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P.D. AndreevThe paper is organized as follows. In Setion 2 we reall some neessary de�-nitions and fats from Busemann spaes theory. In Setion 3 we prove the gluingtheorem whih generalizes Reshetnyak's gluing theorem known for Alexandrovspaes (f. [3, Th. 9.1.21℄). When we speak about Busemann spaes, the gluingtheorem has the following formulation.Theorem 3.1. Let (X1; d1), (X2; d2) and (X3; d3) be three Busemann spaesrepresented as unions of losed onvex subsets Xi := Ai [ Bi. Let g1 : B2 ! A3,g2 : B3 ! A1 and g3 : B1 ! A2 be three isometries suh that g2Æg1Æg3 = Id jA1\B1 .Then the spae X obtained as a fatorspae X := (X1[X2[X3)=fg1; g2; g3g withthe metri d that oinides with di in eah Xi, is a Busemann spae.In Setion 4 we study the Hausdor� limits of Busemann spaes. The lass ofall Busemann spaes is not losed under Hausdor� limit: the sequene of stritlyonvex normed spaes an onverge to the normed spae with nonstritly onvexnorm. B. Kleiner introdued the notion of often onvex spae in [6℄. The lass ofoften onvex spaes is losed under limits and ontains a sublass of Busemannspaes. We study the Hausdor� limits of Busemann spaes under additional requi-rement of unimodular onvexity. The main result of the setion is the followingtheorem.Theorem 4.3. Let the omplete metri spae (X; o; dX ) with basepoint o bea Hausdor� limit of unimodularly onvex sequene (Xn; on; dn) of pointed Buse-mann spaes. Then X is also a Busemann spae and its onvexity modulus Æx(�; r)for all x 2 X is bounded from below by the ommon low boundary of onvexitymodules of spaes Xn. 2. PreliminariesThe general theory of spaes with intrinsi metri an be found in [3, 4℄ and[7℄. Here we reall some basi fats related to Busemann nonpositively urvedspaes.De�nition 2.1. Let (X; d) be a geodesi spae. We use the notation jxyj forthe distane d(x; y) between its points. A segment onneting the points x; y 2 Xis denoted [xy℄. We say that X is a Busemann nonpositively urved spae (shortlyBusemann spae) if its metri is onvex: if  : [a; b℄ ! X and d : [a0; b0℄! X area�ne parameterizations of two segments, then the funtion D : [a; b℄�[a0; b0℄! R+D(s; t) = j(s)d(t)jis onvex. Equivalently, the spae X is Busemann nonpositively urved if for anythree points x; y; z 2 X, for the arbitrary midpoint m between x and y and for26 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 1



