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Let v(z) be a subharmonic function of order � > 0, and Fr(v) be the

limit set in the sense of Azarin. Let z be �xed and I(z) = fu(z) : u 2 Fr(v)g.
We prove that I(z) is either a closed interval or a semiclosed interval which

does not contain its in�mum.
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The following de�nitions are needed to state our main result. The de�nition

and properties of proximate order �(r) in the sense of Valiron can be found in [1].

We denote V (r) = r
�(r).

A subharmonic function v is of proximate order �(r) if

lim
z!1

v(z)

V (jzj)
<1:

Let v(z) be a subharmonic function of proximate order �(r), � = lim�(r) 2
(0;1) (r !1), and let

vt(z) =
v(tz)

V (t)

be a trajectory of Azarin of subharmonic function v. The limit set of Azarin Fr(v)
is de�ned as a set of functions given by

u(z) = lim
n!1

vtn(z)

for some sequence (tn), tn ! +1:

The limit is taken in the sense of distributions. This means that

lim
n!1

ZZ
vtn(z)'(z)dm2(z) =

ZZ
u(z)'(z)dm2(z)
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for any test function ', where m2 is a two-dimensional Lebesgue measure.

Let

h(�) = lim
r!1

v(rei�)

V (r)
; h(�) = lim

r!1

� v(rei�)

V (r)
:= sup

E

lim
r !1
r2E

inf
v(rei�)

V (r)
;

where E � (0;1) runs over all sets of zero linear density which is de�ned by

densE = lim
r!1

mes(E \ [0; r])

r
:

The function h is called an indicator of function v and the function h is called

a lower indicator of function v. In 1979 V.S. Azarin [2] proved that

H(z) := sup fu(z) : u 2 Fr(v)g = h(�)r�; z = re
i�
;

H(z) := inf fu(z) : u 2 Fr(v)g = h(�)r�:

See [3] for other properties of the limit set.

Denote I(z) = fu(z) : u 2 Fr(v)g. We prove the following re�ned version of

Azarin's theorem.

Theorem 1. For each z, (h(�)r�; h(�)r�] is a subset of I(z), and I(z) is

a subset of [h(�)r�; h(�)r�]:

We give an example of a subharmonic function v such that h(�)r�2I(z) for
some z. The case h(�)r� 2 I(z) is possible as well.

P r o o f of Theorem 1. Denote

(Ftu)(z) =
u(tz)

t�
:

V.S. Azarin [2] proved that Ft(Fr(v))(z) � Fr(v). The map Ft : Fr(v) ! Fr(v)
is one-to-one. We denote H(z) := sup fu(z) : u 2 Fr(v)g, H(z) := inf fu(z) :
u 2 Fr(v)g. We have

H(tz) = sup fu(tz) : u 2 Fr(v)g = t
� sup

�
u(tz)

t�
: u 2 Fr(v)

�
= t

�
H(z):

Thus H(rei�) = r
�
H(ei�): Analogously, H(rei�) = r

�
H(ei�): For every " > 0

there exists (see, for example, [2]) a number R such that v(rei�) < (h(�)+ ")V (r)
is valid for r 2 [R;1) and for any �.

Consequently,

vt(z) =
v(trei�)

V (t)
< (h(�) + ")

V (tr)

V (t)
; tr > R:
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It is known [1] that

V (tr)

V (t)
� r

�
; 0 < a � r � b <1;

where the double arrow means a uniform convergence on the given set. Hence

there exist numbers R1 > 0 and �0 2 (0; 1) such that

vt(z) � h(�) + 2"; z 2 C(ei�; �0); t � R1: (1)

Here C(ei�; �0) is an open disk centered at ei� with the radius �0. Let u be

an arbitrary function from Fr(v). It follows from the de�nition of �ne topology

[4] that the set E = fz : u(z) > u(ei�) � "g is a �ne neighborhood of ei�. Then

there exists a compact set K such that K � E \ C(ei�; �0) and capK > 0.
Therefore there exists a positive measure � such that �(K) > 0; supp(�) � K,

and the potential

b(z) =

ZZ
ln jz � �jd�(�)

is continuous ([5], corollary to Th. 3.7).

