Properties of Characteristic Function of Commutative System of Unbounded Nonselfadjoint Operators

V.A. Zolotarev
Department of Higher Mathematics and Informatics
V.N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61077, Ukraine
Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering National Academy of Sciences of Ukraine
47 Lenin Ave., Kharkiv, 61103, Ukraine
E-mail:Vladimir.O.Zolotarev@univer.kharkov.ua

Received April 1, 2009

Abstract

A class of characteristic functions corresponding to commutative systems of unbounded nonselfadjoint operators is studied. The theorem on unitary equivalence is proved. The class of functions corresponding to these commutative systems of unbounded nonselfadjoint operators is described. There is obtained an analogue of the Hamilton-Caley theorem demonstrating that in the case of finite dimensionality of deficient subspaces there exists such a polynomial $P\left(\lambda_{1}, \lambda_{2}\right)$ that annihilates the resolvents $R_{k}=\left(A_{k}-\alpha I\right)^{-1}$; $P\left(R_{1}, R_{2}\right)=0$.

Key words: commutative system, unbounded operators, characteristic function.

Mathematics Subject Classification 2000: 47A45.
In [1], M.S. Livšic introduced an effective method of study of unbounded nonselfadjoint operators which was further developed by A.V. Kuzhel [2, 3], A.V. Shtraus, E.R. Tsekanovsky, and Yu.L. Shmul'yan [5]. Another approach to the studying of unbounded nonselfadjoint operators based on the analysis of the boundary value space was developed in the works by V.A. Derkach and M.M. Malamud which resulted in the analytic formalism for studying the properties of Weyl functions. The dissipative Srödinger operator and its functional model was studied by B.S. Pavlov [7] and his disciples. In the previous work [11] the author suggested a method of study of commutative system of nonselfadjoint unbounded operators which was based on the concepts of commutative colligation and open system associated with it. The paper consists of three parts. The first one includes the necessary facts on the commutative systems
of unbounded nonselfadjoint operators. In Section 2 the main properties of the characteristic function of commutative colligations are studied, the complete set of invariants of commutative system of unbounded nonselfadjoint operators is defined and the theorem on the unitary equivalence is proved. It turned out that the characteristic function, besides the traditional J-properties, must satisfy three additional relations, which are the corollary of the commutative property of the initial operator system. Section 3 is dedicated to the description of the class of functions that are characteristic for commutative colligations. An analogue of the Hamilton-Caley theorem is proved, namely, it is proved that in the case of the finiteness of the outer spaces there exists the polynomial $P\left(\lambda_{1}, \lambda_{2}\right)$ such that $P\left(R_{1}, R_{2}\right)=0$, where $R_{k}=\left(A_{k}-\alpha I\right)^{-1}$ is the resolvent of $A_{k}, k=1,2$. It is determined that the polynomial $P\left(\lambda_{1}, \lambda_{2}\right)$ has the "involution" generated by the inversion with respect to some circle.

1. Preliminary Information

I. Recall the main definitions and statements about commutative systems of nonselfadjoint unbounded operators given in [11].

Definition 1 [11]. Let a system of the linear unbounded operators $\left\{A_{1}, A_{2}\right\}$ be defined in a Hilbert space H such that: a) the domain $\mathfrak{D}\left(A_{p}\right)$ of the operator A_{p} is dense in $\left.H, \overline{\mathfrak{D}\left(A_{p}\right)}=H, p=1,2 ; b\right)$ every operator A_{p} is closed in H, $p=1,2$; c) there exists the nonempty domain $\Omega \subset \mathbb{C} \backslash \mathbb{R}$ such that the resolvents $R_{p}(\lambda)=\left(A_{p}-\lambda I\right)^{-1}$ are regular for all $\left.\lambda \in \Omega, p=1,2 ; d\right)$ at least in one point $\alpha \in \Omega$, the resolvents $R_{1}\left(=R_{1}(\alpha)\right), R_{2}\left(=R_{2}(\alpha)\right)$ commute.

