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of [32].

2. A Description and a Properties of Maximal Semi-definite
Subspaces of a Special Form

Let Qj = Q; € B(H), Q;' € B(H), j = 1,2; dimH+(Q1) = dimH+(Q2),
with 4 (Q;) being invariant subspaces for the operators @;, which correspond
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to positive and negative parts of their spectra. Then it is well know that there
exists I'; € B(H) such that

It e B(H), T;QT;=1J (2.1)

where J is the canonical symmetry, that is J = J* = J~! (for example [27], one
can choose T'j so that J = sgnQ; or J = sgn@Q2). Represent J in the form

J=P,—P_, (2.2)

with Py being a pair of complementary orthogonal projections.
Introduce the notation

Q = diag(Ql, —Qg). (23)

Let Aj, j = 1,2, be linear operators in H (possibly unbounded and not densely
defined) and suppose Dy, = Dy, = D.
Consider the linear manifold

L={Af®Ayf|f € D} C H? (2.4)
and the operators
S=P T A +P.T; 4y, S =P Ty 4y~ P_TT'A;. (2.5)

Theorem 2.1. L (2.4) is a maximal Q-nonnegative (Q-nonpositive) subspace
in H? if and only if the following conditions hold:

1°. R(S)=H (R(S1) =H).

2°. There exists a compression K (K_) in H such that

Sif=KSf (Sf=K_Sif) VfeD. (2.6)
(Under 1° K, (K_) is unique).

Under (2.6), where linear operators Ky are not necessary from B(H), the
operators A; allow a parametrization as follows:

A =Ty(Py — P_K,)S (A =Ty(P.K_ — P_)S)), (2.7)
Ay = FQ(P_ + P_|_K+)S (AQ = FQ(P_|_ + P_K_)Sl). (28)

P roof. For certainty, we expound a proof for the case of Q-nonnegative L.
Necessity. Suppose £ (2.4) is a maximal @-nonnegative subspace. Since

U*J,U = Jo, (2.9)
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where
(P, —P\ .4
U= (P P, ) =U", (2.10)
Jo = diag(J,—J), Jo = diag(I,—1I), (2.11)
the subspace B
L=UT'L={SfoS.f|fecD} (2.12)
with
I = diag(T',Ty), (2.13)

is maximal Jo-nonnegative. If so (see [24, p. 100], [25, Ch. I, §8]), there exists a
compression K in A such that

L={g®K,.glgeH} (2.14)

Compare (2.12), (2.14) to see that 1° and 2° hold.

Sufficiency. Suppose 1° and 2° hold. Multiply from the left both parts of the
initial formulas in (2.5), (2.6) by Py and P_ respectively, and then sum up the
resulting equalities to get the initial equality in (2.7). The initial equality from
(2.8) can be deduced in a similar way.

With the notation

Ui[f1 = (Q;jA;f, Aif), feD, (2.15)
apply (2.1), (2.2), (2.7), (2.8) to deduce that
ULlf] = Ualf] = |ISfI? = 1K+ SF > 0, (2.16)

since Ky is a compression. Thus £ (2.4) is Q-nonnegative. Prove its maximality.
For that, as one can see from [23], [25, p. 38], in view of (2.1), (2.2), it suffices to
verify that

P, L =P, H? (2.17)
where
_p(P+ 0\pm
P, =T ( 0 P) r'. (2.18)

Apply (2.18), (2.13), (2.7), (2.8), together with the fact that R(S) = H, to
deduce that

P L=P{Af® A f|f € D} =T{P,Sf & P_Sf|f € D}
=T{Pg®P_glge "} =T{P.g® P_h|g,h € H} = PH.

Thus (2.17), along with Th. 2.1, is proved.
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Remark 2.1. Condition 1° in Th. 2.1 in the case dimH = oo could be replaced
i general neither by

Ja>0:VfeD (Sl =alfll (Sl =alflD, (2.19)

nor by
B>0:YfeD |Af|+|Afl = BIfI (2.20)

Proof. LetH =12 Setup
A =T1PU A =T3P U (A; = -T1P U Ay =T,P,U)

with U being the one-sided shift in [? [28]. Then S =U, S; =0 (S; =U, S = 0),
hence condition 2° in Th. 2.1 holds with the compression Ky = 0 (K_ = 0).
Therefore, in view of (2.16) (an analog of (2.16) for equality S = K_S;), £ (2.4)
is @Q-nonnegative (@Q-nonpositive). On the other hand, R(S) # H (R(S1) # H),
although (2.19), (2.20) hold. The Remark 2.1 is proved.

Theorem 2.1 implies

Corollary 2.1. Let the linear manifold L and the operators S, Sy be given by
(2.4), (2.5), and suppose the following two conditions are satisfied:

1) L is Q-nonnegative (Q-nonpositive).

2) S~ € B(H) (S;' € B(H)).

