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We give upper and lower bounds for the ratio of the volume of metric

ball to the area of metric sphere in Finsler�Hadamard manifolds with the
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1. Introduction

Finsler geometry is an important generalization of Riemannian geometry.

It was introduced by P. Finsler in 1918 from the point of view of regular problems

in the calculus of variations. In Finsler geometry the metric is not to be quadratic

on tangent spaces, thus the structure of Finsler spaces is much more complicated

than the structure of Riemannian spaces. But many notions and theorems were

generalized to Finsler geometry from Riemannian geometry.

In [1, 2] the following result was proved.

Theorem 1. Let Mn+1 be an (n + 1)-dimensional Hadamard manifold with

the sectional curvature K such that �k22 6 K 6 �k21, k1; k2 > 0. Let 
 be a com-

pact �-convex domain in Mn+1 (i.e., the domain, whose boundary is a regular

hypersurface with all normal curvatures that are greater or equal �) with � 6 k2.

Then there exist the functions �(r) of the inradius and �(R) of the circumradius

such that �(r)! 1=(nk1) and �(R)! 1=(nk2), as well as r and R, go to in�nity

and that

�(r)
�

k2
6

V ol(
)

V ol(@
)
6 �(R):
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As a consequence, for a family f
(t)gt2R+ of compact �-convex domains with

� 6 k2 expanding over the whole space we obtain

�

nk22
6 lim

t!1

inf
V ol(
(t))

V ol(@
(t))
6 lim

t!1

sup
V ol(
(t))

V ol(@
(t))
6

1

nk1
:

Our goal is to generalize this theorem for Finsler manifolds. We consider

metric balls as the family f
(t)gt2R+ . We shall also need bounds for one of non-

Riemannian curvatures, namely S-curvature. As a result we prove the following

theorem.

Theorem 2. Let (Mn+1; F ) be an (n + 1)-dimensional Finsler�Hadamard

manifold that satis�es the following conditions:

1. Flag curvature satis�es the inequalities �k22 6 K 6 �k21, k1; k2 > 0.

2. S-curvature satis�es the inequalities nÆ1 6 S 6 nÆ2 such that Æi < ki:

Let Bn+1
r

(p) be the metric ball of radius r in Mn+1 with the center at point p 2
Mn+1, Snr (p) = @Bn+1

r (p) be the metric sphere. Let V ol =
R
dVF be the measure

of Busemann�Hausdor�, Area =
R
dAF the induced measure on Snr (p). Then

there exist functions f(r) and F(r) such that f(r)! 1=(n(k2 � Æ2)) and F(r)!
1=(n(k1 � Æ1)) as r goes to in�nity and that

f(r) 6
V ol(Bn+1

r
(p))

Area(Sn
r
(p))

6 F(r):

Here

f(r) =
1

(1� e�2k2r)n

�
1

n(k2 � Æ2)
�

n

n(k2 � Æ2)� 2k2
(e�2k2r � e�nr(k2�Æ2))

�

F(r) =
1

n(k1 � Æ1)
(1� e�nr(k1�Æ1)):

As a consequence, for a family fBn+1
r

(p)gr>0 we have

1

n(k2 � Æ2)
6 lim

r!1

inf
V ol(Bn+1

r (p))

Area(Snr (p))
6 lim

r!1

sup
V ol(Bn+1

r (p))

Area(Snr (p))
6

1

n(k1 � Æ1)
:

If (Mn+1; F ) is a space of constant �ag curvature K = �k2 and S-curvature

S = nÆ, Æ < k, we have

lim
r!1

V ol(Bn+1
r

(p))

Area(Sn
r
(p))

=
1

n(k � Æ)

For a Riemannian space S = 0 and thus Th. 2 turns to be a special case of

Th. 1.

In Section 4 we give the estimates for the volume growth entropy of the balls.
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2. Preliminaries

In this section we recall some basic facts and theorems from Finsler geometry

that we need. See [3�5] for details.

2.1. Finsler Metrics. By de�nition, a Finsler metric on a manifold is

a family of Minkowski norms on tangent spaces. A Minkowski norm on a vector

space V n is a nonnegative function F : V n ! [0;1) with the following properties:

1. F is positively homogeneous of degree one, i.e., for any y 2 V n and any

� > 0, F (�y) = �F (y).