And let the Hilbert spaces $E_{ \pm}$and the linear bounded operators $\psi_{-}: E_{-} \rightarrow H$, $\psi_{+}: H \rightarrow E_{+}$and $\left\{\sigma_{p}^{-}\right\}_{1}^{2},\left\{\tau_{p}^{-}\right\}_{1}^{2},\left\{N_{p}\right\}_{1}^{2}, \Gamma: E_{-} \rightarrow E_{-} ;\left\{\sigma_{p}^{+}\right\}_{1}^{2} ;\left\{\tau_{p}^{+}\right\}_{1}^{2},\left\{\tilde{N}_{p}\right\}_{1}^{2}$, $\tilde{\Gamma}: E_{+} \rightarrow E_{+}$be given, $\left\{\sigma_{p}^{ \pm}\right\}_{1}^{2}$ and $\left\{\tau_{p}^{ \pm}\right\}$be selfadjoint. The family

$$
\begin{gather*}
\Delta=\Delta(\alpha)=\left(\left\{\sigma_{p}^{-}\right\}_{1}^{2} ;\left\{\tau_{p}^{-}\right\}_{1}^{2} ;\left\{N_{p}\right\}_{1}^{2} ; \Gamma ; H \oplus E_{-} ;\left\{\left[\begin{array}{cc}
A_{p} & \psi_{-} \\
\psi_{+} & K
\end{array}\right]\right\}_{1}^{2} ;\right. \tag{1.1}\\
\left.H \oplus E_{+} ; \tilde{\Gamma} ;\left\{\tilde{N}_{p}\right\}_{1}^{2} ;\left\{\tau_{p}^{+}\right\}_{1}^{2} ;\left\{\sigma_{p}^{+}\right\}_{1}^{2}\right)
\end{gather*}
$$

is said to be a commutative colligation if there exists such $\alpha \in \Omega$ that:

1) $2 \operatorname{Im} \alpha \cdot N_{p}^{*} \psi_{-}^{*} \psi_{-} N_{p}=K^{*} \sigma_{p}^{+} K-\sigma_{p}^{-} ; 2 \operatorname{Im} \alpha \cdot \tilde{N}_{p} \psi_{+} \psi_{+}^{*} \tilde{N}_{p}^{*}=K \tau_{p}^{-} K^{*}-\tau_{p}^{+}$;
2) the operators

$$
\begin{gathered}
\varphi_{+}^{p}=\psi_{+}\left(A_{p}-\alpha I\right): \mathfrak{D}\left(A_{p}\right) \rightarrow E_{+}, \\
\left(\varphi_{-}^{p}\right)^{*}=\psi_{-}^{*}\left(A_{p}^{*}-\bar{\alpha} I\right): \mathfrak{D}\left(A_{p}^{*}\right) \rightarrow E_{-}
\end{gathered}
$$

are such that:
3) $K^{*} \sigma_{p}^{+} \varphi_{+}^{p}+N_{p}^{*} \psi_{-}^{*}\left(A_{p}-\bar{\alpha} I\right)=0 ; K \tau_{p}^{-}\left(\varphi_{-}^{p}\right)^{*}+\tilde{N}_{p} \psi_{+}\left(A_{p}^{*}-\alpha I\right)=0$;
4) $2 \operatorname{Im}\left\langle A_{p} h_{p}, h_{p}\right\rangle=\left\langle\sigma_{p}^{+} \varphi_{+}^{p} h_{p}, \varphi_{+}^{p}\right\rangle ; \forall h_{p} \in \mathfrak{D}\left(A_{p}\right)$;

$$
\begin{equation*}
-2 \operatorname{Im}\left\langle A_{p}^{*} \tilde{h}_{p}, \tilde{h}_{p}\right\rangle=\left\langle\tau_{p}^{-}\left(\varphi_{-}^{p}\right)^{*} \tilde{h}_{p},\left(\varphi_{-}^{p}\right)^{*} \tilde{h}_{p}\right\rangle ; \quad \forall \tilde{h}_{p} \in \mathfrak{D}\left(A_{p}^{*}\right), \tag{1.2}
\end{equation*}
$$

