
Journal of Mathematical Physics, Analysis, Geometry

2007, vol. 3, No. 4, pp. 411�423

Some Multidimensional Inverse Problems of Memory

Determination in Hyperbolic Equations

D.K. Durdiev

Bukhara State University

11 M. Ikbol Str., Bukhara, 705018, Uzbekistan

E-mail:durdiev65@mail.ru

Received March 21, 2007

The local existence and the uniqueness of some multidimensional inverse

problems for the second-order hyperbolic integro-di�erential equations in the

class of functions having certain smoothness on time variable and analyticity

on a part of spatial variables are proven.

Key words: inverse problem, integro-di�erential equation, hyperbolic

equation, agreement condition, uniqueness.

Mathematics Subject Classi�cation 2000: 35L10.

In this paper the local existence and the uniqueness of some multidimensional

inverse problems for the second-order hyperbolic integro-di�erential equations in

the class of functions having certain smoothness on time variable and analyticity

on a part of spatial variables are proven. Unlike in paper [1], where the memory

is multiplied by the solution, we consider the equations in which the memory

is multiplied by the second derivative of time solution or the �rst-order di�er-

ential operator with analytical coe�cients. Problems of this type often arise in

applications. A distinctive feature of problems of memory determination is the

dependence of unknown function both on time and on spatial variables (a multi-

dimensional problem). Among the problems of �nding memory in hyperbolic

integro-di�erential equations there should be mentioned papers [2, 3], where the

problem with the sources distributed over the whole region is considered. In [4]

the questions of uniqueness of memory determination in the wave equation on the

measurement of di�used wave at the location of the point source are studied.

1. We consider an initial-boundary problem for the wave equation with

memory

utt � uzz �4u =

tZ
0

k(x; �)utt(x; z; t� �)d�; (x; t) 2 Rn+1
; z 2 R+; (1:1)
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ujt<0 � 0; uz jz=0 = �Æ
0(t) + g(x; t)�(t); (x; t) 2 Rn+1

: (1:2)

Here 4 is the Laplace operator in variables (x1; : : : ; xn) := x; Æ0(t) is a deriva-

tive of the Dirac delta-function; �(t) is the Heavyside function, R+ := fz 2 Rjz >

0g; g is a given smooth function. For the given function k(x; t) �nding of the func-

tion u(x; t) satisfying equations (1,1),(1,2) is a well-posed problem in the space

of generalized functions. We formulate the inverse problem: to determine k(x; t)

via the trace of solution of problem (1,1), (1,2) on the hyperplane z = 0 for all

x 2 R
n, t < T , T > 0, i.e.

ujz=0 = F (x; t); x 2 Rn
; t < T: (1:3)

In equation (1.1) by integrating by parts we "relocate" time derivative and

introducing a new function v according to the formula

u = �(x; t)v(x; z; t); �(x; t) := exp[k0(x)t=2]; k0(x) := k(x; 0)

from equalities (1.1), (1.2), we have

vtt � vzz = 4v + trk0rv +H(x; t)v +

tZ
0

h(x; t� �)v(x; z; �)d�;

(x; t) 2 Rn+1
; z 2 R+; (1:4)

vjt<0 � 0; vz jz=0 = �Æ
0(t)� [k0(x)=2]Æ(t) +G(x; t)�(t); (x; t) 2 Rn+1

; (1:5)

where the equation exp[�k0(x)t=2]Æ
0(t) = Æ

0(t) + [k0(x)=2]Æ(t) is used as well as

the notations are introduced

H(x; t) := k0t(x) + k
2
0(x)=4 + t4k0(x)=2 + (t2=2)

nX
i=1

k
2
0xi

(x);

h(x; t) := exp[�k0(x)t=2]ktt(x; t); (1:6)

G(x; t) = exp[�k0(x)t=2]g(x; t):

From the theory of hyperbolic equations we conclude that v � 0, t < z, x 2 Rn,

z 2 R+. We represent the solution of (1.4), (1.5) as

v(x; z; t) = Æ(t� z) + ~v(x; z; t)�(t� z):

Using the method of separation of variables, it is not di�cult to �nd

v(x; z; z + 0) = (1=2)

