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The Plancherel formula is one of the celebrated results of harmonic anal-
ysis on semisimple Lie groups and their homogeneous spaces. The main
goal of this work is to find a g-analogue of the Plancherel formula for sphe-
rical transform on the unit matrix ball. Here we present an explicit formula
for the radial part of the Plancherel measure. The g-Jacobi polynomials as
spherical functions naturally arise on the way.
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1. Introduction

Let us recall one of the most common problems of harmonic analysis on
homogenous spaces. Let G be a real Lie group, K be a closed subgroup and
dv be a G-invariant Haar measure on X = K\G. The representation of G by
right shifts in L?(X,dv)

R(g) : f(z) — f(zg), =z€X,9€QG,

is strongly continuous and unitary. It is called a quasiregular representation.
The problem is to find a decomposition of R into irreducible representations.

A special case of the Riemannian symmetric space X = K\G and its isometry
group was studied in detail ([9, p. 192], [10, p. 506]). Harmonic analysis for these
spaces was developed by E. Cartan, I. Gelfand, F. Berezin, Harish-Chandra,
S. Gindikin and F. Karpelevich.

*The first author was partially supported by the N. I. Akhiezer fund.
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The problem of harmonic analysis is closely connected with the following.
Consider the algebra D¢(X) of all G-invariant differential operators on X. An im-
portant result of the representation theory is that the decomposition of R can
be obtained by using common eigenfunctions of operators from D¢(X). Namely,
the shifts of a common eigenfunction generate an irreducible subrepresentation
of R.

In the case of a Riemannian symmetric space the algebra Dg(X) is finitely
generated and commutative (]9, p. 431]). Consider a set of generators of Dg(X)
and their restrictions L1, Ls,..., L, onto the subspace of smooth K-invariant
functions on X with compact support. The Plancherel measure is a Borel measure
in r-dimensional space, and the problem is to find this measure.

Let us describe briefly how to find common eigenfunctions. Recall that an ir-
reducible strongly continuous unitary representation 7' is called a representation
of type I if it contains a nonzero K-invariant vector v. We can assume that
(v,v) = 1. The function f(g) = (T(g)v,v) is called a spherical function. It is
constant on double cosets K\G/K, so it corresponds to a K-invariant function
on X. This function is a common eigenfunction of the operators L1, Lo, ..., L.
The problem of the decomposition of K-biinvariant functions on G in terms of
the spherical functions naturally arises while solving the general decomposition
problem of L?(X,dv).

Consider a more special case. The homogeneous space SUy, ,,/S(U,, x U,,) is
a Hermitian symmetric space of noncompact type. It has the standard Harish-
Chandra realization as the unit ball

D = {z € Mat, | ||z|]| < I}

(in the space of complex n X n-matrices with respect to the operator norm).
It worth to be mentioned that standard generators of D (X) are well known and
their common eigenfunctions are Jacobi polynomials [7, 11].

Quantum bounded symmetric domains were introduced in 1998 by L. Vaks-
man and S. Sinel’shchikov [24]. L. Vaksman with his collaborators managed to de-
velop the noncommutative complex analysis and representation theory on quan-
tum domains. A series of works were dedicated to quantum matrix balls that are
the simplest examples of quantum bounded symmetric domains [3, 21, 22, 29, 30].

For the case of quantum disk some problems of noncommutative harmonic
analysis are solved [15, 16]. In particular, explicit formulas for the invariant
integral, spherical functions, and the Plansherel measure are obtained.

In this paper we generalize the results mentioned above for the quantum
matrix ball case. Imitating the classical approach, we construct a family of com-
muting ’q-differential’ operators and find the exact formula for their common
eigenfunctions. We use spherical functions which appeare to be g-Jacobi polyno-
mials. We obtain the decomposition of the biinvariant functions in terms of the
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spherical functions and the exact formula for the 'radial part’ of the Plancherel
measure.

The authors are grateful to L. Vaksman for the formulation of the problems
and invaluable discussions. We also thank D. Shklyarov for many important
remarks.

2. The Radial Part of the Usly,-invariant Integral

2.1. Preliminaries on the quantum matrix ball

All results from the next two subsections form the basic notions in the the-
ory of quantum bounded symmetric domains. We refer to [21, 24] for the first
appearance and full consideration of these notions.

Let ¢ € (0,1). All algebras are assumed to be associative and unital, and C
is the ground field.

Consider the well-known quantum universal enveloping algebra (see e.g. [13])
Uysla, corresponding to the Lie algebra sly,. Recall that Uysly, is a Hopf algebra
with the generators {E;, F;, K;, Kt 122;1 and the relations

i
KK; = K;K;, KK '=K'K =1;
K:E; = *E;K;, K;F; = ¢ *F,K;
K.E; = ¢ 'E;K;, KF; = qFjK;, |i—j|=1;
K,E; = E;K;, KF; = F;K;, |i—j| > I

K — Kz‘_l.

q—q!

E}E; — (¢+q "EEE; + E;E; =0, |i—j| =1

FIFj — (q+q EFF + FiF =0, i—jl =1;
EiE; — E;E; = F;F; — F;F; =0, |i—j| > 1

EiFj — FjEZ' = (51']'

The coproduct, the counit, and the antipode are defined as follows:

AEjZEj@l‘FKj@Ej, €(Ej)
AFj=F @K '+10F;, &(F)
AKjZKj@Kj, E(Kj)

0, S(Fj):_FjKj7
1, S(Kj) =K', j=1,...,2n—1.

Equip the Hopf algebra Ugsla, with the involution *:

. 1 .
(K]:tl)* :K;-tl, E}k _ { Kijv J 7én’ = { EjKj y J 7&”7

~K;F;, j=n, T -EKSY j=n
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Then Ugsu,, def (Ugslap, *) is a *-Hopf algebra. It is a quantum analogue of

the algebra Usu, , ®r C, where su,,,, stands for the Lie algebra of the noncom-
pact real Lie group SU,, .

Let Ugs(gl,, x gl,,) C Ugysla, denote the Hopf subalgebra generated by E;, Fj,
j # n, and K;, Kl._l,z' =1,...,2n — 1. The corresponding *-Hopf subalgebra in
UgSWy,.p, is denoted by Ugs(uy, x up,).

Recall an important definition of the weight module. A Uyslo,-module V is
called a weight one if

V=P, VA:{UGV ‘Kivzq)‘iv, i:1,2,...,2n—1},

where A = (A1, Ao, ..., A2n—1) and P is the weight lattice of the Lie algebra sly,,.
Nonzero summand V), is called a weight subspace of weight .