where $p=1,2$. And, moreover, the relations:
5) $R_{2} \psi_{-} N_{1}-R_{1} \psi_{-} N_{2}=\psi_{-} \Gamma ; \tilde{N}_{1} \psi_{+} R_{2}-\tilde{N}_{2} \psi_{+} R_{1}=\tilde{\Gamma} \psi_{+}$;
6) $\tilde{\Gamma} K-K \Gamma=i\left(\tilde{N}_{1} \psi_{+} \psi_{-} N_{2}-\tilde{N}_{2} \psi_{+} \psi_{-} N_{1}\right)$;
7) $K N_{p}=\tilde{N}_{p} K$; are true, where $R_{p}=R_{p}(\alpha), p=1,2$.

It is easy to show [11] that for every operator system satisfying the assumptions a)-d) there always exist Hilbert spaces $E_{ \pm}$and corresponding operators $\psi_{ \pm}$; $K ;\left\{\sigma_{p}^{ \pm}\right\}_{1}^{2},\left\{\tau_{p}^{ \pm}\right\}_{1}^{2} ;\left\{N_{p}\right\}_{1}^{2} ;\left\{\tilde{N}_{p}\right\}_{1}^{2} ; \Gamma ; \tilde{\Gamma} ;$ such that the relations 1)-7) (1.2) hold.

In the studying of nonselfadjoint operators the open systems associated with the corresponding colligations play an important role $[8,10]$.

Denote a rectangle in \mathbb{R}_{+}^{2} by $D=\left[0, T_{1}\right] \times\left[0, T_{2}\right], 0<T_{p}<\infty, p=1,2$, and let $u_{-}(t)$ be a vector function in E_{-}defined as $t=\left(t_{1}, t_{2}\right) \in D$. The system of the relations

$$
R_{\Delta}:\left\{\begin{array}{l}
i \partial_{1} h_{1}(t)+A_{1} y_{1}(t)=\alpha \psi_{-} N_{1} u_{-}(t) ; \tag{1.3}\\
y_{1}(t)=h_{1}(t)+\psi_{-} N_{1} u_{-}(t) \in \mathfrak{D}\left(A_{1}\right) ; \\
i \partial_{2} h_{2}(t)+A_{2} y_{2}(t)=\alpha \psi_{-} N_{2} u_{-}(t) ; \\
y_{2}(t)=h_{2}(t)+\psi_{-} N_{2} u_{-}(t) \in \mathfrak{D}\left(A_{2}\right) ; \\
h_{1}(0)=h_{1} ; \quad h_{2}(0)=h_{2} ; \quad t=\left(t_{1}, t_{2}\right) \in D
\end{array}\right.
$$

where $\partial_{p}=\partial / \partial t_{p}, p=1,2$, is said to be the open system $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$ associated with the colligation Δ (1.1) and, moreover, the vector functions $y_{1}(t)$ and $y_{2}(t)$ are such that there exists $y(t)$ from H, and

$$
\begin{equation*}
y_{1}(t)=R_{1} y(t) ; \quad y_{2}(t)=R_{2} y(t) . \tag{1.4}
\end{equation*}
$$

Thus, the functions $\left\{y_{p}(t)\right\}_{1}^{2}$ have a common generator $y(t)$, and (1.4) implies

$$
\begin{equation*}
R_{1} y_{2}(t)=R_{2} y_{1}(t) \tag{1.5}
\end{equation*}
$$

As for the initial data h_{1} and h_{2} in (1.3), we suppose

$$
\begin{equation*}
h_{p}=R_{p} y(0)-\psi_{-} N_{p} u_{-}(0), \quad p=1,2 . \tag{1.6}
\end{equation*}
$$

The mapping S_{Δ} is given by

$$
\begin{equation*}
S_{\Delta}: \quad u_{+}(t)=K u_{-}(t)-i \psi_{+} y(t) . \tag{1.7}
\end{equation*}
$$

Consider the differential operators

$$
\begin{equation*}
L_{p}=i \partial_{p}+\alpha, \quad p=1,2 . \tag{1.8}
\end{equation*}
$$

