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‘We consider the deformed Gaussian Ensemble H,, = Hr(lo) + M,, in which
HY is a hermitian matrix (possibly random) and M, is the Gaussian Uni-

tary Ensemble (GUE) random matrix (independent of H,(lo)). Assuming that

the Normalized Counting Measure of H, ,(LO) converges weakly (in probability)
to a nonrandom measure N(©) with a bounded support, we prove the univer-
sality of the local eigenvalue statistics in the bulk of the limiting spectrum
of H,.
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1. Introduction

Universality is an important topic of the random matrix theory. It deals with
statistical properties of eigenvalues of n x n random matrices on the intervals
whose length tends to zero as n — oo. According to the universality hypothesis
these properties do not depend on large extent on the ensemble. The hypothesis
was formulated in the early 60s and since then was proved in certain cases. Best
of all the universality is studied in the case of ensembles with a unitary invariant
probability distribution (known also as unitary matrix models) ([1-3]).

To formulate the universality hypothesis we need some notations and defi-
nitions. Denote by )\gn), . ’)\1(171) the eigenvalues of random matrix. Define the
Normalized Counting Measure (NCM) of eigenvalues of the matrix as

Na(2) =AY € A, j=1,...,n}/n, Na(R)=1, (1.1)
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where A is an arbitrary interval of the real axis. For many known random
matrices the expectation N, = E{N,} is absolutely continuous, i.e.,

No(2) = / pu(N)d A, (1.2)
A

The nonnegative function p,, in (1.2) is called the Density of States.

Define also the m-point correlation function RT(Q) by the equality:

E Z OGNy -5 N :/wm(xl,...,Am)Rg,T;)(Al,...,Am)dxl,...,dxm,
J1#FEim

(1.3)
where ¢, : R™ — C is bounded, continuous and symmetric in its arguments
and the summation is over all m-tuples of distinct integers j1,...,jm =1,...,n.

Here and below integrals without limits denote the integration over the whole
real axis.

The global regime of the random matrix theory, centered around the weak
convergence of the Normalized Counting Measure of eigenvalues, is well studied
for many ensembles. It is shown that N, converges weakly to a nonrandom
limiting measure N known as the Integrated Density of States (IDS). The IDS is
normalized to unity and is absolutely continuous in many cases

NR)=1, N(A) —/p(A)d)\. (1.4)

The nonnegative function p in (1.4) is called the limiting density of states of the
ensemble.

We will call the spectrum the support of N and define the bulk of the spectrum
as

bulk N = {A|3(a,b) Csupp N : X € (a,b), il(lfb) p(p) >0}
ne(a,

Then the universality hypothesis for hermitian random matrices on the bulk of
the spectrum says that we have for any Ay € bulk V:

i) for any fixed m uniformly in z1,z9, ..., z, varying in any compact set in
(i)
R
. 1 1 T
lim 7]%7(5) <)\ +——— . A +m> = det{S(x;—x;)}%_1,
8 T Do T gy T g ) T e
(1.5)
where ()
sin(mx
= 1.
S(a) = ), (16)
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and Rfﬁ), pn, are defined in (1.3) and (1.2), respectively;
(ii) if
En(0) =P\ ¢ A, i =Ton} (1.7)
is the gap probability, then

a b
lim FE, N+ ——m N+ ——— =det{l — S}, 1.8
A <[° PO %M@J) U= Sap)y (18)

where the operator S, is defined on La[a,b] by the formula

b

@wﬁ@ﬂ=/5@—yﬁ@M%

a

and S is defined in (1.6).
In this paper we study the universality of the local bulk regime of random
matrices of the deformed Gaussian Unitary Ensemble (GUE)

H, = HY + M,, (1.9)

where HT(LO) is a Hermitian matrix (possibly random, and in this case independent
of M,,) with eigenvalues {hg-n)}?zl and M, is the GUE matrix, defined as

M, =n~'?Ww, (1.10)

where W is a Hermitian n x n matrix whose entries $#W;, and IWj;, are inde-
pendent Gaussian random variables such that

E{(W;,} =E{(W;x)*} =0, E{W;y*}=1, jk=1,...,n (1.11)

Let
NO@) =¢{n\" e nj=1,... ,n}/n. (1.12)

be the Normalized Counting Measure of eigenvalues of H,(lo).

Note also that since the probability law of M, is unitary invariant, we can
assume without loss of generality that HT(LO) is diagonal.

The global regime for the ensemble (1.9)—(1.11) is well enough studied. In par-
ticular, it was shown in [4] that if N converges weakly (with probability 1) to
a nonrandom measure N as n — oo, then N, also converges weakly (with

probability 1) to a nonrandom measure N. Moreover, the Stieltjes transforms f
of N and f© of N are related as

f(2) = O+ f(2)). (1.13)
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It follows from definition (1.1) and the above result that any n-independent in-
terval A of spectral axis such that N(A) > 0 contains O(n) eigenvalues. Thus,
to deal with a finite number of eigenvalues as n — o0, in particular, with the gap
probability, one has to consider spectral intervals, whose length tends to zero as
n — 00. In the case of local bulk regime we are about the intervals of the length
O(n1).

Random matrix theory possesses the powerful techniques of analysis of the
local regime based on the so-called determinant formulas for the correlation func-
tions [5]. For the GUE, more generally for the hermitian matrix models, the
determinant formulas follow from the possibility to write the joint probability
density of its eigenvalues as the square of the determinant, formed by certain
orthogonal polynomials, and then as the determinant formed by reproducing ker-
nel of the polynomials, that are also heavily used in the subsequent asymptotic
analysis [1-3]. Unfortunately, the orthogonal polynomials have not appeared
so far in the studying of the deformed Gaussian Unitary Ensemble. However,
it was shown in physical papers [6-8] that correlation functions of the deformed
Gaussian Unitary Ensemble can be written in the determinant form, although
the corresponding kernel is not, in general, a reproducing kernel of a system of
orthogonal polynomials. This was done by using as a crucial step the Harish-
Chandra/Itzykson—Zuber formula for certain integrals over the unitary group.

This important result was used in [9] to prove the universality of the local
bulk regime of matrices (1.9), where H}LO) = n 2w O is a hermitian random
matrix with independent (modulo symmetry) entries:

0)\n 0 0
W(O) = {W](k)}],k7 W](k) = W]gj)v

BW'H = BLOWR)P =0, BIWRP) =1, sup B{WP} < oo, (114)
J7

It was proved in [9] that if p > 2(m + 2), then (1.5) is valid, and if p > 6, then
(1.8) is valid.

Later in the papers [10, 11] a special case of (1.9) was studied, where Héo)
has two eigenvalues +a of equal multiplicity. In this case the universality in the

bulk and at the edge of the spectrum was proved.
In this paper we consider random matrices (1.9) for a rather general class of

H,(ZO) both random and nonrandom. The main results are the following theorems.

Theorem 1. Let H in (1.9) be nonrandom and such that its Normalized
Counting Measure (1.12) converges weakly to a measure N©O) of bounded support.
Then for any Ao, p(Ao) > 0 the universality properties (1.5 ) and (1.8) hold.

Theorem 2. Let the eigenvalues {hgn)}?zl of 7 in (1.9) be a collection of
random wvariables independent of W of (1.10). Assume that there exists

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 4 399



T. Shcherbina

a nonrandom measure N© of bounded support such that for any finite interval
A CR and for any e >0

lim PW{NO(A) - NO(A)] > e} =0, (1.15)
where P { .} denotes the probability law of {h 1. Then for any Ao,

p(Xo) > 0 the universality properties (1.5) and (1. 8) hold

The paper is organized as follows. In Section 2 we give a proof of determinant
formulas for correlation functions (1.3) following essentially [6, 7]. Theorem 1 is
proved in Section 3. Section 4 deals with the proof of Theorem 2.

Note that we denote by C, C, etc. and c, c1, etc. various constants appearing
below, which can be different in different formulas.

