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This work constitutes Part II of [15]. Notations, definitions, numerations of
the statements, formulas, etc., extend those of [15]. The formulas (1)-(49) are
contained in [15]. References [1-5] repeat those of [15], but references [6-14] of
[15] are omitted here. Correction to Part I see at the end of the present Part II.

Theorem 1. If a set of values {RT (k), k € R; kJZ <0, Zf(t), j =1,p} forms
the right SD for the scattering problem on the axis for the Schridinger operator
(1) with an upper triangular 2 x 2 matriz potential having the second moment ((2)
with m = 2) and with the real diagonal and without virtual level, conditions 1)-6)
should be satisfied: ‘

1) RT(k) is continuous in k € R: r;f (k) =rf(=k), |rf (k)] <1— l(il_—lzz, I =
1,2, RY(0) = —I; I — RT(—k)R*(k) = O(k?) as k — 0 and RT(k) = O(k™1)
with k — 400 (note that replacing the last condition by R* (k) = o(k~!) we obtain
a necessary condition too).

(© E.l. Zubkova and F.S. Rofe-Beketov, 2007



Inverse Scattering Problem on the Axis for the Schrédinger Operator

2) The function

o0

1 ,
Fif(r) = 3 / R* (k)e™*®dk (50)
—00
+00
is absolutely continuous, and with a > —oo one has [ (1 + x2) ‘%FE (:E)‘ dz

a
< 00.

3) The functions zay(z), | = 1,2, given by (48), are continuously differentiable
in the closed upper half-plane.
4) The function

oo

! /‘CMO‘UFX—kKX—kk‘Mﬂm (51)

Fg(ﬁ):—ﬂ

a
is absolutely continuous, and with a < +oo one has [ (1 + x2) ‘%F}g (:E)‘ dz

—00
< oo. Here c12(2) is given by (49), cu(z) = ay(z) is determined by (48) (one
can show" that condition 4 is also necessary in version 4a, namely, if ci12(z) is
constructed as in (42), (43), and c;y(z) = ay(z) is constructed as in (39), which
correspond to the absence of discrete spectrum,).

2 . . .
9) deg Z;r(t) < l; Signzl[l]H -1, 7=1,p, zl[l]H >0 and zl[lj]Jr are constant.

6) rg Z; (t) = rg diag Z; (t) = rg diag Z; (0), i=1,p.

The necessary conditions 1)-6) listed above (with condition / being replaced
by its version 4a) become sufficient together with the following assumption:

H) The function kaii(—k)a(k){r{;(=k)ri5(k) + ri5(—=k)ry,(k)} satisfies

the Hélder condition in the finite points as well as at infinity.

(The claims of the theorem related solely to the diagonal matriz elements,
are direct consequences of [1, 2].)

Remark 3. In the case when the discrete spectrum is absent, conditions 5 and
6 of Th. 1 become inapplicable, and conditions 4 and 4a become the same.

Proof of Theorem 1. The necessity. Similarly to [1], under condition
(2) one has that R (k) is a continuous function of k¥ € R. In this context,
since the upper triangular potential of the scattering problem (1) has its principal

diagonal formed by real functions, the following relations hold: r;f (k) = r;f (—k)

and [rj; (k)| <1 E& 0 1=1,2 (see [1]).

*E.g., using the procedure of subsequent eliminating eigenvalues or the properties of
the Fourier transform, which we omit here.
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Furthermore, (9) and (11) imply with & € R that there exist the limits
KE_(0,k) = (B (0, )[R (k) + T + By (2,—k) — By (2, )IC(R).  (52)

Since the scattering problem in (1), (2) is assumed to have no virtual
level, the definition (10) implies the existence of the limits
lim kA(k) = Cy; lim kC(k) = Cy;
kl_rf(l) ( ) 1 kl_r)r(l) ( ) 2

(53)
det Cl ;fé 0; det CQ 75 0.

Thus, passage to a limit as k& — 0 in (52) yields 0 = %inﬁ{E+($,k)[R+(k)
—
+I}kC(k) = Ey(z,0) ]%iH(l)[R-i_(k) + I]Cy. By a continuity of RT(k) one has
—

RT(0) = —1. Also by (53), we deduce from (14) that I — R*(—k)RT (k) = O(k?)
as k — 0.

Lemma 6. The coefficients A(k) and B(k) given by (10), admit representa-
tions as follows:

00 0
1 .
ARy =T~ o / V(2)dz + / Ay (e b
E . E
B(k) = ﬂ / Bl (t)eiiktdt,
—o0

with A1(t) being a summable matriz function whose first moment with m = 2 is
on (—o0;0];

Bi(t) is a summable matriz function whose first moment with m = 2 is on
(—00;00).

Proof of Lemma 6 coincides with that of the lemma by V.A. Marchenko
[1, Lemma 3.5.1.], if one takes into account that under condition (2) the kernel
K (z,t) of the transformation operator is a summable function, which has (when
m = 2) the first moment with respect to ¢ € [z;00).

Lemma 6 and the definition of reflection coefficient (11), (24) imply R* (k) =
o(z) as k — +oo. Condition 1) of the theorem is proved completely.

Condition 2) of the theorem follows from the arguments, with the help of
which the Marchenko equation is derived for the given right SD (see [1, 4, 5]).