Further, all Ugsla,-modules are assumed to be the weight ones what allows
us to introduce the linear operators Hj;, j = 1,...,2n — 1, in V such that

Hjv = njv, veV,
Therefore, one can formally consider
K = g

i

We recall a definition of the x-algebra Pol(Maty), from [21]. First, let
C[Mat,], denote the well-known algebra with the generators 23, a, a =1,...,n,
and the relations

B 8

22 —qz, 24 =0, a=b & a<f, or a<b & a=0p0,
(1)
2040 — 2P0 =0 a<fB & a>D (2)
a”b b~a ’ ’
z?zf—z?zfj—(q—qil)zgzg‘:O, a<pf & a<b. (3)

The algebra C[Mat,,], is called the algebra of holomorphic polynomials on the
quantum n-matrices space (see [13]).

Similarly, let C[Mat,], denote the algebra with the generators (2$)*, a, o =
1,...,n, and the relations

(zg)*(zg‘)* — q(zg‘)*(zbﬁ)* =0,a=b & a<p, or a<b & a=p4, (4
() (28) = (22) () =0, a<B & a>b, (5)
() (20 = () = (g — g HE) D =0, a<B & a<hb (6)
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Moreover, let C[Mat,, & Mat,], denote the algebra with the generators z{,
(z9)*, a,a =1,...,n, relations (1)—(6), and additional relations

(e =a* > Y Rbal.a)R(B,a0,0)% () + (1 a)oud™,

a'b'=1a'f'=1

where 845, 6“7 are Kronecker symbols and

¢ iFjj=jki=1,
Y A AN 17 i:j:i/:j/7
RGALTD =\ (g 2o1), imj&il =g &i >i,
0, otherwise.

Finally, let Pol(Mat,,), def (C[Mat,, & Maty],, *) be the x-algebra with the

natural involution: * : z& +— (23')*. The algebra Pol(Mat,,), is called the algebra
of polynomials on the quantum n-matrices space (see [13]).

We now recall an irreducible *-representation of Pol(Mat, ), in a pre-Hilbert
space. Let H denote the Pol(Maty,),-module with one generator vy and the
defining relations

(z)vo=0, a,a=1,...,n.

Let T denote the representation of Pol(Mat, ), which corresponds to H. It is
called the Fock representation. All statements of the following proposition are
proved in [21].

Proposition 1. 1. H = C[Maty,],vo.
2. 'H is a simple Pol(Maty,),-module.

3. There erists a unique sesquilinear form (-,-) on H with the following pro-
perties:
i) (vo,v0) = 1; ) (fv,w) = (v, ffw) for allv,w € H, f € Pol(Maty,),.

4. The form (-,-) is positive definite on H.

Also it is proved in [21] that Pol(Mat,), is a Ugsu, ,-module algebra*.
The action of the generators of Uysu, ,, is given by the formulae
228, a=n&a=n,
H,zy = 2, a=n&a#n or a#Fn&ka=n,
0, otherwise,

*I.e., the multiplication in Pol(Mat,, )4 is a morphism of Ugsu,, ,-modules, and the involutions
in Pol(Mat, ), and Ugsu,, n are compatible.
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1, a=n&a=n
P — 1/2 ) )
na =4 0, otherwise,

gl atnkatn,
a 1/2 2 — —
Enzt = —q/ 2", a=n&a=n,
zZpzd,  otherwise,

foralla=1,...,n;a=1,...,n, and with k # n

2y, k<n&a=k or k>n&a=2n—k,

Hpzg =4 =25, k<n&a=k+1 or k>n&a=2n-k+1,
0, otherwise,
g, k<n&a=k,
szgqu/z' Zg“, k>n&a=2n—k,
0, otherwise,
2, k<n&a=k+1,
Ekzszqflp' 2270 k>n&a=2n—k+1,
0, otherwise.
Let

An:{(Al))Q?7)\n)€Zi|)‘12)‘22ZAn}

be the set of partitions of the length not larger than n. Similarly to the classical
case, one obtains the decomposition C[Mat,]; = @, C[Mat,]q\ into a sum
of Uys(uy, X uy,)-isotypic components, where C[Mat,], » is a simple Ugs(u, x uy,)-
module with highest weight

(>\1 - AQ; EERR) )\n—l - )\na 2)\717 An—l - )\nv s 7)\1 - )\2)
This decomposition gives rise to the decomposition

H=EP Hx,  Hr=CMaty]gavo.
AEA,

Recall a quantum analogue of the Harish-Chandra embedding of the Her-
mitian symmetric space S(U, x Up)\SUp, — Mat,. Let C[SLay], denote the
well-known Hopf algebra with the generators {t;;}i j=1,.. 2, and the relations

taatsy — qtgptaa = 0, a=b & a<f, or a<b & a=0,
taat,ﬁ’b — tgptaa = 0, a<fB & a>0b,

taatss — tavtaa — (@ — ¢ Dtgatar =0, a <f & a<b,

detyt = 1.
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Here det, t is the g-determinant of the matrix t = (¢;;); j=1,...2n defined by

def

detgt = > (=)'t 1)t sy - - - tons(on)

s€Son
with I(s) = card{(i,7)| i < j & s(i) > s(j)}. The comultiplication A, the counit
¢, and the antipode S are defined as follows:

Alty) =Yt ®@tey,  elty) =0, S(tiy) = (—¢)' 7 detg t,
k

where tj; is the matrix derived from t by discarding its j-th row and its i-th
column.

We equip C[SLay,), with the standard Ugsla,-module algebra structure as
follows (see [21]): for k =1,...,2n — 1,

_ t"—lu k:j_1> tl i+1 k:j)
Ei-t;; = 1/2 ) "g Fy-t;;i = 1/2 J 7
i =1 0, otherwise, i =4 0, otherwise, @
qtij, k=7,
Kk? ’ tl] = q_ltijv k= ] - 17 (8)
tijs otherwise.

Denote by U,sloP the Hopf algebra obtained from U,sly, by changing the multi-
plication to the opposite one. We can also equip C[SLay], with a qu[gfl—module

algebra structure as follows: for k=1,...,2n — 1,
_ tiv1j, k=1, 12 Jticrj, k=1i+1,
Ey -ty =q /27 B -ty = q/ J
=4 0, otherwise, LA 0, otherwise,
qtij, k=1,
Kk~tij= q_ltij, k=1i4+1,
tij, otherwise.

So, C[SLay)q is a Ugslyh @ Uysla,-module algebra (see [21]). The subalgebra

C[SLayJy X ST OIS — (€ CISLaaly |
(61 ®&)f =e(&1)e(&e)f, &1 € Ugs(al, x gl,)°P, & € Ugs(gl, x gl,)} (9)

will be referred as the subalgebra of Ugs(gl,, x gl,,)-biinvariants.
Equip C[SLs,), with the involution given by

t5; = sign[(i —n —1/2)(n — j + 1/2)](—q)’ " detq t;;.
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It can be proved that ClwoSUy, »]q def (C[SLaplg, *) is a Ugsuy, n-module x-algebra.

