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A class of characteristic functions corresponding to commutative systems
of unbounded nonselfadjoint operators is studied. The theorem on unitary
equivalence is proved. The class of functions corresponding to these commu-
tative systems of unbounded nonselfadjoint operators is described. There is
obtained an analogue of the Hamilton—Caley theorem demonstrating that
in the case of finite dimensionality of deficient subspaces there exists such
a polynomial P (A1, )2) that annihilates the resolvents Ry = (A — ol) ™ ';
P (Ry,R2) =0.
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In [1], M.S. Livsic introduced an effective method of study of unbounded
nonselfadjoint operators which was further developed by A.V. Kuzhel [2, 3],
A.V. Shtraus, E.R. Tsekanovsky, and Yu.L. Shmul’yan [5]. Another approach
to the studying of unbounded nonselfadjoint operators based on the analysis
of the boundary value space was developed in the works by V.A. Derkach and
M.M. Malamud which resulted in the analytic formalism for studying the pro-
perties of Weyl functions. The dissipative Srodinger operator and its functional
model was studied by B.S. Pavlov [7] and his disciples. In the previous work
[11] the author suggested a method of study of commutative system of non-
selfadjoint unbounded operators which was based on the concepts of commuta-
tive colligation and open system associated with it. The paper consists of three
parts. The first one includes the necessary facts on the commutative systems
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of unbounded nonselfadjoint operators. In Section 2 the main properties of the
characteristic function of commutative colligations are studied, the complete set
of invariants of commutative system of unbounded nonselfadjoint operators is
defined and the theorem on the unitary equivalence is proved. It turned out that
the characteristic function, besides the traditional J-properties, must satisfy three
additional relations, which are the corollary of the commutative property of the
initial operator system. Section 3 is dedicated to the description of the class of
functions that are characteristic for commutative colligations. An analogue of
the Hamilton—Caley theorem is proved, namely, it is proved that in the case of
the finiteness of the outer spaces there exists the polynomial P (A1, A2) such that
P (Ry, Ry) = 0, where Ry, = (A, —al)™! is the resolvent of Ay, k = 1,2. It is
determined that the polynomial P (A1, A2) has the “involution” generated by the
inversion with respect to some circle.

1. Preliminary Information

I. Recall the main definitions and statements about commutative systems of
nonselfadjoint unbounded operators given in [11].

Definition 1 [11]. Let a system of the linear unbounded operators {Ay, A}
be defined in a Hilbert space H such that: a) the domain ® (A,) of the operator
A, is dense in H, ® (Ap) = H, p = 1,2; b) every operator A, is closed in H,
p = 1,2; ¢) there exists the nonempty domain @ C C\R such that the resolvents
Ry(\) = (4, — )\I)_l are regular for all X € Q, p =1,2; d) at least in one point
a € ), the resolvents Ry (= Ri(«)), R2 (= Ra(a)) commute.

And let the Hilbert spaces E+ and the linear bounded operators ¢_: E_ — H,
2

Vi H— By and {0, }], {m }1 INH T B = B {of i {rf )] { W)
L: E, — E, be given, {a;t}f and {TPi} be selfadjoint. The family

A=A<a>=<{a;}f;{T;}f;{Np}f;F;H@E_;{[;;‘f ‘H}j o
Ho BT M) (5 (o))

18 said to be a commutative colligation if there exists such o € Q that:
1)2Ima- Ny N, = K*JITK—U];; 2Ima- Ny Ny = K1, K* —T;r;
2) the operators
¢l =y (Ap —al) : D (4,) — Ey,

(WP) = (A —al): D (A}) — E-
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are such that:
3) K*of o + NJu* (A, —al) = 0; K1, (¢7)" + Nytby (A — al) = 0;
4) 2Im <A hpah > (o5 Dt hp, @8 ); Vhy € D (Ap);

—2Im (Aphps by ) = (75 (&) By (&) )5 YRy €D (A7), (1.2)

where p =1, 2. And, moreover, the relations: .

5) Rotp_ N1 — Rip_No = _T'; N1tpy Ry — Notby Ry = T')y;

6) TK — KT =i (lem/;_zvg — N2¢+¢_N1) ;

7) KN, = NpK; are true, where R, = Ry(a), p=1,2.

It is easy to show [11] that for every operator system satisfying the assump-
tions a)—d) there always exist Hilbert spaces F1 and corresponding operators 14 ;

2 -

K; {o’i}P {Ti}17 {N, }17 { p}l; ['; T'; such that the relations 1)-7) (1.2) hold.

In the studying of nonselfadjoint operators the open systems associated with
the corresponding colligations play an important role [8, 10].

Denote a rectangle in Ri by D = [0,T1] x [0,T3], 0 < T, < 00, p = 1,2, and
let u_(t) be a vector function in E_ defined as ¢ = (¢1,t2) € D. The system of
the relations

ialhl(t) + Alyl( ) = atp_Nju_ (t)
y1(t) = hi(t) +-Nu_(t) € (1)4 1)
t

R : iaghz(t) + Agyg( ) = at)_Nou_( (1.3)
Y2(t) = ha(t) + - Nou_(t ) D (A2);
hi(0) = h1;  h2(0) = he; t=(t1,t2) €

where 0, = 0/0t,, p = 1,2, is said to be the open system Fa = {Ra,Sa}
associated with the colligation A (1.1) and, moreover, the vector functions ()
and y2(t) are such that there exists y(¢) from H, and

yi(t) = Ray(l);  y2(t) = Ray(t). (1.4)
Thus, the functions {yp(t)}? have a common generator y(t), and (1.4) implies
Riya(t) = Rayn (1). (1.5)
As for the initial data h; and hg in (1.3), we suppose
by = Ryy(0) — - Nyu_(0), p=1,2. (1.6)
The mapping Sa is given by

Sa: ug(t) = Ku(t) — iy y(t). (1.7)
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Consider the differential operators
L,=1i0,+ca, p=1,2. (1.8)
Then the main equations (1.3) can be written in the following form:

Lyihi(t) +y(t) = 0;
Rly(t) = hl(t> + _Nju_ (t) €D (Al) ;
Laha(t) +y(t) = 0;
ng(t) = hg(t) + _Nou_ (t) e (AQ) .

(1.9)

Thus, L1hi(t) = —y(t) = Laha(t). Therefore, taking into account (1.8) and (1.3),
we obtain
RiLyy(t) +y(t) = - N1 Liu—();
Ry Loy(t) +y(t) = - NaLyu_(1);
y(0) =yo; t=(t1,t2) € D;
up(t) = Ku_(t) — i1 y(t).
If y(t) satisfies relations (1.10), then h;(t), ha(t) (1.9) and, correspondingly, v ()
and ys(t) (1.4) are uniquely found by this function.

(1.10)

Theorem 1.1 [11]. The equation system (1.3) is consistent if the vector
function u_(t) is the solution of the equation

{NlLl — NoLo + FLlLQ}U,(t) =0 (111)

on condition that (1.4), (1.6) hold and Ly, are given by (1.8), p =1,2.

Theorem 1.2 [11]. If (1.10) takes place for the vector function y(t) and
u_(t) is the solution of (1.11), then uy(t) (1.7) satisfies the equation

{]\71[11 — NQLl + leLQ} U+(t) =0. (1.12)

Theorem 1.3 [11]. For the open system Fa = {Ra,Sa} (1.8), (1.7) associ-
ated with the colligation A (1.1), the conservation laws hold:

1) 01 |hp(t)]* = (o u-(t),u-(t)) — (o +u+(1f) us(t)), p=1,2
2) 92 {(oy Liu_(t), Liu_(t)) — <af‘L1u+ ,Liug (t))} (1.13)

= 01 {0y Lou_ (), Lau_ (1)) — {0 Lo (£), Lau (1))}

Along with the open system Fa = {Ra,Sa} (1.3), (1.7), describing the evo-
lution generated by {41, As}, consider also the dual situation corresponding to
the dynamics set by the adjoint operator system {Aj, A5}.
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Let the vector function @4 (t) in 4 be specified in the rectangle D = [0, T1] x
[0, T3] from R2, t = (t1,12) € D, 0 < T,, < co; p = 1,2. The equation system

Z'31711( t) — Ajo(t) = 71/111\71%( );
Ji(t) = 3N (t) — ha(t) € D (A7)
Ry : Za2h2( ) — A3ia(t) = —at N3 diy (t); (1.14)

J2(t) = ¥ N3uy (t) — ( ) €D (43);
hl( )—hl, hQ(T) ho; t—(tl,tg) €D,

where, as usual, 0, = 0/0tp, p = 1,2, and 7 (t) and g»(t) are such that
() = Rig(t);  72(t) = Ray(t); (1.15)

is said to be the dual open system Fi = {RK, SZ}, Ft = {RZ, SJAF} associated
with the colligation A (1.1). The vector functions {gjp(t)}% have the common
generator §(t) € H, besides,

Ryia(t) = Rop (1). (1.16)
The initial data A1, hy of problem (1.14) are found from the equalities
hy = Y NZu (T) — Ryg(T), p=1,2. (1.17)
The mapping SJAr is given by
S a-(t) = K ag () + i g(t). (1.18)
Consider the differential operators
L} =id,+a, p=1.2 (1.19)
Similarly to (1.10), we obtain that the vector function g(t) satisfies the relations

R*LIL?J( ) ~(t) = PLNT LT (b);
9(T) = yr; t = (t1,t2) € D;
U (t) = K*uy () + = g(t).