2. The Determinant Formulas

It is well known (see, for example, [5]) that the correlation functions (1.3) for
the GUE can be written in the determinant form

RO (A1, .. Am) = det{ K, (i, \j)} (2.1)

with
(i, Ag) Zm ok(N),  dk(x) = n' hp(vna)e "/,

where {hj}r>0 are orthonormal Hermite polynomials. We want to find the
analogs of these formulas in the case of random matrices (1.9). We essentially
follow [6, 7].

Proposition 1. Let H,, be the random matriz defined in (1.9). Then for its
correlation function (1.3) the determinant formula (2.1) is valid with

Kn(A 1)

xp ——(v* = 20\ — t* + 2ut)) } n _h(")
H (2.2)
v—t - (n)

C

S

e

where L is a line parallel to the imaginary axis and lying to the left of all
{h 71, and C is a closed contour, encircling {h§n)}?:1 and not intersecting L.
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P roof. The probability distribution for ensemble (1.9) is

n 0)
1 amew? _ 1 3T (m-2man?)

P,(H,) = 2.3
where o
_n 2_
7 - /e 3T (=2 t) gy (2.4)
and .
dH, =[dH; [] dRH;dSHy;.
j=1 1<i<j<n
Consider the function
Un(ti, ... ty) = B{Tremtn  Tyeintminy (2.5)

and use (2.3) to obtain

1

_n 2_ (0) . )
/6 2TI‘ (Hn 2H, Hy )TI‘ emtlHn Ty eznthn dH,. (26)

Let us change variables to H, = U*AU, where U is a unitary matrix and the
matrix A is

A0 ... 0 0
A— 0 X 0 ... O
0 0 ... 0 X\

Then the differential d H,, in (2.6) transforms to A?(A)d Ad u(U), where d A =
II dAj,
j=1
A =TI ) (2.7
1<J
is a Vandermonde determinant, and p(U) is the normalized to unity Haar measure

on the unitary group U(n). Integral over the unitary group U(n) can be easily
computed using the well-known Harish-Chandra/Itsykson—Zuber formula (see [5,

App. 5]).

Proposition 2. Let A and B be normal n X n matrices with eigenvalues
{a;}q, {bi}l, correspondingly. Then we have

B detlexp{a;b;}]

/exp{ TrAU*BU }d p(U) = L=l

AA)AB)

where AN(A) and A(B) are Vandermonde determinants (2.7) for the eigenvalues
of A and B.

(2.8)

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 4 401



T. Shcherbina

Thus, we get from (2.6)

n \- n n det €n>\jhkn) "
1 -5 XN ‘ e
Um(tla .. ,’tm) = Z//6 R = H <§ : mtk)\z> A(A) { }J7k_1dA.

] AHD)

The integral here is symmetric function of {A;}; ;. Thus we can rewrite the above
formula as

! -z i Z XS in(ty Ny A Ay )
Um(tl,---,tm) ;/ Z / 2= 1Akq k A(A/?g) dA.
n k1yeeskm=1 A(Hn )
(2.9)

It is easy to check that we have for any by,...,b, € C

"n 2
5 > b5

2 n/2
”) Alby, ... by)e i1

=AM A = <n

Thus, the integration over {A;}7_; in (2.9) yields

n
A(by, ...
Un(ts, ... tm) = exp{——Tr (H®)2} > L5 bn) exp{ Z b2},
2 K1,y km=1 A(H
(2.10)
where b; = hg.”) +it10 %, +. . . +itmd;j g, . Let us find the inverse Fourier transform

of (2.10). It is easy to see that if some of k;’s coincide (for example, k1 = kg =
-1
.. = ki), then the inverse Fourier transform of this term becomes [] 0(A; — Aix1)

i=1
and hence can be omitted for \; # A;. Therefore, we have for \; # A;

= [ dty...dty A, .., bn) N= o .
Ry oo ) = 1S / o o eXp{Zngj_mlzlml},
n j= —

A(H

where i denotes the sum over the m-tuples (k1,...,ky,) of distinct k;’s. Now
we transform the integrals over {t;}}_; to the line L' parallel to the real axis and
lying in the upper half-plane. Use the identity

Ay, -5 ba)
AHD)
V0 G T Iy TRty St LU it
=1 =T n,j#k hl(;) - hgn) 1<l<s<m (hg;) + it h( ))(h( n) hg;b) _ itks)
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and write its r.h.s. as the integral

du1 dum itk (Uk + itk —Uu; — itl)(uk — ul)
?{ (2mi)m H H (1 + n)) H j it;)’

cm k=1j=1 Up — h§ bl (up + ity — wy) (ug — wy — ity)

where C' is a closed contour, encircling {hgn) }9‘:1 and not intersecting L’. This
leads to the representation

cdty, —3 Y B-in 3 odug,
R, ) = [ St 72 S, ISR f A0 L
T
i @)™ I i
k=1

g‘: m . L B
we K21 H H (1 i Ztk ( )) H (uk + %tk up ztl)(uk ul) '
k=1j=1 k<l

up — hy" (ur + ity — wg) (up — g — ity)

Changing variables here as t; — t; + iur and then as ity — t5, we get

Aty dty [ dui...dun
Rm()\l,...,)\m)—nm/ t%)m f{ - du
s o (2m

)™ TT (e — tr)
n m m n k=1 (n)
EEAE Sy ) o ey .11
k=1j=1 uy — Bt

_1ym(m-1)/ (tk — ) (ur — w)
x (= 2k1_<[l (u = o) (w — ti)’

where L is a line parallel to the imaginary axis and lying to the left of all {h

J 1
and C' is a closed contour, encircling {hj %_; and not intersecting L. Now the
identity (see [12, Probl. 7.3])

m(m— tr —t — 1 1
(1) I (tk — o) (ux — w) I — det [ ]
o (ue = ) (ur — ) L% ug — t, Uk =il o1

and formula (2.11) yield (2.1) with (2.2). [

m

3. Proof of Theorem 1

In this section we prove Theorem 1 using (2.1) and passing to the limit n — oo
n (2.2).
Putting in formula (2.2) A = A\g + &/n and p = Ao + n/n, we get

Kn(Ao +&/n, Ao +1/n)
/ dt %exp{v& }exp{n(Sn(t, AO) - Sn(vv)\(]))}’ (3‘1)

v—t

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 4 403



T. Shcherbina

where

Sn(z,00) = — —|— Zln (z — — Xz — S* (3.2)

with some constant S* Wthh will be chosen later (see (3.16)), and C is a closed

contour, encircling {h 71, and L is a line parallel to the imaginary axis and
lying to the left of C. Formula (2.1) reduces the proof of (1.5) to the proof of the

relation
1 3 U )
— Ky Mo+ — X0+ ——— )| =S(E—1),
n—00 npn(AO) ( 0 npn(/\O) 0 npn()‘o) (5 77)

where S is defined in (1.6).
Now we will choose the contour C in (3.1) as some n-dependent contour C,.
Define

n

O =1L (3.3)

-

3

and for given A € R consider the equation
2= fO(z) =\ (3.4)

It can be written as a polynomial equation of degree (n+ 1) and so it has (n+1)
roots. Since the Lh.s. of (3.4) tends to +o0, if z € R — hg-n) + 0, and the Lh.s.

tends to —oo, if z € R — hg.") —0, the n—1 roots are always real and belong to the

(n)>

segments between adjacent h;™’s . If A is big enough, then all n+1 roots are real.
Let 2,(A) be a real root equal to A — 1/X + O(1/)?), as A — oo. If X decreases,
then z,(\) decreases too, and coming to some )., the real root disappears and
there appear two complex ones — z,(\) and 2, (). Then z,(\) may be real again,
then again complex, and so on, however as soon as A becomes less then some A,
the root becomes real again. Introduce

Chn={2€C:z=12,(N\), Szn(A) >0tU{z € C:z=2z,()N), Sz, (A\) >0} US,

(3.5)

where S is a set of points z = z,(\) in which z,()\) becomes real. It is clear
k

that the set of corresponding \’s is |J Iy, where {Ij};?:l are non intersecting
j=1

segments, and that C,, is closed and encircles {hg") Y
Let us consider the limiting equation

c— O =x, O / NO(dh) (3.6)

where A € R is fixed. We have
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Lemma 1. Let H” in (1.9) be a Hermitian matriz (possibly random and
in this case independent of M, ). Assume that the NCM Ny(LO) of H,(IO) converges
weakly with probability 1 to a nonrandom measure N, Then the IDS N is
absolutely continuous and its density p is continuous, and equation (3.6) has
a unique solution in the open upper half-plane Sz > 0 for any A such that p(\) >
0. This solution is continuous in A in the domain where it exists and