Then the main equations (1.3) can be written in the following form:

$$
\left\{\begin{array}{l}
L_{1} h_{1}(t)+y(t)=0 ; \tag{1.9}\\
R_{1} y(t)=h_{1}(t)+\psi_{-} N_{1} u_{-}(t) \in \mathfrak{D}\left(A_{1}\right) ; \\
L_{2} h_{2}(t)+y(t)=0 ; \\
R_{2} y(t)=h_{2}(t)+\psi_{-} N_{2} u_{-}(t) \in \mathfrak{D}\left(A_{2}\right) .
\end{array}\right.
$$

Thus, $L_{1} h_{1}(t)=-y(t)=L_{2} h_{2}(t)$. Therefore, taking into account (1.8) and (1.3), we obtain

$$
\left\{\begin{array}{l}
R_{1} L_{1} y(t)+y(t)=\psi_{-} N_{1} L_{1} u_{-}(t) ; \tag{1.10}\\
R_{2} L_{2} y(t)+y(t)=\psi_{-} N_{2} L_{2} u_{-}(t) ; \\
y(0)=y_{0} ; \quad t=\left(t_{1}, t_{2}\right) \in D \\
u_{+}(t)=K u_{-}(t)-i \psi_{+} y(t)
\end{array}\right.
$$

If $y(t)$ satisfies relations (1.10), then $h_{1}(t), h_{2}(t)(1.9)$ and, correspondingly, $y_{1}(t)$ and $y_{2}(t)$ (1.4) are uniquely found by this function.

Theorem 1.1 [11]. The equation system (1.3) is consistent if the vector function $u_{-}(t)$ is the solution of the equation

$$
\begin{equation*}
\left\{N_{1} L_{1}-N_{2} L_{2}+\Gamma L_{1} L_{2}\right\} u_{-}(t)=0 \tag{1.11}
\end{equation*}
$$

on condition that (1.4), (1.6) hold and L_{p} are given by (1.8), $p=1,2$.
Theorem 1.2 [11]. If (1.10) takes place for the vector function $y(t)$ and $u_{-}(t)$ is the solution of (1.11), then $u_{+}(t)(1.7)$ satisfies the equation

$$
\begin{equation*}
\left\{\tilde{N}_{1} L_{1}-\tilde{N}_{2} L_{1}+\tilde{\Gamma} L_{1} L_{2}\right\} u_{+}(t)=0 \tag{1.12}
\end{equation*}
$$

Theorem 1.3 [11]. For the open system $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$ (1.3), (1.7) associated with the colligation Δ (1.1), the conservation laws hold:

1) $\partial_{1}\left\|h_{p}(t)\right\|^{2}=\left\langle\sigma_{p}^{-} u_{-}(t), u_{-}(t)\right\rangle-\left\langle\sigma_{p}^{+} u_{+}(t), u_{+}(t)\right\rangle, \quad p=1,2$;
2) $\partial_{2}\left\{\left\langle\sigma_{1}^{-} L_{1} u_{-}(t), L_{1} u_{-}(t)\right\rangle-\left\langle\sigma_{1}^{+} L_{1} u_{+}(t), L_{1} u_{+}(t)\right\rangle\right\}$

$$
\begin{equation*}
=\partial_{1}\left\{\left\langle\sigma_{2}^{-} L_{2} u_{-}(t), L_{2} u_{-}(t)\right\rangle-\left\langle\sigma_{2}^{+} L_{2} u_{+}(t), L_{2} u_{+}(t)\right\rangle\right\} \tag{1.13}
\end{equation*}
$$

Along with the open system $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$ (1.3), (1.7), describing the evolution generated by $\left\{A_{1}, A_{2}\right\}$, consider also the dual situation corresponding to the dynamics set by the adjoint operator system $\left\{A_{1}^{*}, A_{2}^{*}\right\}$.