Using (1.20), it is easy to obtain the analogues of Theorems 1.1-1.3.

Theorem 1.4 [11]. The equation system (1.20) is consistent if U4 (t) satisfies
the equation

{Nl*Ll+ ~ N3L + f*LfL;} iy (t) =0 (1.21)

on condition that (1.15) and (1.17) take place.
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Theorem 1.5 [11]. Let g(t) be the solution of (1.20) and let u4(t) satisfy
equation (1.21), then for the vector function u_(t) (1.18)

{N{LT — NsL3 +T*LTLT}a_(t) =0 (1.22)

takes place.

Theorem 1.6 [11]. For the dual open system FX = {RL,SX} (1.14)-(1.18),
the conservation laws are true:

1) Hh H = (ryu—(t),a—(t)) — (7, u+ L), p=12
2) o {(rrLia_(t),Lia_(t)) — (r LTa,(t), a4 ()} (1.23)
s Lya—(t),Lia—(t)) — <72+L+u+(t) Lyu,(t))}.

Observation 1.1. The “external parameters” of the commutative
colligation A (1.1) are not independent. Moreover, it is easy to show [11] that

VFE -1 x\—1 _— _
N, =0,N, 1,75 Np=1, (N) o,, p=12, (1.24)

take place, besides, Np and N, are boundedly invertible on the images of Tp+ By
and o, E_, p = 1,2, respectively.

2. Main Properties of Characteristic Functions

I. Suppose that the function w_(¢) in (1.10) is a plane wave,
u_(t) = ey _(0), where (A, 1) = Aty + Aato, t = (t1,t2) € D = [0,T1] x [0, T3],
and A = (A1, A2) € C2. And let uy (¢) and y(¢) in (1.10) depend on t in a similar
way, uy (t) = e“Mu,y (0), y(t) = €My (0). Then (1.10) yields

y(0) = — (A1 — @) Ty, 0¥ N1u—(0);
y(0) = — (A2 — ) Th,.a—Nou_(0); (2.1)
uy(0) = Ku_(0) — 11 y(0),

where Ty o = I + (A, — @) Ry (Ap), and R, (Ay) = (Ap — ApI) "t is the resolvent

of Ay, A\p € Q, p=1,2. The concordance of two different presentations for y(0)
(2.1) means that

()\1 — Ck) T,\Law_Nlu_ (0) = ()\2 — a) T)\2,a1/J_N2u_ (0)
Multiplying this equality by Ty x,, Ta,), and using 5) (1.2), we obtain the relation

(M —a)Ni— (Mg —a) Ny — (A —a) (Ao —a) T}u_(0) =0,  (2.2)
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which also follows from the consistency condition (1.11) with the function u_(t)
depending on t in the chosen way. To every operator A, of the commutative
colligation A (1.1) there corresponds the characteristic function [11]

) def

S O) K i (A — ) 4T ut0- Ny (9= 1,2). (2.3)

Theorem 2.1. Let a point X\ = (A1, \2) € C? be such that for u_(0) (2.2)
takes place, then

Sl ()\1) u— (0) = SQ ()\2) u,(O). (2.4)

The proof of the theorem follows from the last equation of (2.1).
If u_(0) satisfies equality (2.2), then (1.12) implies that the function u4 (0) =
S1 (A1) u—(0) has the similar property

{()\1 — )N — (Ma—a)Na— (M — @) (he — a) f} us (0) = 0. (2.5)

Theorem 2.2. If the operators Ny and Ny of the commutative colligation A
(1.1) are invertible, then for the characteristic function Sy (A1) (2.3) the inter-
twining condition is true

St (M) N7 (M — )T + Ny = Nyt [(Al )T+ NQ] St (\r). (2.6)

Proof. Equalities (2.2) and (2.5) imply
(A2 =)™ (A = a)u—(0) = Ny ' [(\ — @) T + NoJu_(0);
(M2 —a) " (A — &) up(0) = Ny [(Al — )T + No| ui(0).

Multiplying the first equality by Sj (A1) and taking into account that u4(0) =
S1 (A1) u—(0), we obtain relation (2.6). [

If dim E+ < oo, then the existence of non-trivial u_(0) and u4(0) satisfying
(2.2) and (2.5), respectively, is possible if only A = (A1, A\2) € C? belongs to the
algebraic curves

Q={A=(A\1,N)eC: Q (A1, A2) =

@:{/\ (A, A2) € C2: Q (M, Ag) = } (2.7)
given by the polynomials
QA1 X2) det [(Ar — @) Ny — (Ao — a) No — (A — @) (A2 — ) T 28)
@()\1,)\ ) dﬁfdet [()\1 —Oé)Nl — ()\2 —a)]\72 — (/\1 —a) (/\2 —a)f} . '
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The intertwining condition (2.6) yields that the characteristic function Sp (A1)
(2.3) maps the root subspaces of the linear bundles Ny ' [(A; — ) T + No] and

Ny [()\1 —a) [+ NQ] one into another. If S7 (A1) is invertible at least in one point
of the holomorphy from €, then dim E_ = dim £ < oo and the polynomials (2.8)
coincide, Q (A1, A2) = Q (A1, A2).

IL. For the dual open system F{ = {R{,S{} (1.14)-(1.18), consider the
case of uy(t) = i<’_\t_T>u+(T), where A = (A1,\2) € C% t = (t1,t2) € D,
(Mt=T) = M\ (t1 —Th1) + A2 (t2 — T). Suppose that §(t) = € ie= T>y(T),
u_(t) = e M=T)g_(T (T'), then from (1.20) we obtain

Double representation of §(7") in (2.9) signifies that
{(—a) ¥ = (a— ) N5 — (W —a) (b—a) P} () =0, (210

which is the corollary of the consistency condition (1.21).
Similarly to the statement of Theorem 2.1,

§1 (M) s (T) =85 (A2) @y (T) (2.11)

+
takes place on condition that 4 (T") satisfies relation (2.10), where §), (\,) equals

+ def * VAN — * ik * NTX
Sp (Ap) = K* =i (), — @) YT LNy, p=1,2. (2.12)

The functions S,(A) (2.3) and §p (Ap) (2.12) are linked to each other by the

relations

*+ *
Np Sp (Ap):S

(M) Ny, p=1,2. (2.13)

+
The equality (1.22) implies that the vector function 4 (7T") =51 (A1) a4 (T) sat-

isfies the equality

{(M—a)Nf—(Mo—a)N; — (M —a) Mo —@) T a(T)=0.  (2.14)
For ,Jsr*l (A1) (2.12), the intertwining property also holds

S1 ) (M) [ = a) B+ N3] = (VD)7 [ — @) T + N3] 81 (M),
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which follows from (2.6) if one takes into account (2.13). The algebraic curves
corresponding to (2.10), (2.14) are the complex adjoints of the curves (2.7).

ITI. 1) (1.13) and 1) (1.23) imply

o — 57 (w1) oy S1 (A1)
i()\l — wl)

= N{YZTy o Taya- N1

(31 0) 5 510w -7

= N1ty T o T3, o T (2.15)

7 (5\1 — wl)
Sl ()\1) — 51 (wl) _
Z(>\1 . 'wl) - ¢+Tw1,aT,\1,a¢—N1-
Define the operator function K (A, w) in E_ & E4
r + + -
o — Si(w)oy S1(N) A L= 8 (w)
B — 1 . KN
def 1(A—w) i (=)
K\ w) = (§ ( )>* 5 0) 7 (2.16)
w) | T -7
510 — Si(w) ! 11 1
I ! i\ —w) 1 (5\ — w) ]

It is obvious that the kernel K (A, w) (2.16) is positively defined [10, 11] as A,
w € Q since K(\w) = I (w)II(\), where TI(A) = [T} ot Ny, T, N7 | and
Taa =1+ (A—a)Ri(N).

A subspace Hy C H is said to be a reducing one [3, 5, 6] for a commuta-
tive system of the linear unbounded operators {41, As} if there exists nonempty
common domain of holomorphy € of resolvents R,(\) = (A, — AI)! such that in
every point A € Q R,(A\)P; = PiRy(\), p = 1,2, where P; is the orthoprojector
on Hl.