7 1S2(\) = p(N). (3.7)
Proof. It follows from (1.13) that

N (S2 4+ Sf(2))NO(dh)
36)= | h—z— fQF

Thus, since S f(z) > 0 for Iz > 0, we have

NOW@R)  3f()
S o= =t (38)

This and (1.13) yield

dh 1/2
|_/|h_z_ </|h_z_ ) <1. (3.9)

According to (3.9) we have that there exists a sequence {z;}7°, : 2z — Ao € R,
Q2 > 0 such that f(z) — ¢o as k — oo. Let {Z,}32, be another sequence such

that 2 — Ao and f(Z;) — 1 # dp as k — oo. Denote fi, = f(z1), fr = f(Zr).
Then we have

Fe=FOCk+f),  fo=1OC+ f)
and also

Fr=1r9C+ o).

Hence, we obtain

NO)(dh)
(h— 2 — fu)(h =2 — fi)

@+ﬁ—%<m/ —FTFe  (3.10)

and thus, since fk —fr— 01— Py # 0,2k — Zp — 0 we get

. NO(dh) Fe — T
lim — — —— = lim
k=) (h=2, — fi)(h—Zk — fi) k= %+ o — 2k — [&

=1.  (3.11)

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 4 405



T. Shcherbina

Therefore, we obtain from (3.8) for z; and zj and from (3.11)

2
NO(dh)

1
lim/‘ - =
k—oo h_Zk_fk h—?k—fk

= lim / /
kﬂoo< |h_zk_fk|2 |hfzk*fk|2
dh

)
—2% — =0.
/ —Zk—fk: _Zk_fk)>

Hence, we have also for any M > 0

2 NO(dh) =o0. (3.12)

1
lim / ’ — =
k— h—zp — h—Z1. —
OO—M k fk zZe — fr

Let us take the segment Ay, = [—M, M] such that N (Ay;) > 0. Formula
(3.12) yields that for any € > 0 and for any k > K there exists h = h(k) € Ay
such that

2 —Zu+ fr — I _
(h— 2z — f)(h — 2k — fi)

‘ 1 1
h—2e—fe h—325— fx

<e

Since |h — zp — ful < M + Ao+ |dol, |h — Zk — ful < M + Ao + |¢1], the last
inequality yields R
lzk — 2 + fro — ful < Ce

for any ¢ > 0 and for any k£ > K = K(¢). This is evidently impossible for
¢o # ¢1. Therefore, we proved that for any A € R there exists lirri f(2).
VA d

Let us prove the uniqueness of the solution. Suppose that there are z1, zo :
z1 # zo in the open upper half-plane such that

21 — f(o)(zl) =\, 29— f(o)(ZQ) =\

Again, analogously to (3.10) and (3.11), we obtain

_ NO(dh) B
(1 = 2) (1 - /(h —z1)(h —22))> =0

NO@R
/ (h—z1)(h—7Z2) - (3.13)

thus
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Considering the imaginary part (3.6), we get for i = 1,2

NO(dh)
—— > = 1. 14
T hE (3.14)
Therefore, (3.13) and (3.14) yield
1 1
- NO(@h)y=0
/ 'h — 21 h — Z9 ( ) ’

and hence z1 = 2.
Set
2Z(A) =X+ f(A+10) (3.15)

for A such that 3z(\) = Sf(A+i0) > 0. Using (1.13), we obtain that
200 = FO(:(0) = A

Hence, for any A, such that Sf(A+i0) > 0, there exists a solution of (3.6) in the
open upper half-plane.

Let us prove now the continuity of f(\ +i0). Given ¢ > 0 and \; € R, there
exists 91 > 0 such that

If(z) = f(M +1i0)] <e/2, Vz:|lz—M\]|<d1, Sz>0.
Choose A2 € R such that |A\; — A2| < §;. Then there exists do > 0 such that
1f(z) = fA2+1i0)] < /2, Vz:|z— | <2, Sz>0.

Hence, there exists z € CT, satisfying the both inequalities, and we can write
the inequality

|f(A1 +10) — f(X2 +i0)| < [f(2) = fF(AL +190)[ + | f(2) = f(h2 +i0)| < ¢,

implying the continuity of f(A + ¢0) and, thus, the continuity of z(\) of (3.15).
Therefore, we proved that for any A € R there exists linri Sf(z) and this limit
Z—

is continuous in A. According to the Stieltjes—Perron formula it means that the
measure N is absolutely continuous and its density p(\) = 1/73f(A +i0) is
continuous. Moreover, (1.13) and (3.6) imply (3.7). The lemma is proved. [

Now let us choose the constant in (3.2) such that

S* =R [ 22(X)/2 + % 3" (za(Mo) = hY™) = Aozn (o) (3.16)
j=1

and study the behavior of 1S,,(z,(A), \g) on the contour C,, of (3.5).
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Lemma 2. Let z belong to the upper part of Cy, i.e., z = z,(A) = zp(\) +
k
iYn(N), yn(A) >0, A € | I;, where
j=1

2n(N) = £ (2 (V) = . (3.17)

Then R Sp(2n(A), Ao) > 0, and the equality holds only at X = Xg. The same is
valid for the lower part of Cy, i.e., z = zp(N).

Proof. The real and the imaginary parts of (3.17) yield for z,, = Rz, and
Yn = Szn:

(3.18)

<

3
—
>
S~—
—_
|
| =
1]
[a—

Il
(@)

Differentiating (3.17) with respect to A\, we obtain

) (1= 2100 =1
ie., .
z;<A>:(1—Cfo£°><zn<A>>) , (3.19)

where féo)(z) is defined in (3.3).
It follows from the implicit function theorem that C,, intersects the real axis
at the points where

Since

the inequality

d
- FO () <0 (3.20)
(n)

holds in a neighborhood of every hj , 7=1,...,n. Thus, the function

d
1— T2 FO(z) is always positive for real z outside C,,. On the other hand, we
x

have z,(\) = z,(\) outside C), and in this case we get

~1
40 =40 = (1= L10G0) o (3.21)
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k
Now let A € | I;, i.e., z,(A) belongs to Cy,. We get from (3.19)

j=1
-1
Rzp,(N) = 2, () = R <<1 - —fn (za(A ))) ) = Cm (3.22)
where
ap(A) =% 1—%f(0)( () ),
o142 0 (3.23)
bp(A) =S (1 dzf" (za(\) ),
and hence "
n ()2 2

7 (@) — A2 4 2(0))2

Taking into account that y,(\) # 0 for \ € U I;, we obtain from (3.18) that
j=1

—Z = 1. (3.24)

h<" )24 y2(\)

This and the previous equation yield

1 2y2(N)
anp(A) = — > 0. 3.25
T Z (a(A) = h{™)2 4+ 2 (V)2 (329

It follows from (3.23) and (3.25) that in this case z],(A) > 0 if only y,()\) # 0.
Thus, x,()) is a strictly monotone increasing function defined everywhere in R.

Substituting the expression z,(\) = x5 (\) + iy, () into (3.2) and using (3.4),
we obtain

d

=R (z;( ( )+ Z )\0)) =2/ (A)(A = Xo). (3.26)

Since ], (A) > 0 (see (3.22), (3.25) and (3.21)), the function RS, (z,()), Ao) has
a minimum at A = Ao, and since RS, (2,(Ao), o) = 0, RSy, (2n(A), Ao) > 0, and
the equality holds only at A = Ag.