It is a g-analogue of the algebra of regular functions on the real affine algebraic
manifold wySU,, p, where*

0 0 01

00 10
w0—<3 _0J>, J =

01 .. 00

10 .. 00

For any multiindices [ = {1 < i1 <iy < ... < i <2n}and J={1 < j <
Jo < ... < jr <2n} we use the following standard notation for the corresponding
g-minor of the matrix t:
Ak def

l
try = Z (—q) (s)thjsu)tizjs@) i
s€Sk

‘We now introduce a short notation for the elements

t=ts  apntint2,..2np T =t (10)
Note that ¢, t*, and = quasicommute with all generators t;; of C[SLa,]s, and
that ClwoSUy, g is an integral domain (see [12]). Let ClwoSU, g be the
localization of ClwoSUy, ], with respect to the multiplicative set 27+ (see [6]).
The following statements are proved in [21].

Proposition 2. There exists a unique extension of the Ugsu, ,-module
x-algebra structure from ClwoSUy, nlq to ClwoSUn plg.a-

Proposition 3. There exists a unique embedding of the Ugsu, ,-module
x-algebras
7 Pol(Matn)q — C[U)OSUn,n]q,a:

such that
An

i(zg) = tilt{1,2,.‘.,n}‘]aa7
where Joo = {n+1L,n+2,....2n}\ {2n+1 — a} U {a}.
The last proposition gives us a g-analogue of the Harish-Chandra embedding.
It allows us to identify Pol(Mat,,), with its image in ClwoSUp g,z

*The matrix wo corresponds to the longest element of the Weyl group of the Lie algebra sla,,.
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2.2. The algebra of finite functions and the invariant integral

It is well known that in the classical case ¢ =1 a positive definite
SU,, n-invariant integral can not be defined on the polynomial algebra in the unit
ball D — Mat,,. However, it is well defined on the space of smooth functions with
compact support on ID. These observations are still applicable for the quantum
case. Here we provide the definition and some basic properties of a g-analogue of
the algebra of finite functions following [19].

Let us consider a Uysuy, ,-module *-algebra Fun(ID), obtained from Pol(Mat,,),
by adding a generator fy and the relations

f0:f52f6k7

(22)" fo=0, fozg =0, a,a=1,2,... n.

The Ugsu, p-module algebra structure can be extended from Pol(Maty,),
to Fun(DD), as follows:

1/2 1/2

* q
fo(z)" Enfo= —W?«ﬁfm

q
g -1

Hyfo = Frfo=Erfo=0, k # n.

The two-sided ideal D(D), = Pol(Mat,),foPol(Mat,), is a U,su, ,-module
«-subalgebra (see [19]). The elements of the two-sided ideal D(D), will be called
finite functions on the quantum matrix ball .

The Fock representation T of Pol(Mat,), can be extended up to the repre-
sentation of Fun(D),, and so for every finite function f € D(D), there exists an
operator Tr(f), and

an0207 anoz_

Tr(D(D),) = {A € End(H) | Aly, # 0 for a finite set of indices A € A, }.
Consider the gradings

C[Matn]gr = @D CMatn]gn, k€ Zy,
IN=k

and

C[Mat,s—x = €P CMatnlgy, k€ Zy,
|\=k

where [A| = A + A2+ ...+ Ay
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It is evident that

Lemma 1. The Fock representation Tr has a unique extension to a represen-
tation of the x-algebra Fun(D), such that the element fy maps to the orthogonal
projection onto the vacuum subspace.

Let us keep the same notation T for this extension.

Proposition 4. The representation Tg provides the isomorphism of the
x-algebra D(D), and the x-algebra of all finite* linear operators in 'H.

Proof 1TFisaxrepresentation. So, we have to prove that the restriction
of Tp on D(D), is a bijective mapping from D(D), to the algebra of all finite
linear operators in H.

Let D(D)gi; = CMaty)y; - fo - C[Mat,]q—;. If f € D(D),;;, then the linear
operator Tr(f) maps H; to H; and it is equal to zero on @@ Hj. We obtain a linear

=g
mapping from D(D),;; to Hom(H;, H;). It is surjective by Proposition 1, and

dim (_D(]D))q’iﬂ' = dim HOHl(Hj, Hz)

Thus the representation Tr provides the isomorphism

D(D)q,i,j = C[Matn]%i fo C[Matn]q,_j = Hom(Hj, Hl)

(0.9] oo
But D(D), = @ D(D)g;,;, and @ Hom(H;, H;) in End H is the vector space
i,j=0 i,j=0
of finite linear operators. [

Proposition 5. The representation Tr provides the bijection of the space of
Ugs(gl, x gl,)-invariants in D(D), and the space of finite linear operators in H
that are scalars on every Ugs(gl, % gl,)-isotypic component Hy, X € A,,.

Proof

i) If fis a Ugs(gl, x gl,)-invariant vector, then Tr(f) maps a highest vector
of H, to a highest vector of a Ugs(gl,, x gl,)-isotypic component with the same
weight.

ii) The action of Uys(gl,, x gl,,) in H is multiplicity free.

iii) Now i) and ii) imply that if f is a U,s(gl, x gl,)-invariant vector, then
Tr(f)|#, is an endomorphism of the simple Ugs(gl,, x gl,,)-module Hy. So Tr(f)
is scalar on Hy, A € A,,. [

*A linear operator A in H is called finite if AH; = 0 for all j € Z except a finite set.
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Denote the space of Ugs(gl,, x gl,)-invariants in D(D), by
(D(D)y) se(@x8) = {f € DD), | &f =e(€)f, &€ Uys(aly, x gy}

Denote

N | =

52 iCn—iH
j=1
The following proposition is also stated in [19].

Proposition 6. The linear functional
[ i == aTena ), fe DO, (1)

is a positive definite Uyslay-invariant integral on D(D),, i.e.,

/gfdu = 5({)/fd1/, § € Uyslay,

and

/f*fdl/>0, for f # 0.

For the sketch of the proof refer to [23, §5].
Further we consider a restriction of the invariant integral (11) to the space of
Ugs(gl,, x gl,,)-invariants in D(D),. We will call this restriction the radial part.