�
k0(x) +

zZ
0

H(x; �)d�

�
=: �(x; z):
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That is why the function F (x; t) in (1.3) should be represented as

F (x; t) = Æ(t) + f(x; t)�(t); (x; t) 2 Rn+1
: (1:7)

It is clear that ~v = v when t > z: For the regular part of function v(x; z; t) in the

region t > z; x 2 R
n, the inverse problem (1.4), (1.5), (1.3) is equivalent to the

problem

vtt � vzz = 4v + trk0rv +H(x; t)v +

tZ
0

h(x; t� �)v(x; z; �)d�; (1:8)

vjz=0 = f(x; t); vzjz=0 = G(x; t); (1:9)

vjt=z+0 = �(x; z): (1:10)

In equations (1.8)�(1.10) we replace the variables z; t by z1; t1 by the formulas

z1 = t+ z; t1 = t� z:

Then v(x; z; t) = v(x; (z1 � t1)=2; (z1 + t1)=2) := v1(x; z1; t1): The problem (1.8)�

(1.10) in new variables is rewritten as the problem of �nding the functions v; k

from the equations
@
2
v1(x; z1; t1)

@t1@z1

= �

1

4

�
4v1 + (t1 + z1)rk0rv1=2 +H(x; (t1 + z1)=2)v1 + h(x; t1)

+

t1Z
0

h(x; �)v1(x; z1 � �; t1 � �)d�

�
;

(x; z1; t1) 2 f(x; z1; t1) j x 2 R
n
; 0 � t1 � z1g := D; (1:11)

v1 jt1=z1= f(x; z1);
@

@z1
v1 jt1=z1=

1

2
ft(x; t) jt=z1 +

1

2
G(x; z1); z1 2 R+; x 2 R

n
;

(1:12)

v1 jt1=0= �[x; (1=2)z1 ]; z1 2 R+; x 2 R
n
: (1:13)

We recall that h is related to k according to the second formula of (1.6).

We introduce the function

w(x; z1; t1) =
@

@z1
v1(x; z1; t1); t1 < z1: (1:14)
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Demanding the continuity of functions v(x; z; t); w(x; z; t); when z1 = t1 = 0; x 2

R
n
; from (1.12), (1.13) it is not di�cult to express k0(x); k0t(x) by the known

functions:

k0(x) = 2f(x; 0); k0t(x) = 2ft(x; t)jt=0 � f
2(x; 0) + 2g(x; 0):

Further we will assume that in the equalities for H(x; z); G(x; t); �(x; z) instead

of functions k0(x); k0t(x) their expressions by means of the latter equations are

used. For simplicity we will omit index 1 in z1; t1; v1:

Following [5, p. 92], we introduce the Banach space As(s > 0; r > 0) of

analytical functions �(x); x 2 Rn
; with the norm

k�ks := sup
jxj�r

1X
j�j=0

s
j�j

�!

�����
@
j�j
�(x)

@x1
�1 : : : @xn

�n

�����; � := (�1; : : : ; �n);

j�j := �1 + : : :+ �n; �! := (�1)! : : : (�)!:

The following properties are obvious: if �(x) 2 As, then �(x) 2 As0 for all s0 2

(0; s), therefore, As � As0 if s0 < s. Besides, if �(x) 2 As, then


@j�j�(x)=@x1�1 : : :

@xn
�n
ks0 � C�jj�(x)jjs=(s� s

0)j�j, where the constant C� depends only on �. We

denote by Ci
z (As; G) a class of functions with values in As which are continuously

di�erentiable i-times in z and continuous in t in the region G. For �xed (z; t) the

norm of the function !(x; z; t) in As0 we denote by k!ks0(z; t). The norm of the

function ! in C (As; G) is de�ned by the equality

k!kC(As;G) = sup
(z;t)2G

k!ks0(z; t):

Theorem 1. Let f(x; 0), ft(x; t)jt=0, fxi(x; 0), i = 1; : : : ; n, 4f(x; 0), g(x; 0)

belong to As0, so > 0, and f(x; t), ft(x; t), ftt(x; t), g(x; t), gt(x; t) belong to

