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It is proved that a di�erentiable with respect to each variable function

f : R2 ! R is a solution of the equation @u
@x

+ @u
@y

= 0 if and only if there

exists a function ' : R ! R such that f(x; y) = '(x � y). This gives

a positive answer to a question by R. Baire. Besides, this result is used to

solve analogous partial di�erential equations in abstract spaces and partial

di�erential equations of higher-order.
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1. Introduction

Let X;Y;Z be arbitrary sets and f : X � Y ! Z. For any x 2 X and y 2 Y

we de�ne the mappings fx : Y ! Z and fy : X ! Z by the following equalities:

fx(y) = fy(x) = f(x; y). We say that a mapping f separately has P for some

property P of mappings (continuity, di�erentiability, etc.) if for any x 2 X and

y 2 Y the mappings fx and fy have P .

R. Baire in the �fth section of his PhD thesis [1] raised a problem of solving

di�erential equations with partial derivatives under minimal requirements, that is,

a problem of solving some di�erential equation in the class of functions satisfying

strongly necessary conditions for the existence of expressions contained in this

equation. Besides, considering the equation

@f

@x
+
@f

@y
= 0; (1)
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he proved, using rather laborious arguments, that a jointly continuous separately

di�erentiable function f : R2 ! R is a solution of (1) if and only if there exists

a di�erentiable function ' : R ! R such that f(x; y) = '(x� y) for any x; y 2 R.

Taking into account the solution of this equation in the class of di�erentiable

functions f (which can be obtained by introducing new variables t = x � y and

s = x+ y), the given result means that every jointly continuous separately di�er-

entiable solution of (1) is di�erentiable. It is clear that the continuity condition

on f is not necessary for the existence of partial derivatives of f . Hence R. Baire

naturally raised the following question.

Question 1.1 (R. Baire [1, p. 118]). Let f : R2 ! R be a separately

di�erentiable solution of (1). Does there exist a di�erentiable function ' : R ! R

such that f(x; y) = '(x� y) for any x; y 2 R?

Note that the result analogous to Baire's was independently obtained in [2]

where Question 1.1 was formulated too. Notice that the method used in [2] is

based essentially on the joint continuity of f ; it is very nice and simpler than the

method from [1]. But, in fact, in [1] R. Baire solved (1) for separately di�erentiable

functions f which are continuous on every line y = x+ c (see Th. 4.1).

Besides, by the end of the XX century there were known some results con-

cerning solutions of the following equation:

@f

@x
�
@f

@y
= 0: (2)

So, in [3] it was proved that every continuously di�erentiable solution

f : R2 ! R of the equation (2) depends only on one variable. This result was

carried over the mappings f : X�Y ! Z with locally convex range space Z. Also,

there was shown the essentiality of local convexity of space Z. An analogous result

for separately di�erentiable functions was obtained in [4]. Moreover, using rather

delicate topological arguments, it was proved that if f : R2 ! R is a separately

continuous function and for every point p 2 R
2 there exists at least one of the

partial derivatives @f

@x
(p) and @f

@y
(p), and it is equal to zero, then f depends only

on one variable. This result from [4] was generalized in [5] to the case of the

so-called separately L-di�erentiable mappings f : X � Y ! Z, where X;Y;Z are

real vector spaces and L is a subspace of the space of all linear functionals on Z

which separates points from Z.

In this paper we �rstly develop a technique from [1] and study the properties

of separately di�erentiable vector-valued functions of two real variables (Sect. 2).

Further, in Sect. 3 we establish necessary and su�cient conditions under which

the metric-valued functions de�ned on an interval are constant. Also we obtain

the following property of separately pointwise Lipschitz (in particular, separately

di�erentiable) functions: the restriction of the function of this type on an arbitrary
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set has nowhere dense discontinuity point set. This property makes it possible to

give a positive answer to Question 1.1. In the two last sections we generalize this

result to the case of mappings de�ned on the square of a vector space and then

we use it in solving partial di�erential equations of higher-orders.

2. Auxiliary Baire Function and Separately

Di�erentiable Functions on R
2

In this section we introduce an auxiliary function connected with the di�erence

relation analogously as real functions in [1], study its properties and use it for

studying separately di�erentiable functions.

For arbitrary a; b 2 R with a < b, by [a; b], [a; b), (a; b] and (a; b) we denote

the corresponding intervals on R.

Let Z be a vector space and f : R ! Z be a function. For the arbitrary

x; y 2 R, x 6= y, and B � Z put rf (x; y) =
f(x)�f(y)

x�y
and �(B; f; x) = fÆ 2 (0; 1] :

(8p0; p00 2 (x� Æ;x) � (x;x+ Æ)) (rf (p
0)� rf (p

00) 2 B)g.