For the commutative colligation A (1.1), define the subspace H; in H:

H, =span {Rg(w)Rl(/\)w_u_ + R; (w) R} (:\) Y g ug € By A w, N\, € Q} .
(2.17)

Theorem 2.3. Let the operators N1 and Ni be invertible. Then the subspace
Hy (2.17) reduces the commutative operator system {A1, Aa} of the colligation A
(1.1), besides, the restriction of {A1,As} to Hy = H © Hy is the commutative
system of selfadjoint operators.
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P r o of. The analyticity of the resolvents

R,(\) =) (A—a)fRy*, p=1,2, (2.18)
k=0

in the neighborhood Us(a) = {\ € 2 : |[A—a] < d§} of the point a € Q yields that
the subspace H; (2.17) generates the vectors

R Ry _u_ + (Ry)” (RY) ¢} uy,
where uy € E;m, n, p, q € Z4. The equalities

Rotp_ = Ryyp_NoN; '+ TN, .19)

- - N1 | 2.19
Ryvt = Riwi Ny (Np) o+ wil (A7)

(taking into account 5) (1.2)) imply that the subspace Hy (2.17) is given by
Hy = span { R{Y_u_ + (R})" Y us s us € Exsn,m € Zy } . (2.20)

It is easy to ascertain [11] that the subspace H; (2.20) reduces Aj, besides, the
restriction of Ay to Hy = H © H; is a selfadjoint operator. Therefore the operator
Ty = I +i2Im aRy, being the Caley transform of the operator A; restricted to
Hy, is a unitary operator.

It remains to prove that the subspace Hj (2.20) also reduces the operator
Ag and that the restriction As|py is a selfadjoint operator. The equalities (2.19)
imply that to prove the reducibility of the As by the subspace Hj (2.20), it is
necessary to make sure that

Ry (R))™Yiuy € Hi; R3RYY_u_ € Hy
for all ux € E1 and all n, m € Z,. For instance, prove that
RSRYW_u_ € Hy, Yu_,n € Zy. (2.21)
To do this, consider the following subspaces:
L" =span{R3R"Y_u_:u_ € E_}, necZy,

and let L™ = LY & Ly, where Ly = P;L"™ and Fy is the orthoprojector on Hy,
q=0,1. Since H; (2.20) reduces Ay, then RYLy C Hy and Ty Ly C Hy, ¢ =0, 1,
for all n € Z,.. Prove that Ly = {0} for all n € Z, which signifies that inclusion
(2.21) is true. The point 3) (1.2) yields that Ty¢_ = * oy KN; ', therefore
TyRsy_u_ = —R5y o KNy 'u_ € Hy and thus Ty LY C LY. This implies that
LY = {0}, in view of the unitarity of the restriction of T} on Hp. Let, in view
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of the mathematical induction principle, L& = {0} be proved as k = 0,1,...,n,
now prove that Ly = {0}. Really,

1
* ok pn+1 _ pkrk n n
T RSB = R3T ——— (i = 1) Ry = ——— R T{Ti R
1 n * n n
T Ima T RyR1Y - = R2BlR (o + RyR{Y— — 2 1m T1 R3RYY—,

where By, = iR, —iR; +2ImaR R, Bp = iRp —iR;+2ImaR,Ry, p=1,2 [11].
Using By = ¢ o7 - (see [11]), we obtain

Ty Lyt C span {L§ + Ty Ly} = {0},

and thus L{T! = {0} in view of unitarity of T} Ho-

To complete the proof of the theorem, it remains to determine that the re-
striction of Ay to Hy is a selfadjoint operator. Prove that the operator Tb =
I 4+ i2Ima - Ry restricted to Hy is unitary. Since BoH = w+02 Yy H and
BoH = o 759" H (see [11]) belong to H; (2.20), then Hy C Ker By and
Hy C Ker By, what guarantees that the restriction of 715 to Hy is unitary. [

The colligation A (1.1) is said to be simple if H = H;, where H; is given by
(2.17). X
Consider two commutative colligations A and A (1.1) such that
Ei:Ei; agt:Api; Tl)i:%pi Np:Np; Np:M, p=1,2;
F:f‘; f‘:f‘; K:K;

and, moreover, o = & € QN # {0}. These colligations are said to be unitarily
equivalent if there exists such a unitary operator U: H — H that

Udy = 4,05 UD(4,) =D (4,); UA; =AU

. . . (2.22)
UD (4;) =2 (4;) (=12 Ub =i $U=1y
It is easy to show that the characteristic functions of unitarily equivalent colliga-

tions A and A coincide, S1 (A1) = S (A1) (2.3) for all A € QN Q.

Theorem on the unitary equivalence 2.4. Let A and A (1.1) be two

simple commutative colligations such that By = E ; O':t U;t, £ =pt; N, =

Np; Np = {Np}, p=1,2T=0:T=T;anda=a€QN (#0). Then if the
operators N1 and Ny are invertible and in some neighborhood Us(a) of point «
the characteristic functions coincide, Sy (A1) = S1 (M) (2.8), the colligations A
and A are unitarily equivalent.
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Proof The coincidence of characteristic functions, S1 (A1) = S1 (A1), as
A1 € Ud(a) and Ny, Np are unitary, and (2.15) imply that

wiTwhaT)\l,ad)— = wf w1, Al,a¢—

erTwl,aT;haT,Z)j_ = w+Tw1 ,GT;17a¢i;

¢+Tw1,aT)\1,a¢f = TZJJrTw,ozT)\l,a&f

for all A\, w; € Us(a). Taking into account holomorphy (2.18) of the resolvents
R (A1) and Ry (A1) in the neighborhood Us(«), we can rewrite these equalities
in the equivalent form

v (R Ry = b (Ry)" Rrd;
UL RP (RY)™ % = 4 RY (R;) Dt (2.23)
YRR = ¢y R R
for all n, m € Z. Define the linear operator U: H — H

n 7 def

Ry u SR us w (B Oy (R]) Dy, (2.24)

where us € 4 and n, m € Z,. The simplicity of the colligations A, A and the
invertibility of Ny, N; yield that the spaces H and H are given by (2.20), and
thus the operator U (2.24) is unitary in view of (2.23). It is easy to prove (see
[11]) that ) X X

URy = RiU; U¢- =45 ¢ U =1y

It remains to prove that URy = RoU. And since the application of the resolvent
Ry (R3) to the vectors R}t _u (correspondingly, to (R})™ fuy) is expressed
also in terms of these vectors, then it is obvious that

(URQ - RQU) RMp_u_ = 0; (UR; - R;U) (RO™%uy =0,  (2.25)
for all uyx € F4 and all n, m € Z,. Thus, it is necessary to prove that

(UR2 - R2U) (RO)™ ¢ uy =0 (2.26)
for all uy € E4 and all m € Z,. It is easy to see that when m =0
Ty (UR: - RoU) vius = (URz = RoU) Tituy

- (UR2 - R2U> YT K (J\"ff>_1 us =0
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in view of (2.25) and T1¢X Nf + -1 K* = 0 (see 3) (1.2)). Prove that this
implies (2.26) when m = 0. One can see that

0="TT (UR2 — R2U> Yt = 2ImaB, (URQ _ RQU) o
+ (UR2 - RQU) e
and to prove (2.26) (m = 0), it is necessary to establish that
Doy (URQ — R2U> Wt = 0.
And the last,
by (URQ - RQU) W5 = Rotb — Y Rothy = 0,

follows easily from the definition of U (2.24) and formulas (2.19), (2.23). Thus,
relation (2.26) for m = 0 is proved.

Using the principle of mathematical induction, suppose that equality (2.26)
is already proved for m = n; prove that it is also true for m = n 4+ 1. It is easy
to see that

7 (UR2 - RQU) (R ptuy = (UR2 - RQU) TR} (R})™ ¢ uy

B 1
 2Ima

— (U32 - R2U> By (R ¢ uy

(UR2 - R2U) Ty (T — I) (RY)™ % uy

—i (UR2 - R2U> Yot (R g =0

in view of the induction supposition and of (2.25). And since
0="T:T (UR2 - RgU) (RY)™ !y
— 2ImaB, (URQ — RQU) (RO™ 1t uy + (URQ - RgU) (R 4%y,

then to prove (2.26) for m = n + 1, it is sufficient to prove that

o ~ ~ A ~ \n+1
b (URy = RoU) (RO 0 = vy R (D™ 0t = by e (RY) 5 =0,

and this obviously follows from (2.23) and (2.19). [ |
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Thus, the characteristic function S; (A1) (2.3) and the “external set of para-
~ 12 ~
meters” {U;E}f; {T;t}f; {Np}f; {Np}l; I'; T, on condition that the operators Ny

and N are invertible, define the simple commutative colligation A (1.1) up to
the unitary equivalence.