2. F is C1 on V nnf0g and for any vector y 2 V n the following bilinear sym-

metric form gy : V n � V n ! R is positively de�nite,

gy(u; v) :=
1

2

@2

@t@s
[F 2(y + su+ tv)]js=t=0:

Property 2 is also called a strong convexity property.

A Minkowski norm is said to be reversible if F (y) = F (�y), y 2 V n. In this

paper, Minkowski norms are not assumed to be reversible.

By 1. and 2., one can show that F (y) > 0 for y 6= 0 and F (u + v) 6
F (u) + F (v). See [4] for a proof.

A vector space V n with the Minkowski norm is called a Minkowski space.

Notice that reversible Minkowski spaces are �nite-dimensional Banach spaces.

Let (V n; F ) be the Minkowski space. Then the set I = F�1(1) is called the

indicatrix in the Minkowski space. It is also called the unit sphere.

A set U � V n is said to be strongly convex if there exists a function F satis-

fying 2. such that @U = F�1(1). Remark that a strong convexity is equivalent to

a positivity of all normal curvatures of @U for any Euclidean metric on V n.

Let Mn be an n-dimensional connected C1-manifold. Denote by TMn =F
x2Mn TxM

n the tangent bundle of Mn, where TxM
n is the tangent space at x.

A Finsler metric on Mn is a function F : TMn ! [0;1) with the following

properties:

1. F is C1 on TMnnf0g.

2. At each point x 2 Mn, the restriction F jTxMn is a Minkowski norm on

TxM
n.

The pair (Mn; F ) is called a Finsler manifold.

Let (Mn; F ) be a Finsler manifold. Let (xi; yi) be a standard local coordinate

system in TMn, i.e., yi are determined by y = yi @

@xi
jx. For a non-zero vector

y = yi @

@xi
, put gij(x; y) :=

1
2
[F 2]yiyj (x; y). The induced inner product gy is given

by

gy(u; v) = gij(x; y)u
ivj ;
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where u = ui @

@xi
jx, v = vi @

@xi
jx.

By the homogeneity of F , we have F (x; y) =
p
gy(y; y) =

p
gij(x; y)yiyj .

In the Riemannian case gij are the functions of x 2 Mn only, and in the

Minkowski case gij are the functions of y 2 TxM
n = V n only.

2.2. Measuring of Area. The notions of length and area are also generalized

to Finsler geometry.

Given a Finsler metric F on a manifold Mn.

Let feigni=1 be an arbitrary basis for TxM
n and f�ign

i=1 a dual basis for T
�

x
Mn.

The set

Bn

x
=
�
(yi) 2 R

n : F (x; yiei) < 1
	

is an open strongly convex subset in R
n , bounded by the indicatrix in TxM

n.

Then de�ne

dVF = �F (x)�
1 ^ : : : ^ �n;

where

�F (x) :=
V olE(B

n)

V olE(Bn
x
)
:

Here V olE(A) denotes the Euclidean volume of A, and B
n is the standard unit

ball in R
n .

The volume form dVF determines a regular measure V olF =
R
dVF and is

called the Busemann�Hausdor� volume form.

For any Riemannian metric gij(x)u
ivj the Busemann�Hausdor� volume form

is the standard Riemannian volume form

dVg =
q

det(gij)�
1 ^ : : : ^ �n:

Let ' : Nn�1 !Mn be a hypersurface in (Mn; F ).
The Finsler metric F determines a local normal vector �eld as follows. A vector

nx is called the normal vector to Nn�1 at x 2 Nn�1 if nx 2 T'(x)M
n and

gnx(y; nx) = 0 for all y 2 TxN
n�1. It was proved in [4] that such vector exists.

Notice that in general nonsymmetric case the vector �nx is not a normal vector.