De�ne a function �(B; f) : R ! R by the following: �(B; f)(x) = sup�(B; f; x)

if �(B; f; x) 6= � and �(B; f)(x) = 0 if �(B; f; x) = �.

Let Z be a Hausdor� topological vector space. A mapping f : R ! Z is called

di�erentiable at a point x0 2 R if there exists f 0(x0) = lim
x!x0

f(x)�f(x0)
x�x0

. Note that

for a topological vector space Z, a di�erentiable at x0 function f : R ! Z and

an arbitrary neighborhood W of zero in Z we have �(W;f)(x0) > 0. Moreover,

putting rf (x0; x0) = f 0(x0) we obtain that �(W;f; x0) = fÆ 2 (0; 1] : (8p0; p00 2

(x0� Æ;x0]� [x0;x0+ Æ)) (rf (p
0)� rf (p

00) 2W )g for any closed neighborhood W

of zero in Z.

Theorem 2.1. Let Z be a Hausdor� topological vector space, f : R2 ! Z be

a di�erentiable in the �rst variable and continuous in the second variable function

and W be a closed neighborhood of zero in Z. Then the function g : R2 ! R,

g(x; y) = �(W;fy)(x), is a jointly upper semicontinuous function.

P r o o f. Let x0; y0 2 R,  = g(x0; y0) and " > 0. If  + " > 1, then

g(x; y) � 1 <  + " for every x; y 2 R.

Now, let  + " � 1. Then Æ0 =  + "

3
� 1. Since g(x0; y0) < Æ0, Æ0 62

A(W;fy0 ; x0). Therefore, there exist x1; x
0

1 2 (x0�Æ0;x0) and x2; x
0

2 2 (x0;x0+Æ0)

such that
f(x2; y0)� f(x1; y0)

x2 � x1
�
f(x02; y0)� f(x01; y0)

x02 � x01
62W:

The continuity of f in the second variable and the closedness of W imply the

existence of a neighborhood V of y0 in R such that

f(x2; y)� f(x1; y)

x2 � x1
�
f(x02; y)� f(x01; y)

x02 � x01
62W
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for every y 2 V . Put s = minfx0 � x1; x0 � x01; x2 � x0; x
0

2 � x0;
"

3
g, U =

(x0� s;x0+ s) and Æ1 = + 2"
3
. Then x1; x

0

1 2 (x� Æ1;x) and x2; x
0

2 2 (x;x+ Æ1)

for every x 2 U . Therefore Æ1 62 A(W;fy; x) and g(x; y) � Æ1 <  + " for every

x 2 U and y 2 V .

Thus g is a jointly upper semicontinuous at (x0; y0) function.

Let q; p 2 R
2 . The Euclid distance in R

2 between q and p we denote by

d(q; p). If q 6= p, then by �(q; p) we denote the angle between the vector �!pq and

the positive direction of abscissa.

The following theorem shows that using the function � one can obtain some

properties of separately di�erentiable functions.

Theorem 2.2. Let Z be a topological vector space, f : R2 ! Z be a separately

di�erentiable function, E � R
2
be a nonempty set and W be an arbitrary neigh-

borhood of zero in Z. Then for any open in E nonempty set G there exists a point

p0 2 G and its neighborhood O in E such that for any distinct points p; q 2 O the

following inclusion holds:

f(q)� f(p)

d(q; p)
�
�
f 0
x
(p0) cos�(q; p) + f 0

y
(p0) sin�(q; p)

�
2W:

P r o o f. Note that it is su�cient to consider the case of closed set E.

Let G � E be an arbitrary nonempty open in E set and W1 be such closed

radial neighborhood of zero in Z thatW1+W1+W1+W1+W1+W1 �W . Consider

the functions g1 : R2 ! R, g1(x; y) = �(W1; fy)(x) and g2 : R2 ! R, g2(x; y) =

�(W1; f
x)(y). According to Th. 2.1, g1 and g2 are jointly upper semicontinuous.

For every n 2 N put En = f(x; y) 2 E : g1(x; y) �
1
n
; g2(x; y) �

1
n
g. Evidently,

all the sets En are closed in a Baire space E. Since g1(x; y) > 0 and g2(x; y) > 0

for any (x; y) 2 R
2 , E =

1S
n=1

En. Then there exists an open in G nonempty set

H � G and n0 2 N such that H � En0
.

Fix an arbitrary point p0 = (x0; y0) 2 H. Denote x01 = x0�
1
n0
, x02 = x0 +

1
n0
,

y01 = y0 �
1
n0

and y02 = y0 +
1
n0
. The separate continuity of f implies that there

exists Æ < 1
2n0

such that

rfx0 (y
0

2; y
0

1)� rfx(y
0

2; y
0

1) 2W1 and rfy0 (x
0

2; x
0

1)� rfy(x
0

2; x
0

1) 2W1

for any x 2 U = (x0�Æ;x0+Æ) and y 2 V = (y0�Æ; y0+Æ). Put O = (U�V )\H.

