllability are obtained for the wave equation on a half-plane.

Controls solving these problems are found explicitly. Moreover bang-bang

controls solving the approximate null-controllability problem are constructed

with the aid of the Markov power moment problem.

0. Introduction

Controllability problems for hyperbolic partial di�erential equation were in-

vestigated in a number of papers (see, e.g., the references in [1]).

One of the most generally accepted ways to study control systems with dis-

tributed parameters is their interpretation in the form

dw

dt
= Aw+Bu; t 2 (0; T ); (0.1)

where T > 0, w : (0; T ) �! H is an unknown function, u : (0; T ) �! H is

a control, H, H are Banach spaces, A is an in�nitesimal operator in H, B :

H �! H is a linear bounded operator. An important advantage of this approach

is a possibility to employ ideas and technique of the semigroup operator theory.

At the same time it should be noticed that the most substantial and important for
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applications results on operator semigroups deal with the case when the semigroup

generator A has a discrete spectrum or a compact resolvent and therefore the

semigroup may be treated by means of eigenelements of A. These assumptions

correspond to di�erential equations in bounded domains only.

In this paper we consider the wave equation on a half-plane. We should note

that most of papers studied controllability problems for the wave equation dealt

with this equation on bounded domains and controllability problems considered in

context of L2-controllability or, more generally, Lp-controllability (2 � p < +1)

[2�6]. But only L1-controls can be realized practically. Moreover, such controls

should be bounded by a hard constant (like in restriction (0.4)) for practical

purposes. Furthermore classical control theory started precisely from this point

view as switching controls are the ones realized in a concrete system. That is why

we build also bang-bang controls solving approximate null-controllability problem

in this paper.

Controllability problems for the wave equation on a half-axis in context of

bounded of a hard constant controls were investigated in [9, 10].

Consider the wave equation on a half-plane

@2w

@t2
= �w; x1 2 R; x2 > 0; t 2 (0; T ); (0.2)

controlled by the boundary condition

w(x1; 0; t) = Æ(x1)u(t); x1 2 R; t 2 (0; T ); (0.3)

where T > 0. We also assume that the control u satis�es the restriction

u 2 B(0; T ) =
�
v 2 L2

(0; T ) j jv(t)j � 1 almost everywhere on (0; T )
	
: (0.4)

All functions appearing in the equation (0.2) are de�ned for x1 2 R, x2 � 0.

Further, we assume everywhere that they are de�ned for x 2 R
2 and vanish for

x2 < 0.

Let us give de�nitions of the spaces used in our work. Let S be the Schwartz

space [7]

S =

n
' 2 C1

(R
n
) j 8m 2 N

8l 2 N sup

n���D�'(x)
��� �1 + jxj2

�l j x 2 R
n ^ j�j � m

o
< +1

o
;

S+ = f' 2 S j supp' 2 R � (0;+1)g

and let S0, S0+ be the dual spaces, here D = (�i@=@x1; : : : ;�i@=@xn), � =

(�1; : : : �n) is multi-index, j�j = �1 + � � �+ �n, j � j is the Euclidean norm.
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Denote by Hs

l
the following Sobolev spaces:

Hs

l =

n
' 2 S0 j

�
1 + jxj2

�l=2 �
1 + jDj2

�s=2
' 2 L2

(R
n
)

o
;

k'ksl =

0@Z
Rn

����1 + jxj2
�l=2 �

1 + jDj2
�s=2

'(x)
���2 dx

1A1=2

:

Let F : S0 �! S0 be the Fourier transform operator. For ' 2 S we have

(F') (�) = (2�)�n=2
Z
Rn

e�ihx;�i'(x) dx;

where h�; �i is the scalar product in R
n corresponding to the Euclidean norm. It

is well known [8, Ch. 1] that FHs
0 = H0

s and k'ks0 = kF'k0
s
, if ' 2 Hs

0 .

A distribution f 2 S0 is said to be odd if (f; '(�)) = �(f; '(��)), ' 2 S.
Further, we assume throughout the paper that s � 0 and use the spaces

H
s

=
�
' 2 Hs

0 �Hs�1
0 j ' 2 S0+ ^ 9'(+0) 2 R

	
;eHs

=
�
' 2 Hs

0 �Hs�1
0 j ' is odd with resp. to x2

	
with the norm jjj'jjjs =

��
k'0ks0

�2
+
�
k'1ks�1

0

�2�1=2
and also the space

bHs =
�
' 2 H0

s �H0
s�1 j ' is odd with resp. to �2

	
with the norm [[j'j]]

s
=

��
k'0k0s

�2
+
�
k'1k0s�1

�2�1=2
.

Denote by A the following operator

A =

�
0 1

� 0

�
; A : eHs�2 �! eHs�2; D(A) = eHs (0.5)

and by B the operator

B =

�
0

�2Æ(x1)Æ0(x2)

�
; B : R �! eHs�2; D(B) = R; (0.6)

where Æ is the Dirac function. Then the system (0.2), (0.3) is reduced to the form

(0.1) with these operators A and B.

In Section 1 we obtain necessary and su�cient conditions for null-controllabi-

lity and approximate null-controllability for the system (0.2), (0.3) with restric-

tions (0.4) on the control. Controls solving the problems of null-controllability

and approximate null-controllability are found explicitly. But these controls may

have a rather complicated form.
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The main goal of the Section 2 is to build bang-bang controls solving the

approximate null-controllability problem. We show that this problem can be

reduced to a system of Markov power moment problems. They may be solved

by the method given in [9]. Further, we prove that solutions of the Markov

power moment problems give us solutions of the approximate null-controllability

problem (Theorems 2.3, 2.4).