Note that the lower part of C,, differs from the upper one only by the sign of
yn(A), hence RS, (z,Ag) > 0, z € Cp, and the equality holds only at z = z(\g)
and z = z(\g). [

3\’—‘
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A similar fact about the behavior of RS, (2, \g) along the line
Ly={2€C:z2=((y) =zn(No) +iy} (3.27)

is given by

Lemma 3. Consider the part of Ly lying in the upper half-plane y > 0.
On this part RS, (z,No) = RS(Cu(y), o) < 0 and the equality holds only at
Yy = yYn(Ao). The same is valid for the lower part of L, and y = —yn(No).

Proof. The function RS,(z, ) is for z € L,

200) -y 1O . n
RS (Ca(y), No) = ”"(02)9 + =R In(wa(ho) + iy - B) — Xoza(Ao) — 5.

j=1
Differentiating this with respect to y, we obtain
d 1 o 1

— RS (Cn(y), M) =y | -1+ — ' 528
dy (nlw): 2o) = +”jz—;(3?n(/\o)—h§'n))2+92 o)

Taking into account that

n

1
2 (zn(Ao) — hj)? + y?

=1

d
d—y?RSn(Cn(y), o) has a unique zero at

Yy = yn(Xo) (for y > 0), hence, y = y,(Ao) is a maximum point of N5, (¢ (y), No)-
Similarly, for y < 0 the maximum point is y = —y,(N\g). Therefore,
RSn(2,A0) <0 on L, and the equality holds only at z = z(Ag) or z = z(X\g). m

is monotone in y, we have from (3.24) that

Thus, we have for ¢ € L,, and v € (), (see Lemmas 2 and 3)

R(n(Sn(t, o) — Sn(v,A0))) <0, (3.29)

and the equality holds only if v and ¢ are both equal to z,(Ag) or z,(Ao).
We need below the second derivative of RS, (2, A\g). Assume that A € Us(\o) =
(Mo — 9, N0 + ). We get from (3.26)

d2

a2 =5n(z0(A) Ao)) = a7, (V) + 2 (A) (ho = A).- (3.30)
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Lemma 4. There exists an n-independent ¢ > 0 and 6 > 0 such that

d2
W?R(—Sn(zn()\), AO)) < —cC
for any A € Us(\o).

Proof It follows from (3.30) that to prove the lemma it is sufficient to
show that the second derivative z//(\) is bounded uniformly in n and that the
first derivative x/,(\) is bounded from below by a positive constant uniformly in
n in some sufficiently small neighborhood Us(Ag) of A\g. Thus, we will show that
xl (A) > C for all X € Us(\o).

Note that the inequality 2|y, (A)|z,(A) — ™| < (2a(A) = A"™)2 4+ 42() and
(3.24) yield for b, of (3.23)

1N 20 MW)(@a(A) — ) 1 myn Ml (X) = )|
ba(N)| = |~ < = J
) n;«xnm—h(“)) 24 22| T P (@ (V) — B2 4 2(0))?
1 1
— =1.
‘ng A) = A2 42 ()
This and (3.22) imply
/ an()‘)
(N > 20+ T (3.31)

Lemma 5 (see below) and (3.31) yield that z,(\) > C for all A € Us(\g). By the
same lemma z/' is uniformly bounded, thus the second term in (3.30) is of O(9).
Lemma 4 is proved. [

Lemma 5. There exists n-independent Cy and Co such that we have for all
A € Us(Ao)

[zn(N] < C1, 0<Cay<yn(N)[ <1, |2 (V)| < C, (3.32)
where an n-independent 0 is small enough. Moreover,
0<c1 <an(A) <co, A€ Us(N), (3.33)
for some n-independent ¢y and co.

Proof Weuse Lemma 1. Consider the solution z(\) of limiting equation
(3.6). It follows from the lemma and the hypothesis of Theorem 1 (p(M\g) > 0)
that 3z(\g) > 0. Taking into account the continuity of z()\), for any 1 > 0 we
can take a sufficiently small neighborhood Us, (Ag) such that

12(\) — 2(Mo)| < £1/2, A € Us, (M) (3.34)
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Note that we can choose Ap-independent d; since z(A) is uniformly continuous.

Consider the one-parameter family of the functions ¢y(z) = —f©(2) + 2 —
A and the function ¢, (z) = —féo)(z) + fO(2), where £, f,SO) are defined in
(3.6),(3.3), and the set w = {z : |z — 2(A\o)| < e1}. Let us show that for any
A € Us, (No) and z € Ow we have

[pa(2)| > co, (3.35)

where ¢y does not depend on A. Assume the opposite and choose a sequence
{Metk>1,\6 € Us, (Ao) such that ¢y, (2)] — 0, as k — oo. There exists a sub-
sequence { A, }, converging to some A € Us, (Ag) such that the subsequence {z, }
converges to z € Ow. For these A and z we have ¢)(z) = 0. But the equation
©x(z) = 0 has in the upper half-plane only one root z(\), which is inside the
circle of the radius €1/2 and with the center z(Agp). This contradiction proves
(3.35).
Since for any € > 0 there exists ng such that for any n > ng

1F0(2) = fO2)] < e (3.36)

for z on any compact set of the upper half-plane (recall the weak convergence of
{Nr(LO)} to N(©)), we have for n > ng, where ng is big enough

|pn(2)| < co, 2z € Ow. (3.37)
Comparing (3.35) and (3.37), we obtain for n > ng
|(P)\(Z)‘ > ’¢n(2)‘, z € 0w, VA € U51()\0)'

Since both functions are analytic, the Rouchet theorem implies that ¢, (z) and
ox(z) + on(z) =2z — fT(LO)(z) — A have the same number of zeros in w. Since py(z)
has only one zero in w, we conclude that z,(\) belongs to w, x,(A) is bounded,
and y,(A) > Cy > 0 uniformly in n if A € Us(\g) for any § < 0. Besides, (3.24)
yields that 0 < y,(A) <1 for any A. Since z,(\) is real analytic, we have proved
also that z],(\) is bounded uniformly in n if A € Us(\g) for any § < 01 (since
|z (X) — 2! ()| < Cer, X € Us(Ng)). Thus, we have proved (3.32).

Note that we have also proved that for any ¢ such that p(Ag) > 0 and for
any €1 > 0 there exists § such that for any A € Us(A\g) and any n > N(J,&1)

|zn(A\) — 2(A)] < 2¢1. (3.38)

Since f,ﬁo) is analytic for Sz # 0, we have

d d
102 = —fO)| < Ce (3.39)
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uniformly on any compact set of the upper half-plane. This, (3.38) and (3.23)
imply that it is sufficient to prove (3.33) for

_ L onom) = 24> WNO(d h)
§R<1 A (A))) _/((x(A)—h)2+y2()\))2’ A€Us(ho).  (3.40)

Now (3.33) follows from (3.34), Sz(\g) > 0, and supp N ¢ [-M, M], M < c.

]
It follows from Lemma 5 and the equalities
d
RS (2n(Xo), Ao) =0, J%Sn(zn()\),)\o) N 0
(see (3.2), (3.16), and (3.26)) that
A —Xo)?
R (—Sn(2n(X), Ao)) < —CQ, X € Us(Xo). (3.41)

2

Since %%(Sn(zn()\), o)) has a unique zero at A = Ao (see (3.21), (3.22), (3.25),
and (3.26)), the function R (S, (zn(\), Ao)) is monotone for A # Ao, and we have

R(—Sn (20 (M), \o)) < —0522, A& Us(No). (3.42)

We need an analogous fact in a neighborhood of z,(A\g) on L,,. We get from (3.2)

2
SRS G ) = (1= T0Gw) . G
where (,,(y) is defined in (3.27). Since for any £; > 0 there exists N such that
for n > N we have |z(\g) — zn(Ao)| < €1/2 (see (3.38)), we can choose § > 0 such
that [(,(y) —z(Xo)| < 1 for y € Uss(y(No)). We obtain for such y (see (3.38) and
(3.39))
d

LG = L1V G0w)| < Cor

But since expression in (3.40) for A = Ag is bounded from below by a positive
constant, the previous inequality and (3.43) yield
d2
W%(Sn(Cn(y)7)\0)) < —c¢, y € Uzs(y(No))-
Recall that y,(Ao) € Us(y(No)) starting from some n. Hence, we obtain if n is
big enough
lyn(Xo) =yl > 6, y & Uzs(y(Xo))-
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Thus, since

RS (2n(A0)s Ao) = 0, jy%sn@n(y),w 0

y=yn(Xo)

(see (3.2), (3.16), (3.24), and (3.28)), we get

(y — yn(No))?