Let p = (x1; y1), q = (x2; y2) be distinct points from the set O and � = �(q; p).

If x1 6= x2 and y1 6= y2, then

f(q)� f(p)

d(q; p)
=
f(q)� f(x1; y2)

x2 � x1
�
x2 � x1

d(q; p)
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+
f(x1; y2)� f(p)

y2 � y1
�
y2 � y1

d(q; p)
= rfy2 (x2; x1) cos�+ rfx1 (y2; y1) sin�:

If x1 = x2 or y1 = y2, then cos� = 0 or sin� = 0, and therefore

f(q)� f(p)

d(q; p)
= rfy2 (x2; x1) cos�+ rfx1 (y2; y1) sin�:

Since p0 2 En0
, g1(p0) �

1
n0
, there exists Æ1 >

1
2n0

such that Æ1 2 �(W1; fy0 ; x0).

Hence

rfy0 (x
0

2; x
0

1)� rfy0 (x0; x0) 2W1;

provided x01 2 (x0 � Æ1;x0], x
0

2 2 [x0;x0 + Æ1) and f
0

x(p0) = rfy0 (x0; x0).

Note also that q 2 En0
, besides, g1(q) �

1
n0
. Since 1

2n0
+ Æ < 1

n0
, there

exists Æ2 �
1

2n0
+ Æ > 2Æ such that Æ2 2 �(W1; fy2 ; x2). Then x01 = x0 �

1
2n0

<

x0 � Æ < x2, x2 � x01 < x0 + Æ � x0 +
1

2n0
� Æ2, x

0

2 = x0 +
1

2n0
> x0 + Æ > x2 and

x02 � x2 < x0 +
1

2n0
� x0 + Æ � Æ2. Thus x

0

1 2 (x2 � Æ2;x2] and x
0

2 2 [x2;x2 + Æ2).

The inequalities jx1 � x2j < 2Æ < Æ2 imply

rfy2 (x2; x1)� rfy2 (x
0

2; x
0

1) 2W1:

Since y2 2 V ,

rfy2 (x
0

2; x
0

1)� rfy0 (x
0

2; x
0

1) 2W1:

Now we have

rfy2 (x2; x1)� f 0
x
(p0) =

�
rfy2 (x2; x1)� rfy2 (x

0

2; x
0

1)
�

+
�
rfy2 (x

0

2; x
0

1)� rfy0 (x
0

2; x
0

1)
�
+
�
rfy0 (x

0

2; x
0

1)� f 0x(p0)
�
2W1 +W1 +W1:

Analogously,

rfx1 (y2; y1)� f 0y(p0) 2W1 +W1 +W1:

Then
f(q)� f(p)

d(q; p)
� (f 0

x
(p0) cos�+ f 0

y
(p0) sin�)

= cos�
�
rfy2 (x2; x1)� f 0

x
(p0)

�
+ sin�

�
rfx1 (y2; y1)� f 0

y
(p0)

�
2 cos�(W1 +W1 +W1) + sin�(W1 +W1 +W1) �W:

This completes the proof.
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3. Separately Pointwise Lipschitz Functions and Pointwise

Changeable Functions

Firstly recall some de�nitions.

Let (X; j � � � jX) and (Y; j � � � jY ) be metric spaces. A mapping f : X ! Y

satis�es the Lipschitz condition with a constant C > 0 if jf(x)�f(y)jY � Cjx�yjX
for any x; y 2 X. A mapping f : X ! Y is called pointwise Lipschitz if for any

point x0 2 X there exists a neighborhood U of point x0 in X and C > 0 such

that jf(x0) � f(x)jY � Cjx0 � xjX for any x 2 U . A mapping f : X ! Y is

called pointwise changeable, if for every " > 0 the union G" of the system G" of

all open nonempty sets G � X such that f jG satis�es the Lipschitz property with

the constant ", is an everywhere dense set.

The following property of separately pointwise Lipschitz mappings plays an im-

portant role in obtaining the positive answer to Question 1.1.

Theorem 3.1. Let (X; j � � � jX) and (Y; j � � � jY ) be metric spaces such that

the space X � Y is a hereditarily Baire space, (Z; j � � � jZ) be a metric space

and f : X � Y ! Z be a separately pointwise Lipschitz mapping. Then for any

nonempty set E � X � Y the discontinuity point set D(f jE) of mapping f jE is

nowhere dense in E.

P r o o f. Note that it is su�cient to prove the theorem for the closed set E.