In Sections 3 and 4 some auxiliary statements are proved.

1. Null-controllability problems

Consider the control system (0.2), (0.3) with the initial conditions�
w(x; 0) = w0

0(x)

@w(x; 0)=@t = w0
1(x)

; x1 2 R; x2 > 0; (1.1)

and the steering conditions�
w(x; T ) = wT

0 (x)

@w(x; T )=@t = wT
1 (x)

; x1 2 R; x2 > 0; (1.2)

where w0
=

�
w0
0

w0
1

�
2 Hs, wT

=

�
wT
0

wT
1

�
2 Hs. We consider solutions of the

problem (0.2), (0.3) in the space Hs.

Let T > 0, w0 2 Hs. Denote by RT (w
0
) the set of states wT 2 Hs for which

there exists a control u 2 B(0; T ) such that the problem (0.2), (0.3), (1.1), (1.2)

has a unique solution.

De�nition 1.1. A state w0 2 Hs
is called null-controllable at a given time

T > 0 if 0 belongs to RT (w
0
) and approximately null-controllable at a given time

T > 0 if 0 belongs to the closure of RT (w
0
) in Hs

.

Let w
0
= 
2w

0, w
T

= 
2w
T , w(�; t) = 
2

�
w(�; t)

@w(�; t)=@t

�
, where 
2 is

the odd-extension operator with respect to x2. Evidently, w0 2 eHs, wT 2 eHs,

w(�; t) 2 eHs
(t 2 (0; T )). It is easy to see that control problem (0.2), (0.3), (1.1),

(1.2) is equivalent to the following problem for system (0.1):

w(x; 0) = w
0; (1.3)

w(x; T ) = w
T : (1.4)

Let us investigate this new problem. First we analyze the following auxiliary

Cauchy problem: system (0.1) with an arbitrary parameter u 2 B(0; T ) under

initial condition (1.3).
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Applying the Fourier transform with respect to x to problem (0.1), (1.3), we

obtain the following Cauchy problem in bHs:

dv

dt
=

�
0 1

�j�j2 0

�
v � i�2

�

�
0

1

�
u; t 2 (0; T ); (1.5)

v(�; 0) = v
0; (1.6)

where v(�; t) = Fw(�; t), t 2 [0; T ], v0 = Fw0. Then the function

v(�; t) = �(j�j; t)

0@v
0
(�)� i�2

�

tZ
0

�(j�j;��)
�

0

1

�
u(�) d�

1A ; t 2 [0; T ]; (1.7)

where

�(�; t) �

0@ cos(�t)
sin(�t)

�
�� sin(�t) cos(�t)

1A �
�

@=@t 1

(@=@t)2 @=@t

�
sin(�t)

�

is a unique solution of (1.5), (1.6) in bHs.

Put E(jxj; t) = F�1
� �(j�j; t)=(2�). It is well known that

F�1

�
sin(j�jt)
j�j

�
(x) =

sign t H (jtj � jxj)p
t2 � jxj2

; (1.8)

where H is the Heaviside function: H(�) = 1 if � � 0 and H(�) = 0 otherwise.

Then we have

E(r; t) =
1

2�

�
@=@t 1

(@=@t)2 @=@t

�
sign t H (jtj � jxj)p

t2 � jxj2
:

It follows from (1.7) that

w(x; T ) = E(jxj; T )�

24w0
(x)� 1

�

@

@x2
F
�1

0@ TZ
0

0@ �sin(j�jt)
j�j

cos(j�jt)

1Au(t) dt

1A35 : (1.9)
Here and further � is the convolution with respect to x. With regard to Lemma

4.1 we get

w(x; T ) = E(jxj; T ) �
�
w
0
(x)� 1p

2�

x2

jxj�
�

U
U 0

�
(jxj)

�
; (1.10)

where U(t) = u(t) (H(t)�H(t� T )), t 2 R.

Denote for w0 2 eHs

RT (w
0
) =

�
E(jxj; T ) �

�
w
0
(x)� 1p

2�

x2

jxj�
�

U
U 0

�
(jxj)

�
j u 2 B(0; T )

�
:

Then De�nition 1.1 is equivalent to
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De�nition 1.2. A state w
0 2 eHs

is called null-controllable at a given time

T > 0 if 0 belongs to RT (w
0
) and approximately null-controllable at a given time

T > 0 if 0 belongs to the closure of RT (w
0
) in eHs

.

Obviously, the following two statements are true.

Statement 1.1. A state w0 2 Hs
is null-controllable at a given time T > 0

i� the state w
0
= 
2w

0
is null-controllable at this time.

Statement 1.2. A state w0 2Hs
is approximately null-controllable at a given

time T > 0 i� the state w
0
= 
2w

0
is approximately null-controllable at this time.

Further we consider the (approximate) null-controllability problem for the

system (0.1) where w
0 is an odd function with respect to x2.

The following theorem give us su�cient conditions for (approximate) null-

controllability.