The fact that za;(z) (48) as well as the same function zc¢y(z) are continuous
in the closed upper half-plane is proved in [1] by an application of Lemma 3.5.1
from [1]. The continuous differentiability of these functions in the closed upper
half-plane is a direct consequence of Lemma 6.
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Use Remark 2 to Lemma 5 [15], the relation (29) between the left and the right
reflection coefficients, and the argument that derives the Marchenko equation by
a contour integration for the given left SD (see [1], the text that starts at (3.5.14)
and ends at (3.5.19")) to prove that condition 4) holds.

The necessity of conditions 5) and 6) of the theorem follows from claims a)
and b) of Lemma 1 [15].

The necessity of assumptions of Theorem 1 is proved.

Prove a sufficiency of assumptions of the theorem.

1. The Case of the Absence of Discrete Spectrum

First, reconstruct the problem (1), (2) with m = 2, given R™(k), without
eigenvalues and normalizing polynomials. In this case, use (29) and the formulas
(39), (40) of Lemma 5 [15], to construct the function R, (k) as follows:

aO CO
Ry () = ~CalB) " R (=00, otk = (B s

where zero indices indicate the absence of eigenvalues.

Prove that R (k) and R, (k) are the right and the left reflection coefficients
of the same differential equation (1), whose potential is triangular, summable,
and has the second moment on the real axis. Since R*(k) and R, (k) are up-
per triangular and the diagonal elements r;l“(k) and rl[?]f(k), I = 1,2, satisfy the
assumptions of the Marchenko lemma [1, Lemma 3.5.3], one deduces that the
Marchenko equations constructed respectively to R* (k) and Ry (k) have unique
solutions K9 (z,y) and K (z,y), and analogously I?g(x,y) and K°(z,y). (In
fact, the equations for diagonal elements are solvable unambiguously by [1], and
the equations for k{,, and k{,_ differ from those ones for the diagonal ele-
ments only by a free term). By the same Lemma 3.5.3 of [1], the functions

. oo .
EY(z,k) = eF**T + [ K9 (z,t)e*™*dt are the Jost solutions of the Schrédinger
x

equations on the entire axis, in which the potentials Voi(x) possess the prop-
erty (2) with m = 2 (i.e., have the second moment), and similarly EQ(z, k) =

. :l:m ~ .
etk £ [ K9 (z,t)et™*dt are the Jost tilde-solutions.
T

To prove that RT (k) and Ry (k) are the right and the left reflection coefficients
of the same equation, it suffices to demonstrate that

E (3,k)Co(k)~! = E% (2, —k) + E% (z, k)R (k);

E° (z,k)Ag(k) ! = E° (z,—k) + E° (z,k)R; (k), k € R. (55)

We follow the ideas of [1, 3| to prove (55).
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Define a function
o0
®y(7,y) = F (v +y) + /Kﬂ(m,t)F;{ (t +y)dt,
T

with F;{ given by (50). It is quite plausible from the above that at every fixed z,
the function @, (z,y) is in L(—o0,00) since Fj (y) € L(—00,00). Furthermore,
by virtue of (50) one has

o0
[ Bswre My = B @ R (0.
—00

By the Marchenko equation @ (z,y) = —Kﬂ)r(x,y) with 2 < y < 0.
Since [ KU (z,y)e”™dy = EY(z,—k) — e~**I, one has [ &, (z,y)e "dy
xr

—0o0

z . .
= [ ®y(z,y)e Mdy+ e **] — EY (z,—k). Thus,

EY (z,k)RY (k) + EY (v, —k) = H_(x,k)Co(k) ™", (56)

where
x

H_(k)=e * T+ lim / O (z,y)e”*V=Ddy } Co(k).
N—o00
N
It suffices to show that

H (z,k) = E°(z, k) (57)
and this proves (55). In fact, consider the system
EY (¢, k)R* (k) + ES (2, —k) = H_(x,k)Co(k) ",
EY (z,k) + EY.(z,—k)RT (k) = H_(z,—k)Co(—k) !
with respect to EY (z,£k) to deduce from (14) that
H_(z,k)Ry (k) + H_(z,—k) = EY (z,k) Ao (k) ™", (58)

which by virtue of (57) yields (55).

Similarly to the proof of Theorem 6.5.1 of [3] it is possible to establish the
following three properties of the function H_(x, k):

1. H_(z,k) admits an analytic continuation into the upper half-plane, and

for large z one has the estimate |H_(z, z) — e—isz| -0 (ewlsz) .

E
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2. zH_(x,z) is continuous in the closed upper half-plane, and zH_(z, z) =
o(I) as z — 0 (uniformly in ).

3. H_(z,k) — e T € Ly(—00,00) in k.

Use the above properties of H_(z,k) to prove (57). For z < y, consider
an analytic in the upper half-plane function [H_(z,z) — e ***I]e®¥*. Use the
method of contour integration to obtain, in view of properties 1-3,

R
lim {H, (x, k) — e_ixkf] ek dk =0, x <y.
R—o0
-R
Hence,
H_(z,k) =e 14 / G_(z,y)e *vdy, (59)
—00

for some G_(z,y) € La(—o00, ).

x

From (58) and (59) one has E%(z,k)Ao(k)~" — e**] = [ G_(z,y)e¥dy
—00

. a; .
+e*””R07(k) + f G_(x,y)eflkydyRO*(k).

By a construction, Ag(z) and Ay 1(2) are regular in the open upper half-plane,
hence with ¢ < x one has

o0
0=15 [ (BY(z,k)Ag(k)~" — e**T)e~*tqt
=G_(2,t) + Fp (x+t)+ [ G_(z,y)Fg, (t+y)dt.