Let E � X�Y be a closed nonempty set and G � X�Y be an open set such

that W0 = G \ E 6= �. For any n;m 2 N, by Enm denote the set of all points

(x; y) 2W0 such that

jf(x0; y)� f(x; y)jZ � njx0 � xjX and jf(x; y0)� f(x; y)jZ � njy0 � yjY

for any x0 2 X with jx0 � xjX < 1
m

and y0 2 Y with jy0 � yjY < 1
m
. Since f is

a separately pointwise Lipschitz function, W0 =
1S

n;m=1

Enm. We obtain that there

exist n0;m0 2 N and an open in E nonempty set W � W0 such that En0m0
is

dense in W , provided W0 is an open set in a Baire space E.

Choose the open balls U1 and V1 with radius 1
2m0

in the spaces X and Y ,

respectively, such that W1 = (U1 � V1) \W 6= �. Let us show that the function

f satis�es a Lipschitz condition on the set W1 with the constant 2n0 with respect

to the maximum metric j � � � jX�Y on X � Y .

Let p1 = (x1; y1); p2 = (x2; y2) 2 W1. Fix arbitrary "; Æ > 0. Since f is

continuous in the �rst variable at points p1 and p2 and the set En0m0
is dense in

W1, there exist (~x1; ~y1); (~x2; ~y2) 2W1 \En0m0
such that

jx1 � ~x1jX < Æ; jy1 � ~y1jY < Æ; jx2 � ~x2jX < Æ; jy2 � ~y2jY < Æ;

jf(x1; y1)� f(~x1; y1)jZ < " and jf(x2; y2)� f(~x2; y2)jZ < ":
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Then

jf(p1)� f(p2)jZ � jf(x1; y1)� f(~x1; y1)jZ + jf(~x1; y1)� f(~x1; ~y1)jZ

+jf(~x1; ~y1)� f(~x1; ~y2)jZ + jf(~x1; ~y2)� f(~x2; ~y2)jZ + jf(~x2; ~y2)� f(~x2; y2)jZ

+jf(~x2; y2)� f(x2; y2)jZ � "+ n0jy1 � ~y1jY + n0j~y1 � ~y2jY + n0j~x1 � ~x2jX

+n0j~y2 � y2jY + " � 2"+ 2Æn0 + n0(jy1 � y2jY + 2Æ) + n0(jx1 � x2jX + 2Æ)

= 2"+ 6Æn0 + n0(jx1 � x2jX + jy1 � y2jY ) � 2"+ 6Æn0 + 2n0jp1 � p2jX�Y :

Tending " and Æ to zero, we obtain

jf(p1)� f(p2)jZ � 2n0jp1 � p2jX�Y :

Hence, f jE is continuous on the set W1.

Note that the obtained property of separately pointwise Lipschitz mappings

is new, but for the real-valued separately di�erentiable functions of two variables

this property can be obtained from the analog of Th. 2.2, which was presented

in [1]. Besides, in [6] it was proved that the discontinuity point set of function of

two real variables, which is di�erentiable in the �rst variable and continuous in

the second one, is nowhere dense. This result was generalized in [7].

For a topological space X and a set A � X, by A we denote the closure of A

in X.

The following characterization was obtained in [1] for the real-valued functions

of one real variable.

Theorem 3.2. Let X � R be a nonempty interval, (Y; j � � � jY ) be a met-

ric space, f : X ! Y be a continuous pointwise changeable on every closed set

mapping. Then f is constant.

P r o o f. For any x1; x2 2 X, x1 6= x2 put r(x1; x2) =
jf(x2)�f(x1)jY

jx2�x1j
and for

every x 2 X put g(x) = inf
Æ>0

supfr(x1; x2) : x� Æ < x1 < x2 < x+ Æg.

Let us show that for any a; b 2 X, a < b, there exists a point c 2 [a; b] such

that g(c) � r(a; b).

Let a � x < y < z � b. Then r(x; z) � y�x

z�x
r(x; y) + z�y

z�x
r(y; z). Hence,

r(x; z) � r(x; y) or r(x; z) � r(y; z). Now it is easy to construct the sequence

(In)
1

n=1 of segments In = [an; bn] � [a; b] such that lim
n!1

(bn � an) = 0, In+1 � In

and r(an; bn) � r(a; b) for every n 2 N. Then, for point c 2
1T
n=1

In we have

g(c) � r(a; b).

Therefore, if a; b 2 X, " > 0 and g(x) � " for any x 2 (a; b) � X, then

r(x; y) � " for any x; y 2 (a; b), what implies r(a; b) � ", provided f is continuous.

258 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2
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Assume that f is not constant. Then there exists " > 0 such that E = fx 2

X : g(x) > "g 6= �. Since f is pointwise changeable on the set F = E, there

exist x0 2 E and Æ > 0 such that r(x; y) < " for any distinct x; y 2 F \U , where

U = (x0 � Æ;x0 + Æ).

Let x; y 2 U be arbitrary distinct points. Let us show that r(x; y) � ".

