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In this paper the local existence and the uniqueness of some multidimensional
inverse problems for the second-order hyperbolic integro-differential equations in
the class of functions having certain smoothness on time variable and analyticity
on a part of spatial variables are proven. Unlike in paper [1|, where the memory
is multiplied by the solution, we consider the equations in which the memory
is multiplied by the second derivative of time solution or the first-order differ-
ential operator with analytical coefficients. Problems of this type often arise in
applications. A distinctive feature of problems of memory determination is the
dependence of unknown function both on time and on spatial variables (a multi-
dimensional problem). Among the problems of finding memory in hyperbolic
integro-differential equations there should be mentioned papers [2, 3], where the
problem with the sources distributed over the whole region is considered. In [4]
the questions of uniqueness of memory determination in the wave equation on the
measurement of diffused wave at the location of the point source are studied.

1. We consider an initial-boundary problem for the wave equation with
memory

¢
Ut — Uy, — ANu = /k(x, T)uy(z, z,t — T)dr, (z,t) € R""1 2 € Ry, (1.1)
0
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ulico = 0,uz|,=0 = —6'(t) + g(z,1)0(t), (z,t) € R"*. (1.2)

Here A is the Laplace operator in variables (z1, ..., z,) := x; §'(t) is a deriva-
tive of the Dirac delta-function; 0(t) is the Heavyside function, Ry := {z € R|z >
0}; g is a given smooth function. For the given function k(z, ) finding of the func-
tion u(z,t) satisfying equations (1,1),(1,2) is a well-posed problem in the space
of generalized functions. We formulate the inverse problem: to determine k(z, 1)
via the trace of solution of problem (1,1), (1,2) on the hyperplane z = 0 for all
r€eR" t<T, T>0,lie.

ul,=0 = F(z,t), z € R", t <T. (1.3)

In equation (1.1) by integrating by parts we "relocate" time derivative and
introducing a new function v according to the formula

u = p(z, t)v(z, z,t), p(x,t) := explko(z)t/2], ko(z) := k(z,0)

from equalities (1.1), (1.2), we have
t
Vi — Vyy = Av +tVE Vo + H(x,t) U+/h Jt—T1)v(z, z,7)dT,
0

(z,t) € R"™', z € R, (1.4)
vlt<o = 0,0;]2=0 = =8 (t) — [ko(2)/2]6(t) + G(x,1)0(t), (z,t) € R, (1.5)

where the equation exp[—ko(z)t/2]0"(t) = 0'(t) + [ko(z)/2]d(t) is used as well as
the notations are introduced

H(w,t) = koy(x) + kg (z) /4 + tDko(2) /2 + (£2/2) Y ki, (7)
=1

h(z,t) := exp[—ko(z)t/2]ky(z, t), (1.6)
Gz, 1) = expl—ko(x)t/2g(z. 1)

From the theory of hyperbolic equations we conclude that v =0, t < z, z € R",
z € Ry. We represent the solution of (1.4), (1.5) as

v(x,z,t) = 0(t — z) + 0(z, 2, t)0(t — 2).

Using the method of separation of variables, it is not difficult to find

v(z,z,z+0) = (1/2) [ /H x, € df] : Bz, 2).
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That is why the function F(x,t) in (1.3) should be represented as
F(x,t) = 6(t) + f(x,1)0(t), (z,t) € R"TL. (1.7)

It is clear that © = v when ¢ > z. For the regular part of function v(z, z,t) in the
region t > z, x € R™, the inverse problem (1.4), (1.5), (1.3) is equivalent to the
problem

t

Vg — Vyy = Av + tVEgVo + H(z,t)v + /h(x, t—T7)v(z,z,7)dT, (1.8)
0

V=0 = f(z,t),v;|,=0 = G(z,1), (1.9)

V=240 = B(z, 2). (1.10)

In equations (1.8)—(1.10) we replace the variables z,t by z1,¢; by the formulas
zZ1=t+2,t1 =1t — 2.