Further we need the following results. Let vn(z) be a sequence of subharmonic

functions converging in the sense of distributions to a distribution w. Then w is

a regular distribution and may be represented by a subharmonic function w(z).
We recall that the distribution T

T' =

ZZ
f(z)'(z)dm2(z);

where f is a locally integrable function, is called a regular distribution. Let �n and

� be the Riesz masses of vn and w, respectively. We have �n = 1
2��vn; � = 1

2��w,
where � is the Laplace operator. Di�erentiation is continuous in the space of

distributions. It follows that �n ! � in the sense of distributions. Theorem 0.4

[5] states that �n converges weakly to � as a sequence of Radon measures. This

means that (�n; ') ! (�; ') for any continuous compactly supported function '.

In addition, if a compact set K is Jordan measurable with respect to the measure

� (this means that �(@K) = 0), then �n converges weakly to � as a sequence of

elements of the Banach space C�(K). This means that (�n; ') ! (�; ') for any
function ' which is continuous on K. If K = B(z0; R) and �(@B(z0; R)) = 0,
then

lim
n!1

ZZ
B(z0;R)

ln jz � �jd�n(�) =

ZZ
B(z0;R)

ln jz � �jd�(�)

in the sense of distributions. We have the Riesz representation

vn(z) =

ZZ
B(z0;R)

ln jz � �jd�n(�) + un(z);
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where un is a harmonic function in disk C(z0; R) = fz : jz � z0j < Rg : It is clear
that (un) is a convergent sequence in the sense of distributions. Then the sequence

(un) is uniformly convergent on every compact setK � C(z0; R) by Th. 4.4.2 ([6]).
Thus, modulo the uniformly convergent sequence (un) of harmonic functions, the

(vn) is a sequence of potentials, and so many classical results from potential theory

may be extended to (vn). In particular,

lim
n!1

ZZ
vtn(z)d�(z) =

ZZ
w(z)d�(z): (2)

The proof of an analogous proposition for potentials appeared in [5, Th. 3.8].

Now we have�
u(ei�)� "

�
�(K) �

ZZ
u(z)d�(z) �

�
h(�) + 2"

�
�(K):

The left-hand side follows from the inequality u(z) > u(ei�) � " for z 2 K;

and the right-hand side follows from (1). This gives u(ei�) � h(�) for any u 2
Fr(v); H(ei�) � h(�):

Further we prove that there exists a function u0 2 Fr(v) such that u0(e
i�) =

h(�): Since

h(�) = lim
r!1

v(rei�)

V (r)
;

then there exists a sequence (tn), tn ! 1 as n ! 1; such that the sequence of

real numbers vtn(e
i�) converges to h(�) as n!1:

The set fvt(z) : t 2 0;1g is compact in the sense of distributions, see [7,

Th. 2.7.1.1]. Hence we can �nd a subsequence tn
k
such that vtn

k

(z) ! u0(z) in
the sense of distributions.

According to the principle of ascent (for potentials it is Th. 1.3 [5]),

h(�) = lim
k!1

vtn
k

(ei�) � u0(e
i�) � H(ei�):

This yields

h(�) = H(ei�); u0(e
i�) = h(�):

Our next step is to prove the inequality u(ei�) � h(�) for u 2 Fr(v). Let

u 2 Fr(v) and " > 0. It is evident that we may assume h(�) > �1. Since u is

upper semicontinuous, then there exists � 2 (0; 1) such that u(z) < u(ei�) + "

for z 2 B(ei�; �). Let tn ! 1 as n ! 1 be such a sequence that vtn ! u as

a sequence of distributions. Then, for � 2 (0; 1)

lim
n!1

1+�Z
1��

���u(tei�)� vtn(te
i�)
��� dt! 0: (3)
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Using the similar arguments as those used to prove (2), one can reduce the

proposition to the following. Let a sequence �n of Borel measures in disk B(z0; R)
converge weakly to a measure �. Then the real sequence

an =

1+�Z
1��

�������
ZZ

B(z0;R)

ln jtei� � �jd(�n � �)(�)

������� dt
converges to zero.