IV. Since S; (A1) (2.3) is the main analytic object, in terms of which the
simple commutative colligation A (1.1) is characterized, here we describe the
main properties of the function

S1(A) =K +i(A— a)1/}+T>\’a1/),N1, (2.27)

where for simplicity we denote Ty o = I + (A — a)R1(N).
Consider the generating vector function (2.1)

y=—(A—a)T\o¢-Niu_, (2.28)
where A\, « € Q, and u— € E_. Asin (1.4), using y (2.28) construct
y1 =Ry =—(A—a)Ri(N)Y_Nius € D (41). (2.29)
Then the colligation relation 4) (1.2),
2Im (Ay1, y1) = (o @}y ol u) (2.30)

when y; (2.29) is chosen in this way, signifies that

<R1 (A)¢_N1u_, AlRl (w)w_Nlﬁ_>

% (A1 Ri (\)Y—Niu—, Ry(w)yp_Nyi—) — %

= (o7 4 Trath—Niu_, 4 Ty ah—N1a_)
forall u_, u_ € E_ and all \, w, a € Q. Using A1 R1(\) = AR1(\) + I, we obtain

N {RY(w) WL (V) + 1] — [0Ri (w) + 1] s ()} - N

- “(w) — K* o7 - K].
()\—C!)(TI)—@) [Sl(w) ]Ul [Sl()\) ]
And, since
[ST(w) = Ko [$1(A) = K] = S{(w)o{ $1(A) + K of [K — S1(N)]
+[K* — S} (w)] o) K — K*o{ K,
then, taking into account (2.27) and 1., 3. (1.2), we obtain the equality

[S7(w) — K*]of [S1(A) — K] = S{(w)oy S1(A) — o1
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+iNTP* {(A — a)Thg — (0 — &) Tjy 5 + (. — @) I} _Ny.

Therefore,
— a)l(u_) = (S (w)af S1(N) — oy ) = z’wa*_{(qz; ~\) R (w)Ri(\)
PR~ Bi(w) ~ —— (I + (= &) Bi(0) + 1 (I + (@ - ) Bj(w)
T —a) (@ a)l}”’*Nl'

After elementary calculations, we obtain the relation
Sf(w)afSl(A) — 0'1_ =1 (’LT) — )\) waiTQz’aT)\@”(b_Nl

which exactly coincides with the first equality of (2.15).

Lemma 2.1. If (2.30) holds for the operator Ay of the commutative colliga-
tion A (1.1) on the vector functions yi (2.29), then the first formula in (2.15) is
true for the characteristic function Sy1(\) (2.27).

Thus, the observance of the conservation law 1) (1.13), p = 1, is adequate to
the colligation relation (2.32) for the operator A;.
Using (1.4), construct the vector function ys by the generating function y
(2.28)
Yo = Roy = —(>\ - Oz)RgT;HOﬂﬁ_NlU_ €eD (Ag) s (2.31)

where u_ € E_, and A, a € ). Write the colligation relation 4. (1.2) for yo
2Im (Aoys, y2) = <U§rﬂpiy2,¢iy2>7 (2.32)

which is equivalent to
1 N
g <A2R2TA,011/}—N1U—7 RQTw,aw—N1U—>

1 .
—3 (RoT\ o—Niu_, Ao RoTyy o) N1t_)
= (054 T a—Nytu_, 4 Ty ath-N1ii_)

forallu_, @« € E_ and all A\, w, a € 2. Since As Rs = aRo+ I, the last equality

yields
1

A—a)(w—a)

* )% a—a * 1 * vk 1 *
= Nl 1/1_ { RQTMQT)\,QRQ + ZR2TU)7C¥T>\:O‘ — iTw,aTA,QRQ} ’(ﬁ_Nl.

1

[S7(w) = K] o3 [S1(\) — K]
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It is obvious that

1
TA,aRQ@Z}le = 7@ [T)\,oﬂprlL/\ - ¢*N2] ) (233)

A\ —
where L) is the linear bundle of the operators
Ly= N [(A—a)l + No. (2.34)
Using the form of function S;(\) (2.3) and (2.35), we obtain
St(w)ag S1(N) — K03 $1() — K*of K —i(A — ) K*0§ 64 T 0to- Ny
+i (w — a) Ny Ty, biof K

W NTY T — Nou* } {Ty o) N1Ly — ¢p_Na}

quzz)— w,o _Ngwi} 'T)\,Ozwal

w_

LV T o AN - N1Lx —¢_Na} .
Denote by K!(\, w) the left upper block of the kernel K (X, w) (2.16)

oy — St(w)oi"S1(N)

o) = N{Y* T o Thath— N (2.35)

KH (2 w) =

Rewrite condition 3) (1.2) as K*oj ¢y + Ni¢_ (I + (o — a) R2) = 0. Then,
taking into account (2.33), we have

K*09tp T ath- N1 = =N~ (I + (a — @) R2) T o N1 = =Ny~ Ty o N1

_ * ok * g% oa—aQ * g%
— (= @) NsYZTy o Rotp- N1 = —N3Z Ty 01— N1 — N aNQ YT\ 0—N1Ly
a—Q
NSy p_Ns.
ty NN,

Therefore, using 1) (1.2), (2.35), after simple calculations we obtain the equality

i
o {Sf(w)ag'Sl()\) — 02_} = L;Kl’l()\,w)L)\

A o
@ re KOO w) — LYK w) Ly (2.36)

a—« a—

The fact that this relation follows easily from the conservation law 2) (1.13) is an
important observation. Really, let uy(t) = et >ui( ) and G4 (t) = etw:t) +(0),
then 2) (1.13) implies

(Mo =) (1 — ) (w1 — &) { {o7u(0),4-(0)) — (7 uy.(0), 2 (0))}
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= (M —w1) (A2 — @) (w2 — @) {{o5 u—(0),a-(0)) — (o5 us(0);a+(0)) } -
And since
MO0 L (0) = DY (0); (2.37)

L _ =
X u=(0) A —a Wy —

in view of (2.2), then, taking into consideration u4(0) = S1(A)u—(0); 44(0) =
S1(w)i—(0), we obtain

()\2 — ZDQ) <{01_ — Sik (wl) O'ii_Sl ()\1)} L)\lu_(()), Lw1ﬁ—(0)>

= (M — 1) ({03 — ST (w1) 03 1 (A1) } u—(0),4-(0)).
(2.37) implies

(A2 =) Ly u—(0) = (A — @) u_(0); (w2 — @) Ly, 4 (0) = (w1 — ) @ (0).
Therefore, taking into consideration (2.35), we have
<{(Oé — 5&) L:LIKI’I ()\1,1111) L>\1 + ()\1 — Oé) LZ]KI’I ()\1,101)

— (w1 — &) KM (A, w1) }u—(0),a-(0))
=7 <{Sik (wl) J;_Sl ()\1) — 02_} U_(O),'&_(O» ,
which, in view of the arbitrariness of u_(0), 4_(0) € E_, gives us (2.36).

Lemma 2.2. Let the commutative colligation A (1.1) be given and Ni be
invertible. Then the colligation relation (2.32) for the operator As, where ys
is given by (2.81), implies that the characteristic function Si1(\) (2.27) satis-
fies equality (2.36), besides, KV (\,w) and Ly are given by formulas (2.35) and
(2.34), respectively. Moreover, relation (2.36) is equivalent to the conservation
law 2) (1.13).

Proceed to the consideration of colligation relations 4. (1.2) for the adjoint
operators A] and Aj of the commutative colligation A (1.1). Specify now the
generating function (2.9)

j=—(\-a) T} WiN g, (2.38)

where 44 € F4, and A\, a € Q. According to (1.15), construct the vector function
by y, ) 3

71 = Rig=—(A—a) Ri(\YLN{ a4 € D (A4]). (2.39)
As in the previous case (see Lemma 1.1), it is easy to show that the colligation
relation

20w (g dn) = (7 (1) . (1) ) (2.40)
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for 1 (2.39), implies that the block K22(\,w) of the kernel K(\,w) (2.16) is
given by

(31w) 7 S

K*2(\w) = = MY TwoTX W0 NT,  (241)

besides, (2.12), (2.13)
o *\— * Tk * AT — * ik * AT
S1(A) = (N7) T ST(VNT = K* —i (A — &) " T3 U5 NT .

Lemma 2.3. If for the operator A} of the commutative colligation A (1.1) re-
lation (2.40) is true on the vector functions 1 (2.51), then for the block K*2(\, w)
of the kernel K (X, w) (2.16) representation (2.41) takes place.

By the generating function g (2.38) according to (2.9), define g,
Jo = B3 = — (A — &) B3T3 407 Nty € D (43) (2.42)
and consider the colligation relation 4) (1.2) for A3
—21m (A3, 52) = (73 (¢2)" G2, (92) B2 ) (2.43)

where ¢ is given by (2.42). Applying similar considerations (see the proof of
Lemma 2.2), it is easy to prove that

7

o —

_ { <§1 (w)>* - 51 (\) — T;} = (LE)* K22(\w)L}

A—a

LY K220 w) — S Q2200 ) LT 2.44
228 1) K2 00w~ Y R0, w) L, (2.41)

where L;\r is the linear bundle,

~ -1 _ ~ -
L= (&) [(-a) =+ 8], (2.45)
and K?2(\,w) are given by (2.41).

Lemma 2.4. Let A (1.1) be a commutative colligation and Ny be invertible.

