Order-Unit Spaces which are Banach Dual Spaces

M.A. Berdikulov
Institute of Mathematics, Uzbek Academy of Sciences 29 F. Khodjaev Str., Tashkent, 700125, Uzbekistan
E-mail:mathinst@uzsci.net

Received August 4, 2005
Spaces of selfadjoint elements of a C^{*}-algebra or a von Neumann algebra, and also $J B$ - and $J B W$-algebras are examples of order-unit spaces. A von Neumann algebra and a $J B W$-algebra possess predual spaces, but, generally speaking, a $J B$-algebra and a C^{*}-algebra don't have this property. In this work, conditions are found for an order-unit space to possess a predual space. Moreover, a condition is obtained characterizing $J B W$-algebras among order-unit spaces having a predual space.

Key words: order-unit space, predual space, state, trace, generalized spin-factor, L_{1}-norm.

Mathematics Subject Classification 2000: 46B40, 46L50, 46G12, 46B10.

1. Preliminaries

Let A be a real ordered linear space. We denote by A^{+}the set of positive elements of A. An element $\mathbf{e} \in A^{+}$is called order unit if for every $a \in A$ there exists a number $\lambda \in \mathbb{R}^{+}$such, that $-\lambda \mathbf{e} \leq a \leq \lambda \mathbf{e}$. If the order is Archimedean then the mapping $a \rightarrow\|a\|=\inf \{\lambda>0:-\lambda \mathbf{e} \leq a \leq \lambda \mathbf{e}\}$ is a norm. If A is a Banach space with respect to this norm, we say that (A, \mathbf{e}) is an order-unit space with the order unit \mathbf{e}.

Let (A, \mathbf{e}) be an order-unit space. An element $\rho \in A^{*}$ is called positive if $\rho(a) \geq 0$ for all $a \in A^{+}$, in this case one writes $\rho \geq 0$. A positive linear functional is called a state if $\|\rho\|=1$. This is equivalent to $\rho(\mathbf{e})=1$. We denote by $S(A)$ the set of all states on A and call $S(A)$ the states space of A. It is known that $S(A)$ is a $*$-weakly closed subset in A^{*}.

As we know, the pair $\left(A, A^{*}\right)$ is a dual pair. Following the work by E. Alfsen, F. Shultz [1], we suppose that A and A^{*} are in spectral duality. In this case every element $a \in A$ has a spectral resolution with respect to projective units. We denote \mathbf{P} and \mathbf{U} a set of P-projections and projective units of A, respectively.

[^0]Generally speaking, spectral duality in [1] is defined between A and a subspace $V \subset A^{*}$. Further, if the opposite is not supposed, spectral duality (A, V) means the case $V \subset A^{*}$.

A P-projection R is called central if $R+R^{\prime}=I$. Here R^{\prime} is the quasicomplement of R. A projective unit $u=R \mathbf{e}$ is called central if R is a central P-projection.

An order-unit space (A, \mathbf{e}) is said to be factor if it contains no central projective units except 0 and \mathbf{e}.

A projective unit $u=R \mathbf{e}$ is called Abelian if $i m R=R(A)$ is a vector lattice.
One says that an order-unit space A has type I if for any central P-projection R in A, the subspace $i m R$ contains an Abelian projective unit.

An element $u \in \mathbf{U}$ is called an atom if u is the minimal element of the lattice \mathbf{U}.
If A is a factor of type I and u is an atom, then there is a unique continuous linear functional \widehat{u} on A corresponding to u. This functional is the extremal point in $S(A)$ with properties: $\langle u, \widehat{u}\rangle=1,\|u\|=1$. The P-projection R corresponding to u is of the form: $R a=\langle a, \widehat{u}\rangle u$.

Spaces of selfadjoint elements of a C^{*}-algebra, a von Neumann algebra, and $J B$ - and $J B W$-algebras are the examples of order-unit spaces.

Let K be a compact convex subset of a local convex Hausdorff space V. We denote by $A(K)$ the space of all continuous affine functions, and by $A^{b}(K)$ the space of all bounded affine functions on K. Then $A(K)$ and $A^{b}(K)$ are order-unit spaces. The role of unit plays the affine function identically equal to 1 on K.

It is known that a von Neumann algebra, a $J B W$-algebra and the space $A^{b}(K)$ possess predual spaces, but this is not true for $J B$-algebras, C^{*}-algebras and $A(K)$ [2].