Geometri Construtions in the Class of Busemann Nonpositively Curved Spaesarbitrary midpoint n between x and z the inequalityjmnj � 12 jyzj (2.1)holds.The following properties of the onsidered spaes are simple orollaries fromDef. 2.1. Eah Busemann nonpositively urved spae X is ontratible, any itstwo points are onneted by the unique segment.The lass of Busemann nonpositively urved spaes ontains all CAT (0)-spaes and stritly onvex Minkowski spaes.The fat that some non-Minkowskian Finsler manifolds have nonpositive ur-vature in sense of Busemann is less trivial. Finsler metris having nonpositiveurvature in the sense of Busemann were studied in [8℄. It is shown that everyFinsler manifold with Berwald metri and nonpositive �ag urvatures is a genera-lized Busemann spae (geodesi spae with the Busemann property of urvaturenonpositivity but without symmetry ondition on the metri). The Finsler metriF (x; dx) on the manifold Mn is a Berwald metri if there is a speial oordinatesystem, where its geodesis satisfy the system of di�erential equations��i + 2Gi(�; _�) = 0:Here Gi := Gi(x; y) are positive funtions homogeneous of the seond degree iny. If the metri F is Riemannian, then Gi = 12�ijk(x)yjyk, where �ijk are Levi�Chivita onnetion oe�ients.The Berwald ondition is essential here. By Kelly�Straus theorem (f. [9℄),if the Finsler spae with Hilbert metri (of onstant negative �ag urvature) isa Busemann spae, then it is a Lobahevsky spae.In onnetion with onvexity, the spaes with nonpositive urvature are some-times alled onvex spaes (f. [10℄).De�nition 2.2. The metri spae X is alled loally onvex if every its pointhas a neighborhood that is the Busemann nonpositively urved spae in the metriof X.Several strengthenings of the onvexity property were introdued in [11℄.De�nition 2.3. The Busemann nonpositively urved spae X is alled stritlyonvex if there is the strong inequalityjx0mj < maxfjx0yj; jx0zjg
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P.D. Andreevfor every triple of points x0; y; z 2 X, where m is a midpoint between y and z.The stritly onvex spae X is alled weakly uniformly onvex if for any pointx0 2 X the modulus of onvexity funtionÆx0(�; r) := inffr � jx0mj j y; z 2 X;jx0yj � r; jx0zj � r; jyzj � �r; jymj = jmzj = 12 jyzjgis positive for any �; r > 0. Finally, the weakly uniformly onvex spae X is alleduniformly onvex if limr!+1 Æx0(�; r) = +1for any �xed � > 0.For example, every stritly onvex Minkowski spae is uniformly onvex,beause its modulus of onvexity funtion is homogeneous by r:Æo(�; �r) = �Æo(�; r)for all �; r; � > 0. 3. GluingThe gluing theorem known for the Alexandrov spaes in Reshetnyak's for-mulation (f. [12℄) is not true for Busemann spaes with nonpositive urvature.For example, the result of gluing of two normed half-planes with di�erent normsis a plane whose metri fails to be a Busemann nonpositive urvature. We willprove the following version of the gluing theorem.Theorem 3.1. Let (X1; d1), (X2; d2) and (X3; d3) be three Busemann spaesrepresented as unions of losed onvex subsets Xi := Ai [ Bi. Let g1 : B2 ! A3,g2 : B3 ! A1 and g3 : B1 ! A2 be three isometries suh that g2Æg1Æg3 = Id jA1\B1 .Then the spae X obtained as a fatorspae X := (X1[X2[X3)=fg1; g2; g3g withthe metri d that oinides with di in eah Xi, is a Busemann spae.P r o f. Identifying eah spae Xi with the orresponding subset in X,we notie that A1 \B1 = B3 \A2 � X1 \X2 \X3:As a orollary, X1 \X2 \X3 = A1 \B1 = A2 \B2 = A3 \B3:
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Fig. 1: The spae X is a result of the gluing of spaes X1;X2 and X3.Any two points x; y 2 X are ontained in one of Xi and onneted in thisXi by a segment [xy℄ with natural parametrization  : [�; �℄ ! Xi. Assumefor de�niteness that x; y 2 X1. Sine the distane in X between the pointsthat belong to X1 oinides with the distane d1, then the parametrization  isa natural parametrization of the path  in the spae X as well. Consequently,the map  represents a segment onneting x and y in X. It follows that X isa geodesi spae.Let k =2 X1, that is k 2 B2 n A2 = A3 nB3 = (X2 \X3) nX1, be an arbitrarypoint. Consider the segments [xk℄ and [ky℄ with natural parameterizations p :[�; ℄ ! X and q : [Æ; �℄ ! X. Denote s 2 [�; ℄ the in�mum of parameters� for whih p(�) =2 X1, and t 2 [Æ; �℄ the supremum of parameters � for whihq(�) =2 X1. Sine the sets Ai and Bi are losed, then p(s); q(t) 2 (B2 = A3)\X1.It followsjxyjX = d1(x; y) � d1(x; p(s)) + d1(p(s); q(t)) + d1(q(t); y) < jxkjX + jkyjX :Consequently, every segment onneting x and y passes in X1, and the pointsx and y are onneted by the unique segment in X. If x; y 2 Xi, then there isa unique midpoint between x and y and it belongs to the same Xi.Let three points x; y; z 2 X and the midpoints m;n of segments [xy℄ and[xz℄, respetively, be given. If x; y; z 2 Xi for some i, then also m;n 2 Xi, andthe inequality (2.1) is ful�lled automatially. Assume that x =2 X1, y =2 X2 andz =2 X3 (as in Fig. 1). Denote p an arbitrary point of the segment [yz℄ in theintersetion A1 \ B1 = A1 \ A2 \ A3, and q the midpoint of the segment [xp℄(Fig. 2).Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 1 29