Then relation (2.43) for the operator A% on the vectors §a (2.42) implies that
+

(2.44) holds for the characteristic function S1 (\) (2.12), where K*2(\,w) and

+
LY are given by formulas (2.41) and (2.45), and S1 (X) is constructed by Si(\)
(2.3) by rule (2.13). Moreover, equality (2.44) is equivalent to the conservation
law 2) (1.23).
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Note that the structure and properties of other blocks of the kernel K (A, w)
(2.16) are also determined by the properties of the commutative system {A;, Aa}
of the colligation A (1.1).

Consider the obvious equality

(Aryr, o) = (y1, A1), (2.46)

assuming that y; and g; are given by (2.29) and (2.39), respectively. This implies
(O — a)(w — a) <AlRl(A)u),N1u,, R’{(w)¢1Nfﬂ+>

= (A —a)(w—a) <R1()\)1/)_N1u_, A;R;(w)¢1ﬁfa1> ,
and since A;R1(\) = AR1(\) + I, then
ANt (Twa = 1) (Tra = D YNy + (A = )Ny (Tya = D) -y
= w1y (Twa — 1) (Taa — 1) N1+ (w — @) N1tpy (Taa — 1) - N1
Therefore,
(A= w) N9y T o Trath- N1 = (A — @) Nitp Ta o¥- N1 — (w — o) N9y Ty 0tp— N1
Taking into account the form of S1(A) (2.27), we have

~ Sl()\) — Sl(w)

K2 () w) =N, 0w N1t s Ty 0T oth— N1 (2.47)

Lemma 2.5. If (2.46) holds for the operator Ay of the commutative colliga-
tion A (1.1), then the block K*'(\,w) of the kernel K(\,w) (2.16) has repre-
sentation (2.47).

Study the similar to (2.46) equality for A,

<A2y27 g) = <y27 A;?h) ; (248)

assuming that y, and go are given by formulas (2.31) and (2.42). In view of
ARy = Ry + I, it is easy to see that (2.48) leads to the relation

N1 RoTo o T ath— N1 = Nitpy Ty o Th o Roto— N7
We can write this equality in the following way:
()‘ - a) [Ew¢+Tw,a - NleZer] : T)\,oﬂprl

= (’UJ - a)erTw,a [T)\,awalLA - ¢7N2] 5
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where ) ) ) )
Ly=N;! [(A —a)l + NQ} . (2.49)

It is obvious that Ly (2.49) and L7 (2.45) satisfy the relation
L = ()

Using the definition of S1(A) (2.27) and the last formula of (2.15), we obtain

1. -
LiN:. (2.50)

i:giw [S1(A) = S1(w)] — Ny N2 S ()
— ';\U__Z‘ [Sl()\) — Sl(w)] L>\ — Sl(w)NleQ

This easily implies that
(w— a) [f/,\Sl(A) - sl(A)LA} = (A —a) [iwsl(m - Sl(w)Lw] :

and the above implies that the relation

- [Bso) - s =c

is constant and does not depend on A. Thus,
z/)\Sl()\) - Sl(A)L,\ = ()\ - a)C,

which is impossible when C' # 0, because the coefficient of the expression LSy (\)—
S1(A)Ly when (A — «) is equal to zero

N{TK 4 N7 Nopyip Ny — KNJIT —dgp,op_ Ny = 0
in view of 6) and 7) (1.2). Thus, C' = 0, and we again come to the intertwining
condition (2.6).

~ Lemma 2.6. Let A (1.1) be a commutative colligation and the operators Ny,
Ny be invertible. Then equality (2.48) for Ay implies the intertwining condition
(2.6) for the characteristic function S1(\) (2.27).

Summarizing the statements of Lemmas 2.1-2.6, we obtain the following
theorem.
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Theorem 2.5. Let A (1.1) be a commutative colligation and the operators
Ny, Ny be invertible. Then the characteristic function S1(X\) (2.27) satisfies the
relations:

1) Si(A)Lx = LaSi(V);
2) ——{Siw)of SN — 03 } = LK (A w)Ly
A— o T

LB O w) = G2 K o)l (251)

o (B b -} - ) 0w
A-a

a—

w—«

(L) K**(\ w) — K**(\,w)LY,

a—

where Ly, Ly, and L;\" are the linear bundles of operators (2.34), (2.49) and
(2.45); and KP*(\,w) are the corresponding blocks of the kernel K (A, w) (2.16).

+ -
Moreover, S (X) is defined from S1(X) by formula (2.13), and LY and Ly (2.49)
are linked to each other by relation (2.50).

Observation2.1. The colligation relations (2.30), (2.40), and (2.46) for
the operators A; and A7 of the commutative colligation A (1.1) have the “metric
nature” and give the well-known (2.15) representations for the blocks KP*(\, w)
of the positively defined kernel K(A,w) (2.16). Similar relations (2.32), (2.46),
and (2.48) for the operators Ay and A} of the commutative colligation A (1.1)
lead to the new nontrivial conditions for the characteristic function Si(\) (2.27)
that should be considered as a corollary of commutativity of the operators A; and
As. Note that the equalities 2) and 3) of (2.51) follow from the conservation laws
2) (1.13), (1.23) and also have the sensible interpretation in terms of conditions
(1.2) of the colligation A (1.1).

Observation 2.2. Between the “external parameters” of the colligation A
(1.1) besides the colligation relations 1)-7) (1.2) there exist additional relations.
In particular, assuming in 2) and 3) (2.51) that A = w = «, we obtain

K*'of K —ay = Ny (N7) " {K*0 K — o7 } N Ny;
~ o~ ~ -1 .
KryK* = rf = NpNTH{Er K=o} (NF) NG

Probably, these are not the only possible conditions of dependance between
“external parameters” of the colligation A (1.1).

212 Journal of Mathematical Physics, Analysis, Geometry, 2010, vol. 6, No. 2



Characteristic Function of Commutative System Operators

3. Theorem of Existence and Analogue of Hamilton—Caley
Theorem

I. In this section, we prove the theorem of the existence, namely, describe the
properties which the operator function S (A1) from E_ into E; must satisfy to
be a characteristic function of some colligation A (1.1). Moreover, we prove that
in the case of the finite dimension of F_ and E there exists such a polynomial
P (A1, A2) that “annihilates” A; and As.

In H; (2.17), define the vector functions

F(Nu—) =T\ op—Niu_; F(\ug) = ij’ai/)_;]vfu% (3.1)

where ut € Ey; A, o € Q; and Ty o = I + (A — @)R1(A). Obviously, the linear
span of the F'(A,u—) and F'(A,uy), on condition of the invertibility of Ny and
Ny, generates the whole Hj.

Theorem 3.1. Let there be given the commutative colligation A (1.1), the
operators N1 and Ny of which are invertible. The@ the resolvents { Ry, Ra} and
{R7, RS} act on the vector functions F (A\,u_) and F' (A, uy) (3.1) in the following
way:

FM\u_)—F(o,u_)

]‘) RlF (A,U,) = — :
2) RoF (M\u_)= F(A’LAU))\_g(Oé,Lau);
~ ~ -1
. Fvus)+ (o (M) of Siu)
Y= A—a ;
~ _ N1
Y RFO.Qui) = F Oy L) + F (o, (V) o7 $100n-)
* T F )\,u —_ F a,u (32)
5) RIF(huy) = +X)_a( b,
2 F(\Liuy) — F(a, LY
6) RyEF(A\uy)= &, Au+5)\—d (@ Lauy),
~ -
. F(\uy)+ F(oz,N1 ™ S (/\)u+>

8) RoF (A, Qfus) = F (A Lfuy) + F (o, Nybry §1 (Vus )

for all ux € Ey and all X\, o € §, besides, the linear bundles Qy and Q;\r are
given by
Qrv=MN\—a)+(a—a)Ly; Ly=N;'[(A—a)T + NoJ;

Qf = (i -a) I+ (@-a) L Lf = (§;) [(h—a) + 53] (33)

S1(\) and §1 (N\) are given by (2.3) and (2.12).
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Proof. The proof of 1) (3.2) follows easily from the Hilbert identity for
resolvents
RlF (/\,u_) = RlT)\7a1,/J_N1u_ = [Rl( ) ()\ )Rl(a) ()\)]w Nlu_

= Ri(M)Y_Nju_ = T)\ — T/f Nyu. = F(\u ))\_Z(ozju_)'

Relation 5) (3.2) is proved in a similar way. It is easy to see that the equalities
2) and 6) (3.2) follow from formulas 5) (1.2). Since the relations 3) and 7) (3.2)
have the dual nature, it is sufficient to prove one of them, for instance, 7) (3.2).
It is obvious that

RiF (M\us) =Ry (I+(X—a)Ri(\) ¥ Nfuy = Ryt Njuy
+ (A - @) RR T3, o Njus
since R1T)\ o = Ri(N). (a« — &) RiR} = ip_7; ¥X + Ry — R} imply that