C(As0 ; [0; T ]), and max[kf(x; t)ks0(t); kw0(x; z)ks0(z); kh0(x; z)ks0 (z); kk0(x)ks0 ]

= R, for (z; t) 2 GT := f(z; t)j0 � t � z � Tg: Then for any � > 0 we can �nd

the number a = a(s0; T;R; n), as0 < T so that for any s 2 (0; s0) there exists

a unique solution of the problem (1.11)�(1.13) v(x; z; t) 2 C1
z (As0 ;Ds) ; k(x; t) 2

C
2
t (As0 ; [0; a(s0 � s)]) ; where Ds is the region on the plane z; t : Ds := f(z; t)j0 �

t � z < a(s0 � s)g; and solution satis�es the following inequalities:

kv � v0ks(z; t) � �; kk � k
0
ks(z) �

2�

(s0 � s)
; (1:15)

where

h0(x; z) := 2f(x; 0) exp[�f(x; 0)z]g(x; z) � 2 exp[�f(x; 0)z]gt(x; z)jt=z
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+(1=2)4f(x; 0) �H(x; z)f(x; z) �4f(x; z)� 2zrf(x; 0)rf(x; z)

�2ftt(x; t)jt=z + (z=2)

nX
i=1

f
2
xi
(x; 0);

v0 := f(x; z); k0 := k0(x) + zk0t; (z; t) 2 Ds:

P r o o f. In the beginning the problem (1.11)�(1.13) is reduced to the closed

system of the Volterra type integro-di�erential equations in the area (x; z; t) 2 D.

The equation for v is rewritten with the help of equation (1.14) while the equation

for k is rewritten with the help of the second equation of (1.6):

v(x; z; t) = v0(x; z) +

zZ
t

w(x; �; t)d�; (1:16)

k(x; z) = k
0(x) +

zZ
0

(z � �) exp [f(x; 0)�] h(x; �)d�: (1:17)

For �xed x 2 R
n by integrating equality (1.11) on the plane (�; �) along the

line � = z from the point (t; z) to the point (z; z) and using the second condition

in (1.12), we can get the equation for w(x; z; t):

w(x; z; t) = w0(x; z) +
1

4

zZ
t

[4v(x; z; �) + (z + �)rf(x; 0)rv(x; z; �)

+H[x; (z + �)=2]v(x; z; �) + h(x; �) +

�Z
0

h(x; �)v(x; z � �; � � �)d�]d�; (1:18)

where w0(x; z) = (1=2)ft(x; t)jt=z + (1=2)G(x; z):

Using equation (1.13) di�erentiated by z, when t = 0, from (1.18), we �nd

zZ
0

[4v(x; z; �) + (z + �)rf(x; 0)rv(x; z; �)

+H[x; (z + �)=2]v(x; z; �) + h(x; �) +

�Z
0

h(x; �)v(x; z � �; � � �)d�]d� = 2ft(x; 0)

+2g(x; 0)+(z=2)4f(x; 0)+(z2=4)

nX
i=1

f
2
xi
(x; 0)�2ft(x; z)�2 exp[�f(x; 0)z]g(x; z):
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The equation for h(x; t) can be easily found by di�erentiation of the latter equation

on z and by using the �rst condition from (1.12):

h(x; t) = h0(x; t)�

zZ
0

[4w(x; z; �) + (z + �)rf(x; 0)rw(x; z; �)

+�rf(x; 0)rv(x; z; �) +Hz[x; (z + �)=2]v(x; z; �) +H[x; (z + �)=2]w(x; z; �)

+h(x; �)f(x; z � �) +

�Z
0

h(x; �)w(x; z � �; � � �)d�]d�; (1:19)

where the function h0(x; t) is determined in Th. 1.

The equations (1.16)�(1.19) represent a closed system of integro-di�erential

equations for the functions v, k, w, h in the area DT = GT �R
n.