Then v(z, z,t) = v(x, (21 —t1)/2, (21 +t1)/2) := vi(x, z1,t1). The problem (1.8)-
(1.10) in new variables is rewritten as the problem of finding the functions v, k

from the equations
&v1(z,21,t1)
8t1 821

1
= _Z |:A1)1 + (tl + Zl)Vk0VU1/2 + H(.’L‘, (t1 + 21)/2)1)1 + h(x,tl)

t1

+/h((L‘,T)’Ul(ZE,Zl —7,t1 — 17)dT|,

(:E,Zl,tl) € {(:E,Zl,tl) | T € R",O <t < 21} = D, (1.11)

0 1 1
V1 [t1=21 = f(xvzl)a P! |t1121: _ft(xat) |t:ZI +_G($azl)az1 € R+,l‘ € Rn’

821 2 2

(1.12)

U1 |t1:0: B[H?, (1/2)21],21 S R+,I € R™. (]_]_3)

We recall that h is related to k according to the second formula of (1.6).
We introduce the function
0
w(z, z1,t1) = =—wv1(z, 21,11), 11 < 21. (1.14)

821
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Demanding the continuity of functions v(z, z,t), w(z, z,t), when zy = ¢, = 0,2 €
R™, from (1.12), (1.13) it is not difficult to express ko(x), kot(z) by the known
functions:

ko(z) = 2f (,0), kot () = 2fi(x,t)|i=0 — f2(x,0) + 2g(z, 0).

Further we will assume that in the equalities for H(x, z), G(z,t), B(z, z) instead
of functions ko(z), kot (x) their expressions by means of the latter equations are
used. For simplicity we will omit index 1 in z1, %1, v;.

Following [5, p. 92|, we introduce the Banach space As(s > 0,7 > 0) of
analytical functions v(z),z € R™, with the norm

|| ooy (z)

S v\T

V|lg := sup ya = (Q,...,0n),

It |;E|<7~|Z0 Oz121 ... Ozpn ( )
la :==a1 + ...+ ap,al = (ar)!... (a)l

The following properties are obvious: if v(z) € As, then v(z) € Ay for all §' €
(0, s), therefore, A; C Ay if s’ < s. Besides, if v(z) € Ag, then HO‘“'U(QU)/amlal
02,% ||y < Callv(z)|]s/ (s — 8')1l, where the constant C,, depends only on . We
denote by C! (A, G) a class of functions with values in Ay which are continuously
differentiable i-times in z and continuous in ¢ in the region G. For fixed (z,t) the
norm of the function w(z, z,t) in As, we denote by ||w||s,(2,%). The norm of the
function w in C (Ag, G) is defined by the equality

lwllea,,q) = sup [lwlls(2,1).
(z,t)e@

Theorem 1. Let f(z,0), fi(z,t)|i=0, fz;(2,0),i=1,...,n, Af(z,0), g(z,0)
belong to As,, so > 0, and f(z,t), fi(z,t), fu(z,t), g(z,t), g(z,t) belong to
C(Asy, [0, T), and max{|f (@, ) Lo (), 00 (7, )l (2), Whol> Dl (2), [ () 1]
= R, for (z,t) € Gr :={(2,t)|0 <t < 2z <T}. Then for any x > 0 we can find
the number a = a(so,T,R,n), asog < T so that for any s € (0,s¢) there exists
a unique solution of the problem (1.11)—(1.18) v(z,z,t) € CL (Asy, D), k(x,t) €
C? (Asy,[0,a(so — s)]) , where Dy is the region on the plane z,t : Ds := {(2,1)|0 <
t <z <a(sg—s)}, and solution satisfies the following inequalities:

lo —volls(z,8) < x, Ik = K%[ls(2) <

G (1.15)

where

ho(.’L‘, Z) = 2f(.’L‘, 0) exp[—f(x,O)z]g(x,z) - 2exp[—f(m, O)Z]gt(xv Z)|t=z
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+(1/2)Af(z,0) — H(z,2) f(x,2) — Af(z,2) — 22V f(2,0)V f(z, 2)

~2fu(@, )= + (2/2) ) f7,(2,0),

i=1

vy = f(z,2), kY == ko(x) + zkos, (2,1) € D,.
Proof. Inthe beginning the problem (1.11)-(1.13) is reduced to the closed
system of the Volterra type integro-differential equations in the area (z,z,t) € D.