Theorem 1.1. For a state w
0 2 eHs

assume that there exists w
0 2 S0 such

that following conditions hold:

w
0
=
x2

jxjw
0
(jxj) in Hs

0 �Hs�1
0 ; (1.11)

suppw
0 � [0; T ]; (1.12)��w0

0(r)
�� � T

�r
p
T 2 � r2

a.e. on (0; T ); (1.13)

w
0
1(r) =

d

dr

24w0
0(r) +

1Z
�1

w
0
0(�)k(�; r) d�

35 ; (1.14)

where k(�; r) =
2

�
H (�(� � r))

�=2Z
0

sin
2 � d�p

�2 sin2 �+ r2 cos2 �
. Then the state w

0
is

null-controllable at the time T . Moreover, the solution of the null-controllability

problem (the control u) is unique and

u(t) = 2t

TZ
t

w
0
0(r) drp
r2 � t2

a.e. on (0; T ):
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P r o o f. Put

U =
1p
2�

�w
0
0: (1.15)

It follows from (1.12) and Lemma 3.2 that suppU � (0; T ) and

U(t) = 2t

TZ
t

w
0
0(r) drp
r2 � t2

a.e. on (0; T ):

Denote u(t) = U(t), t 2 (0; T ). Due to (1.13) we obtain ju(t)j � 1 a.e. on (0; T ).

Applying Lemma 4.2 and (1.15), we have

w
0
1 =

d

dr

24w0
0 +

1Z
�1

w
0
0(�)k(�; �) d�

35 = �
d

dt
�
�1
w
0
0 =

1p
2�

�U 0:

Finally, taking into account (1.10), (1.11), (1.15), we get that w(x; T ) = 0 for

the found control u where w is a solution of the Cauchy problem (0.1), (1.3).

Invertibility of the operator � (see Sect. 4) implies uniqueness of the control u

solving the null-controllability problem.

Thus the state w0 is null-controllable at the time T that was to be proved.

The following theorem asserts that conditions (1.11)�(1.14) are not only suf-

�cient but also necessary for (approximate) null-controllability.

Theorem 1.2. If a state w
0 2 eHs

is approximately null controllable at a given

time T > 0 then there exists w
0 2 S0 such that conditions (1.11)�(1.14) hold.

P r o o f. For each n 2 N there exists a state w
n 2 RT (w

0
) such that

jjjwnjjjs < 1=n. With regard to (1.10) for some un 2 B(0; T ) we have

w
n
(x) = E(jxj; T ) �

�
w
0
(x)� 1p

2�

x2

jxj�
�
Un
U 0
n

�
(jxj)

�
; t 2 R;

where Un(t) = un(t) (H(t)�H(t� T )). Using Lemma 4.4, we obtain

1p
2�

x2

jxj�
�
Un
U 0
n

�
(jxj) �! w

0 as n �!1 in eHs: (1.16)

Therefore w
0
=
x2

jxjw
0
(jxj). According to the Lemma 3.2 suppw

0
0 � [0; T ]. Thus

(1.11), (1.12) are true. Denote �Un = hn0 , �U 0
n = hn1 . Taking into account Lemma

4.3, we obtain

jhn0 j �
T

�r
p
T 2 � r2

; r 2 (0; T ): (1.17)
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Let an arbitrary " > 0 be �xed, V (") =
�
x 2 R

2 j jxj < "
	
. It follows from (1.16)

that

hn(jxj) �! w
0
(jxj) as n �!1 in S0: (1.18)

Since hn0 (jxj) 2 L2
�
R
2nV (")

�
and S is dense in L2

�
R
2
�
we obtain

hn0 (jxj) �! w
0
0(jxj) as n �!1 in

�
L2
�
R
2nV (")

��0
:

By the Riesz theorem we conclude that w
0
0(jxj) 2 L2

�
R
2nV (")

�
and

w
0
0 2 L2

(";+1). Taking into account arbitrariness of " > 0 and (1.17), we get

(1.13). We have hn1 = �
d

dt
�
�1hn0 . Due to Lemmas 3.1, 4.2 and (1.17) we get

(1.14). The theorem is proved.

2. Bang-bang controls and the Markov power moment problem

The solution of the null-controllability problem (i.e., the control) found in

Sect. 1 may be too complicated for the practical purposes. In this section we

�nd bang-bang controls solving the approximate null-controllability problem.We

consider a system of Markov power moment problems and show that their bang-

bang solutions are solutions of the approximate null-controllability problem.

Consider control system (0.1), (1.3) and assume that for T > 0 and w
0 2 eHs

conditions (1.11)�(1.14) hold. According to Theorem 1.1 there exists eu 2 B(0; T )
such that

w
0
=

1p
2�

�
�eU� (r); (2.1)

where eU(t) = eu(t) [H(t)�H(t� T )]. With regard to Lemma 4.1 and (1.11) we

get

v
0
(�) =

1

�
i�2

TZ
0

0@ �sin(j�jt)
j�j

cos(j�jt)

1Aeu(t) dt;
where v

0
= F
2w

0. Put

h(�; u) =
1

�

TZ
0

0@ �sin(�t)

�
cos(�t)

1A (eu(t)� u(t)) dt: (2.2)

Then for system (1.5), (1.6) we get

v(�; T ) = �(j�j; T )i�2h(j�j; u):

With regard to (1.7) and Lemma 4.4 we conclude that

[[jv(�; T )j]]
s
�
p
4T 2 + 6 [[ji�2h(j�j; u)j]]s :
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We have