Then L is a mazimal Q-nonnegative (respectively, QQ-nonpositive) subspace.

Proof isexpounded here, e.g., for the ()-nonnegative case. Verify that
1), 2) imply the Conditions 1°, 2° of Th. 2.1. 2) implies 1° together with (2.6)
in which K, = $;5~!. Then with this K, the representations (2.7), (2.8) are
valid, hence also equality (2.16). On the other hand, 1) implies inequality (2.16),
whence K is a compression. The Corollary 2.1 is proved.

Remark 2.2. The transformation
il 1 1
(I iI) urL

with U, T asin (2.10), (2.13), reduces the maximal Q-nonnegative (Q-nonpositive)
subspace L (2.4) to a mazimal accumulative (dissipative) relation in H. Its Cayley
transform V , relates to the compressions K4 from Th. 2.1 as follows: V = +iK .

P roof follows from the proof of Th. 2.1 and [22] (see also [2]).

“(2.19)=-(2.20). If (2.6) holds, where B(H) > K4 are not necessary compressions, then
(2.20)=(2.19).
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Remark 2.3. (cf. [24, 25]). The formulae

L={T(Py — P_K{)h ®To(P- + P K )h|h € H} (2.21)
(L={T1(P+K_ — P )h®Ty(Py + P_K )h|h € H}) ‘
establish a one-to-one correspondence between compressions K, (K_) in H and
mazimal Q-nonnegative (Q-nonpositive) subspaces L in H?. (In the case L being
of the form (2.4), the compressions Ky (K_) in (2.7), (2.8) coincide to those in
(2.21)). Besides that:

1) L (2.21) is mazimal Q-neutral subspace* if and only if K, (K_) is an
isometry in H.

2) L (2.21) is hypermazimal Q-neutral subspace if and only if Ky (K_) is a
unitary in H.

Proof is expounded here for certainty in the Q-nonnegative case. If L is of
the form (2.21) with K being a compression, then this £ satisfies the assumptions
of Th. 2.1 since with this £ one has § =1, §; = K;S. Thus by Th. 2.1 Lis a
maximal ()-nonnegative subspace.

Conversely, let £ be a maximal ()-nonnegative subspace. Then one can use
the idea of the proof of necessity in Th. 2.1 to deduce that £ = TUL with T, U, £
as in (2.13), (2.10), (2.14), and additionally that in (2.14) K, is a compression,
which implies (2.21).

A classification of £ (2.21) in terms of the properties of compressions Ky
follows from (2.16) and [24, p. 100], [25, Ch. I, §4, 8]. Since the correspondence
(2.21) is obviously on-to-one, the statement of the remark is proved.

The following theorem allows one to characterize a maximal @-definite sub-
space in terms of a linear equation, which provides an analog of the existing
characterization for Hermitian [33] (see also [3]) and maximal dissipative or ac-
cumulative [22], (see also [2]) relations.

Theorem 2.2. Suppose that the linear manifold L (e.g. L (2.4)) is a mazi-
mal Q-nonnegative (Q-nonpositive) subspace in H?. Then there exists a unique
compression Ky (K_) in H such that

f@®gel & Bif—By=0, (2.22)

where

By =(KyPy — P_)IQ1, By = (KyP-+ PL)T50Q

(B1=(Py—K_P)TiQ1,  By=(K_Py+P_)I'5Q2) (2.23)

“In view of [25, p. 42] maximal @-neutral subspace is maximal @-nonnegative or maximal
@-nonpositive or both type.
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and L admits representation (2.21) with these compressions K .
If in (2.23) Ky are arbitrary compressions in H, then

L={Bif®Bif|f e H} Cc H? (2.24)

is a mazimal Q' -nonpositive (Q '-nonnegative) subspace in H? and (as one can
see from (2.23)),
IBIfII+ IB>fI| >0,  0#feH. (2.25)

If L is of the form (2.4) with A; € B(H) and
[ALfIl + [[A2f[ >0,  0#[feH, (2.26)

then S~' € B(H), (S;' € B(H)), where S, Sy are as in (2.5), hence by (2.6)
one has K1 = 818" (K_ = SS7"), i.e. B (2.23) admits an explicit expression
in terms of Aj;.

Conversely, suppose L is given by (2.22), with B; € B(H), j = 1,2, and L
(2.24) is a mazimal Q '-nonpositive (Q~'-nonnegative) subspace in H?. Then
L is a mazimal Q-nonnegative (Q-nonpositive) subspace in H? (hence admits
representation (2.21)). Furthermore, if (2.25) holds, then the compressions K4
in (2.21) admit explicit ezpression in terms of Bj, specifically K, = Si‘_IS*
(K_ = 8*18%) with S, Sy being given by (2.5), where Ay = Q™' B}, Ay = QQ_IBQ‘
and S;' € B(H) (S™' € B(H)).