The equation for v is rewritten with the help of equation (1.14) while the equation
for k is rewritten with the help of the second equation of (1.6):

z

v(z, z,t) =vo(z,2) + /w(x,f,t)d{, (1.16)
t
k(z,2) = K (2) + /(Z — &) exp [f(z,0)¢] h(z, §)dE. (1.17)
0

For fixed z € R"™ by integrating equality (1.11) on the plane (7,¢) along the
line £ = z from the point (¢,2) to the point (z,z) and using the second condition
in (1.12), we can get the equation for w(z, z,t):

w(z, z,t) = wo(z,2) + i /[Av(m, 2,7)+ (z+7)Vf(z,0)Vv(z,2,T)
t
+H[(L‘, (Z + T)/Q]U(ZE,Z,T) + h((L‘, T) + / h(xan)v(xaz - nT—= n)dn]dTa (118)
0

where wy(z, z) = (1/2) fe(z,t)|1=- + (1/2)G(z, 2).
Using equation (1.13) differentiated by z, when ¢ = 0, from (1.18), we find

/[Av(m, z2,7)+ (z+7)Vf(z,0)Vou(z,z,T)
0

+H(z,(z 4+ 7)/2)v(z,2,7) + h(z,T) + / h(z,n)v(z,z —n,7 —n)dnldr = 2f(z,0)
0

+29(z, 0)+(2/2) A f (2,0)+(2* /4) Y _ £, (x,0) =2, (z, z) 2 exp[— f (w,0)2]g(z, 2).

=1
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The equation for h(x,t) can be easily found by differentiation of the latter equation
on z and by using the first condition from (1.12):

h(z,t) = ho(z,t) — /[Aw(w,zn’) + (z+7)Vf(z,0)Vw(z,z,1)
0

+7V f(z,0)Vu(z, z,7) + H,[z,(z + 7)/2|v(z, 2,7) + H[z, (2 + 7) /2|w(x, 2, T)
+h(z,7)f(z,2 —T) + / h(z,n)w(z,z —n, ™ —n)dn]dr, (1.19)
0

where the function hg(z,t) is determined in Th. 1.

The equations (1.16)—(1.19) represent a closed system of integro-differential
equations for the functions v, k, w, h in the area Dy = Gp X R™.

For convenience we introduce the function vector

¢($, 2, t) = (¢13 ¢23 ¢3a ¢4) = (Ua ka w, h)
We rewrite the system (1.16)—(1.19) as an operator equation
b= Mo, (1.20)

where M = (Mjy, ..., My) is defined by the right sides of equations (1.16)—(1.19),
and

¢0 = M(O)a ¢0 = (¢?a ¢ga ¢g¢2) = (UOa koa Wo, hO)
We define the iterations for equation (1.20):

P =M¢i=0,1,2,....¢" = (¢],..., ) (1.21)
and _ _ _ _ _ _
¢Z+1_¢Z ::/(/)Z’i:0’1’2""’/(/)l:(/(/)i""’/(/)lll)'
Let the sequence of numbers ag, a1,...,a;,... bedetermined by the expressions
aiv1 = a;/(1+ (i +1)"2), 4 =0,1,2,.... Here ag is a fixed positive number.

The number ay < T'/sp will be chosen later. With the numerical sequence a,
we link the sequence of enclosed fields F; = {(2,t,9)|[0 < s < 89,0 <t < 2z <

ai(so — s)}.

The following lemma is valid.

Lemma. If the conditions of Th. 1 for any fized x > 0 and any+=0,1,2,...
are  fulfilled, then there exist ag € (0,T/s¢), a9 = ao(R,s0,x,n) and
Ai = Ni(R,80,x,m) > 0, such that for each s € (0,sp) ( Zi,i/)g) € C(As, Dy;),
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(ng,zpfl) € C(As,[0,ai(so — 3)]), Dsi :={(2,1)|0 <t < z < ai(so — s)}, and the

following inequalities are valid:

. AiZ \;iQ; 2
ez, t) < ———2 t) < Gl =2
leu (Z, ) = ai(s[] B ) ng || (Z ) - [ai(s[] B 8) — 2]27 J 737
Wi () € —2%2 (s ) € B (1.22)
41ls > [CLi(SU—S)—Z]?” s Uy 29 .
) . 2x .
7 = 0I5 (2, 8) < x, II¢§~+1 — ¢Jlls(2,t) < i 2,3,
4

165 — #lls(2) < ——, (2,1,5) € Fyp. (1.23)