We have

an =

ZZ
B(z0;R)

0
@ 1+�Z

1��

hn(t) ln jte
i� � �jdt

1
Ad(�n � �)(�);

where

hn(t) = sign

ZZ
B(z0;R)

ln jtei� � �jd(�n � �)(�):

The function hn(t) is measurable and jhn(t)j � 1. Consider a family of functions

Hn(�) =

1+�Z
1��

hn(t) ln jte
i� � �jdt; n = 1; 2; : : : :

The inequality

jHn(�)j �

1+�Z
1��

���ln jtei� � �j
��� dt

shows that the family Hn(�) is uniformly bounded in B(z0; R).
Further,

jHn(�2)�Hn(�1)j �

1+�Z
1��

����ln j tei� � �2

tei� � �1
j

���� dt

=

1+�Z
1��

max

�
ln j

te
i� � �2

tei� � �1
j; ln j

te
i� � �1

tei� � �2
j

�
dt

�

1+�Z
1��

ln

�
1 +

j�2 � �1j

jtei� � �1j

�
dt+

1+�Z
1��

ln

�
1 +

j�2 � �1j

jtei� � �2j

�
dt = J1 + J2:
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In the integral J1 we introduce a new variable r by the formula r = jtei�� �1j.
We obtain

J1 =

1Z
0

ln

�
1 +

j�2 � �1j

r

�
d�(r);

where �(r) = mes
�
[(1� �)ei� ; (1 + �)ei�] \B(�1; r)

�
.

The function �(r) is constant in [R;1), where R = max
�
j(1� �)ei� � �1j ;

j(1 + �)ei� � �1j
�
. The inequality �(r) � 2r is obvious. From the properties given

above it follows that

J1 =

RZ
0

ln

�
1 +

j�2 � �1j

r

�
d�(r) � 2

RZ
0

ln

�
1 +

j�2 � �1j

r

�
dr:

It can be shown by integrating by parts. The integral J2 is estimated in a similar

way. Be speci�c about what estimates show equicontinuity Hn(�). Arzela�Ascoli's
theorem gives a compactness of the family Hn(�). Consequently, the sequence

an =

ZZ
B(z0;R)

Hn(�)d(�n � �)(�)

converges to zero. Formula (3) is proved.

If An =
�
t 2 [1� �; 1 + �] :

��u(tei�)� vtn(te
i�)
�� � "

	
; then mes(An) ! 0 as

n ! 1. If B(") =
�
r 2 (0;1) : v(rei�) < h(�)� "

	
, then the formula for h(�)

gives that the linear density of B(") is zero.
For � 2 (0; 1) we denote

Bn =

�
t 2 [1� �; 1 + �] : (h(�)� ")

V (tnt)

V (tn)
� vtn(te

i�)

�
:

If t 2 Bn, then

vtn(te
i�) =

v(tnte
i�)

V (tn)
� (h(�)� ")

V (tnt)

V (tn)
;

v(tnte
i�) � (h(�)� ") V (tnt):

It follows that tnt 2 B("), tnBn � B("), mes(tnBn) � mes (B(") \ [(1� �)tn;
(1 + �)tn]) ; and

mes(Bn) �
mes (B(") \ [0; (1 + �)tn])

tn

:

Now the property that density of B(") is zero implies mes(Bn) ! 0 as n ! 1:

We have�
h(�)� "

�
V (tnt)

V (tn)
< vtn(te

i�) � u(tei�) +
���u(tei�)� vtn(te

i�)
��� < u(ei�) + 2"
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for t 2 [1� �; 1 + �] n (An [Bn). The convergence

V (tnt)

V (tn)
� t

�
; t 2 [1� �; 1 + �]

leads to the inequality

(h(�)� ")
V (tnt)

V (tn)
> h(�)� 2"

for su�ciently large n and small �. Thus we obtain the claimed inequality u(ei�)
� h(�):

Now is the �nal step of the proof. With � �xed, we denote

A(r; �) =
1

rV (r)

(1+�)rZ
r

v(tei�)dt:

The function A(r; �) is continuous and bounded in the variable r 2 [1;1). Then
the limit set, i.e., the set of all subsequential limits, of A(r; �) as r ! +1 is

a closed interval J(�) = [A(�); B(�)]. We claim that

J(�) =

8<
:

1+�Z
1

u(tei�)dt : u 2 Fr(v)

9=
; : (4)

In fact, let

a(�) = lim
n!1

A(rn; �) = lim
n!1

1+�Z
1

vrn(te
i�)dt:

In addition, we may assume that vrn(z) ! u(z) in the sense of distributions.