A state ρ on A is called normal if $\rho\left(a_{\nu}\right) \rightarrow 0$ for any net $\left\{a_{\nu}\right\} \subset A$ monotonically decreasing to zero ($a_{\nu} \downarrow 0$).

Theorem (F. Shultz [2, 3]). JB-algebra A has a predual space, i.e. it is a JBW-algebra if and only if it has a separating space of normal states.

As it turns out, a similar result is valid for order-unit spaces, too.This work is devoted to this result. Moreover, in the end of the paper, we prove a theorem characterizing $J B W$-algebras among order-unit spaces possessing a predual space.

2. Main Results

2.1. Existence of a Predual Space

We start by studying one example of an order-unit space from [4] and prove an analog of the Shultz theorem in this case. Spaces considered in [4] and called there generalized spin-factors are constructed by the following way.

Let X and Y be real Banach spaces in separating duality [5]. Then $A=\mathbb{R} \oplus X$ and $V=\mathbb{R} \oplus Y$ form a dual pair with respect to duality:

$$
\langle a, \rho\rangle=\alpha \beta+\langle x, y\rangle
$$

for $a=\alpha+x \in A$ and $\rho=\beta+y \in V$, where $\langle x, y\rangle$ is the duality between X and Y.

The order and norm on A (on V) are defined as:

$$
\begin{gathered}
a=\alpha+x \geq 0 \stackrel{\text { def }}{\Leftrightarrow} \alpha \geq\|x\| \quad(\rho=\beta+y \geq 0 \stackrel{\text { def }}{\Leftrightarrow} \beta \geq\|y\|) \\
\|a\|=|\alpha|+\|x\| \quad(\|\rho\|=\max (|\beta|,\|y\|))
\end{gathered}
$$

Let A have a predual space. Then $X=Y^{*}$ and any functional $\rho \in V$ is normal.

Indeed, let $a_{\nu} \downarrow 0$, then $\alpha_{\nu} \downarrow 0$ and $\left\|x_{\nu}\right\| \rightarrow 0$ since $a_{\nu}=\alpha_{\nu}+x_{\nu}$. Let $\rho=\beta+y \in V$, then $\left|\rho\left(a_{\nu}\right)\right|=\left|\alpha_{\nu} \beta+\left\langle x_{\nu}, y\right\rangle\right| \leq \alpha_{\nu}|\beta|+\left\|x_{\nu}\right\| \cdot\|y\| \rightarrow 0$. Therefore $\rho\left(a_{\nu}\right) \rightarrow 0$. Since (A, V) is a dual pair, then V separates points of A. Hence, V is a separating space of normal functionals for A.

Conversely, let A have a separating space of normal functionals of V, i.e. $a_{\nu} \downarrow 0$ follows $\rho\left(a_{\nu}\right) \rightarrow 0$ for any $\rho \in V$ and there exists $\rho \in V$ for any $a \neq 0$ such, that $\rho(a) \neq 0$. Since $V \subset A^{*}$, then an arbitrary element $\rho \in V$ is of the form $\rho=\beta+y$, where $\beta \in \mathbb{R}, y \in Y \subset X^{*}$. Since A and V are a dual pair, then X and Y are a dual pair. As it is proved in [5, Th. 1, §3, III] $Y^{*}=X$. Hence, generalized spin-factors possess a predual space when they have a separating space of normal states.

Let us consider the general case. Let A be an order-unit space in spectral duality, and $S(A)$ the space of normal states on A. We denote $V=\operatorname{lin}(S(A))$ the linear hull of the normal states space. It is obvious, that $V \subset A^{*}$. Let $J=V^{0}$ be the polar of V in $A^{* *}$.

Theorem 1. There exists a central P-projection R in $A^{* *}$ such, that $J=$ $R^{\prime}\left(A^{* *}\right)$, where R^{\prime} is a quasicomlement of R and the mapping $a \mapsto R a$ is an isomorphism of A onto $R\left(A^{* *}\right)$.