De�ne now an induced volume form on Nn�1. Let n be a unit normal vector

�eld along Nn�1. Let F = '�F be the induced Finsler metric on Nn�1 and dV
F

be the Busemann�Hausdor� volume form of F . For x 2 Nn�1 we de�ne

�(x; nx) :=
V olE(B

n)

V olE(Bn
x )

V olE(B
n�1
x (nx))

V olE(B n�1 )
:

Here Bn

x
=
�
(yi) 2 R

n : F (yiei) < 1
	
. To de�ne Bn�1

x
(nx) we take a basis feigni=1

for T'(x)M
n such that e1 = nx and feigni=2 is a basis for TxN

n�1. Then Bn�1
x

(nx)
=
�
(yj) 2 R

n�1 : F (yjej) < 1
	
, where the index j passes from 2 to n.
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Note that if F is a Riemannian metric, then � � 1.
Set

dAF := �(x; nx)dVF :

The form dAF is called the induced volume form of dVF with respect to n [4].

The sense of de�ning such volume form is given by the co-area formula [4].

We shall need the co-area formula in one simple case for metric balls:

V ol(B(r; p)) =

rZ
0

V ol(S(t; p))dt: (1)

Here V ol(S(t; p)) is the induced volume on S(t; p).

2.3. Geodesics, Connections and Curvature. Locally minimizing curves

in a Finsler space are determined by a system of second order di�erential equations

(geodesic equations).

Let (Mn; F ) be a Finsler space, and c : [a; b] ! Mn be a constant speed

piecewise C1 curve F (c; _c) = const. Denote the local functions Gi(x; y) by

Gi(x; y) =
1

4
gil(x; y)

�
2
@gjl

@xk
(x; y)�

@gjk

@xl
(x; y)

�
yjyk:

We call Gi(x; y) the geodesic coe�cients [4]. Notice that in Riemannian case

Gi(x; y) = 1
2
�j
ik
(x)yiyk.

Consider the functions N i

j
(x; y) = @G

i

@yj
(x; y). They are called the connection

coe�cients. At each point x 2Mn, de�ne a mapping

D : TxM
n � C1(TMn)! TxM

n

by

DyU := fdU i(y) + U jN i

j
(x; y)g

@

@xi
jx;

where y 2 TxM
n and U 2 C1(TMn). We call DyU(x) the covariant derivative

of U at x in the direction y.

If c is a solution of the system D _c _c = 0, then it is called geodesic.

Next, we introduce a notion of curvature in Finsler geometry. At �rst, we

consider the generalization of Riemann curvature. In 1926, L. Berwald extended

the Riemann curvature to Finsler metrics.

Let (Mn; F ) be a Finsler space. For a vector y 2 TxM
nnf0g consider the

functions

Rk

i
(y) = 2

@Gi

@xk
�

@2Gi

@xj@yk
yj + 2Gj

@2Gi

@yj@yk
�
@Gi

@yj
@Gj

@yk
:
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For every vector y 2 TxM
nnf0g, de�ne a linear transformation

Ry = Rk

i
(y)

@

@xi

 dxkjx:

Then the family of transformations

R = fRy : TxM
n ! TxM

n; y 2 TxM
nnf0g; x 2Mng

is called the Riemann curvature [4].

Let P � TxM
n be a tangent plane. For a vector y 2 Pnf0g, de�ne

K(P; y) :=
gy(Ry(u); u)

gy(y; y)gy(u; u) � gy(y; u)2
;

where u 2 P such that P = spanfy; ug. K(P; y) is independent of u 2 P .

The number K(P; y) is called a �ag curvature of the �ag (P; y) in TxM
n.

The �ag curvature is a generalization of the sectional curvature in Riemannian

geometry. It can be de�ned in another way. For a vector y 2 TxM
nnf0g consider

the Riemannian metric ĝ(u; v) = gY (u; v). Here the vector �eld Y is an arbitrary

extension of the vector y. Then the �ag curvature K(P; y) of the �ag (P; y) in the

Finsler metric F is equal to the sectional curvature of the plane P in the metric

ĝ(u; v) . If we change y, then ĝ(u; v) and K(P; y) will also change [3].

De�ne the Ricci curvature by

Ric(y) =
nX
i=1

Ri

i
(y):

A simply-connected Finsler space with nonpositive �ag curvature is called

a Finsler�Hadamard space. In these spaces the generalization of Cartan�Hada-

mard's theorem holds [6].

The notions of exponential map, completeness, cut-locus, conjugate and focal

points in Finsler geometry are de�ned in the same way as in Riemannian geometry.