R(S0(Galy): Mo)) < —e =22

Y € Us(y(XNo)). (3.44)

Since di%(sn(cn(y), o)) has a unique zero at y = y, (o) (see (3.24) and (3.28)),
Y
(

the function (S, ((n(y), Ao)) is monotone for y # y,(Ag), and we have

2

&y & Uns(y(0o)). (3.45)

%(Sn(Cn(y)aAO)) < - 9

2

Besides, since it is easy to see that ﬁ%(Sn(Cn(y), X)) — —1 as y — oo uni-
Y

formly in n, R(Sn((u(y), Xo)) is convex for |y| > K for some sufficiently big

n-independent K > 0. Hence, we get for such K (recall that z,()\) is in some

neighborhood of z(\))

R(Sn(Cn(y), X)) < —cilyl +ca, c1 >0, |y| > K. (3.46)

Denote Uy = Us(Ao), Uz = Uss(y(Ao)). Using formulas (3.41), (3.42), and (3.44)—
(3.46), we obtain for all sufficiently big n and K

\/ A ey - ag) SRS~ Sl 3)
n Chn

v—t

exp{R(1(Sn(Ca(w). M) — Sulzn(N), o))} 24
<c|[[+] ] 200 — G(v)] drdy

U Uiy Uz Cp\Uip

NN AL CURUEL TR LY

n\U2 U1 Ln\Ug Cn\U1

)|d
C//| E Ady|+01'!0n|~e”“52/2

+CQ(Ke—cn6 /2+e—”(61K 02))+C3 ’C ‘ e—cn§2/2(K —cn52/2+6—n(c1K—cz))7
(3.47)
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where |C,,| is the length of C), and ¢; K — ¢ > 0. Note that

\de |20 (A)|d Ady
//! //\/1—cosan+0(5))(lzn(A)l2+ICn(y)Iz)’

Yn(Ao)

27,(Ao)’
Tn(A) = Rzp(N), yn(X) = Sz, (N). Since z),(Ag) > ¢ > 0 (see (3. 31) and (3.33)),
cosa, < 1 —¢, and we can write

where

where «, is the angle between C,, and L,, at z(\g), i.e., cot a,, =

// |z, (A)[d Ady
V(1 = cosay, + 0(8))(|zn (M) 2 + [¢n(v) )

Us Uy
A)|d Ady
Co// < Co. (3.48)
\/|Zn \2+|Cn y)|?

Now we need

Lemma 6. Let [(x) be the oriented length of the upper part of the contour C,,
between xo = xn(No) and x (we take l(z) > 0 for x > xgy to obtain I'(x) > 0).
Then for any collection {h(n)}J 1; l(x) admits the bound

l(z1) = U(z2)| < Clz1 — 22
with an absolute constant C. Moreover,
|Cy| < Cn,
where |Cy| is the length of C,,.

Proof We will find the bound for the length of the part of C,, between
the lines Rz = x; and Rz = z9, o — x1 = 2. It follows from (3.22) and (3.25)
that one can express y,(\) via z,(A) to obtain the ”"graph” y,(x) of the upper
part of C},. Denote

(3.49)

Differentiating (3.24) with respect to x, we obtain the equality

n n

)1 1 2 A
—g' = - - _ = I ——
s Z(A2+s) n;(A§+s)2

7=1
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implying that
5’| = 2|oa1loy ! < 2034205 1 < 20,V < 207 = 2. (3.50)
Differentiating (3.24) with respect to x twice, we have

n n

g1 1 no [ 1 1
Sl N S ) N 2
y nZ(A2-+s)2 () nZ(A?—i—s)?’

j=1 \"1J j=1
1 — A 2 TN (A2 4+ 5)2 —4N2(A2 + 5
— 8¢’ —272] 3 +—Z( J ) 5 ]i J ):07 (3.51)
ni (A +5) et (A +5)
or, in our notations (3.49),
8”0’2 — 2(8/)20'3 — 88/0'31 + 2(480’3 — 30’2) = 0. (352)
Note that
1 & s 1 & 1
503 = — —5 a3 < — 5 5 = 02,
n;(ﬁfﬁ—s)?’ n;(A?—FsP
and also
2 A2
1< N 1< : 1< 1
2 j J
o5 = | — — | < - — = ———— < 0903.
31 n;(a§+s)s _n;(A§+s)5 n;(A§+s)5_ 203

Using these inequalities, we get from (3.52)

s"og = 2(s")203 + 85’031 — 2(4s03 — 302) = 203 (s' + 2031/03)2 — 803, /03
—8s03 + 609 > —803, /03 — 209 > —10072

or
s > —10. (3.53)
Let z. € [z1;x2] be the maximum point of y,(x) and
s'(x)

Y ()

>0, x€ [rs, 2.

ENEG)

for some x3 € [z1;2,]. Then we have

T X 2
Wzs) = U(w3) :/ 1+(y2($))2daz=/ b (;/%) o

xr3

< / <1+ 2#({5(1)) dx = (x*—x3)+\/§—\/£§ ($*—$3)+\/5*—83,

(3.54)
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where s, = s(z), s3 = s(x3). Taking into account that s'(z.) = 0, we write

8" (&) (w3 — @.)°
5 ,

83— Sx =
where & € [x3,x,]. This and (3.53) imply
0 < sy —s3<5(x3— x*)2.
Hence, we get in view of (3.54)
() = U(w3) < (14 V5)(z, — x3). (3.55)

We have a similar inequality for x3 > z, and y),(z) < 0, x € [z, z3]. Take now
an arbitrary x3 € [r1;x2] and denote x, the nearest to xz maximum point of
yn(x) in [x1,22]. Then, splitting [z1,z,] in the segments of monotonicity of y,
and using (3.50), (3.55) and its analog for decreasing y,(x), we obtain

z3

lzs)—l(z1) = l(x*)—l(xl)Jr/l’(x)dz < (1+\/5)(:c*—x1)+/ (1 + 2'3%) da

&% T x

< (14 VB) (e — 1) + (23 — 24) + /|53 — 54
< (L4 V5) (2 — 21) + (23 — 24) + V2V/a3 — 70 < Oz — 71, (3.56)

where the last inequality holds, because |r3 — 24| < |z3 — 21| and |z3 — z1| < 2.
Hence,

l(ﬂ?g) - l(ZL‘l) § C\/.l?g — T § C

It follows from (3.24) that dist(z,()\), {hgn) }9—1) < 1. Thus, we can cover Cy, by
n strips of width 2 and obtain that |C,,| < Cn. [

Using Lemma 6, (3.48), and (3.47), we get that

d d X S’n, ) Ao) — Sn ’ A
lim é 7{ % exp{v§ — ty}e p{n(Sn(* Ao) (v, Ao))} =0. (3.57)
L, Ch

n— oo v—t
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Consider the contour Cp of the figure

L L.