P.D. Andreev

x

y
z

m n

p

q

Fig. 2:Then from x; y; p 2 X3 there follows the inequalityjmqjX � 12 jypjX ; (3.1)and from x; p; z 2 X2 the inequalityjqnjX � 12 jpzjX : (3.2)Combining (3.1) and (3.2), we getjmnjX � jmqjX + jqnjX � 12(jypjX + jpzjX) = 12 jyzjX :4. Convergene in the Class of Busemann NonpositivelyCurved SpaesDe�nition 4.1. The distortion of the map f : X ! Y of the metri spae(X; dX ) to the metri spae (Y; dY ) is de�ned bydis(f) := supx;y2X jdY (f(x); f(y))� dX(x; y)j:The uniform distane jXY ju between metri spaes (X; dX ) and (Y; dY ) isde�ned by jXY ju := inf dis(f);30 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 1



Geometri Construtions in the Class of Busemann Nonpositively Curved Spaeswhere the in�mum is taken over all bijetions f : X ! Y . A sequene (Xn; dn)of metri spaes onverges uniformly to the metri spae (X; dX ) if jXnXju ! 0.For � > 0; �-net in the metri spae X is a subset N � X suh that for anyx 2 X there exists a 2 N with jxaj < �:De�nition 4.2 [13, Part I, p. 7℄. Let (X; d) be a bounded metri spae and(Xi; di) be a sequene of bounded metri spaes with distanes di. The sequeneXi onverges in the sense of Hausfor� to the spae X if for any � > 0 there exists�-net N� � X that is a uniform limit of �-nets Ni� in Xi.The de�nition of the Hausdor� onvergene in the ase of nonbounded spaes isvalid in the ategory of pointed spaes. Let (X; o; d) be a pointed metri spae withthe marked point o and the metri d, and (Xi; oi; di) be a sequene of pointed metrispaes with the marked points oi and the metris di, respetively. The sequene Xionverges in the sense of Hausdor� to the spae X if for any r > 0 the sequeneof balls BXi(oi; r) onverges in the sense of Hausdor� to the ball BX(o; r).We say that the family of geodesi spaes f(X�; d�)g with the metris d�is unimodularly onvex if eah of spaes (X�; d�) is weakly uniformly onvexand there exists the positive funtion m(�; r) de�ned for �; r > 0 that boundsonvexity modules of all spaes X� from below uniformlyÆx(�; r) � m(�; r) (4.1)for any x 2 X� and for all �.Theorem 4.3. Let the omplete metri spae (X; o; dX ) with basepoint o isa Hausdor� limit of unimodularly onvex sequene (Xn; on; dn) of pointed Buse-mann spaes. Then X is also a Busemann spae and its onvexity modulus Æx(�; r)for all x 2 X is bounded from below by the ommon low boundary of onvexitymodules of spaes Xn.R e m a r k. The unimodular onvexity ondition is essential here.For example, Minkowski planes with the normsk(x; y)kn := npjxjn + jyjnthat are stritly onvex when n > 1 onverges in the sense of Hausdor� to thenon-stritly onvex Minkowski plane with maximum normk(x; y)k1 := maxfjxj; jyjg:First, we need the following lemma.
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P.D. AndreevLemma 4.4. Let the sequene (Xn; on; dn) and the spae (X; o; dX ) satisfythe onditions of Th. 4.3. Then:1. X is a geodesi spae;2. for any two points x; y 2 X the midpoint m between them is unique.P r o f. By Claim 6.1 in [13, Part I℄ the metri of the spae X is interior.Consequently, X is geodesi as a omplete spae with interior metri.Now we prove the seond statement. Assume for the ontrarythat for points x, y 2 X there exists two di�erent midpoints m1, m2 2 X.Put R := 2maxfdX(o; x); dX (o; y)g. From the de�nition of Hausdor� onver-gene in unbounded spaes, the balls BXn(on; R) onverge to the ball BX(o;R).Let the positive funtion L(�; r) be de�ned for �; r > 0 by the equalityL(�; r) = inf Æx(�; �);where the in�mum is taken over all x 2 Xn for all natural n. By the inequality(4.1) the in�mum is positive. The funtion L(�; r) is nondereasing on � whenr > 0 is �xed. To see this it is su�ient to observe that for all n the funtionsÆx(�; r) have the mentioned property, where x 2 Xn is arbitrary. Let �2 > �1 > 0.If d�(x; y) � r, d�(x; z) � r and d�(y; z) � �2r hold for the points x; y; z 2 Xn,then also d�(y; z) � �1r. Hene Æx(�1; r) � Æx(�2; r), and Æ�(�1; r) � Æ�(�2; r).Consequently, for all �; r > 0 there exists � > 0 suh that� < 29L��� 9�r ; r� :Take � > 0 to satisfy the onditionsdX(m1;m2)� 3� > �M(�); (4.2)where M(�) = 12dX(x; y) + 3�, and� < 29L�2dX(m1;m2)� 9�dX(x; y) ; 12dX(x; y)� : (4.3)Let X� be an �-net in the ball B(o;R) � X and a uniform limit of �-nets X�;n inballs B(on; R) � Xn. Let the number N 2 N be taken suh that for all n > Nthere exists a bijetion ��;n : X�;n ! X� for whihdis��;n < �: (4.4)
32 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 1