We assume that x < y. First consider the case of x; y 62 F . If (x; y)\F = �, then

(x; y) \ E = � and r(x; y) � ". Let (x; y) \ F 6= �. Choose the points u; v 2 F

such that x < u � v < y, (x;u) \ F = � and (v; y) \ F = �. Then, as above,

r(x; u) � " and r(v; y) � ". If u < v, then

r(x; y) =
u� x

y � x
r(x; u) +

v � u

y � x
r(u; v) +

y � v

y � x
r(v; y);

therefore r(x; y) � ". When u = v, we use the equality

r(x; y) =
u� x

y � x
r(x; u) +

y � u

y � x
r(u; y):

In the case of x 2 F or y 2 F we use analogous reasons.

Thus, supfr(x; y) : x0 � Æ < x < y < x0 + Æg � ". Then g(x0) � ", what

contradicts to x0 2 E.

Corollary 3.3. Let X be an arbitrary normed space, (Y; j � � � jY ) be a met-

ric space, f : X ! Y be a continuous pointwise changeable on every closed set

mapping. Then f is constant.

P r o o f. It is enough to prove that f(x) = f(0) for any x 2 X.

Let x0 2 X, x0 6= 0, be an arbitrary point. Consider the function g : R ! Y ,

g(�) = f(�x0). Since j�� �j =
1

kx0k
k�x0 � �x0k and f is a continuous pointwise

changeable on every closed set mapping, g satis�es the conditions of Th. 3.2.

Therefore, g is constant and f(x0) = g(1) = g(0) = f(0).

The following two examples demonstrate that there is no analogous property

for the mappings de�ned on an arbitrary metric space and, on the other hand,

this property does not have any equivalent formulation in topological terms.

E x a m p l e 3.4. Let (X; j �� � jX ) be a metric space with the discrete metric,

i.e., jx1 � x2jX = 1 when x1 6= x2, and (Y; j � � � jY ) be an arbitrary metric space.

Then every mapping f : X ! Y is continuous and pointwise changeable on every

closed set.

E x a m p l e 3.5. Let 0 < p < 1 and Rp be a real line with the metric jx�yjp
= jx� yjp. Then the identical map f : Rp ! R, f(x) = x, is a homeomorphism

of pointwise changeable on every closed set.
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4. The Equation f 0
x
+ f 0

y
= 0.

In this section we give a positive answer to Question 1.1.

Actually, the following theorem was proved in [1], but R. Baire instead of

continuity of function f on respective lines put on f a stronger condition of joint

continuity.

Theorem 4.1. Let f : R2 ! R be a separately di�erentiable function and

c 2 R such that the restriction of function f to the set A = f(x; y) 2 R
2 : y�x = cg

is continuous and f 0x(p)+f
0

y(p) = 0 for every p 2 A. Then the function g : R ! R,

g(x) = f(x; c+ x), is constant.

P r o o f. Since cos�(q; p) = sin�(q; p) for any distinct points p; q 2 A,

Th. 2.2 implies that the continuous function g is pointwise changeable on every

closed set. It remains to apply Th. 3.2.

In the proof of the main result we will use the following auxiliary fact.

Lemma 4.2. Let I = (a; b) � R be an arbitrary nonempty interval, c 2 R,

Æ > 0, W = f(x; y) 2 R
2 : x 2 I; jy � x � cj � Æg, f : R2 ! R and g : R2 ! R

be such separately continuous functions that f(x; y) = g(x; y) for any (x; y) 2W .

Then f(x; y) = g(x; y) for any (x; y) 2W .

P r o o f. Let x0 = a and jy0�x0�cj < Æ. Then f(x0; y0) = lim
x!a+0

f(x; y0) =

lim
x!a+0

g(x; y0) = g(x0; y0). Analogously, if x0 = b and jy0 � x0 � cj < Æ, then

f(x0; y0) = g(x0; y0).

Now let x0 = a and y0 � x0 � c = Æ. Then f(x0; y0) = lim
y!y0� 0

f(x0; y) =

lim
y!y0� 0

g(x0; y) = g(x0; y0). We use analogous reasons in the case of x0 = a and

y0 � x0 � c = �Æ, or x0 = b and y0 � x0 � c = �Æ.

Let X be a topological space, x0 2 X, U be a system of all neighborhoods

of point x0 in X, (Y; j � � � jY ) be a metric space and f : X ! Y . Recall that a

real !f (x0) = inf
U2U

sup
x0; x00

2U

jf(x0)� f(x00)jY is called the oscillation of mapping f

at x0.

Now let us prove our main result.

Theorem 4.3. Let f : R2 ! R be a separately di�erentiable function such

that f 0x(p) + f 0y(p) = 0 for every p 2 R
2
. Then for any c 2 R the function f is

constant on the set A = f(x; y) 2 R
2 : y � x = cg.