Then the equality

lim
n!1

1+�Z
1

vrn(te
i�)dt =

1+�Z
1

u(tei�)dt;

which is a special case of (2), gives a(�) =
1+�R
1

u(tei�)dt. Clearly, for any u 2 Fr(v)

the value of integral
1+�R
1

u(tei�)dt belongs to the interval J(�). Relation (4) is

proved. Note that it also follows from the results obtained by V.S. Azarin [2].

According to Theorem 2 [8],

lim
�!+0

A(�)

�
= h(�); lim

�!+0

B(�)

�
= h(�):
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If h(�) < h < h(�); then the inequalities

A(�)

�
< h

(1 + �)�+1 � 1

(�+ 1)�
<

B(�)

�

are valid for all su�ciently small �. Therefore there exists a strictly positive

number � and a function u 2 Fr(v) such that

h
(1 + �)�+1 � 1

�+ 1
=

1+�Z
1

u(tei�)dt;

1+�Z
1

�
u(tei�)� ht

�

�
dt = 0:

We claim that there exists t0 2 [1; 1 + �] with u(t0e
i�) = ht

�

0. Consider the

function w(z) = u(z)� hjzj�: Further we will assume that � is �xed and consider

w(tei�) as a function in variable t. We have either w(tei�) = 0 almost everywhere

on the interval [1; 1 + �] or the function w(tei�) has strictly positive and strictly

negative values on this interval. In the �rst case t0 is obtained. We consider

the second case. The function w(tei�) is upper semicontinuous. Hence the set

E =
�
t > 0 : w(tei�) < 0

	
is open. Under the assumption E is nonempty, the set

E meets the interval [1; 1 + �]. We have

E =

1[
k=1

(ak; bk);

where (ak; bk) is a disjoint system of intervals. There exists k such that (ak; bk)\
[1; 1 + �] 6= ?: The point ak or the point bk necessarily belongs to the interval

(1; 1+�), assume that bk 2 (1; 1+�). Because bk2E, the inequality w(bke
i�) � 0

is valid. The function w(z) is continuous in �ne topology. Hence there exists

a �ne neighborhood G of bke
i� such that

w(bke
i�) = lim

z ! bke
i�

z 2 G

w(z):

According to the theorem of Lebesgue and Beurling ([4, Prop. IX.6]), the point

bke
i� is a limit point for the set G \ (ake

i�
; bke

i�). This gives w(bke
i�) � 0 and

then w(bke
i�) = 0: Thus bk is the required point t0. For the function

u
(1)(z) =

u(t0z)

t
�

0

2 Fr(v)

we have u(1)(ei�) = h.
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Now the assertions of the theorem follow from the above. The theorem is

proved.

We produce a subharmonic function v such that h(0) = H(1)2I(1) and con-

struct the limit set of Azarin of this function in the form

Fr(v) = fut(z) : t 2 (0;1)g: (5)

Consider the function

a(z) =
1X
n=1

1

n3
ln

����1� z

1� e�n

���� :
We have

a(z) =

 
1X
n=1

1

n3

!
ln jzj+

1X
n=1

1

n3
ln

1

1� e�n
+O

�
1

jzj

�
; z !1:

On every interval

�
�1; 1� e

�1
�
;

�
1� e

�k
; 1� e

�k�1
�
; k = 1; 2; : : : ; (1;1);

the function a(x) is strictly concave since

a
00(x) = �

1X
n=1

1

n3

1

(x� 1 + e�n)2
:

Let xn 2
�
1� e

�n
; 1� e

�n�1
�
be such a point that

a(xn) = max
�
a(x) : x 2

�
1� e

�n
; 1� e

�n�1
�	

:

Then the function a(x) increases on the interval (1� e
�n
; xn) and decreases

on the interval
�
xn; 1� e

�n�1
�
. First we prove the relation

a(xn)! a(1) (6)

as n!1: Let �k = 1� 1
2

�
1 + 1

e

�
e
�k
: We have

a(1)� a(�k) = �

1X
n=1

1

n3
ln

����1� 1

2

�
1 +

1

e

�
e
n�k

���� :
From the inequalities�������

X
1�n� k

2

1

n3
ln

�
1�

1

2

�
1 +

1

e

�
e
n�k

�������� � (1 +
1

e
)e�k=2

1X
n=1

1

n3
;
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�������
X

k

2
<n�k

1

n3
ln

�
1�

1

2

�
1 +

1

e

�
e
n�k

�������� �
X

k

2
<n�k

1

n3
ln

2

1� 1
e

;

�����
1X

n=k+1

1

n3
ln

����1� 1

2

�
1 +

1

e

�
e
n�k

����
����� �

1X
n=k+1

1

n2

it follows that a(�k) ! a(1); as k ! 1: Since �k 2
�
1� e

�k
; 1� e

�k�1
�
, then

a(xk) � a(�k);
lim
k!1

a(xk) � a(1):

The upper semicontinuity of the function a(z) yields

lim
k!1

a(xk) � lim
z!1

a(z) � a(1);

and (6) follows.