�
ki�2hj(j�j; u)k0s�j

�2
= �

1Z
0

�
1 + �2

�s�j jhj(j�j; u)j2 �3 d�; j = 0; 1:

Hence

[[jv(�; T )j]]
s
�
p
4T 2 + 6 �

0@ 1X
j=0

1Z
0

�
1 + �2

�s�j jhj(j�j; u)j2 �3 d�
1A1=2

: (2.3)

Thus we have proved

Theorem 2.1. Assume that T > 0 and for a state w
0 2 eHs

conditions (1.11)�

(1.14) are ful�lled. Then the following two assertions hold:

i. w
0
is null-controllable at the time T i� there exists u 2 B(0; T ) such that

h(�; u) � 0 on R;

ii. w
0
is approximately null-controllable at the time T i� for each " > 0 there

exists u" 2 B(0; T ) such that

1Z
0

�
1 + �2

�s�j jhj(j�j; u")j2 �3 d� < "2; j = 0; 1: (2.4)

Moreover, if estimate (2.4) is true then

jjjw(�; T )jjjs = [[jv(�; T )j]]
s
� �"

p
4T 2 + 6; (2.5)

where w and v are solutions of (0.1), (1.3) and (1.5), (1.6), respectively.

Due to the Wiener�Paley theorem we conclude that h(�; u) is an entire func-

tion with respect to �. Let us expand it in the Taylor series. To do this we

calculate h(m)
(0; u) (we consider the derivatives with respect to �). Put

ev0(�) = 1

�

TZ
0

0@ �sin(�t)

�
cos(�t)

1Aeu(t) dt; ew0
(jxj) = F

�1ev0(j�j): (2.6)

Evidently ev0 is also entire. With regard to (1.11) and Lemma 4.1 we get

w
0
= ew00: (2.7)
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According to (1.11), (1.12) and (1.14), we conclude that

ew0
0(r) = (H(r)�H(r � T ))

TZ
r

eu(t) dtp
t2 � r2

; (2.8)

ew0
1(r) = w

0
0(r) +

1Z
�1

w
0
0(�)k(�; r) d�: (2.9)

Obviously, supp ew0
0 � [0; T ]. It follows from (1.12) that supp ew0

1 � [0; T ]. Taking

into account

2T

�

TZ
r

1

�
p
T 2 � �2

�=2Z
0

sin
2 � d�p

�2 sin2 �+ r2 cos2 �
d�

� T

r

TZ
r

1

�
p
T 2 � �2

=
1

2r
ln

�����T +
p
T 2 � r2

T �
p
T 2 � r2

����� ; r 2 (0; T ); (2.10)

and (1.13), (1.14), we get

��ew0
0(r)

�� �
TZ
r

dtp
t2 � r2

= � ln

0@T
r
�

s�
T

r

�2

� 1

1A ; r 2 (0; T ); (2.11)

��ew0
1(r)

�� � T

�r
p
T 2 � r2

+
1

�

TZ
r

T

��
p
T 2 � �2

�=2Z
0

d�p
�2 sin2 �+ r2 cos2 �

d�

=
T

�r
p
T 2 � r2

+
1

2r
ln

�����T +
p
T 2 � r2

T �
p
T 2 � r2

����� ; r 2 (0; T ): (2.12)

Taking into account (2.11), (2.12), (2.6), we obtain ev0(2m+1)
(0) = 0:

ev0(2m)
(0) =

1

�

d2m

d�2m

1Z
0

0@ �Z
0

e�ir� cos' d'

1A ew0
(r) dr

������
�=0

=
(�1)m
�

1Z
0

0@ �Z
0

cos
2m 'd'

1A r2m+1ew0
(r) dr

=
(�1)m
�

B

�
m+

1

2
;
1

2

� 1Z
0

r2m+1ew0
(r) dr; (2.13)
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where B(�; �) is the Euler beta-function. Therefore

ev00(2m)
(0) =

(�1)m
�(2m+ 2)

B

�
m+

1

2
;
1

2

� 1Z
0

r2m+2
w
0
0(r) dr:

With regard to (2.9) we have

ev01(2m)
(0) =

(�1)m
�

B

�
m+

1

2
;
1

2

�24 1Z
0

r2m+1
w
0
0(r) dr

+

1Z
0

r2m+1

1Z
r

w
0
0(�)k(�; r) d� dr

35 :
Since

�=2Z
0

q
�2 sin2 �+ r2 cos2 � d� =

�Z
r

t2 dtp
�2 � t2

p
t2 � r2

then

�Z
0

r2m+1k(�; r) dr = ��2m+1
+

2

�

1

�

d

d�

�Z
0

r2m+1

�Z
r

t2 dtp
�2 � t2

p
t2 � r2

dr

= ��2m+1
+

2

�

1

�

d

d�

�=2Z
0

�2m+3
sin

2m+3  d 

�=2Z
0

sin
2m+1 'd'

= ��2m+1
+

2m+ 3

2�
B

�
m+ 1;

1

2

�
B

�
m+ 2;

1

2

�
:

Therefore

ev01(2m)
(0) =

(�1)m(2m+ 3)

2�2
B

�
m+

1

2
;
1

2

�
B

�
m+ 1;

1

2

�
B

�
m+ 2;

1

2

�

�
1Z
0

r2m+1
w
0
0(r) dr:

Put

!n =

1Z
0

rn+1
w
0
0(r) dr: (2.14)
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Hence

ev00(2m)
(0) = (�1)m+1 (2m� 1)!!