For details, see [4].

Finally, we introduce some more functions which are called non-Riemannian

curvatures. These curvatures all vanish for Riemannian spaces. We shall need

only one of these curvatures, which is closely connected with the volume form.

Let (Mn; F ) be a Finsler space. Consider the Busemann�Hausdor� volume

form dVF with the density �F . We de�ne

�(x; y) = ln

p
det(gij(x; y))

�F (x)
; y 2 TxM

n:

� is called the distortion of (Mn; F ). The condition � � const implies that F is

a Riemannian metric [4].

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 3 303



A.A. Borisenko and E.A. Olin

To measure the rate of changes of distortion along geodesics, we de�ne

S(x; y) =
d

dt
[�(c(t); _c(t))] jt=0; y 2 TxM

n;

where c(t) is a geodesic with _c(0) = y. S is called the S-curvature. It is also

called the mean covariation and mean tangent curvature. A local formula for the

S-curvature is

S(x; y) = Nm

m
(x; y)�

ym

�F (x)

@�F

@xm
(x):

One can easily show that S = 0 for any Riemannian metric.

A Finsler metric F is said to be of constant S-curvature Æ if

S(x; y) = ÆF (x; y)

for all y 2 TxM
nnf0g and x 2 Mn. The upper and lower bounds of S-curvature

are de�ned in the same way.

2.4. Geometry of Hypersurfaces and Comparison Theorems. Let

(Mn; F ) be a Finsler manifold and ' : Nn�1 ! Mn be a hypersurface. Let

F = '�F denote the induced Finsler metric on Nn�1. Let � be a C1-distance

function on an open subset U � Mn such that ��1(s) = Nn�1 \ U for some

s. Let dVF denote the Busemann-Hausdor� volume form of F , dAt denote the

induced volume form of Nn�1
t

= ��1(t). Let c(t) be an integral curve of r�
with c(0) 2 Nn�1

s
. We have �(c(t)) = t, hence c(") 2 Nn�1

s+" for small " > 0.
By de�nition, the �ow �" of r� satis�es

�"(c(s)) = c(s+ "):

�" : N
n�1 \ U = Nn�1

s ! Nn�1
s+" :

The (n � 1)-form ��"dAs+" is a multiply of dAs. Thus there is a function

�(x; ") on Nn�1 such that

��"dAs+"jx = �(x; ")dAsjx; ; 8x 2 Nn�1;

�(x; 0) = 1; 8x 2 Nn�1:

Set

�nx =
@

@"
(ln�(x; ")) j"=0:

�nx is called the mean curvature of Nn�1 at x with respect to nx := r�x [4].

We also need some estimates on the mean curvature of metric sphere. The fol-

lowing theorem gives these estimates. For a given real �, put

s�(t) =
sin(

p
�t)

p
�

; � > 0;
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s�(t) = t; � = 0;

s�(t) =
sinh(

p
��t)

p
��

; � < 0:

Theorem 3 [4]. Let (Mn; F ) be an n-dimensional positively complete Finsler

space. Let �t denote the mean curvature of S(p; t) in the cut-domain of p with

respect to the outward-pointing normal vector.

1. Suppose that

K 6 �; S 6 (n� 1)Æ:

Then

�t > (n� 1)
s0
�
(t)

s�(t)
� (n� 1)Æ: (2)

2. Suppose that

Ric > n�; S > �(n� 1)Æ:

Then

�t 6 (n� 1)
s0
�
(t)

s�(t)
+ (n� 1)Æ: (3)

Theorem 4 [4]. Let (Mn; F ) be an n-dimensional positively complete Finsler

space. Suppose that for constants � 6 0 and Æ > 0 with
p
�� � Æ > 0, the �ag

curvature and the S-curvature satisfy the inequalities

K 6 �; S 6 (n� 1)Æ:

Then for any regular domain 
 �Mn;

V ol(
) 6
V ol(@
)

(n� 1)(
p
��� Æ)

:

Remark that the right-hand asymptotic estimate in Th. 2 is proved in Th. 4.

3. Relation between Area and Volume for the Balls

in Finsler�Hadamard Manifolds

In this section we prove Th. 2.