Introduce � and �1 with 0 < � < �1 < 1: It follows from (6) that

�� = inf
a(xn)

x
�1
n

> �1:

Let �0 be the number in the interval
�
0; 1� 1

e

�
such that a(�0) = ����10 .

The existence of �0 follows from the inequality a1(t) = a(t) + �t
�1 > 0 in the

right neighborhood of zero and the inequality a1(t) < 0 in the left neighborhood

of 1 � 1
e
. The function a1(t) is strictly concave on the interval

�
0; (1 � 1

e
)
�
, and

a1(0) = 0. Any strictly concave function has at most two zeros. This proves that

�0 is unique. We choose c > 2� and denote

A1 = (�0; 1�
1

e
); Ak = (xk�1; 1 � e

�k); k = 2; 3; : : : :

Let sk be the unique point t 2 Ak such that a(t) = �ct�1 . We denote a2(t) =
a(t) + ct

�1 and consider the case k � 2:
We have a2(xk�1) > 0; a2(t) < 0 in the left neighborhood of 1 � e

�k.

This shows that sk exists. Analogously, there exists s1k 2
�
1� e

�k+1
; xk�1

�
such that a2(s1k) = 0. The function a2(t) is strictly concave in each interval�
1� e

�k+1
; 1� e

�k
�
. This proves that sk is unique. The existence and unique-

ness of s1 is proved in the same way as for �0.

We have a(z) = Re�(z);

�(z) =

1X
n=1

1

n3
ln

�
1�

z

1� e�n

�
;
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�
0(z) =

1X
n=1

1

n3

1

z � 1 + e�n
:

A level-line of a(z) is a real-analytic curve if it does not meet zeros and poles of

�
0(z). We wish to �nd zeros of �0(z). The following identity holds

Im�0(z) = �y
1X
n=1

1

n3jz � 1 + e�nj2
: (7)

It gives that all zeros of �0(z) are real. Now it is easy to verify that the set of

zeros of �0(z) is fxn; n = 1; 2; : : :g :
Let �k be the unique point in the interval

�
1� e

�k
; xk

�
such that a(�k) =

a(sk). The inequality a(x) < a(sk) is realized on the interval (sk; �k). From the

identity @a

@y
(z) = �Im�0(z) and (7) it follows that the function a(x; y) strictly

increases on (0;1) and strictly decreases on (�1; 0) in the variable y. Therefore

there exist functions y1(x) > 0 and y2(x) < 0 on the interval (sk; �k) such that

a(x; y1(x)) = a(sk); a(x; y2(x)) = a(sk):

The collection of curves z = x + iy1(x); z = x + iy2(x); x 2 (sk; �k), and
points z = sk; z = �k is a closed Jordan curve Lk that is a level curve of a(z).
It is a real analytic curve. Let Gk be a bounded domain with boundary Lk.

Let u(z) be a function such that u(z) = a(z) if z2
1S
k=1

Gk, and u(z) = a(sk)

if z 2 Gk. The function u(z) is subharmonic. It is important for us that the

inequalities

u(x) � �cx�1 ; u(x) > �cx� (8)

are realized on the semi-axis (0;1).
Consider the Azarin trajectory of function u,

ut(z) =
u(tz)

t�
; t 2 (0;1):

One can prove that ut(z) ! 0 in the sense of distributions when t ! 0 or

t!1.

Theorem 9 [3] asserts that there exists a subharmonic function v of order �

such that

Fr(v) = fut(z) : t 2 (0;1)g [ f0g:

It follows from (8) that

ut(1) =
u(t)

t�
> �c:

356 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 3



A Property of Azarin's Limit Set of Subharmonic Functions

In addition,

us
k
(1) =

u(sk)

s
�

k

= �cs�1��
k

! �c

as k !1:

This gives H(1) = �c; H(1)2I(1): The function v is a required example.
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