— 00

That is, G_(z,y) satisfies the Marchenko equation. It follows from the unam-
biguous solvability of the Marchenko equation that K°(z,t) = G_(z,t), whence
one deduces (57) in view of (59).

Thus R (k) and Ry (k) are the right and the left reflection coefficients for the
problem (1), (2) with m = 2 under the absence of discrete spectrum, so in this
special case Theorem 1 is proved.

2. The Addition of Discrete Spectrum

Now consider a general case when the problem might have a finite number p
of different eigenvalues (for the considered 2 x 2 triangular matrix potential they
can be either simple or of multiplicity two, and respectively the ranks of normal-
izing polynomials Z;“(t) will be either 1 or 2). We proceed by induction (cf., for
example, [3] in the scalar case). Suppose that for the data

{RY(k); ki, ... k23 ZF(t), ... Z] (1)} (60)
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the inverse problem on the axis is solved, that is those values from the right SD for
a problem of the form (1), (2) with m = 2 and a potential V(z) (do not confuse
index 0 with the previous notation of Sect. 1!). We are about to show how in this
case to obtain a solution of the inverse problem with the p+1 different eigenvalues
and the normalizing polynomials, that is, with the right SD of the form

{RE(K); kT, o ks oy Z5(1), o Z5 (1), Zf (1)) (61)

Denote by EY (z,k) and Eg(m, k) the Jost solutions for the equations, respectively,
~Y" 4+ Vo(2)Y = k%Y, —o00 <z < +00, (62)

—Z" + ZVo(z) = K*Z, —00 < 1 < 400, (63)

with asymptotics Ei(w,k) ~ ekrT Eg_(m,k) ~ %] as ¥ — +oo, Imk > 0.
Since kf,ﬂ is not an eigenvalue of the equations (62) and (63), one has that
E%(z,kpy1) and E$($,kp+1) decay exponentially as x — 400, and increase
exponentially as x — —o0.

We generalize the procedure of attaching the discrete spectrum expounded in
[3, Ch. VI, §6] to the considered matrix not self-adjoint case.

Set

F(z,y) =
~ d ~
B (@ by 1) 2530 VB (i) — i { BL D Z5 1 OB R
P

and consider the degenerate integral equation about B(zx,y)
o0
Bla,y) + Flo.y) + [ Blo.OP(ty)di =0, o<y, (64)
x

Solve it to obtain

B(z,y) = —Ei(ﬂf,kp+1)zp++1(0) [I + Eg(t, kp+1)E3-(ta kp+1)dtZ;r+1(0)

B g

X ES (y, kpy1) + ib(x,y)(Z,,1)'(0), (65)
with

b(z,y) = 914 (@ kpr1)eds s (y,kps1) €2y (kpt1)69,  (y,kpy1)
’ Ll T oo e 14 PP T a0 ik )2t
+235 [ €9ay (tkpt1) +27y J e (tkpt1)
x x

(oo}

+11+ T

8?14_(makp+l)882+(yakp+l)zﬁ : fe?1+(takp+1)e?1+(t:kp+l)dt
T

- oo ) oo 66
(2P ey (thpn)2dt) (142550 [ €8, (thpr)2dt) (66)
xr x

(o o]
+11+ T,
8?1+(l‘,kp+1)832+(y,kp+1)2£2 : f682+(takp+1)682+(takp+l)dt
x

114+ F 11+ F
(LT 0 (tkpi1)2dt) (1425 0T [ €Dy (tkps)2dt)
xr xr
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Set
d
AV (z) = —Q%B(x,x), V(z) =Vo(z) + A V(x). (67)
Lemma 7. The matriz function AV (x) given by (67) possesses the property
+00
/(1 Fla™)| A V()|dz < oo, (68)
—00
if Vo(x) satisfies condition (2) with m > 1.
Proof. Since EY(z,kyi1) and Eﬂ)r(x, kp11) decay exponentially as z — +oo0,
it follows from (65)-(67) that AV (z) also decays exponentially as 2 — 400.

Thus it remains to show that AV (x) has m moments at —oo if Vj(x) satisfies
(2). For this we introduce the notations

?(Jja kp+1) = 6_Z:kp+1x§?k (377 kp+l);
'1)(33, kp+1) = e_ka+1xE3— (377 kp+1);

oo _ (69)
D2, kpy1) = e 2Fo017 [ BY (&, kpy1) B (¢, kpyr)di
xT

and generalize the techniques of [3] to obtain the following three Lemmas 8-10
which are similar to Lemmas 6.6.1-6.6.3 of [3].

Lemma 8. The matriz functions ®(z, kpy1), &)(x,kpﬂ), given by (69), and

ou(T, kpr1) = % (e—ilcflﬁe?H(g;,Ig))kp+1 (where @y are the diagonal elements of

D, 5, I =1,2), are bounded in the neighborhood of x = —oo.

A pr o o fresults immediately from the representations (5) for the Jost
solutions and the inequalities for transformation operators (see [4]):

[o¢] [o¢]
KO (2,0)| < © / Vo(s)lds; K0 (#,)| < C / Vols)lds,  (70)

with some constant C' and also with the use of exponentially rising solutions as
x — —oo with asymptotics of (7).