[ * NTH 5‘_0_[ . — % * * * AT
RiF (\uy) = Ry Nug + o {iv_r " + R — Ry} Ty s Niuy

RlT;,a¢iNfu+_

— Rt w4 v (K- 6 ()
in view of the definition of §1 (A) (2.12) and 5) (3.2). Hence,

_ - + -
(Oé - )‘) RlF ()\,U+) = —wJ'f S1 ()\)U+ - T;;aﬂ)j_Nik’LL+

since (a — &) Ryt N§ + ¢_m] K* +¢* Ni = 0, in view of condition 3) (1.2) of
the colligation A (1.1). Thus, formula 7) (3.2) is proved. Prove that formulas 4)
and 8) (3.2) are true. Prove, for instance, equality 4). To do this, use the fact
that Ry = Ry — (o — &) R5Ro + i@bia;dur. It is easy to see that

R5T o—N1 = RoT 01— N1 — (@ — @) RyRoT\ o— Ny + i 05 b Th o— Ny

1

= = { Dt NiLa — v No — (o = @) B} [Ty at- N1 Ly — 6Ny
o [$100) - K]}

in virtue of 2) (3.2) and the definition of S;(A) (2.12). Taking now into account
Yioy K+ I+ (a— ) R3] ¢_Ny =0, we obtain

R5Ty o)- N1 {(A — )] + (a — &) L)} = Th o—N1Ly + ¢ 05 S1(N).

This equality exactly coincides with 4) (3.2). [
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Corollary 3.1. If the suppositions of Theorem 3.1 hold, then the formulas
T)\,aF (O@u*) =F (Aau*) ) T)tozﬁ‘ (Oé, u+) = F ()‘7u+) (34)

take place for all ux € E+ and all A, a € 2.
I1. Proceed now to the description of the class of functions formed by the
characteristic functions S;(A) (2.3) of the commutative colligation A (1.1).

Theorem 3.2. Let the commutative colligation A (1.1) be given and the
operators N1 and Ny be boundedly invertible. Suppose that the operators

(K*a;K— 02_)_1 and (KTZ_K* —T2+)_1

exist and are bounded in E_ and E, respectively.

Then there exists a neighborhood Us(a) = {A € C: |\ —a| < ¢} of the point
a such that the linear bundles @y, Ly and Q;\r, L;\r (3.3) are invertible for all
A€ Us(a).

Proof Prove that the operators Q) and L) are boundedly invertible in
some neighborhood Us(a) of the point v (the proof is similar for QF and LY).
The point 2) (2.54) implies that

i{K*o5 51(N) — 05 } = N5 (N) T KM (A, @) - Qy (3.5)

Prove that the invertibility of K*o5 K — 0, necessitates the bounded invertibility
of the operator { K*o3 S1(\) — 05 } in some neighborhood Us(a) of the point a.
Since

K*o5 S1(A) — 0y = K*oy K — 0y +i(A — a)K*0f ¢4 T 0t N1,

then the series
(K*o551(\) —oy }

[e.e]
={K'o; K — 02_}_1 . Z(/\ —a)P [—iK*U;w+TA7aw_N1 {K*oy K — 02_}_1}]3
p=0
converges uniformly when |\ — a| < 1 in virtue of holomorphy of Si(\) (2.3) in
the point A = . Thus, the operator {K*O'S_Sl()\) — 02_} is boundedly invertible
in some neighborhood Us(«) of the point a.
Let C =i {K*of S1(\) — 05 }, A= N; (N{) ' K1 (\, @) and B = Q,, then
equality (3.5) in this notation is C' = A-B. The bounded invertibility of C' implies

nlu_|| <|[|[Cu—|, 0<n< oo,
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for all u— € E_, and since the operator A is bounded when A\ € Us(«), then
nllu_|| <[|Cu_| < [A]l - [ Bu—]|.
Therefore, for B the estimation
m |lu—|| < [[Bu_||

is true for all u_ € E_, where m = n - ||A||=! > 0. Thus, the invertibility of the
linear bundle @ (3.3) for A € Us(«) is proved.
(3.3) implies that
@ — (A —a)l =(a—a)Ly;
and for the invertibility of Ly it is necessary to establish that (Qx — (A — a)I)™"
exists and it is bounded when X\ € Us(a). The last obviously follows from the
uniform convergence of the series

@ - A=) =0 (I~ (A —a)Q) =Y (A - [0

p=0

The theorem is proved. [

Observation 3.1. The invertibility of the bundles @y and Ly (Qj
and L;) in the point A = « implies that the operator N2 (IN3) is boundedly
invertible. Thus, Theorem 3.2 yields that the invertibility of the expressions

* __+ —. — T7* *
Kog K —o05; K1y K' =15

ensures the existence of the bounded inverse of the operators Ny and N3.
Proceed to the definition of the class of operator functions generated by cha-
racteristic functions S7(\) (2.3) of the commutative colligations A (1.1).
Class Qu (0,7, N,I'). Let E+ be Hilbert spaces, o € C\Ry, and, moreover,
suppose that in E_, correspondingly in E,, the linear bounded operators

12 12
{Jp }1; {Tp }1; {Np}?; r: E.—E_;

+12. +12. v \2. p. (3.6)
(o2 {mh)5s {Np}l, I: B, —E,
are specified, where {a;t}i and {T;t}i are selfadjoint, and Ny and Ni are invert-
ible.

An operator function S(\): E_ — E. is said to belong to the class Qq (o, 7, N,T")
if:

1) the function S(X) is holomorphic in some neighborhood Us(a)) = {\ € C:
|IA —a| <} of a point a and S(a) # 0;
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2) the kernel K(\,w) (2.16) constructed by the functions S(\) and ST(\) =
(N#)"1 S*(\)N} is Hermitian positive for all X, w € Us(c);

3) the operator function S(\) satisfies relations (2.51), where the linear bun-
dles Ly and L;\r are constructed by using formulas (3.3) and Ly = ]\71_1 (Lj)* Ny;

4) the operators {K*O';K — 02_} and {KTQ_K* — 7'2"'} are boundedly invert-
ible, where K = S(a);

5) for the operator family (3.6), (1.24) and S(a)N; = N1S(a) take place.

It is obvious that the characteristic function S7(\) (2.3) belongs to the class
Qo (o, 7, N,T).

Theorem of existence 3.3. Let the operator function S(A\): E_ — E.
belong to the class Qq (0,7, N,T'). Then there exists a commutative colligation A
(1.1) such that the characteristic function S1(\) (2.3) of the operator Ay coincides
with S(X), S1(A) = S(A) for all X € Us(cv).

Proof  Consider the family of “d-functions” ey f assuming that every
exf has the support concentrated in the point A € Us(«) and possesses the value
f=(u—,uy) € E_® E4. The formal linear combinations

N
Z e)\kfka
k=1

where \; € Us(), fr € E_®F;+,1 <k <N, N € Z,, constitute the linear mani-
fold L on which we, by means of the kernel K (A, w) (2.16), define the Hermitian
nonnegative bilinear form

(exfrewd) e © (KO w)f,9)p_om, (3.7)

As a result of closure of the linear span L by norm generated by form (3.7) and
of factorization by the kernel of this metric, we obtain the Hilbert space Hg [9].

Specify the linear operators K: E_ — E,1_: E_ — Hg, ¢%: B, — Hg
using the formulas

~ N1
K=S8(a); t¢_u_=esN; 'u_; Yiug =eq (N{k Ug (3.8)

and prove that relations 1) (1.2) take place for K, ¥_, ¢, (3.8). Taking into
account the form of the block K11(\,w) of the kernel K (), w) (5.16), we have

<1/J,N1u,,¢,N1u/_>K = <eau,,eau/_>K = <K1’1(a,0z)u,,ul_>

_ <‘H—W<u_ y >

i(a— @)
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which proves that 2Im aNTy* ¢p_N; = K*afK—a;. To prove 2Im a-N59y* 1p_ Ny
= K*0 K — 0, , consider
(—Nou_,1p_Nou' ), = (ea N7 ' Nou_, e Ny " Nou'_)
i

= <N2* (NS Kl’l(a,a)Nlezu,,u’_> = (K*oy K — 0y ) u_,u")

in view of 2) (2.51). The relations 2Im Oépr+1/)j_N; = K1, K* — TI;", p=12
are proved in the similar way taking into account the form of the block K22(\, w)
of the kernel K (A, w) and equality 3) (2.51).

It is easy to show that

+
1o — K*oS(\) S (A) —
lbfexf ( l) Z(>\—>\)
SN -K
As in (3.2), define the action of the resolvents {R;, Rz} and {R}, R5} in Hg
by using the formulas:

1 *
B U_ Uy Ny SN ue '
Rlekf_e)\<)\_a7)\_a>+€a< N — o U+ )\—OZ’O )

u_—I—Nl_l- —= U=.