2.3. The radial part of the invariant integral

In this subsection we will describe the support of radial part of the invariant
measure dv and find an exact formula for the radial part of the invariant integral.
Consider the elements of ClwSU,, »l4:

k k
_ -2 Z (”_im) Z (jm_im_n) A2n—k
o = ¢"Y Z qg m=t (—q)m=t t?{{}t[c(ﬂ g
Ic{1,2,...,n}, JC{n+1,n+2,....2n}
card(])=card(J)=k
It follows from the results of [4] that x, k = 1,2,...,n are pairwise commuting

self-adjoint U,s(u,, X uy,)-biinvariants. These elements generate the subalgebra of
all Ugs(uy, X uy,)-biinvariant elements in ClwoSU, ], as follows from the results
of [2] and [4]. So,

C[wOSUnm]qus(uﬂxun))op®Uq5(wn XUy ) ~ (C[$1’ To, ..., ﬂfn]
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Denote by T' the *-representation of the x-algebra ClwoSUy, | corresponding
to the permutation

1 2 n-1 n nt+l n+2 ... 2n-1 2n
n+l n+2 ... 2n-1 2n 1 2 n-1 n

(see [21, §4]). This representation admits a unique extension to the representation
of ClwoSUp n)qz, where x is defined in (10). It is proved in [21, §4, 5] that the
representation T is unitary equivalent to the restriction of the representation 7'
to Pol(Mat,,),. Consider the short notation

q" = (¢",q¢",...,¢"m) e C", peC.
It is also proved in [4] that
T(xk)|H, = qk(k_l)ek(q_Q()‘+6)), k=1,2,...,n, A€EA,,

where 06 = (n—1,n—2,...,1,0) € A,, e is the elementary symmetric polynomial
in n variables of degree k. So, the set of common eigenvalues of the operators
T(z1), T(z2),...,T(xy) is

Sp = {(e1(g72M), Pea(q 2, L g Ve, (T2MD)) | X € Ay}

Thus the algebra (C[woSUn,n]gU"s(u“Xu”))op®Uqﬁ(u”Xu”) can be identified with
the algebra of polynomial functions on ¥p. Following Propositions 4, 5 the
algebra D(D)qU 2284 X8h) can be identified with the algebra D(Xp) of functions
f(x1,xa,...,x,) with finite support on Xp.

Lemma 2. The mapping
A’n - E]D)v

A= (A2, 0) = (e1(g7 2T ey (¢ 20 L g e, (g2

is a bijection.

Proof. The surjectivity follows from the definition of Xp. Let us prove the
injectivity. The function ¢! is strictly increasing as I € [0, +00), so the mapping

A, — Rn’ A — q—2()\+6)

is an injection. Due to the Viet theorem, the mapping

q—Z()\—I—é) N (61(q_2(/\+6)), q262(q_2(’\+5)), o 7qn(n—1)en(q—2(>\+6)))

is also an injection since g2 +7=1) > ¢=20+n=2) 5 5 =2Mn for any \ € A,,.
Now we have the injectivity of the composition. [
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Consider the algebra Cluj,us, ..., u,| and the injection

Clx1, z2,. .., xn] — Cluy, ug, ..., uy), Tk qu(k_l)ek(ul,...,un), (12)

where ey, are the elementary symmetric polynomials in n variables. This injection
allows one to identify the subalgebra (C[woSUmn],(quﬁ(u" Xun))?P@Uqs(un Xun) it the
algebra of all symmetric polynomials in variables uy, us, ..., Un,.

Specify

Ap = {g M) | X e A,

Let also D(Ap) be the algebra of functions f(uy,us, ..., u,) with finite support
on the set Ap. Then
D(Ap) = D(Zp).

More exactly, the bijection is as follows:

D(Xp) — D(Ap) : flx1,22,...,25) — f(el(u),qug(u), e ,q"(”*l)en(u)).

Thereby,
D(Ap) 2 D(5p) = D(D)g ), (13)

In the sequel we do not distinguish between D(Ap) and D(D )Uqﬁ(g[ nxgh),
Recall the definition of a multiple Jackson integral with ’base’ ¢ 2 (see [27]):

[e%e] qu2

/ P(u)dy—2uy ... dy—2uy def (1_q2)n Z ¢(q_2(”\+5))q_2|’\+5|.

g—2(n—=1) g=2(n-2) AEA,
(14)

Proposition 7. The restriction of the invariant integral (11) to the

( )qu(g[nXg[ ) .

space D 18

/f(xbey---,xn) dv

0 un q?ug
v [ [ [ e Pt Ve, w)
q—2(n=1) g—2(n—2) 1

X A(u)2 dg—2urdy—2ug . . . dg—2Unp,

where A(u) = [ (ui—u;), N = (1—¢>)"Dg"=DA(g=2°)=2 is a positive
1<i<j<n
constant.
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The constant N can be found easily by calculating the integral for the ele-
ment fo:

/fo dv =(1- q2)n2 = N(1 — ¢®)"A(g~20)2q 291,

So,
N = (1 o q2)n(n—1)qn(n—1)A(q—2§)—2‘ (15)

Proof. Consider the integral

] qm

iife | / /fe1 e (), -, " Deg(u))

72(77, 1) q72(n 2)

X A(u) dq72u1dq72u2 )

q—2Un-

Let us show that the integrals n and 7 are equal up to a multiplicative constant

on the space D(D ) as(aly xgln) (the normalizing constant is calculated in (15)).

Let us compute 7(f):

q*uz
n(f) = const / /f er(u), ez(u), ..., """ Vey(u)A(u)? dg—2uy ... dg-2up
—2(n—1) 1

—const 3 fleala 2, Pea(q 0, Ve (7200))
AEA,

« A(qu()\+6) )2 q72|/\+6\ )

Let us also compute n(f):

n(f) = const tr(Te(f)g ") = const Y tr (Tp(f)lny ¢ lny )
NeAn

=const »  dy fler(q M), Pea(q 2MD), L q" " ey (g2,
AEA,
where dy = tr ( q_z'b |, ). In the last computation we essentially use the fact

that the operators Tr(f), f € D(D )qu(g[ 8 are scalar on each Hy.
Introduce the notation

n—1
Ho—’rlH +Z]H +Z]H2n —j>
7j=1 7=1
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then
n—1 n—1
—2p=—nHo— Y jn—j)H; = j(n— j)Hanj.
=1 =1

Consider the subalgebra in Ugs(gl, x gl,,) generated by {Ej;, F}, Kjﬂ}#n. It
is isomorphic to Uysl, @ Uysly,. The restriction of the representation of Uys(gl,, x
gl,,) in H, to the subalgebra U,sl, @ Ugysl, is equivalent to the representation
m X m, where 7 is the irreducible representation of Uysl, with highest weight
(A1 — A2, A2 — A3, ..., Ap—1 — Ay). Consequently (see [13, §7.1.4]),

oy _o5n) _ _
dy=tr (¢ ) (tr(m(a™ ")) ) = ¢S5,

n—1

where 5™ = " j(n — j)H;, and

J=1

Aj+ji—1
_ det(z;" ™" ij=12,..m

det(2! ")ij=12,..n

S)\(Zl,ZQ,. . .,Zn)