P r o o f. According to Th. 4.1 it is enough to prove that f is continuous.

Assume that the discontinuity point set E of function f is nonempty. Theo-

rem 3.1 implies that there exists a point p0 = (x0; y0) 2 E, in which function f jE
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is continuous. Denote " = !f (p0), c0 = y0�x0 and choose Æ1; Æ2 > 0 such that for

any point p 2 E
T
W , where W = f(x; y) 2 R

2 : jx�x0j < Æ1; jy�x� c0j < Æ2g,

the inequality jf(p) � f(p0)j �
"

3
holds. Note that for any point q 2 W with

jf(q)� f(p0)j >
"

3
the function f is continuous at q.

Consider the continuous function g : R2 ! R, g(x; y) = f(x0; x0 + y � x) and

show that f(p) = g(p) for any point p 2W with jf(p)� f(p0)j >
"

3
.

Let p1 = (x1; y1) 2 W , besides, jf(p1) � f(p0)j >
"

3
. Choose Æ > 0 such that

jf(x1; y)� f(x0; y0)j >
"

3
and (x1; y) 2W for any y 2 [y1 � Æ; y1 + Æ].

Denote by I the system of all nonempty open intervals I � (x0 � Æ1;x0 + Æ1)

such that x1 2 I and jf(x; y) � f(x0; y0)j >
"

3
for any x 2 I and y 2 R with

jy � x � c1j � Æ, where c1 = y1 � x1. Note that f is continuous at every point

of compact set K = f(x1; y) : y 2 [y1 � Æ; y1 + Æ]g. Therefore the system I is

nonempty.

Put I0 = (a; b) =
S
I2I

I and W1 = f(x; y) 2 R
2 : x 2 I0; jy � x � c1j � Æg.

Since jf(p) � f(p0)j >
"

3
for every p 2 W1 � W , the function f is continuous at

every point from W1. According to Th. 2.2, the function '(x) = f(x; c + x) is

pointwise changeable on I, and therefore, according to Th. 3.2, ' is constant on

I for every c 2 [c1 � Æ; c1 + Æ], i.e., f(x; y) = f(x; x+ y � x) = f(x1; x1 + y � x)

for any (x; y) 2W1.

Let us show that I0 = (x0 � Æ1;x0 + Æ1). Assume that a > x0 � Æ1. Then

Lem. 4.2 implies f(x; y) = f(x1; x1+y�x) for any (x; y) 2W1, besides, f(a; y) =

f(x1; x1+y�a) for any y 2 [a+ c1� Æ; a+ c1+ Æ]. Note that (x1;x1+y�a) 2 K

if y 2 [a + c1 � Æ; a + c1 + Æ], then jf(p) � f(p0)j >
"

3
for every p 2 K1, where

K1 = f(a; y) : jy � a � c1j � Æg. Since K1 � W , the function f is continuous

at every point from the set K1. Hence, there exists a nonempty interval I1 �

(x0� Æ1;x0+ Æ1) such that a 2 I1 and jf(x; y)� f(x0; y0)j >
"

3
for any x 2 I1 and

y 2 R with jy � x� c1j � Æ. Then I0
S
I1 2 I, what is contrary to the de�nition

of set I0. We use analogous reasons if b < x0 + Æ.

Thus, I0 = (x0 � Æ1;x0 + Æ1). Then (x0; x0 + c1) 2 W1, f(x0; x0 + c1) =

f(x1; x1 + c1) = f(x1; y1), and g(x1; y1) = f(x0; x0 + c1) = f(x1; y1).

Since !f (p0) = ", then there exists a sequence (qn)
1

n=1 of points qn = (un; vn)

2W such that jf(qn)� f(p0)j >
"

3
and lim

n!1

qn = p0. Then, using the continuity

of g, we obtain lim
n!1

f(qn) = lim
n!1

g(qn) = g(p0) = f(p0). But the last equalities

contradict to the choice of (qn)
1

n=1.

Corollary 4.4. Let k 2 R, k 6= 0, f : R2 ! R be such a separately dif-

ferentiable function that f 0
x
(p) + kf 0

y
(p) = 0 for every p 2 R

2
. Then there exists

a di�erentiable function ' : R ! R such that f(x; y) = '(kx�y) for any x; y 2 R.
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5. Equations for Separately L-Di�erentiable Functions

In this section we apply Th. 4.3 for solving di�erential equations in

abstract spaces.

Let X be a vector space, Z be a set and L be a system of functions l : Z ! R.

We say that a mapping f : X ! Z is L-di�erentiable at x0 2 X if for arbitrary

h 2 X and l 2 L the function g : R ! R, g(t) = l(f(x0 + th)), is di�erentiable

at t0 = 0, i.e., there exists A(h; l) = lim
t!0

l(f(x0+th))�l(f(x0))
t

. The mapping A :

X � L! R is called L-derivative of f at x0 and is denoted by Df(x0). Besides,

we denote Df(x0)(h; l) by Df(x0; h; l).