Geometri Construtions in the Class of Busemann Nonpositively Curved SpaesChoose the points x�; y�;m1;�;m2;� 2 X� with the onditionsdX(x; x�) < �;dX(y; y�) < �;dX(m1;m1;�) < �;dX(m2;m2;�) < �:For them dX(x�; y�) � dX(x; y) � 2�;jdX(x�;m1;�)� 12dX(x; y)j � 2�;jdX(x�;m2;�)� 12dX(x; y)j � 2�;jdX(y�;m1;�)� 12dX(x; y)j � 2�;jdX(y�;m2;�)� 12dX(x; y)j � 2�and jdX(m1;�;m2;�)� dX(m1;m2)j � 2�:For arbitrary n > N we havedn(��1�;n(x�); ��1�;n(y�)) � dX(x; y)� 3�; (4.5)and also jdn(��1�;n(x�); ��1�;n(m1;�))� 12dX(x; y)j � 3�; (4.6)jdn(��1�;n(x�); ��1�;n(m2;�))� 12dX(x; y)j � 3�; (4.7)jdn(��1�;n(y�); ��1�;n(m1;�))� 12dX(x; y)j � 3�;jdn(��1�;n(y�); ��1�;n(m2;�))� 12dX(x; y)j � 3�and jdn(��1�;n(m1;�); ��1�;n(m2;�))� dX(m1;m2)j � 3�:Consequently, from (4.2)dn(��1�;n(m1;�); ��1�;n(m2;�)) � �M(�):
Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 1 33
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Fig. 3:Let zn 2 Xn be the midpoint between ��1�;n(m1;�) and ��1�;n(m2;�)(Fig. 3). Consider also the following points. The point p1;n 2 Xn in the segment[��1�;n(x�)��1�;n(m1;�)℄, suh thatdn(��1�;n(x�); p1;n) ==� 12dX(x; y); if dn(��1�;n(x�); ��1�;n(m1;�)) � 12dX(x; y)dn(��1�;n(x�); ��1�;n(m1;�)) otherwise:The point p1;n oinides with the endpoint ��1�;n(m1;�) of the segment ifdn(��1�;n(x�); ��1�;n(m1;�)) � 12dX(x; y);or its distane from ��1�;n(x�) is 12dX(x; y) ifdn(��1�;n(x�); ��1�;n(m1;�)) � 12dX(x; y):
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Geometri Construtions in the Class of Busemann Nonpositively Curved SpaesThe point p2;n is de�ned analogously in the segment [��1�;n(x�)��1�;n(m2;�)℄. Finally,the point qn is the midpoint of the segment [p1;np2;n℄ (Fig. 4).Let us estimate the distane dn(p1;n; p2;n) from below. From inequalities (4.6)and (4.7) the distanes dn(pi; ��1�;n(mi;�)) and i = 1; 2 satisfy the inequalitydn(pi; ��1�;n(mi;�)) � 3�:Hene dn(p1;n; p2;n) � dn(��1�;n(m1;�); ��1�;n(m2;�))� 6� � dX(m1;m2)� 9�:We have dn(��1�;n(x�); zn) � dn(��1�;n(x�); qn) + dn(qn; zn)� 12dX(x; y)� L�2dX(m1;m2)� 9�dX(x; y) ; 12dX(x; y)�+12 �dn(p1;n; ��1�;n(m1;�)) + dn(p2;n; ��1�;n(m2;�)�� 12dX(x; y)� L�2dX(m1;m2)� 3�dX(x; y) ; 12dX(x; y)�+ 3�< 12dX(x; y)� 32�:Similarly, dn(��1�;n(y�); zn) < 12dX(x; y)� 32�:Finally, dn(��1�;n(x�); ��1�;n(y�)) < dX(x; y)� 3�;ontraditing to the inequality (4.5).Now we an omplete the proof.P r o o f of Theorem 4.3. Let the points x; y; z 2 X and the midpoints p andq of segments [xy℄ and [xz℄, respetively, be given. DenoteR := 2maxfdX(o; x); dX (o; y); dX (o; z)g:Fix the dereasing sequene �i ! 0.For eah i, hoose �i-net X�i � BX(o;R) whih is a uniform limit of �i-netsX�i;n � BXn(o;R). Here BX(o;R) and BXn(on; R) are balls in the spaes X andXn, respetively.Let n(i) be the natural number suh that there exists a bijetion �i : X�i;n(i) !X�i with the distortion dis�i < �i:Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 1 35