Let the vector function $\tilde{u}_{+}(t)$ in E_{+}be specified in the rectangle $D=\left[0, T_{1}\right] \times$ $\left[0, T_{2}\right]$ from $\mathbb{R}_{+}^{2}, t=\left(t_{1}, t_{2}\right) \in D, 0<T_{p}<\infty ; p=1,2$. The equation system

$$
R_{\Delta}^{+}:\left\{\begin{array}{l}
i \partial_{1} \tilde{h}_{1}(t)-A_{1}^{*} \tilde{y}_{1}(t)=-\overline{\alpha_{1}} \psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{+}(t) ; \tag{1.14}\\
\tilde{y}_{1}(t)=\psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{+}(t)-\tilde{h}_{1}(t) \in \mathfrak{D}\left(A_{1}^{*}\right) ; \\
i \partial_{2} \tilde{h}_{2}(t)-A_{2}^{*} \tilde{y}_{2}(t)=-\bar{\alpha} \psi_{+}^{*} \tilde{N}_{2}^{*} \tilde{u}_{+}(t) ; \\
\tilde{y}_{2}(t)=\psi_{+}^{*} \tilde{N}_{2}^{*} u_{+}(t)-\tilde{h}_{2}(t) \in \mathfrak{D}\left(A_{2}^{*}\right) ; \\
\tilde{h}_{1}(T)=\tilde{h}_{1} ; \quad \tilde{h}_{2}(T)=\tilde{h}_{2} ; \quad t=\left(t_{1}, t_{2}\right) \in D
\end{array}\right.
$$

where, as usual, $\partial_{p}=\partial / \partial t_{p}, p=1,2$, and $\tilde{y}_{1}(t)$ and $\tilde{y}_{2}(t)$ are such that

$$
\begin{equation*}
\tilde{y}_{1}(t)=R_{1}^{*} \tilde{y}(t) ; \quad \tilde{y}_{2}(t)=R_{2}^{*} \tilde{y}(t) ; \tag{1.15}
\end{equation*}
$$

is said to be the dual open system $F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}, F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}$associated with the colligation $\Delta(1.1)$. The vector functions $\left\{\tilde{y}_{p}(t)\right\}_{1}^{2}$ have the common generator $\tilde{y}(t) \in H$, besides,

$$
\begin{equation*}
R_{1}^{*} \tilde{y}_{2}(t)=R_{2}^{*} \tilde{y}_{1}(t) \tag{1.16}
\end{equation*}
$$

The initial data $\tilde{h}_{1}, \tilde{h}_{2}$ of problem (1.14) are found from the equalities

$$
\begin{equation*}
\tilde{h}_{p}=\psi_{+}^{*} \tilde{N}_{p}^{*} u_{+}(T)-R_{p}^{*} \tilde{y}(T), \quad p=1,2 \tag{1.17}
\end{equation*}
$$

The mapping S_{Δ}^{+}is given by

$$
\begin{equation*}
S_{\Delta}^{+}: \quad \tilde{u}_{-}(t)=K^{*} \tilde{u}_{+}(t)+i \psi_{-}^{*} \tilde{y}(t) \tag{1.18}
\end{equation*}
$$

Consider the differential operators

$$
\begin{equation*}
L_{p}^{+}=i \partial_{p}+\bar{\alpha}, \quad p=1,2 \tag{1.19}
\end{equation*}
$$

Similarly to (1.10), we obtain that the vector function $\tilde{y}(t)$ satisfies the relations

$$
\left\{\begin{array}{l}
R_{1}^{*} L_{1}^{+} \tilde{y}(t)+\tilde{y}(t)=\psi_{+}^{*} \tilde{N}_{1}^{*} L_{1}^{+} \tilde{u}_{+}(t) \tag{1.20}\\
R_{2}^{*} L_{2}^{*} \tilde{y}(t)+\tilde{y}(t)=\psi_{+}^{*} \tilde{N}_{2}^{*} L_{2}^{+} \tilde{u}_{+}(t) \\
\tilde{y}(T)=\tilde{y}_{T} ; \quad t=\left(t_{1}, t_{2}\right) \in D \\
\tilde{u}_{-}(t)=K^{*} \tilde{u}_{+}(t)+i \psi_{-}^{*} \tilde{y}(t)
\end{array}\right.
$$

Using (1.20), it is easy to obtain the analogues of Theorems 1.1-1.3.
Theorem 1.4 [11]. The equation system (1.20) is consistent if $\tilde{u}_{+}(t)$ satisfies the equation

$$
\begin{equation*}
\left\{\tilde{N}_{1}^{*} L_{1}^{+}-\tilde{N}_{2}^{*} L_{2}^{+}+\tilde{\Gamma}^{*} L_{1}^{+} L_{2}^{+}\right\} \tilde{u}_{+}(t)=0 \tag{1.21}
\end{equation*}
$$

on condition that (1.15) and (1.17) take place.