(2m+ 2)!!
; (2.15)

ev01(2m)
(0) =

(�1)m
�

(2m+ 2)!!

(2m+ 1)!!
: (2.16)

We have

h(2m+1)
(0; u) = 0; (2.17)

and h(2m)
(0; u) = 0 i�

0 = ev00(2m)
(0) +

(�1)m
2m+ 1

TZ
0

t2m+1u(t) dt; (2.18)

0 = ev01(2m)
(0)� (�1)m

TZ
0

t2mu(t) dt: (2.19)

Thus

h(n)(0; u) = 0; (2.20)

i�
TZ
0

tnu(t) dt = !n; n = 0;1; (2.21)

where

!2m =
(2m+ 2)!!

�(2m+ 1)!!
!2m ; (2.22)

!2m+1 =
(2m+ 1)!!

(2m+ 2)!!
!2m+1 : (2.23)

According to Theorem 2.1, we obtain that the state w0 is null-controllable at

the time T i� (2.21) is valid.

The problem of determination of a function u 2 B(0; T ) satisfying condition

(2.21) for a given f!ng1n=0 and T > 0 is called a Markov power moment problem

on (0; T ) for the in�nite sequence f!ng1n=0.

Uniqueness of the solution of the null-controllability problem yields uniqueness

of the solution of the Markov moment problem (2.21) (see Theorem 1.1). Hence

u = u is the unique solution of this Markov moment problem.

Thus we have proved
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Theorem 2.2. Assume that T > 0 and for a state w
0 2 eHs

conditions (1.11)�

(1.14). Assume also that f!ng1n=0 is de�ned by (2.14), (2.22), (2.23). Then

Markov power moment problem (2.21) on (0; T ) for f!ng1n=0 has a unique solu-

tion. Moreover, this solution is a solution of the null-controllability problem for

w
0
at the time T .

Consider (2.21) for a �nite set of n:

TZ
0

tnu(t) dt = !n; n = 0; N: (2.24)

The problem of determination of a function u 2 B(0; T ) satisfying condition

(2.24) for a given f!ngNn=0 and T > 0 is called a Markov power moment problem

on (0; T ) for the �nite sequence f!ngNn=0.

Obviously, u = u is a solution of this problem, but it is not unique.

Let us show that solutions of moment problem (2.24) for various N give us

controls solving the approximate null-controllability problem.

Theorem 2.3. Let T > 0, w
0 2 eHs

, s < �1. Let also conditions (1.11)�

(1.14) be ful�lled and f!ng1n=0 be de�ned by (2.14), (2.22), (2.23). Then 8" > 0

there exists N > 0 such that for each solution uN 2 B(0; T ) of moment problem

(2.24) the corresponding solution w of control system (0.1), (1.3) satis�es the

condition jjjw(�; T )jjjs < ".

P r o o f. Let N = 2K + 1, uN 2 B(0; T ) be a solution of problem (2.24).

With regard to (2.20) and (2.21) for the function h(�; u) de�ned by (2.2) we get

h(n)(0; uN ) = 0; n = 0; 2K + 1:

By the Taylor formula for j�j < a we obtain

���1�jhj(�; uN )�� � a2K+2

(2K + 2)!
sup

j�j�a

�����1�jhj�(2K+2)
(�; uN )

��� ; j = 0; 1:

Taking into account (2.2), we conclude that�����1�jhj(�; uN )�(2K+2)
��� � T 2K+3

�(2K + 3)
; j = 0; 1:

Hence ���1�jhj(�; uN )�� � T

�

(Ta)2K+2

(2K + 3)!
; j = 0; 1; j�j � a:
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Then

aZ
0

�
1 + �2

�s�j jhj(�; uN )j2 �3 d� � a

�

(Ta)2K+3

(2K + 3)!
; j = 0; 1: (2.25)

With regard to (2.2) we get���1�jhj(�; uN )�� � T

�
; j = 0; 1; � > 0:

Therefore

1Z
a

�
1 + �2

�s�j jhj(�; uN )j2 �3 d�
� T

�

1Z
a

�
1 + �2

�s
� d� � � Ta2(s+1)

2�(s+ 1)
; j = 0; 1:

Taking into account (2.25), we obtain

�

1Z
0

�
1 + �2

�s�j jhj(�; uN )j2 �3 d� � a(Ta)2K+3

(2K + 3)!
� Ta2(s+1)

2(1 + s)
; j = 0; 1:

Due to Theorem 2.1 and (2.3) we conclude that

jjjw(�; T )jjjs �
p
2T 2 + 3

"
a(Ta)2K+3

(2K + 3)!
� Ta2(s+1)

2(1 + s)

#
: (2.26)

Applying the Stirling formula, we have

(Ta)2K+3

(2K + 3)!
�
�

Tae

2K + 3

�2K+3
1p

2�(2K + 3)
:

Setting a = (2K + 3)=(2Te), we obtain from (2.26) that

jjjw(�; T )jjjs �
p
2T 2 + 3

"p
2K + 3

Te4K+2
� T

2s+ 2

�
2K + 3

2Te

�2s+2
#
! 0 as K !1:

(2.27)

The theorem is proved.