Lyu_ - 4 _ * — Lou_
Raeyf = 6,\<)\A_ a,Lj{ (@¥) 1U+> +eéq <N1 by 5 () (QF) Yug - )\_aao);

A—a
where A € Us(a), f = (u—,uy) € E_&E,, and the linear bundles Ly, Q), LY, Q7
are given by (3.3). Prove that relations 3) (1.2) are true. So, to prove K*o] ¢! +
Niy* (A; — al) = 0, write this equality in the following way: ¢ o] K +¢_ Ny +
(& — ) R{yy_N; = 0. Then, taking into account (3.8) and (3.10), we obtain

* - L+u sk -1 _ L;{_U
Raexf = ex (L)\ (@) tu, =2 ;) + €ea (0, <N1> oy SNQY u— — +> ,

N
Yol Kuo +¢_Nyu_ + (@ — o) Rip_Niju_ = e, (Nf) ol Ku_ + equ_

~ -1
(M) ofK

a—Q a—

u_ =0,
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qged. K7, (cpl_)* + N1ty (A7 — al) =0 is proved in a similar way. Rewrite the
equality K7y (¢2) +Nothy (A5 — al) = 0 as ¢_7y K*+¢% Nj+(a — &) Ropt N3
= 0. Then, using (3.8), we have

~ 1 . ~ 1 .
eaNy 'y K uy + eq (Nf) Nyuy + (o — &) Raeq <N1*> Nyuy

~ \—1 -
= eaNfngK*u+ + eq (Nf) Nouy — RoeaQluy =0
~ \—1 -

since QF = (a—a) LT = (a—a) (Nf) N3 in view of the definition of @ and
LY (3.3) and (3.10). K*o3¢% 4+ Ny* (A —al) = 0 is proved in exactly the
same way. i

It is obvious that the intertwining condition S(A\)Ly = LxS(A) 1) (2.51) and
KN; = N1 K, definition of the class Q,(o, 7, N,T'), yield KNy = NoK, which
proves 7) (1.2).

Note that

Ty p€all— = exu_; T§7aeau+ = e\u4 (3.11)

take place for all A\, « € Q and all ug € E. In fact, (3.10) imply (A—a)Rieyu— =
ext— —equ_, and thus Ty, yeyu— = equ_, which proves the first equality of (3.11).
To prove the first condition in 5) (1.2), consider

Tho [Roto—Niu— — Rytp_ Ny — 9_Tu_] = RoT) neau— — RiTy aea Ny Nou_

—TyaeaNy 'Tu_ = Ryexu— — RiexNy 'Nou_ — ex Ny 'Tu_

1 1 - -
= N o {exLyu_ —eqLou_} — N a {6)\N1 1N2u_ — eqlV; 1N2u_}

1
—exN[ 'Tu_ = o {Ly = N;'Ny — (A —a)N;'T} =0.

-«
Taking into account the invertibility of T} o, T oTn,x» = I, we obtain the required.
The proof of the second equality in 5) (1.2) is of a similar nature, besides, it is
necessary to use the second relation of (3.11).

Since A R, = aR, + I, then

1 1
7 <ApRp6)\f7 Rpew9>K i <Rpe)\f7 ApRpewg>K
1 1
=3 ((aRp +1I)exf, Rpewg) c — 7 (Bpexf, (alty + 1) ewg) i

- <{HR;RP — iR+ iRp} exf, ewg>

v K
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for p = 1, 2. Therefore, to prove 4. (1.2), we have to prove that

B, = iR, — iR} + QR;;RP —grotey, p=1,2, (3.12)

where R), and Ry are given by (3.10), and ¢} and ¢, are given by formulas (3.8)
and (3.9), respectively. To prove (3.12) when p = 1, consider

. ok oa—0a
Bieyf =iRieyf —iRjexf + TR1R1€)\f

iu i iNt _g’()\)u iu
- + 1 + -
= — a — — ’0
6)‘<)\—a’)\—a>+€ ( A—« A—« )

~ —1
N —ju_ _Z‘u_"_ n 0 —1 (Nf) O'T_S(A)U_ N iu+
“\N—ax—a) e\” A—a X—a

—

_ 1 - %
a—a u—  uy Nim S MNug ue
- R1{€A<A—a’5\—a>+ea< A—a )\—a’o

i

+ 3 A—a A—a A—a \A—a«
+Oé—'0_éea 1 _ Nl_lT}_ S(/\)U+ u— ’0
) a— o A— A— o
N
a—a <Nf> UTK Nfleg*()\)qu U_
+ s €q 07 — ° N -
3 a—Q A— A—«

~ + ~
-\l LSO\ - K oo 107 NTYK T S () — N

_ * + x—191 +V1 1 1

_ea<O,<N1> oy i —a) u_ + Ny i(j\—oz) Uy |.

And if one takes into account 5) of the definition of class Q, (o, 7, N,T'), Nf =

of Ny ' (1.24), one can get

_+
s = (05 ot {30 T 08
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= ¢101+1/)+€Af

in view of the definition of ¢% (3.8) and (3.9), which proves (3.12) when p = 1.
Analogously, (3.12) is proved for Bs.
Using AR} = aR), + I, we obtain

1 * * * 1 * * *
— <ApRpe,\f, Rpewg> + 7 <Rpe,\f, ApRpewg>
- <{O‘_,O‘RPR;; ViR, — iR;} exf, ewg> p=1,2,
i
and thus to prove the second relation of 4. (1.2), it is sufficient to prove that
- o —

. . % Q * — %
By, =iR, —iR, + TRPRP =y-1T, ¥, p=12, (3.13)

where R, and Rj are given by formulas (3.10), ¢ and ¢* are given by (3.8),
(3.9). The proof of formulas (3.13) is similar to that of (3.12).
Since ApR, = aR, + I and AjR) = aR; + I, (3.10) implies

N +
Au_ A N7'r= 5 (A _
A1Rienf =€A< “ —u+)+€a< 17 5( )u+— “ a70>;

A—a' \A—a A— o A —
~ —1
* % Au_ ;‘u-i- <Nf) UTS()\)U_ U+
Aiftiaf = \3"an=a) T\ aza a4l

AQRQ@)\f =€) << OéL>\ + I) U—, (OAL;\"_ (Q:\"_)_l + I) U+>

A—a«
1 _ T -1 Lou_
+€a (Nl 17'2 S (A) (Qj\_) Uy — m,o 5

oLt (3.14)
AsRienf =ey ((aLAQ)_\l +I) Uu_, (5\ )\07 +I) Uy

-1 B Liu
+eq (0, (N1> oy SNQY u_ — )\+>

-«
for all A € Us(@) and all f = (u_,uy) € E_ @ Ey, besides, the existence of Q"

and (Q;\r)fl follows from 4) of the definition of class Q, (o, 7, N,T"). Specify the
operator A7 in Hg )
Arerf =ex (Au_, dug). (3.15)

Then (3.14) and (3.10) imply that

exf =Ri (A1 — M) erf=Riex (A= a)u_, (A —a)uy)
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-1 -t
=exf+ea Ny 11 S (Nup —u_,0].
Therefore, the domain ® (A1) of the operator A; (3.15) is given by

N
D (A1) = {Z exfp € Hi : Ny € Us(a); fp = (WP, ul}) e E_ @ Ey;
p=1 . (3.16)
w? =Ny S (\)uh;1<p< N;N < oo}.

Similar considerations show that the adjoint operator Aj equals
Afenf =ex (Mu_, Aug), (3.15%)
and its domain ® (A7) is represented by
N
0 (41) = { £ erfy € Hic 3y € Us(a): fy = (08) € B B

e (3.16%)
uﬁ_: (Nf) Uf‘S()\p)uli;l gpSN;Ngoo}.

It is easy to establish that the operator A} (3.15%), (3.16%) is the adjoint of A;
(3.15), (3.16). By (3.14) specify the operator As in Hy

Agerf = ey ((a + (A — a)L;l) u_, (a + (Li)_1 Qi) u+> , (3.17)

besides, the existence of the inverse of Ly and L again follows from 4) of the
definition of class Q, (0,7, N,I'). Taking now into account (3.10) and (3.14),
we have

6>\f =Ry (A2 — O[I) 6)\f = Raey ((A - O‘)Lglufv (L:\F)i1 Q§U+>

+ _
=exf+ ea (N;lrz— S (\) (L) Yy — LaLglu_,()) ,
Thus, the domain D (Ajz) of the operator Ay represents

N
D (40) = { £ 3,1y € Hic: 3, € Uila)ify = (2.1t) € B B
p=1 N B (3.18)
ub = LAprle S (Ap) (L;\rp) uﬁ; 1<p<N;N< oo}

It is easy to show that the adjoint A3 of the operator Az (3.17), (3.18) is given

by
Aserf =ex ((@+ 13wy (a+ (A= a) (£) 7" ) ui ), (3.17%)
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and its domain equals

D (A43) = {Z exfp € Hx : My € Us(a); fp = (W, ul)) € E_ @ Eq;
= (3.18%)
uﬂ:L;\: (Né‘) a;S(Ap)L;pluli;l gpSN;Ngoo}.