Theorem 1.5 [11]. Let $\tilde{y}(t)$ be the solution of (1.20) and let $\tilde{u}_{+}(t)$ satisfy equation (1.21), then for the vector function $\tilde{u}_{-}(t)$ (1.18)

$$
\begin{equation*}
\left\{N_{1}^{*} L_{1}^{+}-N_{2}^{*} L_{2}^{+}+\Gamma^{*} L_{1}^{+} L_{2}^{+}\right\} \tilde{u}_{-}(t)=0 \tag{1.22}
\end{equation*}
$$

takes place.
Theorem 1.6 [11]. For the dual open system $F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}$(1.14)-(1.18), the conservation laws are true:

1) $\quad \partial_{p}\left\|\tilde{h}_{p}(t)\right\|^{2}=\left\langle\tau_{p}^{-} \tilde{u}_{-}(t), \tilde{u}_{-}(t)\right\rangle-\left\langle\tau_{p}^{+} \tilde{u}_{+}(t), \tilde{u}_{+}(t)\right\rangle, \quad p=1,2$;
2) $\partial_{2}\left\{\left\langle\tau_{1}^{-} L_{1}^{+} \tilde{u}_{-}(t), L_{1}^{+} \tilde{u}_{-}(t)\right\rangle-\left\langle\tau_{1}^{+} L_{1}^{+} \tilde{u}_{+}(t), \tilde{u}_{+}(t)\right\rangle\right\}$

$$
\begin{equation*}
=\partial_{1}\left\{\left\langle\tau_{2}^{-} L_{2}^{+} \tilde{u}_{-}(t), L_{1}^{+} \tilde{u}_{-}(t)\right\rangle-\left\langle\tau_{2}^{+} L_{2}^{+} \tilde{u}_{+}(t), L_{2}^{+} \tilde{u}_{+}(t)\right\rangle\right\} \tag{1.23}
\end{equation*}
$$

O b s e rvation 1.1. The "external parameters" of the commutative colligation Δ (1.1) are not independent. Moreover, it is easy to show [11] that

$$
\begin{equation*}
\tilde{N}_{p}^{*}=\sigma_{p}^{+} \tilde{N}_{p}^{-1} \tau_{p}^{+} ; \quad N_{p}=\tau_{p}^{-}\left(N_{p}^{*}\right)^{-1} \sigma_{p}^{-}, \quad p=1,2 \tag{1.24}
\end{equation*}
$$

take place, besides, \tilde{N}_{p} and N_{p}^{*} are boundedly invertible on the images of $\tau_{p}^{+} E_{+}$ and $\sigma_{p}^{-} E_{-}, p=1,2$, respectively.

2. Main Properties of Characteristic Functions

I. Suppose that the function $u_{-}(t)$ in (1.10) is a plane wave, $u_{-}(t)=e^{i\langle\lambda, t\rangle} u_{-}(0)$, where $\langle\lambda, t\rangle=\lambda_{1} t_{1}+\lambda_{2} t_{2}, t=\left(t_{1}, t_{2}\right) \in D=\left[0, T_{1}\right] \times\left[0, T_{2}\right]$, and $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}$. And let $u_{+}(t)$ and $y(t)$ in (1.10) depend on t in a similar way, $u_{+}(t)=e^{i\langle\lambda, t\rangle} u_{+}(0), y(t)=e^{i\langle\lambda, t\rangle} y(0)$. Then (1.10) yields