Denote

B
N
(0; T ) = fu 2 B(0; T ) j 9T� 2 (0; T )(ju(t)j = 1 a.e. on (0; T�))

^ (u(t) = 0 a.e. on (T�; T ))

^ (u has no more than N discontinuity points on (0; T�))g:
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It is well known [11, 12] that if Markov power moment problem (2.24) is solv-

able then there exists its solution u 2 BN
(0; T ). Taking into account Theorem 2.3,

we conclude that under the conditions ot this theorem we can �nd a solution

uK 2 B2K+1
(0; T ) of Markov power moment problem (2.24) for N = 2K + 1

and such solutions fuKg1K=1 give us bang-bang controls solving the approximate

null-controllability problem (see also (2.27)).

Thus the following theorem is true.

Theorem 2.4. Let T > 0, w
0 2 eHs

, s < �1. Let also conditions (1.11)�(1.14)

be ful�lled and f!ng1n=0 be de�ned by (2.14), (2.22), (2.23). Then 8K 2 N there

exists a solution uK 2 B2K+1
(0; T ) of moment problem (2.24) with N = 2K + 1.

Moreover, for this uK the corresponding solution w of control system (0.1), (1.3)

satis�es the estimate

jjjw(�; T )jjjs �
p
2T 2 + 3

"p
2K + 3

Te4K+2
� T

2s+ 2

�
2K + 3

2Te

�2s+2
#
: (2.28)

Let us show that the condition s < �1 of Theorems 2.3, 2.3 is essential.

Precisely if �1=2 � s � 0 then 9w0 2 eHs 8T > 0 8u 2 [N2NB
N
(0; T ) 9"0 > 0

such that for a solution w of (0.1), (1.3), corresponding to the control u we have

jjjw(�; T )jjjs � "0. Thus the state w
0 is not approximate null-controllable at the

time T by bang-bang controls in space eHs, if �1=2 � s � 0.

E x a m p l e 2.1. Let �1=2 � s � 0, T > 0,

w
0
0(x) =

x2T

2�jxj2
p
T 2 � jxj2

[H(jxj)�H(jxj � T )] ;

w
0
1(x) =

x2

2�

q
(T 2 � jxj2)3

[H(jxj)�H(jxj � T )] :

Obviously, w
0
(x) =

1p
2�

�

 eUeU 0

!
(jxj), where eU(t) =

1

2
[H(t)�H(t� T )].

Therefore w
0 2 eHs satis�es (1.11)�(1.14). Let u 2 BN

(0; T ), n 2 N. Hence

u(t) = �

NX
k=0

(�1)k [H(t� tk)�H(t� tk+1)] ;

where � = �1, 0 = t0 < t1 < t2 � � � < tN+1 = T� � T , U(t) = [H(t)�H(t� T )].

Let w be a solution of (0.1), (1.3) corresponding to the control u. According to

(1.10), we have

p
2�E(jxj;�T ) � w(x; T ) = x2

jxj�
 eU � UeU 0 � U 0

!
(jxj):
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Put a = �=(12T ). With regard to Lemma 4.4 we get

jjjw(x; T )jjjs � 1p
2�
p
4T 2 + 6

�����
�����
����� x2jxj�

 eU � UeU 0 � U 0

!
(jxj)

�����
�����
�����
s

� 1
p
�
p
4T 2 + 6

0B@ 1Z
0

�
1 + �2

��1=2

������
TZ
0

sin(�t)
� eU(t)� U(t)

�
dt

������
2

� d�

1CA
1=2

�
p
a

p
�

4
p
1 + a2

p
4T 2 + 6

0B@ 1Z
a

������
TZ
0

sin(�t)
� eU(t)� U(t)

�
dt

������
2

d�

1CA
1=2

�
p
ap

2
4
p
1 + a2

p
4T 2 + 6

264
0@ 1Z
�1

���F
�eU � U
�
(�)
���2 d�

1A1=2

�

0@ aZ
�a

���F
�eU � U
�
(�)
���2 d�

1A1=2
375 : (2.29)

We have

1Z
�1

���F
�eU � U
�
(�)
���2 d� � 1

4

1Z
�1

j(H(t+ T )�H(t� T ))j2 dt = T

2
: (2.30)

On the other hand

aZ
�a

���F
�eU � U
�
(�)
���2 d� � 3

�

aZ
�a

 
1

�

NX
k=0

jcos(tk�)� cos(tk+1�)j
!2

d�

=
6

�

aZ
0

 
2

�

NX
k=0

����sin��tk+1 � tk

2

�
sin

�
�
tk+1 + tk

2

�����
!2

d�

� 6

�

aZ
0

 
NX
k=0

t2
k+1 � t2

k

2

!2

d� � 3T 2a

2�
=
T

8
: (2.31)

Comparing (2.29), (2.31), we obtain

jjjw(�; T )jjjs �
p
ap

2
4
p
1 + a2

p
4T 2 + 6

"r
T

2
�
r
T

8

#
� T

4(4T 2 + 6)3=4
= "0: (2.32)

That was to be proved.
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3. Operators � and ��

In this section we introduce and study operators � and �
�.