(so —s)%’
We use the Nirenberg method and its modification, developed in [5] to prove
the lemma. Using estimate |5, p. 92]

it is not difficult to check that inequalities (1.22), (1.23) are satisfied when 7 = 0,
besides Ag is proportional to ag. We determine the validity of these inequalities
for any ¢ using the induction method. We assume that if the statement of the
lemma is valid for 7 < ¢ and prove that, then it is valid for i = o 4+ 1, as well.
Using the inductive assumption, we find that ¢°*! € C(As, Dy(s41))- Besides,
from (1.20) we find

0l (z) [v(@)]]s
B — < .
0x191...0x,%n Coly— gl (1.24)

(s—s)‘o‘|’

17 s (2, 1) < / 195115 (€, £)de
t

z

/ Ao EdE < Aoy ? < Ao ?
[aq(

<

so—8) — &2 ~ las(so — s) — 2] _aoagﬂ(s()—s)—z’

Aoclyi12
agi1(so — 8) — 2]?’

WIRE / 71161 < ao
g (2 ) < /{IIAw1II +2TRZ|| (2,0

3
+RI[PT [|s(2,6) + 194115 (€ +/|¢4H M sz — 7,6 = 7)
0
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gl s (T [ls(z = 7,§ — 7)]dr }dé.
Using inequality (1.24) to estimate ||A7,bi’||s,||,9—xj1/)i'“s,j =1,2,...,n, and
assuming that s’ = s'(&) = (s + so — £/an) /2, we get

z

1 16’)’LG2 2M, 2
o+1 o o
s Z,t S

s0—8) — £ ap(so—s) — 2

8T Rna, 20,2 N 2R,z N Aoa2€
ag(s0—5) =& as(s0—8)—2 as(so—s)—2z lag(so—s)—¢]?

3
Aoalt x—i—R) 4x + Rs? 2002
. drid
18 L R e e A L
0
Go41 A2

<
= 01 (s0 — 8) — 27

where
1 =0C (SOa n,ao, X, R’ T)
In the latter inequality it is used that ag < ag4100 are valid for any o > 1.
Moreover, ag < a?, y1ag for 0 > 1. These inequalities can be easily checked by the

method of mathematical induction. The latter inequalities are used to estimate
the function 4§ . Similarly, for 47! we obtain

2
as 1 Ae2

[ag+1(s0 — 5) — 2]

19 1s(2) < e2a0 3

where
Cy = CQ(SOa n,ao, X, R’ T)

It is obvious that ¢;,2 = 1,2, in the latter estimates are monotonically nonde-
creasing functions of the s, a9 parameters. From the estimations made above it
follows that (1.22) is valid when 7 = o + 1, if we assume that

>\0'+1 = a’OC)\O'?
where
¢ = max(1, s, ¢1, c2). (1.25)

Now we show that inequalities (1.23) are also satisfied when i = o + 1, if the
number ay is chosen properly. For (z,2,t) € Fy19

o+1 o+1

l$72 = #Ylls (=, 1) <ZHWII (2,1) <Z

aJ so—s —z
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o+1 ‘ a o+1 )
< Xo Z(aoc)J ( - 1) < Xo Z(GOC)J (G +1)%

=0 4j+1 =0
o+1 o+1
o+2 _ 40 < i < 2>\0 i 1 4 =9
16572 = @5 lls (2, 1) <D 19 l15(2,1) < - Y (aey (i + 1)y =23,

=0 0 j=0

o+1 4\ o+1
o j 0 i
||¢4+2 — #ills(2) < Z [91lls(2) < m Z(aOC)] (7 +1)°

j=0 7=0

That is why inequalities (1.23) are satisfied when i = o + 1, if the number ag is

chosen so that
o0

ape < 1, Ag Z(aoc)j(j +1)% < y. (1.26)
j=0
It is clear that ag can be always chosen to be so small that inequalities (1.26) are
satisfied. Thus the validity of the lemma is proven. Further we assume that the
number ag is chosen from the conditions (1.26).

In order to complete the proof of Th. 1, we should note that under the
chosen value of ag the ¢' sequence uniformly converges in the norm of space
C(As, Ds),a = lima;, the limiting function belongs to C'(As, Ds) and provides the
solution of the operator equation (1.20). The limit transition in the first two in-
equalities (1.23), when (z,z,t) € F = {(2,t,5)|0 < s < 80,0 <t <z < a(sg—s)}
leads to the values coinciding with (1.15). The uniqueness of the constructed so-
lution is established by using the described above technics based on the standard
method [5, p. 103].