$$
\left\{\begin{array}{l}
y(0)=-\left(\lambda_{1}-\alpha\right) T_{\lambda_{1}, \alpha} \psi_{-} N_{1} u_{-}(0) \tag{2.1}\\
y(0)=-\left(\lambda_{2}-\alpha\right) T_{\lambda_{2}, \alpha} \psi_{-} N_{2} u_{-}(0) \\
u_{+}(0)=K u_{-}(0)-i \psi_{+} y(0)
\end{array}\right.
$$

where $T_{\lambda_{p}, \alpha}=I+\left(\lambda_{p}-\alpha\right) R_{p}\left(\lambda_{p}\right)$, and $R_{p}\left(\lambda_{p}\right)=\left(A_{p}-\lambda_{p} I\right)^{-1}$ is the resolvent of $A_{p}, \lambda_{p} \in \Omega, p=1,2$. The concordance of two different presentations for $y(0)$ (2.1) means that

$$
\left(\lambda_{1}-\alpha\right) T_{\lambda_{1}, \alpha} \psi_{-} N_{1} u_{-}(0)=\left(\lambda_{2}-\alpha\right) T_{\lambda_{2}, \alpha} \psi_{-} N_{2} u_{-}(0)
$$

Multiplying this equality by $T_{\alpha, \lambda_{1}}, T_{\alpha, \lambda_{2}}$ and using 5) (1.2), we obtain the relation

$$
\begin{equation*}
\left\{\left(\lambda_{1}-\alpha\right) N_{1}-\left(\lambda_{2}-\alpha\right) N_{2}-\left(\lambda_{1}-\alpha\right)\left(\lambda_{2}-\alpha\right) \Gamma\right\} u_{-}(0)=0 \tag{2.2}
\end{equation*}
$$

which also follows from the consistency condition (1.11) with the function $u_{-}(t)$ depending on t in the chosen way. To every operator A_{p} of the commutative colligation Δ (1.1) there corresponds the characteristic function [11]

$$
\begin{equation*}
S_{p}\left(\lambda_{p}\right) \stackrel{\text { def }}{=} K+i\left(\lambda_{p}-\alpha\right) \psi_{+} T_{\lambda_{p}, \alpha} \psi_{-} N_{p} \quad(p=1,2) . \tag{2.3}
\end{equation*}
$$

Theorem 2.1. Let a point $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}$ be such that for $u_{-}(0)$ (2.2) takes place, then

$$
\begin{equation*}
S_{1}\left(\lambda_{1}\right) u_{-}(0)=S_{2}\left(\lambda_{2}\right) u_{-}(0) . \tag{2.4}
\end{equation*}
$$

The proof of the theorem follows from the last equation of (2.1).
If $u_{-}(0)$ satisfies equality (2.2), then (1.12) implies that the function $u_{+}(0)=$ $S_{1}\left(\lambda_{1}\right) u_{-}(0)$ has the similar property

$$
\begin{equation*}
\left\{\left(\lambda_{1}-\alpha\right) \tilde{N}_{1}-\left(\lambda_{2}-\alpha\right) \tilde{N}_{2}-\left(\lambda_{1}-\alpha\right)\left(\lambda_{2}-\alpha\right) \tilde{\Gamma}\right\} u_{+}(0)=0 \tag{2.5}
\end{equation*}
$$

Theorem 2.2. If the operators N_{1} and \tilde{N}_{1} of the commutative colligation Δ (1.1) are invertible, then for the characteristic function $S_{1}\left(\lambda_{1}\right)$ (2.3) the intertwining condition is true

$$
\begin{equation*}
S_{1}\left(\lambda_{1}\right) N_{1}^{-1}\left[\left(\lambda_{1}-\alpha\right) \Gamma+N_{2}\right]=\tilde{N}_{1}^{-1}\left[\left(\lambda_{1}-\alpha\right) \tilde{\Gamma}+\tilde{N}_{2}\right] S_{1}\left(\lambda_{1}\right) . \tag{2.6}
\end{equation*}
$$