(:n (jn

R i
\_/ %
/

and the integral
4o ) (3.58)
27T n I *

where

— iy SRS o) Sl o))}

I(v) =— 7{ ;j—;exp{vf (3.59)

Cr

and the integral is understood in the Cauchy sense for v € Cg, i.e., for v = 2z, (o)
and v = z,(Ao). We have from the residue theorem (see [16, Sects. 1.5 and 3.3])

iexp{v(§{ —n)}, wv isinside Cg,
I(v) = 0, v is outside Cg,

%exp{v(f —n)}, v=2,(No),2n(A0)

(according to Lemmas 2 and 3 C), and L,, have only two points of intersection).
Hence,

zn(Ao)
dv i B sin(yn (M) (£ — 1))
C]{%In(v) =5 ({) exp{v(é—n)}dv = exp{z,(Xo)(é—n)} (e — 1) )

where z,(A\) = Rz, (), yn(A) = Sz, (N). Note that for any fixed n and any fixed

418 Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 4



Universality of the Deformed GUE

set {h( %1, we have for t = 2 £ iR € Cp in view of Lemma 2

R(Sn(t, Xo) — Sn(zn(N), X)) < RS, (¢, Ao)

2_R2 1 & n R?
= 5 +% 1n((;v—h§ ))2+R2)—)\0$—S* < e (3.60)
j=1

for sufficiently big R. Hence, the integrals over the parts of the lines Sz = +R
in (3.59) are bounded by C} e*”R /4. Thus, we get after the limit R — oo

7{ ?{ —exp{v{—t }exp{n( n(t, No) — Sn(v, o))}
27

v—t
Cn LULn (3.61)

et sin(ga(h0) (€ — )
= explan (o) (€ ) T,

where z,(A) = Rz, (M), yn(N) = Sz,(A\). Therefore, adding (3.61) and (3.47),
we obtain

()\0 + —, o —|— / 7{ - eXp{v§ _ 7577} exp{n( (t /\0) Sn(v7 )\O))}

v—1
- / el st
n LUL,
/dt %exp{vf }exp{n( n(t, 1))\0_)t Sn(v, o))}
- ' (3.62)
+expanOo)(€ - n)i Sm<y;§§01<§; D)
= explan (o) (6 - R ESI) o010

In view of (3.38), we can write for n > N the inequality |y,(Xo) — y(Mo)| < €1,
where y,(Ao) = S2n(Ao), y(Ao) = Sz(Ao) and z,(Ag) and z(Ag) are solutions of
(3.4) and (3.6), respectively, for A = \g. Besides, it follows from (3.62) with
& =n =0 that for

pn(ho) = " Kn(Xo, Ao) (3.63)
the inequality |pn(Xo) — 7 tyn(Ao)| < €1 is valid for any &1 > 0 and sufficiently
big n. Therefore we have proved that |p,(Ao) — 7 ty(No)| < Cey for n > N, i.e.,
that nlirrgo pn(Xo) = 771S2(Ag). This and (3.7) imply that |p,(Xo) — p(Ao)| < Ceq
for n > N. Now we obtain (1.5) by using (2.1), (3.62), and the boundedness and

continuity of
. m
det {Sm@(%ww} (3.64)
W(xj — xk) G k=1
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inye[0,1) forany m € Nand |z;| < K, j=1,...,m.
To prove the second statement (1.8) of the universality hypothesis we need

Lemma 7. We have for any set {hgn)}?zl (i.e. for any realization if 7Y s
random) and for any Mo, p(Ao) >0, |£],|n] < K < oo

Ko+ €/n, 2o+ /)| < C. (3.65)

where Ky, is defined in (2.2).

Proof. Asin the proof of (1.5), take C), of (3.5) as a contour C in (2.2)
and replace the integral over L by that over L, of (3.27). Using (3.61), as in
(3.62) we get

(M0 + €/n, 20 + /)

[ § o epleo - oML ZSLAD)

2
Ly Chn

+exp{x,(Xo)(§ — 1)}

sin(yn(Ao)(§ — 1))
(€ —mn)

Using Lemma 8 (see below) and [{], |n] < K, we obtain

exp{zn(Ao)(§ —n)} < C. (3.67)

Besides,
sin(yn (o) (zi — z;))
m(z; — ;)

If y,(A) # 0, then (3.24) implies that |y, (\)| < 1, thus y, () is bounded uniformly
in n for any A, in particular, for A = A\g. Hence, to prove the lemma it is sufficient

to find a uniform in n bound for the integral on the r.h.s. of (3.66).
Note that we have for v = z,(\) € C,, (see (3.2) and (3.16))

RS, (0. Ag) = ) ;yiw EACY) . y2(Mo)
1, (@A) = h§-n))2 +42(Xo) B (3.69)
iz j;l (zn(X) — h§”>)2 +32(N) T A0(@n(d) = 2n(R0)).

<7 M, (No). (3.68)
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(n)’ (3.70)

Thus, (3.69), Lemma 8 (see below), (3.70), and the inequality |y,(\)| <1 yield

73 ()

n

2

§R(—Sn(v, )\0)) < - + Clla;n(/\)] + Ch. (3.71)

Besides, we have (see (3.2) and (3.16))

2 2 n T\ — a2 42
Ru(t, A) = TnA0) Zy7 | LSy (zn (%) — Sy (3.72)
2 2T () = 12+ 2 ()
where t = z,,(X\o) + iy € L,. We get analogously to (3.70):
n (n)y2 2
T TR It — zn(No)]. (3.73)

_ n
20 (2a(ho) — V)2 + 12(No)

Thus, (3.72), Lemma 8 (see below), (3.73), and the inequality |y, (Ao)| < 1 imply

2
R(Sn(t, \o)) < —% + Chly| + Co. (3.74)

Therefore, (3.71), (3.74), and Lemma 3 yield

22 (N) y?
-+ Cilzn(N)| = 5 + Csly| +C4, t€Ly\J,
§R(‘STL(ta A())_‘SVTL(Ua )\0)) S £U22()\) 2
—"T+Cl\xn()\)\+cg, teld,

(3.75)
where J = [x,(A\o) — iB,x,(No) + ¢B] C Ly, B is big enough.
Also, it is easy to see that for ¢t = z,(\g) + iy € L, and v = z,(\) € C), we
obtain (see Lemma 8 below and note that |z, |y| < K)

R(Ev —yt) < Cilzn(N)| + Co
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and
1

1 1
—— < min , .
v — ] {Iwn(/\)—:vn(Ao)l Iy—yn()\)l}
This and (3.75) imply the bound

/ / exp{f?) —nt }exp{n( (t 2\0_)t Sn(v,)\o))} ‘ dvdt
Ln C,\C}
S C/€—n§2/2+n501+n02dl(§)’
A

where [(£) is defined in Lemma 6, and C/ is a part of the contour C, where
|zn(A)] < A. According to Lemma 6 we have

[e9]

x
/e—n§2/2+n§C1+nCle Z

A

n§ /2+n§Cl+nCQd l(g)

w\Jr

< Z e—nk2/2+nk01+n02(l(k + 1) o l(kj))
k=A

oo
< C Z 6—nkz2/2+nkC1+nC’2 < e e
k=A

9

if A and n are big enough. Thus we have

|/

Ly Cp\CA

£, Ao)

explgy — i) SRS 20 25

n (v, 20)) } ’ dodt <e ™, (3.76)

We have to estimate now the integral over the part of C,,, where z,(\) € I =
[—A, A]l. Applying the same arguments as in the proof of (3.76), we obtain

/ / ¢, Ao) — (7)7)\0))}‘

v—t
Lp\J CA

exp{&v — nt} exp{n(Sn(, dvodt < e " (3.77)

where J = [z, (Xg) — iB,zp(No) + iB] C Ly, and B is big enough.
Thus, according to (3.76) and (3.77), to prove Lemma 7 it remains to estimate
the integral

/ / DY e few — oty SPIUSR(E o) = Sn(v, do))}

v—t
J
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In view of (3.67) and the bound

dt
\f/ <2V2In|z — 29| 1 4+C
\x—x0|+\t—yn( ’

/ \/ (x — xo (t — yn(x
(recall that |y, (z)| < 1), where xg = x,(\g), we have to estimate the integral

/(m @ — oL + OV (2)d x, (3.78)
I

where [(z) is the oriented length of the part of C,, between z¢ and . We can
find from (3.56) that
—In(x — z9) < —C'lnl(z),

and we obtain for (3.78)

/(m o — oL + OV (2)dw < /(c FInl(2)) ! (2)d 2
' _ CI(A) — 1(A)Ini(4) < C).

Prove now the statement which we use in the proof of Lemma 7.