P r o o f o f T h e o r e m 2. Let SpM
n+1 denote the unit sphere in

TpM
n+1. Fix a vector y 2 SpM

n+1. Let feign+1
i=1 be a basis for TpM

n+1 such that

e1 = y; gy(y; ei) = 0; i = 2; : : : ; n+ 1:
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Extend feigni=1 to a global frame on TpM
n+1 in a natural way. Let f�ign+1

i=1

denote the basis for T �
x
Mn+1 dual to feign+1

i=1 . Express dVF at p by

dVF (p) = �F (p)�
1 ^ ::: ^ �n+1;

�F (p) =
V olE(B

n+1)

V olE(f(yi) 2 Rn+1 : F (yiei) < 1g)
:

Thus we obtain the volume form dVp on TpM
n+1. Denote by dAp the induced

volume form by dVp on SpM
n+1.

De�ne the di�eomor�sm 't : SpM
n+1 ! Snt (p) [4] by

't(y) = exp
p
(ty); y 2 SpM

n+1; t > 0:

Let dAt denote the induced volume form on Snt (p) by dVF . De�ne

�t : SpM
n+1 ! [0;1)

by

'�
t
dAtj't(y) = �t(y)dApjy: (4)

Integrating (4) over SpM
n+1, we have

Area(Sn
t
(p)) =

Z
SpM

n+1

�t(y)dAp:

Applying the co-area formula (1), we obtain

V ol(Bn+1
r

(p)) =

tZ
0

 Z
SpM

n+1

�s(y)dAp

!
ds:

Remark that in the Riemannian case �t is the Jacobian of the exponential

map, and the explicit expression for the Jacobian gives us all the necessary

estimates. Unfortunately, the integration of these estimates only leads to the

"coarse" estimates for Finsler geometry.

Now, let us estimate �t. For a small number " > 0 de�ne the �ow

�"(x) = 't+" Æ '�1t (x); x 2 Sn
t
(p): (5)

For a point x 2 Sn
t
(p), there is an open neighborhood U of x such that �" is

de�ned on U . The Cartan�Hadamard theorem guarantees the non-existence of

conjugate points in all Mn+1, i.e., the existence of metric balls of arbitrary radii.

De�ne �(x; ") by
��"dAs+"jx = �(x; ")dAsjx:
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Using (4), (5), we get

�(x; ") =
�t+"(y)

�t(y)
; x = 't(y): (6)

Let �t denote the mean curvature or Sn
t
(p) at x with respect to the outward-

pointing normal vector. From the de�nition of mean curvature and (6), we have

�t =
@

@"
(ln�(x; ")) j"=0 =

d

dt
(ln �t(y)): (7)

De�ne �i(t) by

�i(t) =

�
e�Æit

sinh(kit)

ki

�
n

:

Then we have
d

dt
(ln�i(t)) = nki coth(kit)� nÆi: (8)

Taking into account the restrictions on curvature we can apply Th. 3. Then

using (2), (3), we get

nk1 coth(k1t)� nÆ1 6 �t 6 nk2 coth(k2t)� nÆ2:

This implies
d

dt

�
�t(y)

�2(t)

�
6 0;

d

dt

�
�t(y)

�1(t)

�
> 0;

and

�t2(y)�1(t1) > �t1(y)�1(t2);

�t2(y)�2(t1) 6 �t1(y)�2(t2); 0 < t1 6 t2:

Integrating over SpM
n+1 with respect to dAp, we obtain

Area(Sn
t2
(p))�1(t1) > Area(Sn

t1
(p))�1(t2);

Area(Sn
t2
(p))�2(t1) 6 Area(Sn

t1
(p))�2(t2); 0 < t1 6 t2:

Integrating from 0 to t2 with respect to t1, we obtain

Area(Sn
t2
(p))

t2Z
0

�1(t)dt > V ol(Bn+1
t2

(p))�1(t2);

Area(Sn
t2
(p))

t2Z
0

�2(t)dt 6 V ol(Bn+1
t2

(p))�2(t2); 0 < t2:
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Hence, we get
�1(r)R
r

0
�1(t)dt

6
Area(Sn

r
(p))

V ol(Bn+1
r (p))

6
�2(r)R
r

0
�2(t)dt

;

or R
r

0

�
e�Æ2t sinh(k2t)

�n
dt

(e�Æ2r sinh(k2r))
n 6

V ol(Bn+1
r

(p))

Area(Sn
r
(p))

6

R
r

0

�
e�Æ1t sinh(k1t)

�n
dt

(e�Æ1r sinh(k1r))
n ; r > 0

Let us estimate these integrals.