Proof is expounded here for certainty in the (-nonnegative case. Let £ be
a maximal (J-nonnegative subspace. Then by Remark 2.3 there exists a unique
compression K, which makes valid (2.21), an equivalent of the initial equality in
(2.12) with £ (2.14). This implies by a virtue of [25, p. 73] that

rlQl — Q—lﬁ,

with £ being as in (2.24), (2.23); £[4] stands here for A-orthogonal complement
in H#2. Therefore

f®geL & (Qif, Q' Bih) — (Q29,Q; 'Bsh) =0 Vh € H,

which implies (2.22), (2.23). Furthermore, Q'L is of the form (2.21) with K =
K7, hence L (2.24), (2.23) is a maximal Q -nonpositive subspace by Remark
2.3.

If £ (2.4) with A; € B(#H) being a maximal (-nonnegative subspace, then
R(S) = #H by Th. 2.1. Besides that, KerS = {0} since if Sf = 0 for some nonzero
f € H, then by condition (2.6) of Th. 2.1 S1f = 0 implies Ay f = Ay f = 0, which
contradicts (2.26). Thus we have S~! € B(H) by the Banach theorem.
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Prove the converse. By our assumption, Q*Iﬁ is a maximal Q-nonpositive
subspace. An application of Th. 2.1 provides the existence of a compression K
such that

Qr'B; =T\(PyK_—P)S,,  Q3'B; =To(Py + P_K_)S,

where S; is given by (2.5) with A; being replaced by Q;lB;-‘. Note that by a
virtue of 1° of Th. 2.1 one has KerS} = {0}, which yields

Bif —Byg=0 & (KIPy — P )TTQ1f — (P4 + KZP_)['2Q29 = 0.

Therefore £ = (Q L)@ hence [25, p. 73] L is a maximal @-nonnegative
subspace. An argument similar to that proving the direct statement demonstrates
that for £ in (2.21) operator K, = K*, which allows to one deduce the rest of
statements in a similar way. The theorem is proved.

Lemma 2.1. (cf. [24, 25]). Let H = Hi ® Ha; in (2.1) one has

J= ({)1 _(}2> (2.27)

with I; being the identity operators in H;, j=1,2. Then the formulae: L = AiH
(L= AyH), where

L 0 0 K
A =T, (K; 0), Ay =T, (0 If), (2.28)

establish a one to one correspondence between compressions Koy € B(Hi,Ho2)
(K12 € B(Hz2,H1)) and mazimal Q1-nonnegative (Q2-nonpositive) subspaces L
i H. Besides that:

fer o <K921 ?2)?{@1]0:0 ((g I%?>F;Q2f:o>.

The Lemma 2.1 proves in the same way as (2.21), (2.22), (2.23) with using
24, 25).
Note that with H = H; ® H1 and

(0 L
Ql—Q2—(_Z-Il 0)7

the maximal @q-nonnegative (Qi-nonpositive) subspace in H appears to be a
maximal accumulative (dissipative) relation in Hi, and, after a suitable change
of notation, Lemma 2.1 provides a well known [22] (see also [2, 3|) description for
them.

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 3 305



V.I. Khrabustovsky

Lemma 2.2. Let H = H1 & Ha and the operator J in (2.1) is just (2.27).
Then L (2.4) together with the operators Ay, As as in (2.28) of Lemma 2.1 is a
mazimal Q-nonnegative subspace in H>.

0 Ko

Proof. For £ (2.4), (2.28) one has S =1, 5'1:< e 0
— K21

), so Lemma,
2.2 is proved in view of Th. 2.1.

An analog for Lemma 2.2 is also valid for the QQ-nonpositive case.
In addition to Th. 2.1, we have

Theorem 2.3. Let L (2.4) be a mazimal Q-nonnegative (Q-nonpositive) sub-
space in H? (that is, the assumptions 1°, 2° of Th. 2.1 are satisfied), and sup-
pose that H = Hy & Ho with the operator J in (2.1) being just (2.27). Then
(=1)7(Q;A;f, A;f) <0 ((=1)7(Q;A;f, Ajf) =2 0) for f € D, j = 1,2, if and only
if the compressions in (2.7),(2.8) are of the form

(0 K (0 Ky,
S B G 5 N

with Kzf € B(H;, being obviously compressions.