P.D. AndreevLet the distanes from the points xi; yi; zi 2 X� to x; y; z, respetively, be notgreater than �i. Denote ~pi 2 Xn(i) the midpoint of the segment [��1i (xi)��1i (yi)℄,�pi 2 X�i;n(i) the point on the distane not greater than �i from ~pi, and pi = �i(�pi) 2X its image in the bijetion �i. Sine by the ondition the spae X is proper andthe sequene pi is bounded, one an subtrat the onverging subsequene. We mayassume that the sequene pi is also onverging. The points pi are (4�i)-midpointsbetween x and y, that is jdX(x; pi)� 12dX(x; y)j � 4�iand jdX(y; pi)� 12dX(x; y)j � 4�i:Sine �i ! 0, when i ! 1, the limit of the sequene pi is the midpoint betweenx and y. From the uniqueness of midpoints in X, it follows thatlimi!1 pi = p:Analogously, one an onstrut the sequene of (4�i)-midpoints qi between x andz onverging to q. We havedX(pi; qi) � dXn(i)(�pi; �qi) + �i � dXn(i)(~pi; ~qi) + 3�i� 12dXn(i)(��1i (yi); ��1i (zi)) + 3�i � 12dX(yi; zi) + 4�i� 12dX(y; z) + 5�i:Hene dX(p; q) � 12dX(y; z);that is X is Busemann nonpositively urved. The estimation of the onvexitymodulus Æx(�; r) in X an be proven in a similar way.Aknowledgement. The author is grateful to the referee for the number ofimportant remarks and orretions made.Referenes[1℄ B.H. Bowdith, Minkowskian Subspaes of Nonpositively Curved Metri Spaes. �Bull. London Math. So. 27 (1995), 575�584.[2℄ H. Busemann, Spaes with Nonpositive Curvature. � Ata Math. 80 (1948), 259�310.36 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 1
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