Lemma 8. There exists some n-independent constant C' such that we have

(0)

for any n and any set {hgm ) (i.e. for any realization if Hy,

|zn(Xo)| < C.

is random)

P roof. Taking the real part of (3.17) we get

- (o) —

1
Tn(Xo) + — = X\o.
Do) n;m(xo) h§"’> aioe

This implies

1 (20 (No) — A
|2 (Ao)| < [Ao| + EZ T <l
i=1 (@n(Xo) = h;7)2 + 7 (Ao)
N\ 2 1/2 1/2
1 (évn()\o) S )> 1 & 1
njzl hY)2 + 12 (Ao) = (M) — BN 4+ 52 (M)
1/2

1
<|Xo|l+ | =
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Note that we have from (3.24)

1 & 1
_ =1,
= (2a(Ao) — B)2 + 32 (M)

if yn()‘()) ?é 0, and
: — s <!
i (zn(Xo) — h’j )?

if yn(XNo) = 0 (see (3.20)). Thus, (3.79) yields

Y

[2n(X0)] < [Ao] + 1,
and the lemma is proved. [

Note that according to the Hadamard inequality ([14, Sect. 1.5]) we have

1/2
1 ; . m m m 1 ; 2
det{Kn<)\o+$,)\o+x])} < Z —-K, ()\o+£,)\o+&>
n n n/).._ —~ | n,
L=l =1 \j=1
(3.80)
This and Lemma 7 imply the bound
1 i N
det {Kn (Ao + 2 a0+ x])} < m™/20m, (3.81)
n n n/ iz

Now we are ready to prove (1.8). Indeed, it is well known (see, e.g., [5]) that

g CrerEaren)

-1 +§: (—“1)1 /bdet {ann <)\0 + pn(iﬁ, Ao + %(ﬂf\]o)n> }l - ﬁda:j.
(3.82)

Thus, according to the dominant convergence theorem, (1.5) and (3.81) yield
(1.8). Therefore, Theorem 1 is proved.

Remark 1. Note that all the bounds in the proofs of results of this section
do not depend on (uniform in) {h;n)}?zl, n € N.
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4. Proof of Theorem 2

In this section we prove the universality (1.5) and (1.8) of the local bulk
regime of Hermitian random matrices (1.9) in the conditions of Theorem 2.

Note that if the whole sequence {HT(LO)} is defined on the same (infinity di-
mensional) probability space and {NT(LO)} converges weakly with probability 1 to
a nonrandom measure N9 then the existence of the weak nonrandom limit N
of {N,} with probability 1 and (1.13) follows from the corresponding theorem
for a nonrandom sequence {H,(LO)}, which was proved in [4]. Indeed, it is easy to
check that all the bounds used in the proof of theorem are independent of (uni-
form in) {H7(10)}’ thus the theorem implies the weak convergence of {N,} with
probability 1 with respect to the (infinity dimensional) product measures of the
probability law P") of {HY(LO)} (or their eigenvalues {{hl(n)}le}) and the (infinity
dimensional) Gaussian law P of {M,,}. Likewise, the universality of local bulk
regime in this case follows from Theorem 1. Indeed, note first that now p,, is the
density of the expectation N, of the Normalized Counting Measure N,, of H,, of
(1.9) with respect to the product P x P measures of the law P"*) of {H,(ZO)}
and that of {M,,}. Then the determinant formulas (2.1), (2.2) imply that

1
pn(A) = 7E(h){Kn()\’ M (4.1)
n
where here and below the symbol E/{. ..} denotes the expectation with respect

to the measure generated by {HT(LO)}. It follows then from (3.7) and (3.62) with
& = n = 0 that if p is the density of the limiting Normalized Counting Measure N
(see (1.13) and Lemma 1) and p(Ag) > 0, then we have with probability 1 (with
respect to P x P()

lim 7 'K, (Ao, Ao) = 7 Ly(Xo) = p( o), (4.2)

where y(A\) = 3z(A) and z(\) is the solution of (3.6). According to Lemma 7,

n 1K, (Mo, \g) is bounded uniformly in HT(LO), n € N, thus (4.1), (4.2), and the
dominated convergence theorem imply that

i pa(M) = p(h0) = 7 y(ho). (4.3)

Denote as before f() the Stieltjes transform of (nonrandom) N and
(0)
Ny (dh
920)(2) = /h(z)a Sz #0 (4.4)

the Stieltjes transform of (random) Ny(lo), and consider the (random) equation (cf

(3.4))
2—gW(z)=) XeR (4.5)
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It follows from Lemma 5 that if z, is the (random) solution of (4.5) such that
2n(A) = A=A+ OV 72), A — oo, and y,, = 3z,, then we have with probability
1

lim 7y, (Ao) = 7 'y(Xo) = p(Xo)

n—oo

and then (4.3) implies that we obtain with probability 1
lim 7y (Xo)/pn(Xo) = 1. (4.6)
n—oQ

Thus, (3.62), (3.81), and the formula

1 Z; x5 m
E® det{Kn <)\ +— ) +J>}
{ npn(No) " npn(00) T mpn(0) ) S 1

for the correlation functions of eigenvalues of (1.9) lead to the universal form of
the rescaled correlation functions, i.e., the analog of the first assertion (1.5) of

Theorem 1, in the case where {N,SO)} converges with probability 1 to a nonrandom
limit. The universal form of the appropriately scaled gap probability, i.e., the
analog of second assertion (1.8) of Theorem 1, can be proved similarly.

We will prove now analogous result for the case when {N,SO)} converges in
probability to a nonrandom limit. We denote by Pth) the probability law of H,(lo)
and by E%h) the corresponding expectation.

We start from the following

Lemma 9. Let 97(10) and O be defined in (4.4) and (3.6). Then we have
under conditions of Theorem 2

lim P {max|gf) () = O (2)] > ¢} = 0 (4.7)
n—oo zE

uniformly in z of a compact set K in the upper half-plane. Moreover, the converse
assertion is true, i.e., if (4.7) is valid for some compact set K in the upper half-
plane, then we have (1.15).

Proof. Let us prove the first statement of the lemma. Note that it suffices
to prove (4.7) for any z € K. Indeed, let {zj}é-zl be a e-net of K. Then there
exists ng such that for any n > ng and for any § > 0

I l
P & JHIg0(z) = FO)| > e} p <3 PU{Ig0(z) = FO(z)] > e} <.
Jj=1

j=1

Besides, for any z € K there exists zj, € {Zj}é~:1 such that |z — z;| < €, and in
view of the bounds

L)

2
Eg" < 1/9%%,

d
< 1/%2 & r(0)
<1 |06
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we can write

19 (2) = FO ) < 19 (z) = O (z0)| + 26/%2

Now, taking into account that &z is bounded from below by a positive constant
for z € K, we have for any n > ng

P {maxol0(2) - £O(2)| < Ce} > 15,

We are left to prove that (4.7) is valid pointwise.
There exists A such that

AN—z"t<e, N> A (4.8)
Set
1 1 A€ [—A, A
PN =1— (AeR), waW)={ X2 Al
o 07 A g [_A7A]7

and let ¢° be a piecewise constant function on the segment [-A, A] such that
0" (N) —pa(V)| <&, Al <A (4.9)

If o°(\) = ¢j, A € Aj, j =1, s, then we have using (4.8)

199(2) |<] [ - [ mA)N;P)(dA)‘
‘ [eanan - | sOA(A)N(O)(dA)‘
; ' [eaNO@n - [N

<ot ‘ [eaon®an - [ ¢A<A>N<°><dx>' @)

Besides, it follows from (4.9) that

] [eanan - [ soA(A)N(“)(dA)‘ < ] oA
- [N A)M [enan - | ¢8<A>N<°><dx>\+\ [#oon©

—/ AAN© d)\'<25+‘/ MNO(dN) - /goa(A)N(O)(d)\)‘. (4.11)
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‘We have also that
\ [#npan - [N A)\ =3 g IND(A5) - NOQA)], (412)
j=1

and by the condition of Theorem 2, for any ¢ there exists N such that for any
n>N

!
PN (25) = NO(2))] > e}} <6, (4.13)
j=1

Now the first assertion of the lemma follows from (4.10)—(4.13).

To prove the converse assertion we indicate explicitly the fact that g,(f) (z) and
N}LO)(A) are random by writing g,(ZO) (z,w) and NTSO)(A,w), w E Q%O), where Q%O)
is the probability space on which N7(lo) is defined. Assume now that (4.7) is true

but (1.15) is false, i.e., that there exists an interval A C R, ¢ > 0, a subsequence
{ni}, and § > 0 such that

PUI{IND(A) - NO(A) > e} >4, i>1.