P roof is to be expounded here for certainty in the (Q-nonnegative case.
Necessity. Let (—1)/(QA;f,A;f) <0 for f € D, j = 1,2. Then since £ (2.4)
is a maximal Q-nonnegative subspace, the linear manifolds {A;f| f € D} and
{Asf| f € D} are, respectively, maximal @};-nonnegative and (a-nonpositive
subspaces in H. Thus by Th. 2.1 and Lemma 2.2 one has Vf € D3h € H: *

_(5Li O
(P —P_K.)Sf= <K21 0) h, (2.30)
(P + P, K,)Sf = 0 Kio h, (2.31)
0 I
where Sf = g1 ® g2, h = h1 @ hg; g;,hj € H;, and the compression
K K+>
K, = 1 12 2.32

with K© € B(H;, 1) .
Multiply (2.30) from left by Py to get, in view of (2.27),

g1 = hi. (2.33)

*And Vhe H3feD:
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In a similar way, multiply (2.30) from left by P_ to obtain in view (2.32)
K391 — Kjhg2 = Koihy. (2.34)

Since R(S) = H by Th. 2.1, the vectors g; € H; in (2.33), (2.34) are arbitrary.
Thus it follows from (2.33), (2.34) that K., = —Ka1, K5, = 0. Deduce similarly
from (2.31) that K, = K12, K| = 0, which proves the necessity.

Sufficiency. Since £ (2.4) is a maximal Q-nonnegative subspace in H?2, it
follows from Th. 2.1 together with (2.7), (2.8), (2.27), (2.29), that

I, 0 0 K
A1:I‘1< )s, AFFZ( ) s.
-Kj, 0 0 I

So by Lem. 2.1 sufficiency, along with theorem 2.3 is proved.

Consider examples (Th. 2.4-2.7) of @Q-semi-definite subspaces which arise in
investigation of boundary problems for the equation (0.1).

Let P be an orthogonal projection in A (in particular P can be an orthogonal
projection onto Nt (see [32])), and let My; be a linear operators (not necessary
bounded) in H with the property

My; = PMy;P (2.35)

(hence also PDys,; € Dar,,, (I — PYH C Dayy,).
Let G = G* € B(H),G~' € B(H) (in particular G can be equal to Q(c) (see
[32])).

Represent My; in the form

My; = <Pﬂ- — %I) (GG)~". (2.36)

Consider linear manifolds in H2:
Ly;=

{[(P+i = D(G)'P+(I = P)] f @ [Pwi(iG)"'P+ (I = P)] f|f € Dy }*
(2.37)
and introduce the notation

Gy = diag(G, —GQ).

*Which are subspaces if and only if the operators M4; are closed.
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Lemma 2.3. If 5Mi = H and the operators M4; are related as follows
M_;=M;* (2.38)
then the linear manifolds L; and L_; are Go-orthogonal.

P roof reduces to a direct computation which uses that, in view of (2.38),
Pi=1-G 'P!G. (2.39)

Lemma 2.4. The linear manifolds Ly; are +G2-nonnegative if and only if
tIm(My;f, f) >0 for all f € Dy,

P roof reduces to a direct computation.

Theorem 2.4. The linear manifolds Ly; (2.37) are mazimal +G2-nonnegative
subspaces in H? if and only if £My; are mazimal dissipative operators in H.

Proof is expounded here for certainty in the case of L;. Necessity. Suppose
L; is a maximal Ga-nonnegative subspace. Hence operator M; is closed.

Prove that EMi = H. Clearly H can be represented in the form H = Hq & Ho
so that there exists I' € B(H) with T ™! € B(H), T*GT = J (2.27). For L; (2.37)
compute the operator S (2.5) with I'y =I's =I'. One has:

TS =M + %FI‘*P +I-P. (2.40)

Suppose there exists a nonzero fy € D]\L/[Z_. Since R(S) = H by Th. 2.1, there
exists go € Dyy, such that 'Sgg = fo. Then it follows from (2.40), (2.35) that

7
0 = (fo, Pgo) = (M;Pgo, Pgo) + §||F*P90||2,

whence 1
0 = Im(M;Pgo, Pgo) + §||F*P90||2- (2.41)

It follows from (2.41) that Pgp = 0, since the first term in (2.41) is nonnegative
by Lemma 2.4. On the other hand, (2.40), (2.35) imply that 0 = (fo, (I —P)go) =
|(I — P)gol|?, hence gy = 0 = Dy;, = H. Thus M; is closed dissipative operator
(see [34]) by Lemma 2.4.

Prove that Im(M;f,f) < 0 for f € Dy+. Since L; is a maximal Gs-
nonnegative subspace, it follows from Lemma 2.3 that L_; (2.37), (2.38) is a
G2-nonpositive linear manifold in view of [25, p. 73]. Thus Lemma 2.4 together

*Alternatively, if Dar_, = H and M; = M*;
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with (2.38) implies Im(M; f, f) < 0 for f € Dy+, which proves necessity in view
of [34, p. 109].

Sufficiency. Suppose that M; (2.35) is maximal dissipative. Hence the linear
manifold L; (2.37) is Gy-nonnegative by Lemma 2.4.

Prove that for this manifold the operator S given by (2.5) is such that S~! €
B(H) where £(2.4) = L;, I'; =T.