Lemma 9. One has the following inequalities (m > 1) for the matriz functions
q)(x’kp-i-l): q)(xakp-i-l) (69) and (;bll(xakp-i-l):
0 0

J (U ™) [ E R ki) |dE < 005 [ (14 [t™)| F B (E, kpy1)|dE < oo;
- 0 - (1)
[+ ™)L ot kprr)|dt < oo, 1=1,2.
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A proof issimilar to that of Lemma 6.6.2 [3] in view of the fact that Vj(z)
satisfies (2) with m > 1.

Lemma 10. The following statements are wvalid for the matriz function

D(z, kp+1) (69):
a) |T(z, kps1)| and [Tz, kypy1)| are bounded as z — —oo;

b)

0
d
[ @ T e < o0, m > 1, (72)
—00

¢) |yu(z, kps1)| are bounded as x — —oo, 1 =1,2, and
; d
[ @ St k) de < oo, m > 15 1= 1,2 (73)
—00

with yy, [ = 1,2, being the diagonal elements of the matriz function I'(z, kpy1).

P roofs of propositions a) and b) of Lemma 10 are similar to that of
Lemma 6.6.3 [3]| taking into account that Vj(z) satisfies (2) with m > 1. Also
note that the boundedness of |I'"!(z,kpi1)| as  — —oo follows from the fact
that |['(x, kp41)| is bounded and |yy(z, kpy1)| > a; > 0,1 =1,2, as z = —oo.

Prove the proposition ¢) of Lemma 10.

From (69) one has

(@, kpy1) =2 [ oulty kp1)ou(t, kpa)e 2k @0 dy
xT

21 [ 1 by — e~ =0

° . (74)
— 2 f (pll(l‘ — z, kp+1)(pll($ — Z, kp+1)e_21kp+1zdz

—00

0 .
—2 f 90121@—Z,kp+1)ze*22kp+1zdz_

—00

Thus, in view of Lemma 8, we obtain that

0 0
(e, k)| < Cinl / o2z gy 4 / e 2krhizdz) < oo, 1= 1,2,
—00 —00

as r — —oQ.
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oo
Since [ e}, (2, kps1)dz < oo, with the notation
0

0 00
V(s kpi1) = eZlkp+1I/e?l+(t, kpi1)?dt,  ay(kpi1) /eH (t, kpyr)?dt,
T 0

we obtain the following representation:

—2ikpy1T

V(@ kipt1) = au(kpt1)e + (@, kpia),

and hence
Y, kp1) = —2ime 20Ty (ky 1) + e 2y (ky ) + A (@, kpp)-

Thus it suffices to prove (73) for the function %73(15, kpi1)-
So,

0 0
Vi (@, kpy1) = —27396/<Pzz(t, kp1)2e” 2keri(@=D gy 4 2/[@1(75, kpt1)

T

+itou(t, kps1)]pu(t, kpir)e 2t @gy
0

=2 / on(x — z, kpy1)ou(x — z, kpﬂ)e—mpﬂzdz

x

0
—2i / ou(x — 2, kpy1)2ze 2hrr12dy,
x

Hence

d . ‘ »
St Rp1) = —200(0, Ky )i (0, Ry Je e
) d
+ 2ipy (0, kp+1)2t€’2ikp+1t + 2/ [dtwu( — 2, kpy1)u(t — 2, kpy1)
t

. d i .
+ou(t — z, kp+1)%<pu(t — 2, kpﬂ)] e 2ikp117 1,

0

. d N

_4z/dt<Pu( z,kp+1)<p”(t—z,kp+1)ze 2ikps12 g,
t
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Thus, in view of Lemmas 8 and 9, one has

szp+1zdz

/ |t|m\ 50t kpn)

dt < Cy+ 01 (/ ‘—90” —z,kpy1)|e

—00

0
d
+/ ‘%‘Pll(t — 2, kpy1)
t

0 0
m d
+Co / || /‘dthz — 2, kpi1)
—00 t

0 z
. d
=Co+ O / e2“%+1Zdz/|t|m{‘%¢”(t—z,kp+1)

e_QikP“Zdz> |t|™dt

|z|e = 2k 12 gzt

b

d
+ ‘a‘ﬁu (t—2,kpy1)

0 z
. d
+Cs / |z|e=2tkr 12y / |t ‘%Lp”(t — 2, kpy1) | dt < o0,

— 00 — 00

and Lemma 10 is proved.

We return to the proof of Lemma 7. Use the notation of (69) to rewrite
AV (z):

AV () = —2%3(% x)

d B o~
- _2£[_@($akp+l)zp+1( HIe Qlkpﬂx"‘r(x kpﬂ) ;rﬂ(o)} 1<I>(x,kp+1)

—2ik 1
(6 i p+1m+zgli+ 1+

4 e PP T (o1 (2, k)p22(0,K) )k, 20011 (Top 11 )p22(@ kp g e PP
i =
M@ kp))e P2 s (@ ke 41))

[p+ 1+ [p+1]+

Y11 (2 kpt1) @11 (T kp41) P22 (T,kp41) 255 Y22 (@skpt1)
11 (@ k1)) (e 2 Fp 17 12 0, (3.kp 1))

+ P11(x,kpy1)p22(x,kpy1)2g
( 72zkp+1m+z[p+l]+

e11(zkpy1)ean(z,kpp) (o1 [er1]7L
3

Y11 (z, kp+1)+z£1;+ ]+fygz(:v kp+1)) }(Z+ ),(0)]
p+1

(e—QikarliU_i_zEIi*l]Jﬁyll(x,kp+1))( —Ql’fp+1””+z£’;+ M oo (@ykpt1))