Let the operator ��
: S �! S be de�ned by the rule

(�
�') (t) = �

r
2

�

1Z
�1

H(r(t� r))p
t2 � r2

'0(r) dr; ' 2 S: (3.1)

Obviously, (��') (t) = �
r

2

�

Z
�=2

0

'0(t sin�) d�, ' 2 S. Hence ��' 2 S, if ' 2 S.
It is easy to see that ���1

: S �! S can be de�ned by the rule

�
�
��1 

�
(t) =

r
2

�

1Z
�1

H(t(r � t))p
r2 � t2

t (t) dt;  2 S: (3.2)

It is clear that
�
�
��1 

�
(t) =

r
2

�
t

Z
�=2

0

 (t sin�) sin� d�, ' 2 S, and �
��1 2

S, if  2 S. Thus
�
�
(S) = S = �

��1
(S):

Let the operator � : S0 �! S0 be de�ned by the rule

(�f; ') = (f;��') ; ' 2 S; f 2 S0:

Obviously, ��1 is de�ned by�
�
�1f; '

�
=

�
f;���1'

�
; ' 2 S; f 2 S0:

Thus

�(S
0
) = S

0
= �

�1
(S

0
):

One can easily show that the following three lemmas are true.

Lemma 3.1. If fn �! f as n �! 1 in S0 then �fn �! �f and �
�1fn �!

�
�1f as n �!1 in S0.

Lemma 3.2. Let 0 < A � +1, f 2 S0, supp f � [0; A] and 8a 2 (0; A)

f 2 L1
(a;A). Then supp�f � [0; A] and

(�f) (r) = �
r

2

�

d

dr

AZ
r

f(t) dtp
t2 � r2

; r 2 (0; A):
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Lemma 3.3. Let 0 < A � +1, g 2 S0, supp g � [0; A] and 8a 2 (0; A)

g 2 L1
(a;A). Then supp�

�1g � [0; A] and

�
�
�1g
�
(t) =

r
2

�
t

AZ
t

g(r) drp
r2 � t2

; t 2 (0; A):

4. Auxiliary statements

In this section we denote by Sn the space of functions ' 2 S de�ned on Rn , if

we want to indicate the dimension. For each functional f 2 S01, supp f � [0;+1),

we can de�ne f(jxj) 2 S02 by the rule

(f(jxj);  (x)) = (f(r); rSr[ ]) ; (4.1)

where Sr[ ] =
R 2�

0
 (r cos�; r sin�) d�, r 2 R. Obviously, if  2 S2 then Sr[ ] 2

S1.

To prove conditions for (approximate) null-controllability we need the follow-

ing four lemmas.

Lemma 4.1. Let T > 0, u 2 B(0; T ), U(t) = u(t) [H(t)�H(t� T )], � 2 R
2
,

x 2 R
2
. Then

F
�1

24i�2 TZ
0

0@ �sin(j�jt)
j�j

cos(j�jt)

1Au(t) dt

35 =

r
�

2

x2

jxj�
�

U
U 0

�
(jxj): (4.2)

P r o o f. Denote h(�; t) =

0@ �sin(�t)

�
cos(�t)

1AH(�). We have

F
�1

24i�2 TZ
0

h(j�j; t)u(t) dt

35 =
@

@x2
F
�1

24 TZ
0

h(j�j; t)u(t) dt

35 : (4.3)

For each ' 2 S2 we get0@F�1

24 TZ
0

h(j�j; t)u(t) dt

35 ; '
1A =

0@ TZ
0

h(�; t)u(t) dt; �S� [F']

1A
=

1Z
0

0@ TZ
0

h(�; t)u(t) dt

1A �S� [F']d�;
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where z means the complex conjugation of z. Since �S� [F'] 2 S1 we obtain0@F�1

24 TZ
0

h(j�j; t)u(t) dt

35 ; '
1A =

1Z
0

U(t)
1Z
0

h(�; t)u(t)�S� [F']d� dt

=

0@U(t); 1Z
0

h(�; t)u(t)�S� [F'] d�

1A
= �

0@� U(t)
U 0
(t)

�
;

1Z
0

sin(�t)S� [F'] d�

1A
= �

0@� U(t)
U 0
(t)

�
;

Z
R2

sin(j�jt)
j�j (F') (�) d�

1A
= �

0@� U(t)
U 0
(t)

�
;

Z
R2

F
�1

�
sin(j�jt)
j�j

�
(x)'(x) dx

1A : (4.4)

With regard to (4.4) and (1.8) that gives0@F�1

24 TZ
0

h(j�j; t)u(t) dt

35 ; '
1A = �

0@� U(t)
U 0
(t)

�
;

1Z
�1

H (t(t� r))p
t2 � r2

rSr['] dr

1A :

(4.5)

Consider the operator 	�
: S �! S such that

(	
��) =

1Z
�1

H (t(t� r))p
t2 � r2

�(r) dr =

�=2Z
0

�(t sin�) d�; � 2 S:

It is clear that if � 2 S then 	
�� 2 S. Denote by 	 the operator 	 : S0 �! S0

such that

(	f; �) = (f;	��) ; � 2 S; f 2 S0:
Evidently, if suppf � [0;+1) (f 2 S0) then supp	f � [0;+1). One can see

that � = �
r
�

2

d

dr
	. All this implies that

F
�1

24 TZ
0

h(j�j; t)u(t) dt

35 = � @

@x2
	

�
U
U 0

�
(jxj) =

r
�

2

x2

jxj�
�

U
U 0

�
(jxj):

That was to be proved.
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Lemma 4.2. Let f 2 S0, supp f � [0;+1) and 8a > 0 f 2 L1
(a;+1). Then�

�
d

dt
�
�1f

�
(r) =

d

dr

24f(r) + 1Z
�1

f(�)k(�; r) d�

35 ; (4.6)

where k(�; r) =
2

�
H (�(� � r))

Z
�=2

0

sin
2 �d�p

�2 sin2 �+ r2 cos2 �
.