R
r

0

�
e�Æ1t sinh(k1t)

�n
dt

(e�Æ1r sinh(k1r))
n =

1

(e�Æ1r)n

rZ
0

�
e�Æ1t

ek1t � e�k1t

ek1r � e�k1r

�n

dt

6
1

(e�Æ1r)n

rZ
0

�
e�Æ1t+k1(t�r)

�
n

dt =
enÆ1r

n(k1 � Æ1)

�
e�nÆ1r � e�nk1r

�

=
1

n(k1 � Æ1)

�
1� e�nr(k1�Æ1)

�
:= F(r):

We can estimate the following integral by using the fact that (1�a)n > 1�na

for 0 6 a 6 1.

R
r

0

�
e�Æ2t sinh(k2t)

�n
dt

(e�Æ2r sinh(k2r))
n =

enÆ2r

(1� e�2k2r)
n

rZ
0

e�nÆ2t
�
1� e�2k2t

�
n

ek2n(t�r)dt

>
enÆ2r

(1� e�2k2r)
n

rZ
0

e�nÆ2t
�
1� ne�2k2t

�
ek2n(t�r)dt =

enÆ2r

(1� e�2k2r)
n

�
�

1

n(k2 � Æ2)

�
e�nÆ2r � e�nk2r

�
�

n

n(k2 � Æ2)� 2k2

�
e�nÆ2r�2k2r � e�nk2r

��

=
1

(1� e�2k2r)
n

�
1

n(k2 � Æ2)

�
1� e�n(k2�Æ2)r

�

�
n

(k2 � Æ2)� 2k2

�
e�2k2r � e�n(k2�Æ2)r

��
:= f(r):

Thus, we have

f(r) 6
V ol(Bn+1

r
(p))

Area(Snr (p))
6 F(r):

Using the inequalities Æi < ki, we have
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lim
r!1

f(r) =
1

n(k2 � Æ2)
;

lim
r!1

F(r) =
1

n(k1 � Æ1)
:

As a consequence, we have

1

n(k2 � Æ2)
6 lim

r!1
inf

V ol(Bn+1
r (p))

Area(Sn
r
(p))

6 lim
r!1

sup
V ol(Bn+1

r (p))

Area(Sn
r
(p))

6
1

n(k1 � Æ1)
:

In the case when K = �k2, k > 0, S = nÆ, Æ < k, by denoting k1 = k2 = k,

Æ1 = Æ2 = Æ; we have

lim
r!1

V ol(Bn+1
r (p))

Area(Snr (p))
=

1

n(k � Æ)
:

This completes the proof.

E x a m p l e 1. Let U be an open bounded strongly convex domain in R
n .

Take a point x 2 U and a direction y 2 TxUnf0g ' Unf0g. Then the Funk metric

F (x; y) is a Finsler metric that satis�es the following condition

x+
y

F (x; y)
2 @U:

The indicatrix at each point for the Funk metric is a domain that is a translate

of U .

The Hilbert metric is a symmetrized Funk metric:

~F (x; y) :=
1

2
(F (x; y) + F (x;�y)) :

Note that for the Funk metric Bn

x
= U . Thus

�F (x) =
V olE(B

n)

V olE(Bn
x )

=
V olE(B

n)

V olE(U)
= const:

Let F be the Funk metric and let F be the Hilbert metric on a strongly convex

domain U in R
n .

Then the geodesics of Funk and Hilbert metrics are straight lines, the Funk

metric is of constant �ag curvature �1
4
, the Hilbert metric is of constant �ag

curvature �1, and the Funk metric is of constant S-curvature n+1
2

[4].