For convenience we introduce the function vector

�(x; z; t) = (�1; �2; �3; �4) := (v; k; w; h):

We rewrite the system (1.16)�(1.19) as an operator equation

� =M�; (1:20)

where M = (M1; : : : ;M4) is de�ned by the right sides of equations (1.16)�(1.19),

and

�
0 =M(0); �0 = (�01; �

0
2; �

0
3�

0
4) := (v0; k

0
; w0; h0):

We de�ne the iterations for equation (1.20):

�
i+1 =M�

i
; i = 0; 1; 2; : : : ; �i = (�i1; : : : ; �

i
4) (1:21)

and

�
i+1

� �
i :=  

i
; i = 0; 1; 2; : : : ;  i = ( i

1; : : : ;  
i
4):

Let the sequence of numbers a0; a1; : : : ; ai; : : : be determined by the expressions

ai+1 = ai=(1 + (i + 1)�2), i = 0; 1; 2; : : : . Here a0 is a �xed positive number.

The number a0 < T=s0 will be chosen later. With the numerical sequence a�
we link the sequence of enclosed �elds Fi = f(z; t; s)j0 < s < s0; 0 � t � z <

ai(s0 � s)g:

The following lemma is valid.

Lemma. If the conditions of Th. 1 for any �xed � > 0 and any i = 0; 1; 2; : : :

are ful�lled, then there exist a0 2 (0; T=s0), a0 = a0(R; s0; �; n) and

�i = �i(R; s0; �; n) > 0; such that for each s 2 (0; s0)
�
 
i
1;  

i
3

�
2 C(As;Dsi),

416 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4



Some Multidimensional Inverse Problems of Memory Determination

�
 
i
2;  

i
4

�
2 C (As; [0; ai(s0 � s)]), Dsi := f(z; t)j0 � t � z < ai(s0 � s)g, and the

following inequalities are valid:

k 
i
1ks(z; t) �

�iz

ai(s0 � s)� z
; k 

�
j ks(z; t) �

�iaiz

[ai(s0 � s)� z]2
; j = 2; 3;

k 
i
4ks(z) �

�ia
2
i z

[ai(s0 � s)� z]3
; (z; t; s) 2 Fi; (1:22)

k�
i+1
1 � �

0
1ks(z; t) � �; k�

i+1
j � �

0
jks(z; t) �

2�

s0 � s
j = 2; 3;

k�
i+1
4 � �

0
4ks(z) �

4�

(s0 � s)2
; (z; t; s) 2 Fi+1: (1:23)

We use the Nirenberg method and its modi�cation, developed in [5] to prove

the lemma. Using estimate [5, p. 92]







@
j�j
�(x)

@x1
�1 :::@xn

�n







s0

� C�

k�(x)ks

(s� s0)j�j
; (1:24)

it is not di�cult to check that inequalities (1.22), (1.23) are satis�ed when i = 0,

besides �0 is proportional to a0. We determine the validity of these inequalities

for any i using the induction method. We assume that if the statement of the

lemma is valid for i � � and prove that, then it is valid for i = � + 1, as well.

Using the inductive assumption, we �nd that  �+1
2 C(As;Ds(�+1)). Besides,

from (1.20) we �nd

k 
�+1
1 ks(z; t) �

zZ
t

k 
�
3 ks(�; t)d�

�

zZ
t

��a��d�

[a�(s0 � s)� �]2
�

��a�z

[a�(s0 � s)� z]
� a0

��z

a�+1(s0 � s)� z
;

k 
�+1
2 ks(z) �

zZ
0

k 
�
4 ks(�)d� � a0

��a�+1z

[a�+1(s0 � s)� z]2
;

k 
�+1
3 ks(z; t) �

1

4

zZ
t

fk4 
�
1 ks(z; �) + 2TR

nX
j=1

k

@

@xj
 
�
1 ks(z; �)

+Rk �
1 ks(z; �) + k 

�
4 ks(�) +

�Z
0

[k �
4 ks(�)k�

�+1
1 js(z � �; � � �)
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+k��4ks(�)k 
�
1 ks(z � �; � � �)]d�gd�:

Using inequality (1.24) to estimate k4 �
1 ks; k

@
@xj

 
�
1 ks; j = 1; 2; : : : ; n; and

assuming that s0 = s
0(�) = (s+ s0 � �=an)=2; we get

k 
�+1
3 ks(z; t) �

1

4

zZ
t

f

16na2�
[a�(s0 � s)� �]2

�

2��z

a�(s0 � s)� z

+
8TRna�

a�(s0 � s)� �
�

2��z

a�(s0 � s)� z
+

2R��z

a�(s0 � s)� z
+

��a
2
��

[a�(s0 � s)� �]3

+

�Z
0

[
��a

2
��(�+R)