P r o o f. For each ' 2 S we have�
�
d

dt
�
�1f; '

�
= �

�
f;���1 d

dt
�
�'

�
: (4.7)

With regard to (3.1), (3.2) for � > 0 we get

�
�
��1 d

dt
�
�'

�
(�) =

2

�

�Z
0

1p
�2 � t2

d

dt

24t tZ
0

'0(r) drp
t2 � r2

35 dt
=

2

�

1

�

d

d�

�Z
0

p
�2 � t2

d

dt

24t tZ
0

'0(r) drp
t2 � r2

35 dt
=

2

�

1

�

d

d�

Z
�

0

'0(r)

�Z
r

t2 dtp
�2 � t2

p
t2 � r2

dr

=
2

�

1

�

d

d�

�Z
0

'0(r)

�=2Z
0

q
�2 sin2 �+ r2 cos2 � d� dr

= '0(�) +
2

�

Z
�

0

'0(r)

�=2Z
0

sin
2 �d�p

�2 sin2 �+ r2 cos2 �
d�dr:

Taking into account (4.7), we obtain�
�
d

dt
�
�1f; '

�
= �

0@f; '0(�) + 1Z
�1

'0(r)k(�; r) dr

1A
=

0@ d

dr

24f(r) + 1Z
�1

f(�)k(�; r) d�

35 ; '
1A : (4.8)

Hence (4.6) holds, and the lemma is proved.
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Lemma 4.3. Let u 2 B(0; T ), U(t) = u(t) [H(t)�H(t� T )]. Then

supp�U � [0; T ] and

j(�U) (r)j �
p
2T

p
�r
p
T 2 � r2

; r 2 (0; T ): (4.9)

P r o o f. According to the Lemma 3.2, we obtain supp�U � [0; T ]. We also

have that

(�U) (r) =
r

2

�

d

dr

TZ
r

u(t) dtp
t2 � r2

; r 2 (0; T ):

Denote fn(r) =

Z
T

r

u(t) dtp
t2 � (r � 1=n)2

; f(r) =

Z
T

r

u(t) dtp
t2 � r2

(r 2 (0; T ]).

One can see that

fn(r)! f(r) as n!1; r 2 (0; T ]: (4.10)

First let us prove that 8r0 2 (0; T ) 8" 2 (0; T � r0) we have

f 0n(r)� f 0(r) as n �!1; on [r0; T � "]: (4.11)

Let 8r0 2 (0; T ) 8" 2 (0; T � r0) be �xed. We have

f 0n(r) = � u(r)p
r2 � (r � 1=n)2

+ (r � 1=n)

TZ
r

u(t) dt

(t2 � (r � 1=n)2)3=2
: (4.12)

Let n > m > 0 be large enough. Denote

gr(�) = � u(r)p
r2 � (r � 1=n)2

+ (r � 1=n)

TZ
r

u(t) dt

(t2 � (r � 1=n)2)3=2
; � 2 [r � 1=n; r � 1=m]:

Applying the mean value theorem to gr(�) (with respect to �), we get

jfn(r)� fm(r)j = jgr(r � 1=n)� gr(r � 1=m)j

� sup

�2[r� 1

n
;r�

1

m
]

24 2�

(r2 � �2)3=2
+

TZ
r

t2 + 2�2

(r2 � �2)5=2

35� 1

m
� 1

n

�

� sup

�2[r� 1

n
;r�

1

m
]

"
2�
�
r2 � �2

�
+ (T � r)

�
T 2

+ 2�2
�

(r2 � �2)5=2

#
2

m

� 14T 3

m7=2r0
! 0 as m!1; r 2 [r0; T � "]:
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With regard to (4.10) we conclude that the consequence ff 0ng1n=1 uniformly

converges on [r0; T � "] and (4.11) is true.

Finally let us prove (4.9). Due to (4.12) we have 8r 2 (0; T )��f 0n(r)�� � � 1
p
n(r � 1=n)

p
2r � 1=n

+
T

(r � 1=n)
p
T 2 � (r � 1=n)2

! T

r
p
T 2 � r2

as n!1:

Taking into account (4.11), we conclude that (4.9) holds that was to be proved.

Lemma 4.4. If f 2 Hs
0 �Hs�1

0 and g = Ff then

jjjE(jxj; t) � f jjjs = [[j�(j�j; t)gj]]
s
�
p
4t2 + 6 [[jgj]]

s
=

p
4t2 + 6 jjjf jjjs ; t 2 R:

(4.13)

P r o o f. For all t 2 R we have

jjjE(jxj; t) � f jjjs = [[j�(j�j; t)gj]]
s

�
������� cos(j�jt)

�j�j sin(j�jt)

�
g0

������
s

+

2424������
0@ sin(j�jt)

j�j
cos(j�jt)

1A g1

������
3535

s

�
p
2 kg0k0s +

0@ sin(j�jt)j�j g1

0
s

!2

+

�
kg1k0s�1

�21A1=2

:

Since
�
1 + j�j2

� ����sin(j�jt)j�j

����2 � 2
�
t2 + 1

�
we obtain (4.13). The lemma is proved.
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