A(q—2(k+5))
A(g=23)

1) = const 3 dy flea(q 24, gPealq 20,70 e (204
AEA,

is the Schur polynomial [17, §1.3]. So S\(¢~%) = , and

— const Z g2 A(g200))2
AEA,

xf(el(q*Q()‘M)), q262(q*2()‘+5)), . 7qn(n71)€n(q72(>\+5))).
Now it is obvious that the integrals  and 77 are equal up to a multiplier. =
3. Spherical Functions on Quantum Grassmanian
Consider the involution x in Uysla, determined by
(K'Y =K',  E}=KjF;, F}=EK"

Then Ugsug, = (Ugsla,,*) is a *-Hopf algebra. It is a quantum analogue of
Usuy, ®r C.
Consider also the involution * in C[SLgy], determined by

*x j—i4A\2n—1
th = (=) s o\ i (1.2, 20\ ()
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The «-Hopf algebra C[SUs,)4 o (C[SLanlg, *) is a Ugsua,-module *-Hopf algebra.

It is a well-known quantum analogue of the algebra of regular functions on the
Lie group SUs, (see [31, 32]).

It is well known that in the classical case the Cartan duality between compact
and noncompact Hermitian symmetric spaces allows one to predict some results
of harmonic analysis in the noncompact case using the easier compact case. In
this subsection we explore this observation. We construct a family of difference
operators for the quantum Grassmanians. These operators are obtained using
the action of the center of Ugsla,. Afterwards, our construction allows us to
introduce difference operators in the case of quantum matrix ball.

3.1. Spherical functions
It is well known that for any finite-dimensional irreducible Uyslo,-module V'
dlm Vqu(g[nXg[n) S 1

Hence (Ugslan, Ugs(gl, x gl,,)) is a "quantum Gelfand pair”. As in the classi-
cal case, let us define a simple finite-dimensional weight U,slo,-module to be
spherical, if dim VUas(glxal,) — 1

Remark 1. It is well known ([25, Th. 4.4.1]; [26]) that a simple finite-
dimensional weight Ugsla,-module is Ugs(gl,, x gl,,)-spherical if and only if its
highest weight has the following form:

o~

A= ()\1—>\2, )\2—>\3, ey An—1—An, 2, )\nfl—)\n, ey )\2—)\3, )\1—)\2), AeEA,.
We will denote by Ly the Uysla,-module with highest weight .

A scalar product® (-,-) in V' is called Uysug,-invariant if for any ¢ € Uyslay,
and for any vi,vo € V

(§v1,v2) = (v1, & v2).

Any spherical Uysla,-module V' can be equipped with a Ugsug,-invariant scalar
product. Fix v e VVes(@hxah) 1y the requirement (v,v) = 1. Recall
(see [13, §11.6.4]) that the matrix element v (§) = ({v,v) corresponding to the
U,s(gl, x gl,)-invariant vector is called the spherical function on the quantum
group SUs, corresponding to V.

Thus ¢y is a Uys(gl,, x gl,,)-biinvariant element of C[SUy,], such that

pv(l) =1.

The lemma below follows from the results of [14].

* A sesquilinear positive definite Hermitian symmetric form.
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Lemma 3. (¢y)* = ¢y .

It follows from Proposition 7 of [4] and Lemma 1 of [2] that the subalgebra
of Uys(gl,, x gl,)-biinvariant functions in C[SUy,], is generated by the pairwise
commuting elements x1, Zo, ..., Z,. In particular, every spherical function ¢y is a
polynomial in x1,x9,...,x,. Denote by py(x1,x2,...,x,) the spherical function
corresponding to the module Ly. In this section we will find an exact formula
for ox(z1,22,...,2y).

3.1.1. Little ¢-Jacobi polynomials

We will use the following partial order on A,

k k
n<AEES <Y N, k=120
j=1 j=1

Asusual,n<)\<d:ef>77§)\ & n#EA
Introduce the short notation 1¥ = (1,...,1,0,...,0). Let us denote by my
——
k
the monic symmetric polynomial
A A An
m(21,22,...,2n) = Z zwl(l)sz(Q) 2y
’wESn

Let P, be a unique symmetric polynomial which satisfies the following two
conditions:

1) P\(z) = mx(2) + > dyymy(2), dan €R,
n<A

2) f0q2 . OqQZQ P,\(z)mn(z)A(z)quzzl codpzy =0, <A,

where the multiple Jackson integral (cf. (14)) is defined as

@ P

[ [ oMz = (1 ) 3 (AT
0 0

AEA,
Remark 2. [t is easy to see that
Py(2) = Pr(2;0,0;¢%),
where Py\(z;a,b;q) are Little q-Jacobi polynomials (see [27]).
Let ﬁ,\ be a polynomial such that
Pr(2) = Py(e1(2), d%e2(2), ..., ¢" " Vey (2)).

From the results of Subsection 2.3 and [25, Th. 4.7.5], [26], one can deduce the
following theorem:
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Theorem 1. The spherical function ¢y is equal (up to a multiplicative con-
stant) to _
Py(z1,22,...,2y).

Denote the fundamental spherical weights by
,uk:ﬁ, ke{l,2,...,n},
and denote by .
PP = P Zpe = {A | A€ A}

k=1
the set of positive spherical weights, and by

n
peher = (R Zyy, = {X | X € Z"} (16)
k=1
the set of all spherical weights.
Stokman proved the following formula in [27, Prop. 5.9]:

n

Py(z1,22, ., 2n) = A(2) Z sign(w) HP(,\+5)w(i>(Zi)7

wESh i=1

where P,,(z) are Little g-Jacobi polynomials in one variable.
Recall the 'coordinates’ ui, ug, ..., u, appeared in (12).

Corollary 1. Let A € A,,. Then

n

@ (u) = const Py(u) = constA(u) ! Z sign(w) H Pyinw,iy(ui),
wWESy =1

where d(\, w, 1) = (A + 0) () € Z.

3.2. Difference operators and the action of the center of U;Xtﬁ[gn

Let a;; be the Cartan matrix of the Lie algebra sly,. Denote by oy, i =
1,2,...,2n—1, the simple roots such that o;(H;) = a;; and by ® the root system
of the Lie algebra sls),.

In this subsection we will consider the action of the center of Uysla, in weight
modules. Note that it is more convenient to use the center of the extended quan-
tum universal enveloping algebra U;Xtﬁ[gn. Essentially, qu"tslgn can be obtained
from Uysla, by adding the elements

2n—1
Ky=KPKS? .. K3, A= aio,
i=1
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for all A\ in the weight lattice P. In particular, the action of Ugsly, in any
weight module admits a unique extension to the action of U;thlgn. Denote by
Z (U;Xtﬁ[gn) the center of the extended universal enveloping algebra.