(a�(s0 � s)� �)3
+

4�+Rs
2
0

(s0 � s)2
�

2��z

a�(s0 � s)� z
]d�gd�

� c1a0
a�+1��z

[a�+1(s0 � s)� z]2
;

where

c1 = c1(s0; n; a0; �;R; T ):

In the latter inequality it is used that a2� � a�+1a0 are valid for any � � 1.

Moreover, a3� � a
2
�+1a0 for � � 1. These inequalities can be easily checked by the

method of mathematical induction. The latter inequalities are used to estimate

the function  �+1
4 . Similarly, for  �+1

4 we obtain

k 
�+1
4 ks(z) � c2a0

a
2
�+1��z

[a�+1(s0 � s)� z]3
;

where

c2 = c2(s0; n; a0; �;R; T ):

It is obvious that ci; i = 1; 2, in the latter estimates are monotonically nonde-

creasing functions of the s0; a0 parameters. From the estimations made above it

follows that (1.22) is valid when i = � + 1; if we assume that

��+1 = a0c��;

where

c = max(1; s0; c1; c2): (1:25)

Now we show that inequalities (1.23) are also satis�ed when i = � + 1, if the

number a0 is chosen properly. For (x; z; t) 2 F�+2

k�
�+2
1 � �

0
1ks(z; t) �

�+1X
j=0

k 
j
1ks(z; t) �

�+1X
j=0

�jz

aj(s0 � s)� z
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� �0

�+1X
j=0

(a0c)
j

�
aj

aj+1
� 1

�
� �0

�+1X
j=0

(a0c)
j(j + 1)2;

k�
�+2

 � �

0

ks(z; t) �

�+1X
j=0

k 
j

ks(z; t) �

2�0

s0 � s

�+1X
j=0

(a0c)
j(j + 1)4; 
 = 2; 3;

k�
�+2
4 � �

0
4ks(z) �

�+1X
j=0

k 
j
4ks(z) �

4�0

(s0 � s)2

�+1X
j=0

(a0c)
j(j + 1)6:

That is why inequalities (1.23) are satis�ed when i = � + 1; if the number a0 is

chosen so that

a0c < 1; �0

1X
j=0

(a0c)
j(j + 1)6 � �: (1:26)

It is clear that a0 can be always chosen to be so small that inequalities (1.26) are

satis�ed. Thus the validity of the lemma is proven. Further we assume that the

number a0 is chosen from the conditions (1.26).

In order to complete the proof of Th. 1, we should note that under the

chosen value of a0 the �i sequence uniformly converges in the norm of space

C(As;Ds); a = limai; the limiting function belongs to C(As;Ds) and provides the

solution of the operator equation (1.20). The limit transition in the �rst two in-

equalities (1.23), when (x; z; t) 2 F = f(z; t; s)j0 < s < s0; 0 � t � z < a(s0 � s)g

leads to the values coinciding with (1.15). The uniqueness of the constructed so-

lution is established by using the described above technics based on the standard

method [5, p. 103].

We indicate a few settings of inverse problems of memory determination which

could be studied by the above methods.

2. Find the functions u(x; z; t); k(x; t) that satisfy the following equalities:

utt � uzz �4u =

tZ
0

k(x; �)ut(x; z; t � �)d�; (x; t) 2 Rn+1
; z 2 R+; (2:1)

ujt<0 � 0; uz jz=0 = �g(x)Æ0(t); (x; t) 2 Rn+1
; (2:2)

ujz=0 = g(x)Æ(t) + f(x; t)�(t); (x; t) 2 Rn+1
; (2:3)

where g(x); f(x; t) are given smooth functions.