P r o of. Let H be an arbitrary P-projection in A. Then $H^{*}(V) \subset V$. Indeed, let $a_{\alpha} \uparrow a$ in A and $\rho \in S(A)$. Then $H^{*} \rho(x)=\rho(H x)$ for all $x \in A$. Since the P-projection H is positive and normal, $\rho\left(H a_{\alpha}\right) \rightarrow \rho(H a)$. Therefore $H^{*} \rho \in V$. Now it follows that if H is a P-projection in A and $x \in J$, then $H^{* *}(x)(\rho)=x\left(H^{*} \rho\right)=0$. Hence, $H^{* *}(J) \subset J$ for any P-projection H in $A \subset A^{* *}$. This means that the set J is "invariant" with respect to \mathbf{P}. By virtue of continuity
of P-projections, we conclude that J is invariant with respect to P-projections in $A^{* *}$. Note that $A^{* *} \cong A^{b}(S(A))$ [2] and therefore $A^{* *}$ is an order-unit space in spectral duality.

Before continuing the proof of Th. 1, we prove the following result.
Lemma. Let J be a weakly closed subspace invariant with respect to P projections in A. Then there is a central P-projection H in A such, that $J=H(A)$.

Proof. We denote by h the order unit J. By the condition of Lemma, J is invariant with respect to P-projections in A, then $R h \in J$ for any $R \in \mathbf{P}$. Since h is the unit in J then $R h \leq h$. By Proposition 5.1 in [1], we conclude that R is compatible with h. Since \bar{R} is arbitrary it follows that h is a central element. Thus there is a central P-projection H such, that $h=H$ e. Therefore $J=H(A)$. Lemma is proved.

Return to the proof of Th. 1. By lemma, there exists a central P-projection H such, that $J=H\left(A^{* *}\right)$.

Let $u=\mathbf{e}-h$. Then u is a central projective unit in $A^{* *}$. Hence, R is homomorphism of $A^{* *}$ into itself where $R \mathbf{e}=u$. Since $i d=R+H$, then the kernel of R is J. Further, since the space of normal states of A is separating we have that $A \cap J=A \cap V^{0}=\{0\}$. Hence, R is a one-to-one mapping of A into $R\left(A^{* *}\right)$. Theorem 1 is proved.

Theorem 2. Weakly *-continuous extensions of states from A onto $A^{* *}$ are normal.

Proof. By Proposition 1.2.11[2], $A^{* *}$ is monotone complete and order isomorphic to $A^{b}(S(A))$. It is known from Cor. 1.1.22 in [2] that an arbitrary state ρ on A can be uniquely extended to a state $\bar{\rho}$ on $A^{* *}$. Let $\left\{a_{\alpha}\right\}$ be a bounded increasing net in $A^{* *}$ with the least upper bound a. Since $a_{\alpha} \uparrow a$ implies $\left.a_{\alpha}\right|_{S(A)} \rightarrow$ $\left.a\right|_{S(A)}$ pointwise by virtue of $A^{* *} \cong A^{b}(S(A))$, so we have $\bar{\rho}\left(a_{\alpha}\right)=a_{\alpha}(\rho) \rightarrow a(\rho)=$ $\bar{\rho}(a)$. Hence, $\bar{\rho}$ is a normal state on $A^{* *}$. Theorem 2 is proved.

Theorem 3. If A has a predual space $V\left(V^{*} \cong A\right)$, then elements of V are normal functionals on A.

Proof. If $\rho \in V$, then it is obvious that $\rho \in A^{*}$, and its extension is a normal functional on $A^{* *}$ by Th. 2. Hence, ρ is also a normal functional on $R\left(A^{* *}\right)$, where R is a P-projection from Th. 1 . Since $a \mapsto R a$ is an isomorphism of A onto $R\left(A^{* *}\right)$ and $\rho(a)=\rho(R a)$ for all $a \in A$, then ρ is normal on $A=R\left(A^{* *}\right)$. Theorem 3 is proved.

Theorem 4. Let A be a monotone complete order-unit space in spectral duality. Then A has a predual space if and only if it has separating space of normal states. In this case the predual space is unique and coincides with a space of normal linear functionals on A.

Proof. Let A have a separating space of normal states $S(A)$. Recall that $V=\operatorname{lin}\left(S(A), J=V^{0}\right.$. By Theorem 1, there is a central P-projection R such, that $A \cong R\left(A^{* *}\right)$ and $J=R^{\prime}\left(A^{* *}\right)$. In [6] G. Godefroy has proved the following fact: a Banach space E has a predual space if and only if there exists a closed linear subspace F in $E^{* *}$ such, that $i(E) \oplus F=E^{* *}$ (Prop. 1 in [6]).

In our case, the role of the subspace F plays the subspace J. From this we conclude that A has a predual space.