Recall some definitions, cf. [5]. Consider the real linear span hj of all simple
roots of the Lie algebra sly,. It is well known that there is a positive definite
scalar product (-,-) in hi. Denote by (hg)~ C hi the real subspace spanned by
the strictly orthogonal noncompact positive roots

Ve = Ok + Qg1+ ...+ Qop_k—1 + Qop—k, ke{l,2,...,n},

and by (hx)T C bg its orthogonal complement. It is known that the orthogonal
projection of the root system @ to (hj)~ is a root system of type C, and it
is called the system of restricted roots ™. The Weyl group W' of the root
system ®'® is called the restricted Weyl group.

Let C[P®Pher], be an algebra generated by the following functions on PsPher:

A — q(n,/\)’ ne pspher.

This algebra is naturally isomorphic to the group algebra of the lattice PsPher,
Denote by (C[PSpher]ereS the subalgebra of WW-invariants in C[PPher],:

CPPRV™ = {f € C[PP], | f(wA) = f(A) for allw € W™, X € PPher),

Here we provide a well-known description of the image of the center Z (Ug"tslgn)
under the Harish-Chandra homomorphism et ; Z (Us¥slan) — C[PsPber], (see

[1])-

Proposition 8. The image of Z(U* sla,) under the Harish-Chandra homo-

morphism is the subalgebra C[PPher]}V™

Set for A € C"
a(A+0) = (a(h +n - 1),a(ds +n - 2),...,a(A)),

where
(1 _ inl)(l _ q21+2)
(1-¢*)? ’
Proposition 9. There are the elements Cy € Z(U;Xtﬁ[gn), k=1,2,...,n,
such that

a(l) = leC. (17)

Crox = ex(a(X +6))pa, A€ A,. (18)
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Proof. Consider the mapping

A, — R™, )\'—>n(>\):()\1—2n2 1,A2—2”2 3,...,)\n_1—g,)\n—%).
Then L

nA) =A—p,
where

~

A= ()\1 _)\27)‘2 _>\37"'7)‘TL—1 _)\na2>\na)\n—1 _)\n7"'7)\2 _A37)\1 _)\2) € P.
We need the following functions on PsPher:
Gp i Ao epamN) +0), ke {1,2,...,n). (19)

A € Z" is uniquely defined by the spherical weight Ne PPher gee (16).

Due to Proposition 8 we only need to check the W**-invariance of the func-
tions Y.

It is easy to see that

ex(a(n(\) +0)) = (1 — ¢?) "%
sep((1—g M) (1—g?Th), (1—g~ Pty (1-gPetl) | (1—g Pty (1—gPntl)),

Besides, N
A=A171+ X+ .o+ ApYn-

As the group W' acts on v by permutations and sign changes, the function
(19) is W'*-invariant. [

Let L}, be the linear operator in C[SLyy,], defined by Lif = Cif.
The action of Ug*sla, in the space of Uys(gl, x gl,)-biinvariant functions
determines the homomorphism

Z(U§Xt5[2n) — End((c[ula Uz, ... 7un]sn)7

as

7'1"71] g (C[SL2n]((ZUq5(g["Xg["))op@)Uqﬁ(gLﬂXg[")’
(20)
(see Subsect. 2.3). Here we will describe the action of the linear operators £q,
La, ..., Ly in the space (20).

Clui, ug,. .. ,un]S” = Clzy, x2, . -

Let us define the difference operator O, in the space Cluy, ug, ..., uy,] with
Duif(ula s 7un) = Duzuz(l - q_lui)Duif(ula s 7“%)7 (21)
S N _ , .
Where Dulf(u17 . 7un) — f(ul:-“vulfl:q uza“'ﬁ»l7;}:’[{47’;2_5’15?17~--auzfl7quzauz+17~--»un) .
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Proposition 10.

1
‘Ck’(C[uLuz,...,un}S" = A(u) ek(Du17 ceey Dun) A(u) (22)

Proof. In Subsection 4.1.3 it will be shown that in the case of one variable

Oy i(u) = a(l)ei(u).

From (17) and the determinant decomposition described in Corollary 1 it
follows that

Azu) ek(Ouys -+ Ouy,) Au) ea(u) = ep(a(X+9))pa(u), ANEA,.

Equality (22) follows from Proposition 9, as the set {¢a}rea,, is a basis of the

[SLZn]éUQS(g[n xgl,))°PRUqs(gl, xgl,)

vector space C ]

4. Plancherel Measure for the Quantum Matrix Ball

4.1. The Plancherel measure for a family of the operators Crladial,
£5adial Eradial
sy L

4.1.1. Linear operators £jadial cradial - pradial i the space L2(Ap, dvg)
Let us consider the elements

Cl, CQ, ceey Cn S Z(U;Xtﬁ[zn)
defined in (18). Let also £ be the linear operator in D(D), defined by
Lyf=Ckf.

Now we describe the restriction of the linear operator L;, k = 1,2,...,n to
the space D(D)quﬁ(g["Xg[") of Uys(gl, x gl,)-invariants in D(D),.
Let us introduce the short notation Ezadial for the restriction of £ to

Proposition 11.

; 1
EI];Jadlal = A(U) ek(Duu ctty

where O,,; are the difference operators in the vector space (13) defined by the
same formula as in (21).
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P roof  Following Subsection 2.3, the vector space of Uys(gl, x gl,)-
invariants in D(D), can be identified with the space D(Xp) of functions on Xp
with finite support. Using Lemma 2 one can obtain that the vector space of
Uqgs(gl,, x gl,,)-invariants in D(D), is canonically isomorphic to the space D(Ap) of
functions on Ap with finite support. Consider the pointwise convergence topology
on A]D).

The space of symmetric polynomials in Ap is dense in the topological space
F(Ap) of functions on Ap, and equation (23) takes place for symmetric polyno-
mials following (22) and (20).

The linear operators in both parts of equation (23) can be extended contin-
uously from the space of symmetric polynomials in Ap to F(Ap), and equation
(23) takes place for the whole space F(Ap). [

Now we recall the measure on Ap:
dvg(u) = N A(u)?dy—2urdy-2us . .. dg-2uy, (24)

where N is defined in (15). It is the restriction of the invariant measure to the
space D(]D))g as(al, X8 [”), which we already identified with D(Ap) (see Prop. 7).

Let us introduce the Hilbert space L?(Ap,dy,) of functions on the set Ap
which satisfy

[ 1) Py < o,
Ap

where

(9) = [ ST ) (w).
Ap
It will be proved in the sequel (Lemma 7) that the linear operators Eﬁadial,
Eléadial, ey L’;adial can be continuously extended to bounded pairwise commuting
selfadjoint operators in L?(Ap, dv,).