Prove that 0 # 0,(S) U 0.(S). If not, then there exists a sequence {f,} such
that f, € D(M;), ||full =1, and T'S f,, — 0, whence in view of (2.40) one has

1
Im(M;Pf,,Pf,) + §y|1“*any|2 — 0. (2.42)

Since the first term in (2.42) is nonnegative due to dissipativity of M;j, it
follows from (2.42) that Pf,, — 0. On the other hand, (2.40), (2.35) imply that
(I = P)full? = (LS fn, (I — P)fn) — 0, hence f,, — 0. The contradiction we get
proves that 0 # 0,(S) U 0.(S).

Prove that 0 ¢ o0,(S). If not, there exists a nonzero f € Dy such that
(T'S)*f = 0, since D(pg)- = Dy+ in view of (2.40). Then by a virtue of (2.40),
(2.35) one has

PM:Pf — %PI‘F*]’ +(I-P)f=0, (2.43)

whence (I — P)f = 0. Thus by (2.43) one has
1
Im(M; P{.Pf) ~ LT Pf] =0. (2.44)

It follows from maximal dissipativity of M; that the first term in (2.44) is
nonpositive [34, p. 109]. Thus by (2.44) Pf = 0, hence f = 0. It follows that
0 ¢ 0,(S), therefore S~ € B(H), which completes the proof in view of Cor. 2.1.

For P=1,My; € B(H) Th. 2.4 is contained in [1].

Corollary 2.2. If £+ M; are mazimal dissipative operators in H, then Ly; =
{{(Pei = DG f + (I = P)g)® [PriG ' f + (I = P)gl|f € Dy, 9 € H}.

Proof follows from the fact that for linear manifolds in the right hand side
the analog of Lemma 2.4 holds.*

Lemma 2.5. Let Dy, = H, the operators My; be related by (2.38), and the
operators X1;j € B(H), j = 1,2, be related by

X1 X = G = XZpQ2Xin. (2.45)

*Note that for these manifolds the analog of Lemma 2.3 also holds.
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Then the linear manifolds
Ly =diag(Xii1, X1io) L (2.46)
are Q-orthogonal, with Li; being as in (2.87).
Proof follows from (2.45) and Lemma 2.3.

Lemma 2.6. Suppose Xiij,)”(;gj € B(H), j = 1,2, and the following three

condmons are satisfied:
Lil are a mazimal £Go-nonnegative subspaces in H2.
20. The subspaces : } } :
Ly = diag(Xein, Xaio) Lyi

are +Q-nonnegative.

3. } . } }

X101 X0 <G < £XT Q20X 140 (2.47)

Then L+; are a mazimal £Q-nonnegative subspaces in H?.

Proof is presented here for certainty in the case of L;. Suppose that L;
is not maximal, that is #? contains a Q- nonnegative subspace T' D L;. Then
the subspace T) = diag(X;;', X;3")T contains L;. By a virtue of (2.47) for all
f1@® fo €T, one has

(GX7' f1, X1 f1) = (GX5 11, X5 f2) > (Qif1, 1) — (Qafa, f2) > 0

since T' is )-nonnegative. Thus 77 is a ()-nonnegative subspace, which contradicts
maximality of L;. The lemma is proved.

Theorem 2.5. Suppose L; (L_;) (2.37) is a mazimal Ga-nonnegative (Ga-
nonpositive) subspace in H?, and (2.38) holds. Let for X1;; € B(H),j = 1,2,
(2.45) holds.

Then L_; (L;) (2.46) is Q—nonpositive (Q-nonnegative) manifold in H?.

Additionally, iin;I S B(H), X_” S B(H), j=12, (247) for Xiij = Xiij
holds with + (-), and the spectrum of either of the operators Y1, Yio does not
cover the unit circle, where

UjYiij = Xaij; Tj € B(H), T, € B(H), T;Q;Tj =G, j =1,2, (2.48)

(hence in view of (2.45) the spectrum of either of the operators Y_;1, Y_;o does
not cover the unit circle).

Then L_; (L;) (2.46) is a mazimal Q-nonpositive (Q-nonnegative) subspace
in H2.
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Proof of @Q-semidefiniteness for £_; (£;) follows from [25, p. 73| in view of
Lemma 2.5 and Th. 2.4.

The subsequent argument is expounded here for certainty in the case when
condition (2.47) (with +) for X,;; = X;; holds. In view of (2.48) we have

1GYi <G <Y35GYs.
Thus by (2.45) one has
Y 4G 'Y >G> Y G Y,
whence in view of [24, p. 96], we deduce that
Y*GY_j1 > G >Y*,GY_jo,

since the spectrum of either of the operators Y*,;,Y*.,, does not cover the unit
circle.

Hence by (2.48) the condition (2.47) (with —) for X _;; = X ;; holds. Finally,
maximality of L; implies maximality for L_; in view of (2.38), Th. 2.4, and (34,
p. 109]. Thus £_; is a maximal @Q-nonpositive subspace by Lemma 2.6. The
theorem is proved.