Now consider the possible (with the assumption 6 of the theorem being taken
into account) Cases I-1II:
I) zgpfl] = 0. In view of the assumption 5) of the theorem one has (Z;_i_l)’(t)

=0, Z;F_H( ) = Z;“_H, that is
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AV (z) = 2—; L

8*21kp+1w+z[p+1]+

<A (2, kps1) 2, @ (@, k1) + (2, kipy1) 2,5 ' (2, Kipyr) } (75)

9k —2ik p+17 [p+114+ _»
s e 2 0(z, kyy1)Z +1q)($ kpt1)-

-2
v22)? p

(e—Qikp+1x+z[p+l]+

IT) 2, [pﬂ] = 0. In view of the assumption 5) of the theorem one has ( ;Zrl)’(t)

=0, erl( ) = erl,that is

AV (z) = 2—; 1

e*szp+lz+z[p+l]+

<A (2, kps1) 2, @ (@, k1) + (2, kipy1) 2,5 ' (2, Kipy1) } (76)

) Y 1
_92ikpiie Zhp1e BT P

—927 1 b
(e szp+1x+z£1;+ ]+’711)2

(@, kpt1) ;1)-1-1@(3j kip+1)-

) 27 >0, 1= 1,2, then
AV () =20 (w, kpyr){e 2012 28 (0)7L + T, kipyr) (@, ipyr)
120, kpy1) {e 212 2 (0)7 4+ T, k1)), K1)
—20(, kps1) {20122, (0)7 4+ T, kpy1) ) [<2ikp 102001225 (0)]
+ (2, kpyr ) {2012 20 (0)71 4 D, kipyn) T 0 (@, Kipgr)

—24

—2ikpre 2o 17| - (p11022)+2izp11022]
( szp+lz+z p+1]+ )( 7szp+lz+zgg+l]+7 2)

B_Qikp“m[dgdz(wnw22)+2i<p11LP22+2i90(W11Lp22)']
(872ikp+1z+Z£}i+l]+711)(672ikp+1z+zgg+l]+722)

n A0

P11022) Y11+ P119p227] — > Y11= 51
_ 1
’)/11)(8 2ik +lz+z[13+ ]+722)

(67211{: +lz+z[p+l]+

©11¢22) Y224+ P11 022Vhy— (‘P112‘P22) Yo —E1LE22 41 ]

(e—2ikp+1z+z£;:+1]+,yll)(B—Qikp+lz+zgg+1]+,y22)

Z[P+1]+[(

+22

74ikp+1874ikp+lm*Zikp+1872ikp+lz(Zgzi+l]+7 +Z[P+ ]+722)
(e_Qikp+1x+z£11+l]+,yll)2(e—Qik‘p+1w+Z£1;+l]+,yzz)2

V111232
—2ik 1
(8 7 P+1Z+z¥i+ 1+

e L N P L GRS ]

—2ik- e [p+H1]+
P+ —|—z22

y11)3(e ¥22)?

—9 . . 1
X {e 2ikpiie [dik(‘Pll(Pm) + 2z$<p11<,022] + <P11<P22ZEJr ]+’)’11

+<p11¢222£%+1]+’722 — B2 () AR z%’é Hﬁm)}] (Zp11)"(0).
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It follows from Lemmas 8-10 that in each of three cases the matrix function
AV (z) satisfies (68) if V(x) satisfies (2) with m > 1. Lemma 7 is proved.

It is possible to deduce from (64) the following differential equation for B(x,y)
(compare, for instance, [3]):
0°B(z,y)
0z?

9’B(z,y)

~V(@)Bly) = 55

— B(z,y)Vo(y), (77)

o
with B(z,z) = 1 [ AV (t)dt.
T

It follows from (77), in view of the fact that B(z,y) tends to zero as y — +oo
(see (65)), that the function

o0
Bi(o ) = B h) + [ BB (nh)dy, Tmk>0, (1)

T

is the Jost solution for the equation
~Y" 4+ V(2)Y = k*Y, —o0 <z < +oo, (79)

with the asymptotics E, (z, k) ~ e**T as z — +o0.

Lemma 11. The right SD of the problems (79), (2) with m > 1 coincide with
the values given in (61).

A proof of the lemma is based on the computation of the coefficients
A(k) and B(k) (10) for the equation (79).

In view of the assumptions 5) and 6) of the theorem one has three possible
cases again:

p+1 0 Z%g—l—ﬂ-l—
from (65) and (78), in view of (9) and (27) as x — —o0

0zt [p+1]+
Case I). Z,,(t) = Z) | = 12 D 2z > 0, then we obtain

Ey(x,k) = EY (2,k) — B (¢, kpy1) Z [T+ [ B (t,kpi1) EO(L, kpy1)dtZ ]
S
x f EE)l—(ya kp+1)EE)|— (ya k)dy

i 2k
~ ik { I~ it Ao(ka)ZIjH} A (k)

233 a3y (kp+1)

—tkx k1 N
+e {I + (kkp+1)zgz;+1]+a82(kp+l)Ao(ka)ZpH} By(k),
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hence
A(k) = a(k)Ao(k), B(k) = a(=k)Bo(k), k€R, (80)
with o
_ 7 _ p+1 +
alk) =1 (k+kp+1)zgg+1]+agz(kp+1)AO(karl)Zde
| Zkpia(@f (bpy)25 T ad, (ky i) 251
= (ktkp1)285 T a9, (k) ) (81)
0 k—kpi1
ktkpt1
It is clear from the first relation in (80) that the equation (79) has the same
eigenvalues k? k2, ... ,kg as the initial equation (62), and one more eigenvalue
k2. ..
p+1

To compute the right reflection coefficient R (k) and C(k) that correspond
to the constructed equation (79), we use (24) and (14):

Rf (k) = —A(k)"' B(=k) = —Ao(k) "o~ (k)a(k)By(—k) = R*(k), kR,
(82)
and

C(k) = (I = Rf (—=K)R{ (k)" A(=k)~"
= (I — RT(—k)RT(K)) "Ao(—k) ta (k) = Cy(k)a "t (—k), k€ R. (83)

It is clear from (81) that a~!(—k) = a(k), hence C(k) = Co(k)a(k).