A mapping f : X ! Z is called L-di�erentiable if f is L-di�erentiable at every

point x 2 X.

Recall that a system L of functions de�ned on a set Z separates points from Z

if for arbitrary distinct points z1; z2 2 Z there exists l 2 L such that l(z1) 6= l(z2).

Theorem 5.1. Let X be a vector space, Z be a set, L be a system of functions

de�ned on Z which separates points from Z, and f : X2 ! Z be a separately

L-di�erentiable mappings such that

Dfx(y) +Dfy(x) = 0

for every x; y 2 X. Then there exists an L-di�erentiable mapping ' : X ! Z

such that f(x; y) = '(x� y) for every x; y 2 X.

P r o o f. Firstly show that f(x; y) = '(x� y) for some mapping ' : X ! Z.

It is enough to prove that f(x1; y1) = f(x2; y2) if x1 � y1 = x2 � y2.

Suppose that there exist x1; y1; x2; y2 2 X such that x1 � y1 = x2 � y2 and

f(x1; y1) = z1 6= f(x2; y2) = z2. Since the system L separates points from Z,

there exists l 2 L such that l(z1) 6= l(z2). Put h = x2�x1 = y2� y1 and consider

the function u : R2 ! R, u(s; t) = l(f(x1 + sh; y1 + th)).

Show that u is a separately di�erentiable function with u0
s
+ u0

t
= 0.

Let s0; t0 2 R, x0 = x1 + s0h and y0 = y1 + t0h. Then

u0
s
(s0; t0) = lim

s!s0

l(f(x1 + sh; y1 + t0h))� l(f(x1 + s0h; y1 + t0h))

s� s0

= lim
s!s0

l(f(x0 + (s� s0)h; y0))� l(f(x0; y0))

s� s0

= lim
s!s0

l(fy0(x0 + (s� s0)h)) � l(fy0(x0))

s� s0
= Dfy0(x0; h; l):

Analogously, u0
t
(s0; t0) = Dfx0(y0; h; l). Since Dfx0(y0) + Dfy0(x0) = 0,

u0
s
(s0; t0) + u0

t
(s0; t0) = 0.
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Thus u satis�es the conditions of Th. 4.3, therefore l(z1) = u(0; 0) = u(1; 1) =

l(z2) what is contrary to our assumption.

The L-di�erentiability of ' follows from '(x) = f(x; 0) and L-di�erentiability

of fy if y = 0.

Let X, Z be topological vector spaces. A mapping f : X ! Z is called the

Gateaux di�erentiable at point x0 2 X if there exists a linear continuous operator

A : X ! Z such that

lim
t!0

f(x0 + th)� f(x0)

t
= (Ax0)(h)

for every h 2 X. The operator A is called the Gateaux derivative of mapping f

at point x0.

Note that for a Hausdor� topological vector space Z the Gateaux derivative is

unique. A mapping f : X ! Z, which is the Gateaux di�erentiable at every point

x 2 X, is called the Gateaux di�erentiable. A mapping D, which assigns to every

Gateaux di�erentiable mapping f : X ! Z the Gateaux derivative mapping,

i.e., Df(x) is the Gateaux derivative of f at point x 2 X, we call the Gateaux

di�erentiation operator.

Corollary 5.2. Let X be a topological vector space, Z be a topological vector

space such that the conjugate space Z� separates points from Z, and f : X2 ! Z

be a mapping such that

Dfx(y) +Dfy(x) = 0

for every x; y 2 X, where D is a Gateaux di�erentiation operator for the mapping

acting from X to Z. Then there exists a Gateaux di�erentiable mapping

' : X ! Z such that f(x; y) = '(x� y) for every x, y 2 X.

P r o o f. Since Z� separates points from Z, Z is a Hausdor� space and the

de�nition of D is correct. Besides, for arbitrary x; y; h 2 X and z� 2 Z� we have

lim
t!0

z�(fy(x+ th))� z�(fy(x))

t
= lim

t!0
z�

 
fy(x+ th)� fy(x)

t

!
= z�(Dfy(x)(h))

and

lim
t!0

z�(fx(y + th))� z�(fx(y))

t
= z�(Dfx(y)(h)) = �z�(Dfy(x)(h)):

Therefore f is a separately Z�-di�erentiable mapping and ~Dfx(y) + ~Dfy(x) = 0,

where ~D is the Z�-di�erentiation operator. Theorem 5.1 implies that there exists

a mapping ' : X ! Z such that f(x; y) = '(x � y) for every x; y 2 X. Since

'(x) = f(x; 0), ' is a Gateaux di�erentiable mapping.
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6. Higher-Order Equations

Finally, we give the applications of Th. 4.3 for solving higher-order partial

di�erential equations.