The next theorem allows one to use Remark 1.1 for producing c.o. of a bound-
ary problem for the equation (0.1) with a non-separated boundary condition,
whose special case is the periodic boundary condition.

Theorem 2.6. Suppose:
1,
NI~ ' e B(H), Qo=T*QiT. (2.49)
2.
U € B(H), U"Q\U — @, <0 (>0). (2.50)

3°. The spectrum of U does not cover the unit circle.
Then L (2.4) with
A =1, Ay =T7'U (2.51)

is a mazimal Q-nonnegative (Q-nonpositive) subspace in H2.

Proof is expounded here for certainty in the Q-nonnegative case. It follows
from (2.49), (2.50) that £ (2.4), (2.51) is Q-nonnegative.
Since by (2.1), (2.49)
Lir*QITy = J, (2.52)

one can set up in (2.1) I'y = I'Ty tef I'3. Once this is done, the operator S for £
(2.4), (2.51) acquires the form

S=r, ;' +P.I;'U. (2.53)
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Prove that S~! € B(H). Start with demonstrating that 0 ¢ 0,(S) U o.(S). If
not, there exists a sequence {f,} such that

fmeM, |full=1 Sfn—0. (2.54)

It follows from (2.53), (2.54) that

P_T3 fn —T5 fn =0, P.T3'Uf, —T3'Uf, — 0, (2.55)
whence
{ (73U £, T3 U f) = (T3 £, T3 f)]
~ [(JPT U S, PiT U S) = (JP TG fu, P TS )] 0. (256)

On the other hand, by a virtue of (2.52), the first bracket in (2.56) is just
(U*Q1U fn, fn) — (Q1fn, fn), hence nonpositive in view of (2.50). By (2.2), the
second bracket in (2.56) equals

1Py T3 U ful? + || P-T5 " >
Thus we deduce from (2.56) that
P.I7'Uf, =0, P.T3'f,—0,

whence f,, — 0 by (2.55). The contradiction we get proves that 0 # 0, (S)Uo.(S).
Prove that 0 ¢ o,(S). If not, then for some nonzero f € H one has

U Ty 'P_f=-T;'Pyf. (2.57)

On the other hand, since the spectrum of U does not cover the unit circle, it
follows from |24, p. 96] that

QU TS P f,U T P f) + [—(Q'T5 'P_f, T3 'P[)] 0. (2.58)

Now by (2.57), (2.52), (2.2), the first term in (2.58) equals ||Py f||, while the
second term by (2.52), (2.2) equals ||P_f|?, whence f = 0. Hence 0 € o,(S),
which finishes the proof in view of Cor. 2.1.

Remark 2.4. The proof show that condition 3° in the Th. 2.6 is unnecessary,
when Q; > 0 (Q; < 0), j = 1,2, and when Q; < 0 (Q; > 0), U™! € B(H).
If Q; are indefinite or if Q; < 0 (Q; > 0) it is impossible in general to get rid
of 3°.
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In fact, if Q1 = Q2 = W, U =T, where T, indefinite W see [24, p.67], then
(2.50), (> 0) holds and hence the linear manifold (2.4), (2.51) is -nonnegative,
but for it KerS* # {0}. Hence (2.4), (2.51) isn’t maximal by Th. 2.1. If H = [?,
Q1 = Qo = —I(I), U is the one-side shift in /2 [28], then (2.50) (with = 0) holds
and for (2.4), (2.51) KerS*(S7) # {0}. Hence (2.4), (2.51) isn’t maximal by
Th. 2.1.

Lemma 2.7. Let Aj, j = 1,2, be linear operators in H, Du, = D,
(=1)(QjAjf, Ajf) <0 (hence L (2.4) is a Q-nonnegative manifold in H?), and
suppose L (2.4) is a mazimal Q-nonnegative subspace in H* (hence L; = {A;f|f €
D} are mazimal (—1)7Q-nonpositive subspaces in H). Then

£l = £ g £l (2.59)

where [A] stands for the A-orthogonal complement in the associated Hilbert sub-
space.

Proof. Since £ is a maximal @-nonnegative subspace, one deduces by [25,
p. 73| that L9 is a maximal Q-nonpositive subspace:

= (L0 L)@ 2 £ @ £J%, (2.60)

with EE-Qj } being maximal (—1)’Q;-nonnegative subspaces by [25, p. 73]. Thus by
an analogue of Lemma 2.2 for the (J-nonpositive case, the subspace in the right
hand side of the inclusion (2.60) is maximal @-nonpositive. Hence the equality in
(2.59), together with the Lemma, is proved.