Now prove that the initial p normalizing polynomials of the problem (79), (2)
with m > 1 coincide with the normalizing polynomials of problem (62), (2) with
m > 1.

It follows from the definition (15) of the normalizing polynomials Z,_, (t) for
the equation (79) and the relation (80) that

Z: 1o (t) = —i{W ™ (k) A7 a(—ky) — W (k) A°57 é(—ky)

F W (k) AYS 7 (= k) y — W (k) AV a(—kj), §=T,p, (84)

<

: 0<k; _ 0<k; _ :
with A75Y7 = (Ag(k) ™' (k = kj)")eys A7 = g (Ao(k) ™' (k — kj))s; being
the Laurent coefficients.

One can show, using (27) and (32) with £ — 400 and noting that k; is
an eigenvalue of the equation (62) with k; < k11, j = 1, p, that

W (k) AP = —a(—k;)(Z;)(0);

W= (k) AP + W (k) APTY7 = ia(—k;) (Z;)(0) + a(—k;)(Z; )'(0),

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 189



E.I. Zubkova and F.S. Rofe-Beketov

hence (84) can be rewritten as follows:

T (8) = 0l —k) 27 (Ba(—ky) — i3 (@(R) () Ok,

Next, use the relation (30) with 7 = ¢ for the right and the left normalizing
polynomials Z | (t) of the problem (79):

j<1>
ZF () = —ASY 7 (Z . (1) + Q) TCS”
= —[A*TV7 a(—ky) — A% (k) ]a(ky)
x{Z; (t) — ialky) & (k) (Z; ) () (k) et uly) + a(ky) Qiar(ky)}

xa(ky)a(—k;)C*T7 — a(—k;)C*5H7),

. 0<k; _ 0<k; _ .
with C2797 = & (Co(k)™" (k — k) )iy C75777 = (Co(k)™"(k — kj)*)k, being
the Laurent coefficients.

In view of (81) one has

{Z7 (1) + alk))Qjalk;) — ialky) it (k) (Z] ) (0) (k) o=t ce(s)}

= (Z; (t) + a(k;)Q,ak;)) ! + _ Zikpyr _(Z:)(0),
(2;:(8) + alk;)Qjelk)) (kffk;l)(z?ﬂ‘+q£fﬂ>(z¥£‘+(—’;;+’;§ﬁ>2q¥£>( ;0

hence
Zio (8) = A" (Z5 (1) + alky) Qjalky) 1 COTH”
+ AN (77 () + alk)Qjalk))) alks)d(—k;) Co5H

+ A7 (k) alk) (Z; (1) + alk;)Qjalk;)~ C°TH”

: Ul- Ul ll= o ki —kp+1yp 1)1 J
(k3 —kp ) (2] +aiy) (255 +(k;+ﬁ)2‘12]2)

If zgj]_ > 0 and zgj]_ > 0, then q%} = q%] = 0 with the definitions of @Q; of
Lemma 3 [15], being taken into account;

0<k:> 0 —al,(k;)
A72 = d(l)l(k]')dg2(k]') y

0 0
hence
Zf<1>(t) = Zf(t)
—ad,(k;) . (537)(0)
ok 0 ‘(1)12 AR S Gi N
+ : ptl a9,y (kj) lj] = 77F(t 7 =T1,p,
(63 ~Kk24.0)780 g3 (k)ad (k) (0 ™ (©), 7

in view of (19) and (21).

190 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2



Inverse Scattering Problem on the Axis for the Schrédinger Operator

On the other hand, if zgl]f =0 or zg;* = 0, then by the assumption 5) of

Theorem 1 (Z;)'(0) =0 = A0<k ~, hence Zj+<1>( )= Z;‘(t), j=1,p.

Thus in any variant of Case I, the initial p normalizing polynomials of the
equation (79) turn out to be the same as those of the equation (62).

Now prove that Z ' | is a normalizing polynomial of (79).

Similarly to (84), Illse (80), (81) to obtain
(t) = —ige (W~ (k) Ay (K)a(=k) (k = Kp1)*) k1
—t(W~ (k) Ay ' (k)a(=k) (k — kp41)*kys

S ~ 2%
= —iW "~ (kp1) Ay (Bps1) [WAO(%H)Z;H

@29

Zp+1<1>

= —iW (kps1) 21 e — = W{Eﬁ (2, kp1); B (2, kpp1)

p—|—1 [P+1]+ 0 (k +1)

oo
f eg; tkp+1)2dt ( ) " n

— EY z,k —_—7
+ p+1 1 +11+ 1
[p+1]+ f [ tkp+1)2dt pt Zg; ] a‘gQ(kp-i-l) Pt

1 N . ofoeg;(t7kp+l)2dt +
7W[ a2}
] { (@, kpt1); By (2, kpia) 20 F o0t k)2 DT

a3y (kpt1

Assume 7 — —oo and apply the asymptotics B9 (z, kpi1) ~ e®r+1% A (kpy1),

that is, as ¢ — —o0

Z_+1<1>( ) Z_+1<1> WW{GZICP'H‘T[ €Zk1’+1IA0(kp+1)