On the other hand, it follows from (4.7) that for any r» € N there exists v € N
such that

P%h){mag 199 (z,w) — O <r 1} >1-6/2, n > v
ze

This and the inequality P,(lh){A NnB} > Pq(q,h){A} + P%h){B} — 1 imply that the
P%h)—probability to have simultaneously the inequalities

INO(A) - NOA)| > e (4.14)
and
max 190 (z,0) — fO(2)] < 7! (4.15)
zE

is not less than 6/2 > 0 if n; > max{n;,v}. Denote the corresponding set
of realizations of N by €. Since the collection {NT(L?)(-,w)}mZmaX{m’y}Mng
consists of probability measures, there exists a subsequence {n;,w;} such that

{Né?)(-,wi/)} converges to a certain limit N* and their Stieltjes transforms

{ ggp (-,wy)} converge uniformly on K to the Stieltjes transform f* of N*. In view
of (4.15) f* = fO and in view of (4.14) |[N*(A) — NO(A)| > ¢, ie., N* #
N©)_ On the other hand, in view of the one-to-one correspondence between non-
negative measures and their Stieltjes transforms f* = f(© implies N* = N©),

The lemma is proved. ]
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Next we prove the analog of (1.13) for the condition (1.15).

Lemma 10. In the conditions of Theorem 2 there exists a nonnegative pro-
bability measure N such that
lim E{|N,(A) - N(A)|} =0 (4.16)

n—oo

for any interval A C R, where E{...} denotes the expectation with respect to the

product measure of HT(LO) and M,. The measure N can be found via its Stieltjes
transform f that is a unique solution of the functional equation (1.13) in the class
of functions, analytic for Sz # 0 and such that Sf(z) - Sz > 0.

Proof It suffices to prove that for every z of a compact set K C C\ R
we have

Tim B{jga(2) ~ f(2)[} = 0. (4.17)
where g, and f are the Stieltjes transform of N, and N. Indeed, if yes, then by
using the compactness and a e-net for {g,(z) — f(z)} on K (see the beginning of
the proof of Lemma 9), we obtain that

lim E{max|gn(z) - f(2)|} =0, (4.18)

n—oo z

and thus the Tchebyshev inequality implies the analog of (4.7) with g, instead
of g,(f) and f instead of f(°). Next, applying Lemma 9 to the pairs (g,, f,) and
(Np, N) instead of (gSLO), ) and (N,(LO),N(O)), we obtain (1.15).

We will choose the compact set K satisfying the condition

min |Jz| > 3 (4.19)
zeK
and prove the relations
Tim B{g,(2)} = £(2). (420)
and
lim Var{g,(z)} =0 (4.21)
for every z € K.
Denote N N
Ja@) =E{gu()HO}, Z0(2) = 2+ fal2). (4.22)
Then it follows from [15] that
—~ 1
0) /~
|fn(2) = g1 (Bu(2))] < w252p (4.23)
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and L
Ellgn(2) — fo(2)]?} < ——— 4.24
{lon(2) = Fu)P} < (124)
in particular, (4.23) is valid for every realization of HT(LO).
Let us prove that for every z € K
lim E{|fu(2) - ()"} =0, (4.25)

where K is defined by (4.19) and f is the solution of (1.13).

It is easy to see that (4.20) follows immediately from (4.25), and (4.21) follows
from (4.25) and (4.24).

Consider the compact set

Kl - UZEKBl(z)7

where Bj(z) C C is a disk of radius 1 centered in 2: Bi(z) = {2’ : |z — 2| < 1},
and the set of realization

Q. = {w: sup g0 (z,w) - fO(2)] < e}, (4.26)
zeK1

where f(0) is defined in (3.6). Then, using (4.18) for the compact K, we obtain

lim P{Q°} = 0. (4.27)

Let z € K, w € Q.. Since |fn(2)] < |S2|7, then 2 = 2z + f,(z) € K;. Hence,
(4.23) and (4.26) imply

Fa(2) = FOC+ Jal2) +ral2), Ira(2)] < 2. (4.28)
Now we need the following general fact

Proposition 3. Let B be a Banach space with the norm || - ||, B = {f €
B, ||f|| <1}, and the function F : B — B satisfies the condition

IE(f1) = F(fl <dllfs = foll, fi,foe€B, 0<g<Ll (4.29)
Then for any r : ||r|| < (1 —q) the equation
f=F(f)+r (4.30)
has a unique solution f(r) € B, and

1) = FOI < @ =gl (4.31)
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To prove the proposition, it suffices to consider the sequence { f*) (r)}32, such
that
O =r @) = F() +r

Then (4.29) yield

15D () = fO ) < gl f P (r) = fED ()],
175D () = fED ) < gl F P () = FP )]+,

<

and therefore there exists f(r) = limj_o, f*)(r), which satisfies (4.30) and (4.31).

We use the proposition for B = C, with F,(f) = f©(z + f). Then (4.19)
guarantees that for any f € B (4.29) is valid with ¢ = 1/2. Hence, we obtain
from (4.28) and (4.30) for any z € K, w € Q.

1fu(2) = £(2)] < 4e.

Now, since |f(2)] < [Sz|™! <1 and \J/”\n(z)| < 1 for w € Q., then the last bound
and (4.27) yield R
lim B{|u(=) — (=)} < 1622

and since ¢ is arbitrary small, we obtain (4.25). [ |

Let us take the disk w = {z : |2(Ag) — 2| < &1} as the compact set K in (4.7),
where z(Ag) is a solution of (3.6) for A = A\g. Taking into account (4.7), we get
that for any § > 0 and € > 0 there exists ng such that for all n > ng the event
(cf (3.36))

ey = {max |90 (z) — 7O (=) <), (4.32)

satisfies the condition
Py} > 14 (4.33)

Since for any realization of {hg.n)} "1 the determinant formulas (2.1), (2.2) are
true, we can write that for any correlation function R of eigenvalues of (1.9)
R (A, Am) = BY {det{K,(A\j, M)} oy } -

Thus, the proof of (1.5) in the case of random Hflo) reduces to that of the relation

1 zi zj "
lim E{Y { det {Kn (Ao + e, Ao + ]>}
0o { npn(Ao) npn(Ao) npn(Ao) i,j=1

= det {W }:m . (4.34)
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Consider the expression

B {AD (21, om) | (4.35)
where
1 X xiN 1"
Az, ay) = — K, il it
m (mla y L ) det{npn()\()) ()‘0+ n7)\0+ n)}i7j1

- SOOIV

m(z; — xj) ij=1

Split the expectation in (4.35) in two parts, over ). ,, of (4.32) and it comple-
ment. Since Theorem 1 is valid on (4.32), we can write for any n-independent
and nonrandom 7 > 0 that ]Ag,?)(wl,...,xm)] < &1 uniformly for |z;| < K,
j=1,...,m. In addition, it follows from (3.81), valid for every H}LO), the bound

dot {Sinyn(/\o)(ﬂfj — xp) }m
k=1

< g2, m A
(e — o) = o)

and the relation (3.24), also valid for any 7Y and implying that 0 < y, (M) < 1,
that for any m € N Agg)(q:l,...,mm) is bounded uniformly in |z;| < K, j =
1,...,m, and HT(LO). This and (4.33)imply

|E$Lh) {A%)("L‘la s 7l'm)} | <er+ 06’

i.e., that (4.18) vanishes as n — oc.
In particular, the case m = 1, £ = 1 = 0 of this assertion leads to

lim EM {|n71K, (M, Ao) — 7 Lyn(Xo)|} = 0.

n—oo

It follows also from Lemma 5 and (4.32)—(4.33) that
Jim B {lyn (Ao) = ()|} = 0.
Then (4.1) and (3.7) imply that
YQ&EW{W—yMMV%QMHZQ

This relation and the boundedness and continuity of (3.64) in y € [0, 1] imply
(1.5).

In view of the above the proof of (1.8) is essentially the same that in Theo-
rem 1.
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