Let F be the Funk metric on a strongly convex domain U in R
n+1 . It is

known that the S-curvature is equal to S = n+2
2

= nÆ, �ag curvatures are equal

to �k2 = �1
4
. Then the condition Æ < k does not hold.
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It is known that for the Funk metric

V ol(Bn+1
r

(p))

Area(Sn
r
(p))

=

R
r

0

�
e�

n+2
2n

t sinh( t
2
)
�
n

dt�
e�

n+2
2n

r sinh( r
2
)
�
n ;

and one can show that

lim
r!1

V ol(Bn+1
r

(p))

Area(Snr (p))
=1:

Indeed, using Mathematica program, one can compute thatR
r

0

�
e�

n+2
2n

t sinh( t
2
)
�
n

dt�
e�

n+2
2n

r sinh( r
2
)
�
n =

(er � 1)

n+ 1

 
e�

(n+1)

n
r(er � 1)

e�
(n+r)

n
r(er � 1)

!n

:

It is clear that such function grows to in�nity as r tends to in�nity.

In an (n+ 1)-dimensional Euclidean space such ratio also tends to in�nity.

This shows that the restrictions Æi < ki in the hypothesis of the theorem are

essential.

4. Estimates on the Volume Growth Entropy

Let (Mn+1; F ) be a Finsler manifold. Then the exponential speed of the

volume growth of a ball of radius t > 0 is called the volume growth entropy of

(Mn+1; F ). The explicit expression for the volume growth entropy is given by

lim
t!1

ln(V ol(Bn+1
t

(p))

t
:

In this section we estimate the volume growth entropy of a Finsler�Hadamard

manifold with the pinched �ag curvature and the S-curvature.

Theorem 5. Let (Mn+1; F ) be an (n + 1)-dimensional Finsler�Hadamard

manifold that satis�es the following conditions:

1. Flag curvature satis�es the inequalities �k22 6 K 6 �k21, k1; k2 > 0.

2. S-curvature satis�es the inequalities nÆ1 6 S 6 nÆ2 such that Æi < ki:

Then we have

n(k1 � Æ1) 6 lim
t!1

ln(V ol(Bn+1
t

(p))

t
6 n(k2 � Æ2):

If (Mn+1; F ) is a space of constant �ag curvature K = �k2 and S-curvature

S = nÆ, Æ < k, we have

lim
t!1

ln(V ol(Bn+1
t

(p))

t
= n(k � Æ):
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P r o o f o f T h e o r e m 5. De�ne �i(t) by

�i(t) =

�
e�Æit

sinh(kit)

ki

�
n

:

It was proved in [3, 4] that under conditions 1 and 2 the volume of a metric

ball satis�es

V olE(S
n)

tZ
0

�1(s)ds 6 V ol(Bn+1
t

(p)) 6 V olE(S
n)

sZ
0

�2(s)ds: (9)

By direct computation, we have

tZ
0

�
e�Æ2s

sinh(k2s)

k2

�n

ds 6
1

kn2

tZ
0

esn(k2�Æ2)ds

=
1

n(k2 � Æ2)kn2

�
etn(k2�Æ2) � 1

�
:

Therefore, we get

lim
t!1

ln(V ol(Bn+1
t

(p))

t
6 n(k2 � Æ2):

Next,

tZ
0

�
e�Æ1s

sinh(k1s)

k1

�
n

ds >
1

kn1

tZ
0

e�snÆ1(1� ne�2k1s)ek1snds

=
1

kn1

�
1

n(k1 � Æ1)
(etn(k1�Æ1) � 1) +

n

k1(n� 2)� nÆ1
(etk1(n�2)�nÆ1 � 1)

�
:

This implies

lim
r!1

ln(V ol(Bn+1
r

(p))

r
> n(k1 � Æ1):

And Theorem 5 follows easily.

E x a m p l e 2. Let F be the Funk metric on a strongly convex domain U in

R
n+1 . Then the condition Æ < k does not hold.

Then, analogously as in Ex. 1, one can show that

lim
t!1

ln(V ol(Bn+1
t

(p))

t
=1:

In an (n+1)-dimensional Euclidean space such ratio also tends to in�nity.
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This shows that the restrictions Æi < ki in the hypothesis of the theorem are

essential.

In was shown in [7] that for the Hilbert metric F on a strongly convex domain

U in R
n+1

lim
t!1

ln(V ol(Bn+1
t

(p))

t
= n:

Recall that n is precisely the volume growth entropy of H n+1 .
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