1 ZEI;+1]+
— 0 0
[p+11+
z 1
X 22 . = 714 . 2 2
2ikpyre” 2P 1T } a3, (kp+1) olkp+1) ( 0 #ﬁ)z )
2ikpyie” "PHLY N
T a0, (k)2 22(Fp+1
0
- %Ao(k 1) 0 0\ _ -3, (0 ap(kp)
2 gy (epn)? g 0 1 B0, (ki) \ 0 ady(kpy1)

It follows from (30) with 7 = ¢ and (83) that

<kpt1> 1 ~<kp1>
—AZ pﬂ (Z +1<1>+Qp+1) C—lp+1

+
Zp+1<1>
A e e g (k1) 2, ) e s (e
0 P B T a0, (k) P TP kT 0B (k) LT A, (k)
ady(kp+1) [P+ __ 1 — gt

XAO(kp+1)Zp+1}CO_ (kp-i-l) Z;+1 p+1]+ ) a3, (kp+1) p+1>

and Lemma, 11 in the Case I is proved.
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Case II). Z1 (t) = 2, =

1)+ 1]+
ZE ] z% } : zE—HH > 0, then simi-
0 0

larly to the Case I we obtain

A(k) = B(k)Ao(k), B(k) = B(=k)Bo(k), k € R, (85)
with ik .
=1— el Z' Colk
Blk) (ktkpg1)2y T a) (kpyr) “ P! 0(kpt1)
k—kpir_ 2ikpar (G Q) (hp ) 4215 0y (1))
= [ FFkpir (k+kpr1)22 1% a0, (k1) : (86)
0 1
It is clear from the first relation in (85) that the equation (79) has the same
eigenvalues k%, k3, ..., kf, as the original equation (62), and one more eigenvalue
o
Just as in (83), we deduce from (24) and (14) that
C(k) = Co(k)B™' (=k) = Co(K)B(k), (87)

and the reflection coefficient of the equation (79) coincides with that of (62):
Rf (k) = R* (k).

The coincidence of the p initial normalizing polynomials of the equation (79)
with those of (62) can be proved just as in Case I with the substitution of (k)
(86) for a(k) (81).

Now prove that Z' , is a normalizing polynomial of (79). Similarly to (84),
use (85) and (86) to obtain

- — - R -1 2kpt1 +
Zp+1<1>(t) = “pt+ii> — —iW (ka)AO (kp+1) lp+11+ po k p+1
211 aly (kp+1)

xCo(kpt1) = [;W{Eﬁ(%kpﬂ); EY (2, kp11)

T+
lei ] a?l(kp-i-l)?

0+ N oo L
- Lt Zy [ ES(y, kp1) ES (y, kp+1)dy}Z;r+1CO(kp+1)

1 oo
L2 (D (tkpan))2dt
x
eo+(z,k )
W{efl (w,kp+1); R 8 0+p+1
11 J (] (bkp1))?de

- Z+ C[](k +1).
z£ﬁ+1]+a?1(kp+1) pHl P

Supposing # — —oo and using the asymptotics ed (z, kpy1) ~ e*r+1%a0, (kyy1),
that is with £ — —o0, one has

ik —ik 2ikp 41
W{el pH1T,p 71 p+11a?1(kp+1) 7z[p+1]+:0+ 7 2
7= — 11 11\p+1 Z+ Co(k +1)
pHI<1> ZEHH”‘% (kpy1)? p+1 P
—4k2

— p+1 7t O (k )

= 1 1+0 +1)-
(17209, (kp1)3 T PF P
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It follows from the relation (30) with 7 =t and (87) that

+ _ <kpy1>/r,— 1 <kpr1> 2kpi1 -1
Zp+1<1> - _A—l (Zp+1<1> + Qp-i-l) C_l - _ZE’;HHa?l(ka)AO (kp-l-l)

—1
[p+1]+y2 0 3 [p+11+ o 3
+ (=11 )2ady (kp41) + 211 a?y (kp+1)
XZp+ICO(kP+1) —4k2 Zp+100(kp+1) + Qp+1—,4kg+l

2kpt1 7+ 1 0 [p+1]+y2, 0 3 1
- = 5+7—=ai(kytr1)(z a1 (kpt1)’ =
ZEIIHHG%(’%H) p+1 a?l(kp+1)2 11( p+ )( 11 ) 11( p+ ) z£ﬁ+1]+a‘l’l(kp+1)
+ Z-l—

1
X7
+1]+ +1 +1»
ZEII ] a?1( p p

kpy1)

and in Case II Lemma 11 is proved too.

p+1]+  _[p+1]+

z z t +1]+ +1]+

Case III). Zf  (t) = 110 f[pﬂ]i) ) At s 0, 8T S 0,
22

then, similarly to Case I we obtain
A(k) = v(k)Ao(k), B(k) =~(=k)Bo(k), k € R, (88)

with

k—kpi1 ; a(1)1(kp+1) a(z)z(kpﬂ)
v(k) = 721 + 4 +
ktkp+1 (ktkpi1)zdy ¥ aQy (kpi1)  (ktkpsr)zl T ad) (kptr)