Let n 2 N and a function f : R2 ! R has all n-order partial

derivatives. We denote the sum of all n-order partial derivatives of f by Dnf .

Clearly, Dn+kf = Dn(Dkf) for every n; k 2 N and any function f : R2 ! R

which has all (n+ k)-order partial derivatives.

Theorem 6.1. Let n 2 N, a function f : R2 ! R have all n-order partial

derivatives and Dnf(p) = 0 for every p 2 R
2
. Then there exist di�erentiable

functions '1; : : : ; 'n : R ! R such that

f(x; y) = '1(x� y) + (x+ y)'2(x� y) + � � � + (x+ y)n�1'n(x� y)

for every x; y 2 R.

P r o o f. The proof is by induction in n.

For n = 1 it follows from Th. 4.3.

Assume that our assertion is true for some n = k and prove it for n = k + 1.

Let f : R2 ! R be a function which has all (k + 1)-order partial derivatives

and Dk+1f(p) = 0 for every p 2 R
2 .

Put g = D1f . Since Dkg = Dk+1f = 0, the assumption implies that there

exist di�erentiable functions  1; : : : ;  k : R ! R such that

g(x; y) =  1(x� y) + (x+ y) 2(x� y) + � � �+ (x+ y)k�1 k(x� y):

Denote 'i+1 =
1
2i
 i if 1 � i � k, and put

u(x; y) = (x+ y)'2(x� y) + (x+ y)2'3(x� y) + � � �+ (x+ y)k'k+1(x� y):

Then

D1u(x; y) = 2'2(x� y) + 4(x+ y)'3(x� y) + � � �+ 2k(x+ y)k�1'k+1(x� y)

=  1(x� y)+ (x+ y) 2(x� y)+ � � �+(x+ y)k�1 k(x� y) = g(x; y) = D1f(x; y):

Thus D1(f � u) = 0 and Th. 4.3 implies that there exists a di�erentiable

function '1 : R ! R such that f(x; y) = '1(x; y) + u(x; y).

Theorem 6.2. Let a function f : R2 ! R have all second-order partial

derivatives and

f 00
xx
(p) = f 00

yy
(p) and f 00

xy
(p) = f 00

yx
(p)

for every p 2 R
2
. Then there exist twice di�erentiable functions '; : R ! R

such that

f(x; y) = '(x+ y) +  (x� y)

for every x; y 2 R.
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P r o o f. Consider the function g : R2 ! R, g(p) = f 0
x
(p) � f 0

y
(p). Then

g0
x
(p) + g0

y
(p) = f 00

xx
(p)� f 00

yx
(p) + f 00

xy
(p)� f 00

yy
(p) = 0. Theorem 4.3 implies that

there exists a di�erentiable function ~ : R ! R such that g(x; y) = ~ (x� y).

Choose some twice di�erentiable function  : R ! R such that 2 0 = ~ and

consider the function ~f(x; y) = f(x; y)�  (x� y). Then

~f 0
x
(x; y) � ~f 0

y
(x; y) = f 0

x
(x; y)� f 0

y
(x; y)� 2 0(x� y) = g(x; y) � g(x; y) = 0:

Therefore, Cor. 4.4 implies that there exists a di�erentiable function ' : R ! R

such that ~f(x; y) = '(x+y), i.e., f(x; y) = '(x+y)+ (x�y) for every x, y 2 R.

Since '(x) = f(x; 0)�  (x), ' is a twice di�erentiable function.

R e m a r k s. The existence of f 00
xx

and f 00
yy

for a function f : R2 ! R does

not imply the existence of f 00
xy

and f 00
yx
. For example, the Schwartz function

f(x; y) =

(
2xy

x2+y2
; if x2 + y2 6= 0;

0; if x = y = 0;

is a separately in�nite di�erentiable function, but f 00
xy
(0; 0) and f 00

yx
(0; 0) do not

exist.

On the other hand, the existence of all second-order partial derivatives of

function f : R2 ! R and the equality f 00
xy

= f 00
yx

do not imply the joint continuity

of f . Really, the function

f(x; y) =

(
2x3y3

x6+y6
; if x6 + y6 6= 0;

0; if x = y = 0;

has all second-order partial derivatives, besides, f 00
xy

= f 00
yx

on R
2 and f is jointly

discontinuous at (0; 0).

In this connection the following question arises naturally.

Question 6.3. Let a function f : R2 ! R have partial derivatives f 00
xx and

f 00yy, and

f 00xx(p) = f 00yy(p)

for every p 2 R
2
. Do there exist twice di�erentiable functions '; : R ! R such

that

f(x; y) = '(x+ y) +  (x� y)

for every x; y 2 R?
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