Our goal is to find a Plancherel measure d¥ on the joint spectrum of commut-
ing selfadjoint linear operators Lﬁadial, Egadial, ..., Lradial and a unitary operator
F : L?*(Ap,dvy) — L?*(dY) which provides a unitary equivalence between the
operators E{adial, Egadial, ..., Lradial and the operators of multiplication by inde-
pendent variable, such as Ffy = 1.

The element fy € L2(Ap,dy,) is a cyclic vector under the action of £iadial
cradial -0 pradial (one can prove it explicitly, see Subsect. 4.1.2). However, it
follows from the isometry of the operator § and Remarks 8 and 9.

The considered problems are typical for the theory of commutative operator
x-algebras with a cyclic vector [18, p. 570, 571], [28, p. 103].
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4.1.2. The cyclic vector f,

Here we discuss the fact that the element fo € L?(Ap, dvg) is a cyclic vector
under the action of the operators E{adlal, Egadlal, ..., Lradial
By direct computation we obtain the following lemma.

Lemma 4. In the case of quantum disk

Oy fo(¢*"u) = cr—1fo(q**2u) + crofo(q® ) + cr1 fo(q*2u), keZy, (25)

where ¢k, 1, Cko, Ck,1 are nonzero constants.
For example,

_ fo(w) quo(q2u).

DufO(u) - Duu(]- - qilu)DufO(u) - 1— qQ 1— q2

Here fo(q~%u) = 0 for u € ¢~%%+, so the first term in (25) vanishes.
The lemma below follows from the previous one by induction.

Lemma 5.

LM fo(@ ) = 3 cafo(g ),

where d € {—1,0,1}", card{j|d; # 0} < i and cq # 0.

Lemma 6. The linear span of the action of Erladial, Egadial, . ,Efladial on fo
contains the set of finite functions on D(Ap).

Sketch of the proof. Lemma 5 implies that the linear span of the action of
Eﬁadlal, cgadial, ..., Lradial on £y contains the set

8p = {fo(®*u) | X € Ay}

of characteristic functions of points of Ap.

The last lemma implies that fj is cyclic as the set of finite functions D(Ap)
is dense in L?(Ap, dv,).

4.1.3. Example: the quantum disk

In this subsection we recall the Plancherel measure do for the quantum disk
found in [20].

Consider the Hilbert space L?(¢~2%+) of functions on the geometric series
¢~ 2%+ which satisfy the condition

/\f(u)\%zqw < oo
1
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with the scalar product

o0

(19) = [ 9@ (u)d-2u

1

Recall the notation for the difference operator O, which acts in the space of
functions on geometric series ¢~ 24+ by

Duf(u) = Duu(l - qilu)Duf(u)a

where
, flat) = fqu)

g lu—qu

Dy f(u)

Then £l = 0O,
Let us describe the eigenfunctions of the difference operator O,. Introduce
the notation

—21 2(14+1)
<I>z<w>=3<1>2<q 4

2 2
; leC
q2’0 aQaQ>7 S 9

for the basic hypergeometric function (see [8]).

Proposition 12. (/20, §8]).
Oy ®1(u) = a(l)®(u),
where a(l) is defined in (17):

(1 _ q—2l)(1 _ q2l+2)
(1—¢%)?

a(l) =

Remark 3. ¢;(1) =1.
Remark 4. ®;(u) is equal up to a multiplicative constant to ¢;(u).

Let
Fq2 (2l + 1)

C(l) = (Fq2(l i 1))2

be a g-analogue of the Harish-Chandra c-function. Here TI'p(z) =

2 2
((qqz,;qu))"; (1 —¢*)'~* is a well-known g-analogue of the Gamma function I'(x).
Let us consider the measure

1 h dp

d - . :
o () 21 1—¢%* co(—3%+ip)ce(—3 —ip)

on the interval [0, 7/h], where h = —2In q.
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Consider the operator

(e 9]

Fi g Flo) = [ @y, @, 2

1

defined in the space of finite functions on the geometric series ¢~2%+. It is shown
in [20, Th. 9.2] that this operator can be extended to a unitary operator
F: L?(q7?%+) — L2([0,7/h],do) such as

Fo, f— a(—% Vip)Ff, f e LA([0,7/h], o),

where a(l) is defined in (17). The inverse operator F~! has the form

7/h

Fp) = | F)@ 1, (w)do(p).

~

[e=]

4.1.4. The quantum matrix ball

We will call the eigenfunction of a difference operator a generalized one if it
does not belong to L?. These functions are used in the sequel for the construction
of the operator F.

Consider the isometric linear operator®

J: L2(AD, dvg) — L2(q_227+1),

D f(w)—Aw) fu), (26)

where fis defined in the following way: for every u = (u1,. .., u,) with u; # u; for
i # j there exists a unique permutation w € S, such as Uy, > Uy, > ... > Uy,
Then

~ ——f(Ungy s ey U, )y Ui £ U i £ B

flu)=q Vol roT Ui, U, U, € 0
0, otherwise,

*L?(q~?%%), is a short notation for L?(¢~ "+ x ... x ¢~ **+), with the product measure mul-

n

tiplicated by N.

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 4 339



O. Bershtein and Ye. Kolisnyk

Consider the notation
Zk:ek(mulamuw“wmun)v ]4321,2,...,71, (27)

for the difference operators in L2(q_2zi)q. Then the following diagram is com-
mutative:

L2(Ap, dvg) —— L2(qg~ 224

iﬁz&dial \LZ:‘;

L3(Ap, dvg) —— L2(q~24).

Lemma 7. The operators /Jﬁadial, /Jgadial, o Lradial Gy the  Hilbert space
L?(Ap, dvg) are bounded selfadjoint and pairwise commauting.

P roof. The explicit formulas of Subsection 4.1.3 imply that the operators
0, are bounded for all 1 <7 < n (unlike in the classical case), so the same holds
for 21,22, .. .,Zn. Moreover, it is easy to see that the operators O,, and O,
commute for 1 <14 < j < n (as they act in different variables), so the operators
EZ-,Z; commute for 1 <i < j < n, too.

Also, the operators O,,;, ¢ = 1,2,...,n are symmetric, so they are bounded
selfadjoint operators in Lz(q_mi)q. Thus, Ei, i =1,2,...,n are pairwise com-

muting bounded selfadjoint linear operators in L2(q_2zi)q. As the mapping J
is isometric, the operators Eﬁadlal, Egadlal, ..., Lradial are also bounded selfadjoint
and pairwise commuting. [

Using Proposition 12, one can easily show that the functions ®;, (uy)®y, (u2) .. .