2kpr109; (Kpi1) + oy
(ktkpr1)225 a0 (k) }(ZpH) (©). (89)
The eigenvalues ka, j = 1,p, of the equations (79) and (62) coincide, and (79)
has one more eigenvalue kf, 41 by (88) and (89).
(24) and (14) imply that the reflection coefficients for the equations (79) and
(62) coincide R (k) = R*(k), and

C(k) = Co(k)y~* (—k). (90)

The coincidence of the initial p normalizing polynomials of (79) and (62) can
be deduced similarly to Case I.
In this context,

_ e 0<k:> _ _ 0<k;> d , _
iy (0) = —i{ W (k) AL () + W (kgAY - (v (R,
_ ks _ _ 0<k; _
AW (k) ATy (k)Y — W (k) ALY (k). (91)

Using kj < kpy1, j =1,p, as z — —00, we get

 Aikpya (Kj 4 k)
(kj = kp1)?

Z; 15 (8) = v(=k) Z7 ()7~ (k) (Z;)'(0).

Thus, (30) with 7 = ¢, (88) and (89) imply

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 193



E.I. Zubkova and F.S. Rofe-Beketov

ZF 1 (1) = =[Sy k) + ALY Ly k), Jy (k) L (25 (8) + (k) Qs

—1 -1 42’6p+1(1€ thp+1) kj—kpy1)2
X7y (_kj)) + Rk — - (k. % )
(ks =k 1) GH 20 T )2 e

x(Z7)(0) 3y (=) Iy (—k)C2TH™ = 3(= k) C25H7)
= Z(t) + A2 (Z5 (0) + (k) Qi (—ks)) Iy (k) (k)OS
— AT 7 Rk v (k) (27 (0) + (k) Q™ (k)T O

0<k; 0<k;
T2 g2 Ll= 7’“17-;4-21,61;_*—;]] Ul= (ki —Fpt1yo [j] A <1 >(Z] ),(O)C_T ” = Z]—i_(t)
(k5 =k 1) (21 +(m) 71 )(%35 +(m) q33)

in view of (19) and (21) and since Q; = 0, j = 1, p, with the definitions of Q; of

Lemma 3 [15], being taken into account, as zgjl] > 0 and zgg > 0. On the other

hand, if zh] =0or zg; = 0, then by assumption 5) of the theorem (Z;7)'(0) = 0,

A% = (A (k) Wk — k)%, = 0; C°5M7 = (Co(k)™'(k — k;)?)k, = 0, hence
Z]—i—<1>( ) = ( ) J=Lp
Prove that Z+ (1) is a normalizing polynomial of the problem (79), (2) with
m > 1.
Using (88) and (89), similarly to (91), one has
Zyircas (8) = =2iby i W by 1) Ay (bp1) = s (s W Uipsa)(251)'(0)

p+1)

1 + a2 (kp+1) — oyl ) ) }W_(kpﬂ)(z;rﬂ),(o)

- 1 1 1
{zg;r H“z (kp+1) ZEIIJF ]+a?1(kp+1)2 a?1(kp+1)Z¥;+ ]+a22(kp+1

21k t _
+W%W (kp+1)(Zy11)'(0).

Q32
It is easy to show using the asymptotics as £ — —o0
EY (2, kpi1) ~ €517 Ag(kpi1); EY (2, kpi1) ~ €57 Co(kp 1),
that with £ — —o0

Zyi1<1s(8) = (2ikp11)?[Ao(kp41) 2,51 (1) Co(kp41)]

1 _ dgz(kzﬂrl) a(l)l(kpﬂ) ))
+2ka+l 1p+1]Jr [p+1]+a?1 (kp+1)a82(kp+1) <2 2kp+1 <a82(kp+1) + a?l(kp-H) (92)

299

af) (kp+1) ag, (kp+1) +
(Zgg+ui1)2a§;kp+1)3 BRREE ?Ek +1)? ] Zy11)' 0)
(30) with 7 = ¢ implies
<kpy1>,,,— 1 y<kpt1>
Zyas(t) = —AST(Z0 s (1) IO (93)
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Use (88)—(90) and the definition to get

k _ _
AP = (A (R (k= 1) Pysy = 2kpi1 A (k1)

) 1 a22(kp41) 2kpr109; (kp+1) + y
! - (Z,11)'(0), (94
Z£g+1]+ag2(kp+l) ZEHHagl(karl)z Z£g+1]+ag2(kp+l)a?1(kpﬂ) bt ’ ( )

and in a similar way,

<kpt1> -1 . 1
o<kh> _op oLk —z[—
! PO ( p+1) Z£ﬁ+1]+a(1)1(kp+1)
a11(kp+1) 2kp+109; (kpt1) ](Z+ ) (0)
- . 95
A, (kpi1)? AT, (kpg)ady (kpyn) 1P (95)

Use (92), (94), and (95) to deduce from (93), after some obvious computations,
that Z;“+1<1>(t) = Z;_i_l(t), and Lemma 11 is proved in Case III too and therefore
it is proved completely.

It remains to notice that the scattering problems constructed above do not
have virtual levels, since RT(0) = R~ (0) = —I for them.

Theorem 1 is proved completely.

Correction to Part I. In Remark 2 [15] the functions 1*(z) and ™ (0)
must be determined by modified formulas (43), that is by (43) with additional

p
multiplier [] (7=
j=1

. 1
o j,)si in the integrand.
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