The solution of problem (2.1),(2.2) is represented as

u(x; z; t) = g(x)Æ(t � z) + ~u(x; z; t)�(t� z): (2:4)
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We introduce the function ~u(x; (z � t)=2; (z + t)=2) := v(x; z; t): As in Part 1,

the problem (2.1)�(2.3) can be replaced by the equivalent problem of �nding the

functions v(x; z; t); k(x; t) in the region z > t > 0; x 2 Rn from the equations

@
2
v(x; z; t)

@t@z

= �

1

4

�
4v + k0(x)v � g(x)h(x; t) �

tZ
0

h(x; �)v(x; z � �; t� �)d�

�
;

(x; z; t) 2 f(x; z; t) j x 2 Rn
; 0 � t � zg := D; (2:5)

v jt=z= f(x; z);
@

@z
v jt=z=

1

2
ft(x; t)jt=z ; z 2 R+; x 2 R

n
; (2:6)

v jt=0=
1

2
k0(x)z; z 2 R+; x 2 R

n
; (2:7)

in which k0 := k(x; 0) = 1=g(x)[ft(x; t)jt=0 +4g(x)]; h(x; t) := kt(x; t); t > 0:

With respect to problem (2.5)�(2.7) the analogue of Th. 1 is valid.

Theorem 2. Let
�
g(x); 1=g(x); (@=@z)f(x; z)jz=0 ; (@

3
=@

2
xi@z)f(x; z)jz=0

	
2 As0, s0 > 0, i = 0; 1; : : : ; n;

�
f(x; z); (@=@z)f(x; z); (@2=@2z)f(x; z)

	
2

C (As0 ; [0; T ]), when some �xed s0 > 0, T > 0, whereas

max [kg(x)ks0 ; kf(x; z)ks0 ; kfz(x; z)ks0 ; 1=kg(x)ks0 ; k4g(x)ks0 ; kfzz(x; z)ks0 ; ] = R;

for t 2 [0; T ] and the consistency condition is satis�ed:

fz(x; z)jz=0 +4g(x) = g(x)fz(x; z)jz=0:

Then for any � > 0 the number a 2 (0; T=s0) can be found such that for

any s 2 (0; s0) there exists the unique solution of problem (2.5)�(2.7) v(x; z; t) 2

C
1
z (As0 ; Ds) ; k(x; t) 2 C

1
t (As0 ; [0; a(s0 � s)]), where the Ds �eld is determined in

Th. 1, and for the solution inequalities (1.15) are valid with the functions

v0 = f(x; z); k0(x) =
1

g(x)
[ft(x; t)jt=0 +4g(x)]:

3. Find the functions u(x; z; t); k(x; t) that satisfy the following equalities:

utt � uzz � Lu =

tZ
0

k(x; �)L0u(x; z; t� �)d�; (x; t) 2 Rn+1
; z 2 R+; (3:1)

ujt<0 � 0; uzjz=0 = �g(x)Æ0(t); (x; t) 2 Rn+1
; (3:2)
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ujz=0 = g(x)Æ(t) + f(x; t)�(t); (x; t) 2 Rn+1
: (3:3)

Here

L =

nX
i=1;j=1

aij(x)
@
2

@xi@xj
+ L0; L0 =

nX
i=1

bi(x)
@

@xi
+ c(x);

aij , bi, c, g, f (1 � i; j � n) are given smooth functions.

Problem (3.1)�(3.3), when aij = Æij , bi = 0, where Æij is the Kronecker sym-

bol, was studied in paper [1]. In the case of inequality (1.24) let us estimate

the di�erential expressions Lu;L0u with analytical coe�cients. We assume that

functions aij, bi, c(x), 1 � i, j � n, are the elements of As0 , s0 > 0, and

d := max
1�i;j�n

kaijks0 ; b0 := max
1�i;j�n

kbiks0 ; c0 := kcks0:

For the operators L0; L from (1.24) it follows:

kL0�ks0 �

c1

s� s0
k�ks; kL�ks0 �

c2

(s� s0)2
k�ks; s

0
2 (0; s);

c1 := ne
�1
b0 + s0c0; c2 := 4n2e�2d+ c1s0:

The solution of problem (3.1), (3.2) is represented as

u(x; z; t) = �(x; z)Æ(t � z) + ~u(x; z; t)�(t� z); (3:4)

and we make use of the method of separation of variables [5, p. 29]. Denoting

~u(x; z; z + 0) =: �(x; z); we put (3.4) in (3.1), (3.2) and �nd

�(x; z) � �(x) = g(x); �(x; z) = (z=2)Lg(x); x 2 Rn
; z 2 R+: (3:5)

It is not di�cult, using equalities (3.4), (3.5), to replace the inverse problem

(3.1)�(3.3) by initial-characteristic problem with Cauchy data on z = 0. It should

be noted that when t > z the equality u = ~u takes place, then the functions

u(x; z; t); k(x; z) satisfy the equations

utt � uzz � Lu = L0g(x)k(x; t � z)

+

t�zZ
0

k(x; �)L0u(x; z; t��)d�; (x; z; t) 2 G := f(x; z; t)jx 2 Rn
; t > z > 0g; (3:6)

ujz=0 = f(x; t); uzjz=0 = 0; x 2 Rn
; t 2 R+; (3:7)

ujz=0 =
1

2
zLg(x); x 2 Rn

; t 2 R+: (3:8)
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Further, the problem (3.6)�(3.8) is reduced to the following system of integro-

di�erential equations for u; ut; k:

u(x; z; t) = u0(x; z; t) +
1

2

Z Z
4(z;t)

[Lu(x; �; �) � L0g(x)k(x; � � �)

+

���Z
0

k(x; 
)L0u(x; �; � � 
)d
]d�d�; (3:9)

ut(x; z; t) = u0t(x; z; t) +
1

2

Z z

�z

[Lu(x; z � j�j; t+ �)� L0g(x)k(x; t � z + j�j+ �)

+

t�z+j�j+�Z
0

k(x; 
)L0u(x; z � j�j; t+ � � 
)d
]sgn�d�; (3:10)

k(x; z) = k0(x; z) +
2

L0g(x)

z=2Z
0

[Lut(x; �; z � �) +
1

2
�L0g(x)k(x; z � 2�)

+

z�2�Z
0

k(x; 
)L0ut(x; �; z � � � 
)d
]d�; (3:11)

where

u0(x; z; t) =
1

2
[f(x; t+ z) + f(x; t� z)];

k0(x; z) =
1

L0g(x)
[(1=4)zL2

g(x) � 2ftt(x; t)jt=z ];

4(z; t) = f(�; �)j0 � � � z; t� z + � � � � t+ z � �; t > zg:

For the system (3.9)�(3.11) the following theorem is valid.

Theorem 3. Assume that the consistency conditions of f(x; 0) = 0,

ft(x; t)jt=0 = (1=2)Lg(x), are satis�ed, besides

(aij ; bi; c; g)(x) 2 As0 ; 1 � i; j � n;

[f(x; t); ft(x; t); ftt(x; t)] 2 C(As0 ; [0; T ]);

max[kfks0(t); kftks0(t); kfttks0(t); kL0gks0 ; 1=kL0gks0 ; kL
2
gks0 ] = R;
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for t 2 [0; T ], R > 0. Then a 2 (0; T=2); as0 < T=2 can be found such that for

any s 2 (0; s0) in the region GT \f(x; z; t)jx 2 R
n
; 0 � z � a(s0� s)g there exists

the unique solution of the system (3.9)�(3.11), for which

(u(x; z; t); ut(x; z; t)) 2 C(As0 ; PsT )

k(x; z) 2 C(As0 ; [0; a(s0 � s)]); PsT := GT \ f(z; t)j0 � z � a(s0 � s)g;

moreover,

ku� u0ks(z; t) � R0; kk � k0ks(t) �
R0

(s0 � s)2
; kut � u0tks(z; t) �

R0

(s0 � s)
;

(z; t) 2 PsT ; R0 = R0(R;T; s0; n) is a constant.

Theorems 2 and 3 are proved similarly to Th. 1.

R e m a r k 1. The solution of the inverse problem suggests the unique con-

tinuation on the variable t from the interval [0; a(s0 � s)] onto the interval [0; T ]

for any T (see [1]).

R e m a r k 2. Under appropriate conditions similar results hold when the

operator 4 from Parts 1,2 is replaced by the operator L, de�ned in Part 3.
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