The case P =1 in Th. 2.4 is supplemented by
Theorem 2.7. Let P be linear operator in H. Set
A =P -1, Ay =P. (2.61)

1°. Suppose L (2.4), (2.61) is a mazimal Go-nonnegative subspace in H? *,
hence, in particular,

(GALf, A1 f) — (GAaf, Aaf) > 0, f € Dp. (2.62)

Let inequality (2.62) is separated, i.e., is equivalent to the pair of inequalities
being simultaneously satisfied:

(—1)7(GA;f,Ajf) <0,  j=1,2 f€Dp. (2.63)

“By a virtue of Th. 2.4, this is equivalent to maximal dissipativity of M; (2.36), (2.35),
(Pi =P, P=1I), hence Dp =H.
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Then
Dp2 = Dp, P? =P, (2.64)

that is, P is an tdempotent.

2°. Conversely, let L (2.4), (2.61) be Gy-nonnegative, that is, (2.62) holds,
and let P be an idempotent, i.e., (2.64) holds.

Then (2.62) is separated, that is, (2.63) holds.

Proof. 1°. Lemmas 2.7, 2.3 imply
Aol = £l 5 {—a"P*Gg @ (T — G'P*G)glg € Dp-g} .

It follows that .
9o {G~'"P*Gylg € Dp-q},

hence one has
(P-I1)f,P*h) =0, Vf € Dp, h € Dp-. (2.65)

On the other hand, since the operator
1
M= (P—3I) (iG)~! (2.66)

is maximal dissipative by Th. 2.4, P is densely defined, closed*, hence [30, p. 335]
P* is densely defined, and P** = P. Thus (2.65) means that (P —I)f € Dp« =
Dp and

PP—-I)f =0, Vf € Dp,

which proves (2.64).

2°. Set up subsequently in (2.62), (2.61) f = Ph, h € Dp, and f = (P —I)h,
we obtain (2.63) in view of (2.64). The theorem is proved.

Replace G with —G to see that an analogue for Th. 2.7 is valid for Gs-
nonpositive £ (2.4), (2.61).

For P € B(H) Th. 2.7 is contained in [1].

Remark 2.5. There exists a mazrimal Go-nonnegative subspace of the form L
(2.4), (2.61), with P being an unbounded idempotent, defined densely in H.

In fact, represent M (A) (1.104), (1.103), (1.102) in the form (1.20) and set
P = P(i). As the operator M () (1.104) is maximal dissipative if Im\ > 0, it
follows from Th. 2.4 that P is the desired idempotent.

Theorem?2.7 implies

“Closeness of P also follows from the fact that £ (2.4), (2.61) is subspace (see the footnote
to (2.37)).
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Corollary 2.3. Let for linear operators Ay, As in H the following conditions
hold: 1) D4, = Dy, =D, 2) (As+ A1)~ € B(H) ((A2 — A1)~! € B(H)) and
hence one can define an operator

P:AQ(A2+A1)_1 (P :.42(.42—./41)_1), (2.67)

8) (1) (GA,f, A;f) <0, f € D,j =1,2, and hence by Lemma 2.4 an operator M
(2.66), (2.67) is dissipative (see [25]), 4) an operator M (2.66), (2.67) is maximal
dissipative.

Then (2.64) holds for P (2.67).

For Ay, A2 € B(H) Cor. 2.2 is contained in [1].

Next consider £ (2.4) with the operators A; = A;()\) depending analytically
on .

Suppose one has operator functions A; = A;(X), 7 = 1,2, in H (possibly
unbounded and not densely defined), with A varying in a domain A C C, and
assume that D4, = D does not depend on j and A.

Lemma 2.8. Suppose that the vector functions A;(N)f, 7 = 1,2, depend an-
alytically on X € A for all f € D. With S = S(\), S = S1(\) being the vector
functions associated to Aj = A;(X) by (2.5), assume that for A € A:

1°. R(S(\) =H, (R(S1(N) =H).

2°. There exists K(X) € B(H) such that Si(A) = K(A)S(A) (S(A) =
K(X)S1(N)), with | K(X)|| being locally bounded.

Then K(X) depends analytically on X € A.

P r oo f is expounded here for certainty in the case S1(A) = K(M)S()).
First prove that the operator-valued function K () is strongly continuous at any
Ao € A.

Denote by Ay an increment of the operator function y = y(A) at Ag. For all
f € H one has

(AS))f = (A(KS))f = (AK)S(ho + AN f + K (X0)(AS)f,

whence
(AK)S(M+ AN f =0 (2.68)

as AX — 0 by continuity of S(A)f and S1(A)f. On the other hand,
I(AK)(AS) fIl < [JAK|I(AS)f]| — 0 (2.69)

as AX — 0 by local boundedness of ||K(\)||. It follows from (2.68), (2.69) that
(AK)S(XNo)f — 0 as AX — 0, hence K(X) is strongly continuous at Ay since
R(S(X)) = H.
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Now prove that K(A) is analytic at Ag. Since for all f € H

A(KS), AK AS
o = S5O0 f + Ko + AT,

one can take into account that as A\ — 0 one has K (Ao + AX)f 5 K (o),

A(KS)
AN

CAS, d AS

d
f= A)\fﬁa(slf)a AN %E(Sf)-

This allows one to deduce that there exists Ali\m0 AA—I;g for all g € H since
—

R(S(Xo)) = H. Thus for all g,h € H the scalar function (K (\)g, h) is analytic in
the domain A, hence [30, p. 195] K ()) is analytic in A. The Lemma is proved.