We indicate a few settings of inverse problems of memory determination which

could be studied by the above methods.
2. Find the functions u(z, z,t), k(z,t) that satisfy the following equalities:

t
U — Uyy — Au = /k(x,T)ut(m, z,t — 7)dr, (z,t) € R""', 2 € Ry, (2.1)
0

ulico = 0,1, | ,—0 = —g(z)d'(t), (z,t) € R, (2.2)
ul,—0 = g(x)d(t) + f(x,1)0(t), (z,t) € R™H, (2.3)

where g(z), f(z,t) are given smooth functions.
The solution of problem (2.1),(2.2) is represented as

u(z, z,t) = g(z)o(t — 2) + a(z, z,t)0(t — 2). (2.4)
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We introduce the function a(z, (z —t)/2, (z +t)/2) := v(z, z,t). As in Part 1,
the problem (2.1)—(2.3) can be replaced by the equivalent problem of finding the
functions v(z, z,t), k(z,t) in the region z > ¢ > 0,z € R"™ from the equations

0v(z, z,t)
otoz

t
= —% Av + ko(z)v — g(z)h(z,t) — /h(m, T)v(z,z — 7,6 — T)dT|,
0

(x,2,t) € {(z,2,t) |z € R",0<t<z}:=D, (2.5)
lims= F(2,2), S0 o= 3 Sl D,z € Ry € B, (2.6)
U |t=0= %ko(az)z,z €Ry,z€R", (2.7)

fi(z,1)

in which ko := k(z,0) = 1/g(x)[fi(z,t)|1=0 + Dg(z)], h(z,t) := ki(z,t),t > 0.
With respect to problem (2.5)—(2.7) the analogue of Th. 1 is valid.

Theorem 2. Let {g(w),l/g(w),(8/8z)f(x,z)|zzg,(83/82$i8z)f($,z)|zzg}
€ Ay, 50 >0, i =01,....n, {f(2,2),(0/02)f(2,2),(0?/0*2)f (z,2)} €
C (As,,[0,T]), when some fized so >0, T >0, whereas

max [[|g(2)lso, 1/ (2, 2) 10, 1f= (@, 2) |50, 1/1l9 (@) 50, 1 D9 () |50, 1 f22 (25 2)]ls0,] = R,

for t € [0, T] and the consistency condition is satisfied:

fo(2,2)|:=0 + Ag(x) = g(2) f2 (2, 2) |2=0-

Then for any x > 0 the number a € (0,T/s¢) can be found such that for
any s € (0,sg) there exists the unique solution of problem (2.5)-(2.7) v(x, z,t) €
Cl(Asy, Ds), k(z,t) € C} (Agy, [0,a(so — 8)]), where the Dy field is determined in
Th. 1, and for the solution inequalities (1.15) are valid with the functions

vo = f(z,2), ko(x) = ﬁ[ft(x,t)h:o + Ag(x)].

3. Find the functions u(z, z,t), k(z,t) that satisfy the following equalities:
t
U — Uy, — Lu = /k(x,T)Lgu(x, z,t —7)dr, (z,t) € R""',2 € Ry, (3.1)
0

ultco = 0,uzl:—0 = —g(2)8' (1), (z,1) € R™*, (3.2)
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ul—0 = g(z)0(t) + f(z,4)0(t), (z,t) € R". (3.3)
Here
L= z”: a--(ar:)ai2 + Lo, Ly = zn:b(m) 0 + c(z)
= L iJ 8$Z8I] 0,40 — - () (%Z )

aij, bi, ¢, g, f (1 <1i,j <n) are given smooth functions.

Problem (3.1)—(3.3), when a;; = 0;;, b; = 0, where §;; is the Kronecker sym-
bol, was studied in paper [1]. In the case of inequality (1.24) let us estimate
the differential expressions Lu, Lou with analytical coefficients. We assume that
functions a;j, b;, ¢(x), 1 <14, j <n, are the elements of Ay,, so > 0, and

di= max flagllubo = max [1bils,co = lllso.