®;, (up) on q 2%+ are common generalized eigenfunctions of the operators (27).

We will need the common eigenfunctions which are in the image of the operator J.
It is easy to see that

Byt (U1, U, - ) = Y sign(o) @, (ug,) iy (Ug) - - D, (Ug,) € Tm]

are common generalized eigenfunctions. Let

R ={(p1,p2,---,pn) €[0,7/h]", p1>p2 ...> pn}.

Lemma 8. The pairwise commuting bounded selfadjoint operators L’Nk,
k=1,2,...,n are unitary equivalent to the operators of multiplication by

1 . 1 1
ek(a<_§ + 2p1)7a<_§ + Zp?)a s 70’(_5 + an))7 k= 1727 RN (P
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(respectively) in the Hilbert space L?(R, (n) )N (do)"|r). The unitary equivalence
1s provided by the mapping

U:Im I — LR, ()N (do)"|r),
H : f(ul,UQ, .. .,un) — A(p1’p27 . ,pn)

o o0
—N / y / Ot i aipm—baipn (WS (WA yur...d s,
1 1

The inverse operator is

~ ~

u—l : f(plaan"'vpn) =

N [ [ Forpnee 000 i i oan,(0) (Do) . do ().
R

P r o o f. This lemma follows from the results of subsection 4.1.3 and the
explicit formulas for the operators Ly, ..., L.

Remark 5. The last equalities define U on a dense linear manifold of the
functions with finite support on the set g~ 2%*+.

Let us introduce the notation

Z; sign(o) @, (ug, )P, (Uey) - - - Py, (Us,,)
By g (1) = 20 Alw) : (28)

Remark 6. (See Corollary 1 and Remark 4). The spherical function y(u),

A€ A, is equal up to a multiplicative constant to Py 4, 4, (u), where
li:(A+5)ieZ.

Using this lemma and the definition (26) of the operator J, one can easily
obtain the following lemma.

Lemma 9. The pairwise commuting bounded selfadjoint operators L’};adial,
k=1,2,...,n, are unitary equivalent to the operators of multiplication by

1. 1. 1 .
ek(a(—§+zp1),a(—§+zp2),...,a(—§+z,0n))a k=1,2,...,n,

(respectively) in the Hilbert space L*(R, (n)N(do)"|r). The unitary equivalence
1s provided by the mapping

U : L*(Ap,dv,) — L*(R, (n)N(do)"|r),

u : f(u) = f(plap?a o 7Pn) = / q)—%-i,-ipl,—%+7jp27,_.7—%+1‘pn(u)f(u)dl/q(u)7
Ap
where the measure dvy(u) is defined in (24).

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 4 341



O. Bershtein and Ye. Kolisnyk

The inverse operator is

u_l : f(p17:027 s ,pn)
— /]?()OLPQ,. . "pn)(I)—%-l—im,—%—&-ipz,...,—%—f—ipn(u) (TL')N ClO’(pl) . ..dO’(pn).
R

Remark 7. The last equalities define U on a dense linear manifold of the
functions with finite support on the set Ap.

Lemma 10.

n—1 ., _2j. 2
Z/{fOZNA(q 26) 1 || (( - 2)2)]q(]+1) 1 |I (q 2zp]+q21pj_q Zzpk_q2zpk)’
j=0 975 1<k<j<n

(29)
where the constant N is defined in (15).

Proof.

Ufo)(prs 2 pn) = N(P—%+z‘p1,—%+ip2,...,—%+z‘pn(17q_Q, g )
= NA(q*Qts)—l Z Sjgn(o’) @_%_le (1)@_%_“.,02 (q*Q) o (I)—%-&—ipn (qu(n—l)).

O'ESn
(30)
It can be verified that the last expression is a polynomial in the variables
gt 4 q ", L g 4 g7 Tt is antisymmetric, so
II (a2 + g% — g %ex — ) (31)
1<k<j<n

is a factor of (30). One can compare the degrees of the polynomials in
the right-hand side of (30) and (31) as the elements of the graded algebra
Clg** + q~%1,q%? + q~2, ..., ¢""" + q~r]. The degree of the polynomial (31)

n(n—1)

7 Since

is
1+ip 1—ip ,,—2k
—2k q » 4 »q 2 2
D _1,(077) =3Py ( 2.0 14754 )

= (@75 6%); (¢ 4%); (a5 ) 4%
— (¢% 4?3 ’
then the degree of U fy is @, and it proves (29) up to a constant. This

constant can be found by comparing the highest monomial coefficients in the
lexicographic order. [

J
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Denote

k(p1,p2, -5 Pn)

n-l 25 2y ' ' ' '
— NA(q—25)—1 H Wq(%‘rlﬁ_l H (q—Qij _|_q22pj _q—22p;C _qQZpk)'
j=o \IH9; 1<k<j<n

(32)

Notice that the function k(p1, p2, ..., pn) is positive on R. Consider the ope-

rator 1
F= u
H(p1>p2a s ,pn)

and the measure

d%(p1,p2,- -, pn) = Kp1, p2,. . pu) (DN (do(p1) . .. do(pn)) IR (33)

on the set R (the constant N is defined in (15)).
The following proposition is the consequence of Lemmas 9 and 10.

Proposition 13. The pairwise commuting bounded selfadjoint operators
Ezadial, k=1,2,...,n, are unitary equivalent to the operators of multiplication
by

ex(a(—3 +ip1),a(—5 +ip2),...,a(—3 +ipn))
K(p1; 2, )

(respectively) in the Hilbert space L*(R,dY). The unitary equivalence is provided
by the mapping
F: L*(Ap,dv,) — L*(R,d%),

~

F: f(u)— f(p1,p2,--,p0n)

1

= 5(p1s P2s- s Pr) /‘I);+z’p1,§+ip2,...,;+ipn(u)f(“)qu(U)7 (34)

D

where @, 1,1, (u) are defined in (28), and the measure dvg(u) is defined in (24).
The inverse mapping s

o~

F Lo Flor,p2, -y pn)

T2

— /f(pla P2y .- HOTL)(I) 1+iP17—%+Z’P2,m,—%+iPn (u) dZ(pl, P2s - .- 7,0n)-
R
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Remark 8. The cyclic vector fy € L*(Ap,dy,) is mapped into 1 € L*(R,dX)
by F.

Remark 9. For the convenience we use the wvariables pi1,p2,...,pn in the
image of F. Notice that if we change the variables

ex(a(—3 +ip1),a(—% +ip2),....a(—3 +ipy))
k(P p2; -5 pn)

Rl = )

we get that F maps L};adial into the operator of multiplication by the independent
variable z..

The measure d¥ on R defined in (33) is a sought-for radial part of the
Plancherel measure.
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