Theorem 2.8. Suppose that the vector-functions A;f = A;j(N)f, j =1,2, are
analytic in X € A, for all f € D, and assume L = L(X) (2.4) for X € A is a
mazximal Q-nonnegative (Q-nonpositive) subspace, hence, in particular,

Ui(A, f) —=U2(A f) 20(<0),  A€A, (2.70)

with Uj(\, f) = (QjA;(NF, A;(NS), f € D.

Then: 1°. If for some A = \g € A, for all f € D one has an equality in (2.70),
then this equality also holds for all X € A.

If, in addition, for some X = ug € A and all f € D the inequality (2.70) is
separated, i.e., it is equivalent to the following two inequalities being valid simul-
taneously:

Ui\ f) 20(<0),  Ux(A,f) <0(=0), (2.71)

then (2.70) is separated for all X € A.

2°. Suppose that Aj(X) € B(H) for X € A and (2.26) holds. Then if at some
A =Xy € A for all nonzero f € H one has a strict inequality in (2.70), then the
strict inequality also holds for all X € A and all nonzero f € H.

P roof is expounded here for certainty in the )-nonnegative case.

1°. By Th. 2.1, A; = A;(\) admits representations (2.7), (2.8), with K, =
K () being a compression in H which depends analytically on A € A by Lemma
2.8. If we have an equality in (2.70) at A = A9, then it follows from Remark 2.3
(alternatively, by (2.16)) that K, (Ag) is an isometry. Hence one can use e.g., [35,
p. 210] to deduce that K (X)) = K1 (\g), for all A € A, which implies equality in
(2.70) for all A € A by Remark 2.3 (alternatively, by (2.16)).

Suppose that at A = po (2.70) is separated. Assume that the operators I'; in
(2.7), (2.8) are chosen so that (2.1), (2.27) hold. Then by Th. 2.3, K (up) is of
the form (2.29), hence by the above argument, K (\) = K (uo) is of the same
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form. Thus by Th. 2.3 the inequality (2.70) is separated for all A € A, which
proves 1°.

20 Suppose that for A = ), for all nonzero f € H one has strict inequality in
(2.70), but there exist A = 9 € A and a nonzero f = fy € H which make (2.70) an
equality. Thus ||K(70)S(v0)foll = IS(70)foll by (2.16), where S~'(X) € B(H)
for all A € A in view of Th. 2.2. Hence it follows from [35, p. 210] that for all
AEA

K (N)S(v0)fo = S()fo,
whence

K+ (X0)S(Xa)go = S(Ao)go- (2.72)

with go = S71(X0)S(70)fo # 0. Now (2.72) implies that (2.70) becomes equality
with A = Ao, f = go in view of (2.16) . The contradiction we get demonstrates
that 2° and the theorem are proved.

Remark 2.6. Suppose we are under assumptions of Th. 2.8 which precede its
n®1°, and suppose that for all X € A (2.70) (> 0 or < 0) is a strict inequality
with some f = f(X) € D. Then the assumption that (2.70) is separated for some
A = o € A does not imply its separation for all A € A.

Q1=Q2=(_OZ- é) <Q1=Q2=<? _02>>,
A1:<)\ai )\—11—2')’142:(—)\1—2' i—0>\>. (2.73)

Then with I'mXA > 0, £ (2.4), (2.73) is a maximal Q-positive (Q-negative)
subspace such that the associated inequality (2.70) separates only at A = i.

In fact, let

References

[32] V.I. Khrabustovsky, On the Characteristic Operators and Projections and on the So-
lutions of Weyl Type of Dissipative and Accumulative Operator Systems. I. General
Case. — J. Math. Phys. Anal. Geom. 2 (2006), No. 2, 149-175.

[33] F.S. Rofe-Beketov, Self-adjoint Extensions of Differential Operators in a Space of
Vector-Valued Functions. — Teor. Funkts. Funkts. Anal. i Prilozh. (1969), No. 8,
3-24. (Russian)

[34] S.G. Krein, Linear Differential Equations in Banach Space. Nauka, Moscow, 1967.
(Russian). (Engl. Transl.: Math. Monogr. by J.M. Daskin; AMS Transl. 29 (1971),
Providence, RI, v+390.)

[35] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators in Hilbert Space. Mir,
Moscow, 1970. (Russian)

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 3 317