For the operators Lg, L from (1.24) it follows:

Cc1 C2
1Lovlly < ———lIvlls, [ILv]ls < slvlls, 8" €(0,5),

T (s—4)
e =1 A2 =2
c1 :=ne” by + spcy, o :=4n“e” “d+ c19p.

The solution of problem (3.1), (3.2) is represented as
u(z,z,t) = a(z, 2)0(t — z) + u(zx, z,1)0(t — z), (3.4)

and we make use of the method of separation of variables [5, p. 29]. Denoting
u(z,z,2 +0) =: B(x, 2z), we put (3.4) in (3.1), (3.2) and find

az, z) = a(z) = g(z), B(z,2) = (2/2)Lg(z),z € R",z € R. (3.5)

It is not difficult, using equalities (3.4), (3.5), to replace the inverse problem
(3.1)-(3.3) by initial-characteristic problem with Cauchy data on z = 0. It should
be noted that when ¢t > z the equality u = @ takes place, then the functions
u(z, z,t), k(x, z) satisfy the equations

Ugp — Uy, — Lu = Log(l“)k(l“at - z)

kxTLguxzt T)dT, (z,2,t) € G :={(x,2,t)|]x € R",t > z > 0}, (3.6)

°\|

u|Z:0 - f(xat)auZ|Z:0 = 07$ 6 ant E R+7 (37)

1
Ul =0 = §ng(x),m € R"teR,. (3.8)
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Further, the problem (3.6)—(3.8) is reduced to the following system of integro-
differential equations for wu, uy, k:

u(z, z,t) = ug(z, 2,t) + //Luxf, — Log(z)k(z,7 = §)

T—¢

+ k(xav)LOU(]:afaT _V)de]dega (39)

HO\

z

ut(x,z,t) = uOt(xazat) + 5/ [LU(:E,Z - |£|at + 5) - ng(x)k(x,t —Z+ |€| + 5)

—Z2

t—z+|E|+E€
+ / k(2 7) Lou(e, 2 — |El, 1 + € — )dy)sgnéde, (3.10)
0
z/2
2 1
k(:E,Z) = ko((L‘, Z) + Log(x) /[Lut(wagaz - 5) + §€Log(.’L‘)k((L‘, Z — 25)
0
z—2¢€
+ / k(e 7) Dou (2,6, 2 — £ — 7)dyde, (3.11)
0

where

wo( 7 0) = Sf w6+ ) + [0~ )

ko(z,2) = [(1/4)2L%g(x) = 2fur(,)|e=],

1
Log(z)
Az, t) ={(& )0 <E<zt—z+E<T<t+2z2—-&t> 2z}

For the system (3.9)—(3.11) the following theorem is valid.
Theorem 3. Assume that the consistency conditions of f(x,0) =0,
fi(x,t)|i=0 = (1/2)Lg(z), are satisfied, besides
(aij,bi,c,9)(x) € Agy, 1 < iy j <,

[f(x?t)aft(x?t)aftt(x?t)] € C(Asoa [OaT])a
max[[| s (£), 1 fellso (8), | feellso (B), 1 Logllse> 1/ 11 Logllso, 1 L2gllse) = R,
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fort € [0,T], R > 0. Then a € (0,7/2),asy < T/2 can be found such that for
any s € (0, sp) in the region GrN{(z,z,t)|zr € R",0 < z < a(so—s)} there exists
the unique solution of the system (3.9)-(3.11), for which

(u(z, z,t), u(z, 2, t)) € C(Asy, PsT)

k(x,z) € C(Asy, [0,a(so — s)]), Psr := Gr N{(2,1)|0 < z < a(sg —s)},

moreover,

RU RO
— |l —u z,t) <
(80 — 3)2 || t OtHS( ) (

[l —wolls (2, £) < Ro, ||k — Kolls(£) < rPeEAY
50 — S)

(z,t) € Psry Ry = Ro(R, T, so,n) is a constant.
Theorems 2 and 3 are proved similarly to Th. 1.

Rem ark 1. The solution of the inverse problem suggests the unique con-
tinuation on the variable t from the interval [0,a(sg — s)] onto the interval [0,T)]
for any T (see [1]).

R em ark 2. Under appropriate conditions similar results hold when the
operator /\ from Parts 1,2 is replaced by the operator L, defined in Part 3.
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