Conversely, let A have a predual space, i.e. there exists a subspace $V \subset A^{*}$ such, that $A=V^{*}$. Then V separates the points of A, i.e. A and V are a dual pair. Further, by Th. 3 elements of V are normal functionals. Hence, A has a separating space of normal functionals.

Later, if $\rho \in V$, then $\rho \in A^{*}$ and it is normal on $A^{* *}$ by Th. 2. Since $a \mapsto R a$ is an isomorphism of A onto $R\left(A^{* *}\right)$ and $\rho(a)=\rho(R a)$ for all $a \in A$, then ρ is normal on A.

Conversely, if $\rho \in A^{*}$ is normal, then the extension $\bar{\rho}$ on $A^{* *}$ has the form $\bar{\rho}=\rho R$. Since R is an isomorphism between A and $R\left(A^{* *}\right)$, then $\bar{\rho}$ is normal on $A^{* *}$ and is equal to zero on $R^{\prime}\left(A^{* *}\right)$. Thus, ρ is equal to zero on $J=V^{0}$, and thus it belongs to V.

This proves that a predual space to A is unique and coincides with the space of normal functionals. Theorem 4 is proved.

2.2. Characterization of $J B W$-Algebra among Order-Unit Spaces Having a Predual Space

Note that $J B$-algebras are examples of order-unit spaces. Various authors have investigated conditions under which an order-unit space becomes a $J B$-algebra.

For example, in [7] it is shown that if a state space $S(A)$ of a spectral order-unit space A has the Hilbert ball property then A is a $J B$-algebra. In [8] geometric conditions on $S(A)$ are found: a spectral order-unit space A to be a $J B$-algebra if and only if $S(A)$ is symmetric.

Here, it was found another condition in this circle of problems: let a spectral order-unit space A has a predual space $V\left(V^{*}=A\right)$. If the spaces $L_{1}(\tau)$ and V are order and isometrically isomorphic then A is a $J B W$-algebra.

A positive linear functional τ is called a trace on an order-unit space (A, \mathbf{e}) if it satisfies the following condition:

$$
\tau(a)=\tau(R a)+\tau\left(R^{\prime} a\right) \quad \forall a \in A, \quad R \in \mathbf{P}
$$

Let A be an order-unit space, τ be a faithful trace on A. For $a \in A$, we put $\|a\|_{1}=\tau(|a|)$, where $|a|=a_{+}+a_{-}$is the module of the element a. The following result is proved in [9].

Theorem 5. The mapping $\|\cdot\|_{1}: A \rightarrow \mathbb{R}$ is a norm on A.

A mapping $\|\cdot\|_{1}: A \rightarrow \mathbb{R}$ is said to be L_{1}-norm on A. We denote $L_{1}(\tau)$ the completion of A by L_{1}-norm.

Let A be an order-unit space of type I having a predual space, i.e. there is a space V such, that $V^{*}=A$.

Consider relation between $L_{1}(\tau)$ and V.
Theorem 6. The spaces $L_{1}(\tau)$ and V are order and isometrically isomorphic if and only if A is a $J B W$-algebra.

Proof. It is known [10], if A is a $J B W$-algebra with a trace τ, then spaces $L_{1}(\tau)$ and V are order and isometrically isomorphic.

Conversely, suppose that $L_{1}(\tau)$ and V are isometrically isomorphic.
By Lemma 7.1 in [7], any order-unit space of type I can be reduced to factors of type I. Therefore we shall prove the theorem for factors of type I.

For an atom $u \in U, u=R e$, where $R \in \mathbf{P}$, we assume

$$
\varphi_{u}(x)=\tau(R x)=R^{*} \tau(x)
$$

It is obvious, that φ_{u} is a positive functional on A, i.e it is an element of V. Functionals of the form $R^{*} \tau$ were called in [11] projective traces. If $v=Q e$ is another atom orthogonal to u, then the element $h=u+v$ corresponds to a P projection $H=R \vee Q=R+Q$ and the functional $\varphi_{h}=H^{*} \tau=R^{*} \tau+Q^{*} \tau$. It is natural, that to their linear combination $a=\alpha u+\beta v$ corresponds the functional $\varphi_{a}=\alpha R^{*} \tau+\beta Q^{*} \tau$. This process can be done for an arbitrary finite number of orthogonal atoms. Since A is a spectral order-unit space, then by assumption of theorem, an arbitrary element of $L_{1}(\tau)$ can be approximated by finite linear combinations of functionals of type $R^{*} \tau$.