Construct now the commutative colligation

2
_ 2 A _
Ag = <{ap };{Tp }1;{Np}§;F;HK€BE;{[ wp ﬁ( }} :
) + 1 (3.19)
= [ 2 2
Hi @ BT {Np}l : {7‘;}1 : {U;}1>,
where K, 1_, ¢4, and {A;, As} are given correspondingly by formulas (3.8),
(3.9) and (3.15)~(3.18), Q = Us(a).

Finally, prove that the characteristic function S () of the operator A; (3.15),
(3.16) of the colligation Ag coincides with S(\). (3.8) and (3.11) imply

T\ o—Niu_ = ey (u—,0).

Using the form of the operator ¢4 (3.9), we have

S
Vi Ty N = SOV K,
and thus S1(\) = S()). [

ITI. Formulas (3.10) imply

ext— — eql_
Rieyu. = ~— 2 —.
A—

N7'Nou_ — ey N7 Nou
Roeyu_ = eANl_lru_ + A e Cally 124 .

A—

Therefore, if on the subspace in Hp,
H; =span{eyu_ : A € Us(a);u_ € E_}, (3.20)

the linear bounded operators Npe u_ def exNpu—, p=1,2, and 'eju_ dof exl'u_
are given, then it is obvious that

{N1Ry — NyR; —T} f_ =0 (3.21)
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for all f- € Hj. Consider also the action of the resolvents R; and Ry on the
elements of another subspace in H,

H}: =span{eyus : A € Us(a);us € Ey}. (3.22)

Then (5.69) implies

_ 4 _*
(A — @) Riexuy = exuy + e Ny 'm0 S (N)uy;

f (3.23)
RoexQfus = exLiuy +eaNy "7y S (Nuy.
Therefore
T + +
RoexQiuy — Riex (A —a) Lug = eo Nyt <TQ— S\ =7 S (VLY ) uy.
(3.24)

Taking into account the form of the linear bundles Qj\' and L;\r (3.3), transform
the left-hand side of the equality

RgeAQiqu — (5\ — a) RleAL}\Lqu = (5\ — a) Roeyuq + (o — @) Roeyuy
_ ~ -1 . ~ ~
+(a—a) (A — a) Raey (N{‘) [y + | — af? Roe (Nf) Ty

+ (& — o) Raey <Nf) Njuy — (A — a)2 Rye) (Nf>_l T u,

— (A=) (a — @) Riey (Nl*>_1 T uy — (A —a) Ryey (Nf>_1 Njuy

~ 1.
=(A—0 {RQ@)\U+ + (& — a) Raey, (Nf) Muy

~ 1. - -1 .
—(a—a)Riey (N{“) T uy — Riey (Nf) N§u+}

5 +
+ (o —a) Ry [()\ —a) Rieyuy — eaN{ T S (/\)qu}

— ~ 1. N
+ | — al® Ry [()\ — @) Ryey <N1*) T uy — eq Ny b7y g‘ (A) (Nf) F*u+]

+ (& — a) Ry [()\ — ) Ryey (Nf)

_ (5\ — a) [6)\ (Nf)
in view of the first relation in (3.23). Define the linear operators Nf, NS‘,
and T* in Hf (3.22), N;e,\u+ def e)\N;qu, p=1,2, and T*eyu, def exI™ u .

1 NEd —-1_— + NEd 1 Tk
Nouy —eqNy 15 S (N) <N1> N2u+}

1. + ~ 1.
T uy +ea Nyt S () (Nf) I’*u+]
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Then, in view of the invariancy of the subspace H (3.20) with respect to the
resolvents R, and Rs, we have

_ - N1
RoexQiuy — (A — @) RiexL{uy = (A — a) {Rz + (@ —a) (Nf) IRy

+ (G- a) (N{‘>_1 PRy — () "NIR: 4 (a—a) RiRs+ |a — af?

-1 .

o« (N7) B Ry + (6 - o) (87 NjRiR — () r*} extis + [,

where f_ € Hy (3.20). Thus, we can be finally written relation (3.24) as

(A —a) (Nf)*l [NiRa (I + (0~ ) Ri) — N3 Ry (1 + (o — 6) Bo)

—I (I + (= a) Ra) (I + (0 — @) Ro) | exuy = g

where g_ € Hj. (3.20). Taking into account (3.21), we have

{NiR> — NoRy T} - () o {Nng (I+(a—a)Ry)

—~N;Ri(I+(a—a)Ry) —T*(I4 (a—a)Ry) (I + (a—a)Ry) peyuy = 0.

. (3.25)
Let dmFEy = ny < oco. By using Q (A, A2) and Q (A1, A2) (2.8), define the
following polynomials:

1 1
Q_ (/\1,)\2) = ()\1, /\Q)n_ Q <)\ + «, )\7 + Oé) = det [Nl)\z — NoA + F] ;
1 2

Qs (M5 22) = (MA2)™ Q <1 : (&/\I LN (a)\; L a)

— det [N;ug(u (@ —a) M) — N3 (14 (a — @) o) (3.26)
At (a—a)a) (1 + (o — @) Az)} .

Using Q_ (A1, A2) and Q4 (A1, A2) (3.26), construct the polynomial

P (A, ) ® QL (A, M) - Qo (M, ha). (3.27)

Formulate an analogue of the Hamilton—Caley theorem for a commutative system
of unbounded operators {A;, As}.
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Theorem 3.4. Let a simple commutative colligation A (1.1) be given such
that dim F+ = ny < oo, and the operators N, Ny are boundedly invertible. More-
over, suppose that relations (1.24) are true, and {K*J;K — 05}, {KT{K* — 7_2+}
are invertible. Then the resolvents {R1, Ra} of the main operators {Ai, A2} of
the colligation A (1.1) annihilate the polynomial

P (Ry, Ry) =0, (3.28)

where P (A1, A2) is given by (3.27) and constructed by the polynomials Q (A1, A2)
and Q (A1, A2) (2.8) using formulas (3.26).

Proof. Since
Q- (M, A2) g = B (A1, A2) {N1Ad2 — NoAy —T'},
where B (A1, A2) is a matrix-valued polynomial of A\;, A2, then (3.21) implies
Q- (B, Re) [-=0
for all f_ € H, (3.20). Similar considerations, by using (3.25), show that
P(Ri,R2) f+ =0

for all fy € Hj: (3.22). And since the closed linear span H?é generates the whole
space Hpy, we finally obtain

P(R1,R2) f=0
for all f € Hg. Application of Theorem 2.4 finishes the proof. [

Suppose that the characteristic function S(\) (2.3) is such that Si(«) is
invertible, then the intertwining condition 1) (2.51) implies that n = n_ = ny
and Q (A1, A2). Therefore polynomial (3.27) in this case is given by

P (A1, A2) = Q= (A1, A2) - Qp (A1, A2), (3.29)

where Q4 (A1, \2) are defined by the polynomial Q (A1, A2) (2.8) using formulas
(3.26). Let

_ Ap
1t (a—a) N

wp , p=12. (3.30)

Then it is obvious that the inverse transform to (3.30) is equal to

Ay = - . op=1,2. (3.31)
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It is easy to see that

P(Al,Ag):P< _w1 _ _w2 )
2

l+(@a—a)w 1+ (@—a)w
wa w1 1
=det |V —I'| - det
T4 (a—a)my 1+ (a— a) wy ] {1—1—(07—04)1171
1 -2
Niws — N. -] =(1 A — Q)W " (1
ey N N - T = (0 @0 m)
+ (@ — ) ) 2" P (wr, wy).
Thus, polynomial (3.29) has the “antiholomorphic involution”
1 ~ _ \2n 1 ~ _ 2nP Wy Wa
1+ (@ =)o) (14 (@ - @) ) P (o 1 e

=P (wl, ’wg) (3.32)
relatively to transform (3.30).

As known, the broken-linear transformation (3.30) is a holomorphic trans-
formation of the generalized circle into the circle and its boundary (circle) is
invariant relatively to this transformation. To find this circle, multiply both
sides of the equality

A
A= — -
1+ (@—a)X
by & — a. Then, after elementary transformations, we obtain

1
1 —A)AN= ——.
+la-a) 1+ (a@a—a)A
1
This signifies that £ = 1 + (o — &) A satisfies the relation ¢ = ? therefore &
belongs to the unit circle T. Thus, we obtain the circle
—1
Ta:{Azf _ec:|g|:1}, (3.33)
a—a

the radius r of which is equal to 7 = |[2Im a|~! and the center T, (3.33) is in the
point ¢ (when o € C,) or in the point —i (when o € C_). It is obvious that the
transformation (3.30) written in the form

_ 1

EEECET

represents the inversion relatively to the circle T, (3.33).

Theorem 3.5. The polynomial P (A1, A2) (3.29) has the antiholomorphic
involution (3.32) given by inversion (3.30) relative to the circle Ty, (3.33).

1+ (a—a)w
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