From the above, one can determine the following order and isometrical isomorphism between spaces $L_{1}(\tau)$ and V :

If $\left\{u_{i}\right\}$ is a family of orthogonal atoms then for $a=\sum \alpha_{i} u_{i} \in L_{1}(\tau)$, we define

$$
\begin{equation*}
\varphi_{a}(x)=\sum \alpha_{i} \tau\left(R_{i} x\right) \tag{1}
\end{equation*}
$$

where $u_{i}=R_{i} e$.
Let $b=\sum \beta_{j} v_{j}$ be an element of $L_{1}(\tau)$. We define for b by formula (1) the functional $\varphi_{b}(x)=\sum \beta_{j} \tau\left(Q_{j} x\right)$, where $v_{j}=Q_{j} e$ are atoms.

Then

$$
\begin{aligned}
& \varphi_{a}(b)=\sum \alpha_{i} \tau\left(R_{i} b\right)=\sum \sum \alpha_{i} \beta_{j} \tau\left(R_{i} v_{j}\right)=\sum \sum \alpha_{i} \beta_{j} \tau\left(R_{i} Q_{j} e\right), \\
& \varphi_{b}(a)=\sum \beta_{j} \tau\left(Q_{j} a\right)=\sum \sum \beta_{j} \alpha_{i} \tau\left(Q_{j} u_{i}\right)=\sum \sum \alpha_{i} \beta_{j} \tau\left(Q_{j} R_{i} e\right) .
\end{aligned}
$$

In order to functionals be well defined by formula (1), the values of $\varphi_{a}(b)$ and $\varphi_{b}(a)$ have to be equal.That's why we have

$$
\tau(R Q e)=\tau(Q R e)
$$

for all atoms $u=R e$ and $v=Q e$.
The last equality means that $\tau(R v)=\tau(Q u)$, i.e.

$$
\tau(\langle v, \widehat{u}\rangle u)=\tau(\langle u, \widehat{v}\rangle v) .
$$

Since the trace on factors of type I takes equal values on atoms, we have

$$
\langle v, \widehat{u}\rangle=\langle u, \widehat{v}\rangle
$$

for all atoms u and v. But this is the Hilbert ball property. By Proposition 6.14 from [7], we conclude that A is a $J B W$-factor. Theorem 5 is proved.

References

[1] E.M. Alfsen and F.W. Shultz, Noncommutative spectral theory for affine function spaces on convex sets. Mem. AMS. V. 172, Providence, RI, 1976.
[2] H. Hanche-Olsen and E.O. Stormer, Jordan Operator Algebras. Pitman APP, London, 1984.
[3] F.W. Shultz, On Normed Jordan Algebras which are Banach Dual Spaces. - J. Funct. Anal. 31 (1979), 360-376.
[4] M.A. Berdikulov and S.T. Odilov, Generalized Spin-Factors. - Uzb. Math. J. 1 (1995), 10-15. (Russian)
[5] A.V. Kantorovich and G.P. Akilov, Functional Analysis. Nauka, Moscow, 1977. (Russian)
[6] G. Godefroy, Espaces de Banach: Existence et Unicite de Certains Preduaux. Ann. Inst. Fourier, Grenoble 28 (1978), No. 3, 87-105.
[7] E.M. Alfsen and F.W. Shultz, State Spases of Jordan Algebras. - Acta Math. 140 (1978), No. 3-4, 155-190.
[8] Sh.A. Ayupov, B. Iochum B., and N.J. Yadgorov, The Geometry of Spaces of States of Finite-Dimensional Jordan Algebras. - Izv. AN UzSSR, Ser. Phys.-Mat. (1990), No. 3, 19-22. (Russian)
[9] M.A. Berdikulov, Concept of a Trace on the Order-Unit Spaces and the Space of Integrable Elements. - Mat. Trudy 8 (2005), No. 2, 39-48. (Russian)
[10] Sh.A. Ayupov, Integration on Jordan Algebras. - Izv. AN USSR, Ser. Mat. 47 (1983), No. 1, 3-25. (Russian)
[11] O.E. Tikhonov, Spectral theory for base-norm spaces. - Konstr. Teor. Funkts. i Funkts. Anal., Kazan 8 (1992), 76-91. (Russian)

[^0]: (C) M.A. Berdikulov, 2006