Proof. Equalities (2.2) and (2.5) imply

$$
\begin{aligned}
& \left(\lambda_{2}-\alpha\right)^{-1}\left(\lambda_{1}-\alpha\right) u_{-}(0)=N_{1}^{-1}\left[\left(\lambda_{1}-\alpha\right) \Gamma+N_{2}\right] u_{-}(0) \\
& \left(\lambda_{2}-\alpha\right)^{-1}\left(\lambda_{1}-\alpha\right) u_{+}(0)=\tilde{N}_{1}^{-1}\left[\left(\lambda_{1}-\alpha\right) \tilde{\Gamma}+\tilde{N}_{2}\right] u_{+}(0)
\end{aligned}
$$

Multiplying the first equality by $S_{1}\left(\lambda_{1}\right)$ and taking into account that $u_{+}(0)=$ $S_{1}\left(\lambda_{1}\right) u_{-}(0)$, we obtain relation (2.6).

If $\operatorname{dim} E_{ \pm}<\infty$, then the existence of non-trivial $u_{-}(0)$ and $u_{+}(0)$ satisfying (2.2) and (2.5), respectively, is possible if only $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}$ belongs to the algebraic curves

$$
\begin{align*}
& \mathbb{Q}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}: \mathbb{Q}\left(\lambda_{1}, \lambda_{2}\right)=0\right\} ; \\
& \widetilde{\mathbb{Q}}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}: \widetilde{\mathbb{Q}}\left(\lambda_{1}, \lambda_{2}\right)=0\right\} \tag{2.7}
\end{align*}
$$

given by the polynomials

$$
\begin{align*}
& \mathbb{Q}\left(\lambda_{1}, \lambda_{2}\right) \stackrel{\text { def }}{=} \operatorname{det}\left[\left(\lambda_{1}-\alpha\right) N_{1}-\left(\lambda_{2}-\alpha\right) N_{2}-\left(\lambda_{1}-\alpha\right)\left(\lambda_{2}-\alpha\right) \Gamma\right] \\
& \tilde{\mathbb{Q}}\left(\lambda_{1}, \lambda_{2}\right) \stackrel{\text { def }}{=} \operatorname{det}\left[\left(\lambda_{1}-\alpha\right) \tilde{N}_{1}-\left(\lambda_{2}-\alpha\right) \tilde{N}_{2}-\left(\lambda_{1}-\alpha\right)\left(\lambda_{2}-\alpha\right) \tilde{\Gamma}\right] . \tag{2.8}
\end{align*}
$$

The intertwining condition (2.6) yields that the characteristic function $S_{1}\left(\lambda_{1}\right)$ (2.3) maps the root subspaces of the linear bundles $N_{1}^{-1}\left[\left(\lambda_{1}-\alpha\right) \Gamma+N_{2}\right]$ and $\tilde{N}_{1}\left[\left(\lambda_{1}-\alpha\right) \tilde{\Gamma}+\tilde{N}_{2}\right]$ one into another. If $S_{1}\left(\lambda_{1}\right)$ is invertible at least in one point of the holomorphy from Ω, then $\operatorname{dim} E_{-}=\operatorname{dim} E_{+}<\infty$ and the polynomials (2.8) coincide, $\mathbb{Q}\left(\lambda_{1}, \lambda_{2}\right)=\tilde{\mathbb{Q}}\left(\lambda_{1}, \lambda_{2}\right)$.
II. For the dual open system $F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}$(1.14)-(1.18), consider the case of $\tilde{u}_{+}(t)=e^{i\langle\bar{\lambda}, t-T\rangle} u_{+}(T)$, where $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}, t=\left(t_{1}, t_{2}\right) \in D$, $\langle\bar{\lambda}, t-T\rangle=\bar{\lambda}_{1}\left(t_{1}-T_{1}\right)+\bar{\lambda}_{2}\left(t_{2}-T_{2}\right)$. Suppose that $\tilde{y}(t)=e^{i\langle\bar{\lambda}, t-T\rangle} \tilde{y}(T)$, $\tilde{u}_{-}(t)=e^{i\langle\bar{\lambda}, t-T\rangle} \tilde{u}_{-}(T)$, then from (1.20) we obtain

$$
\left\{\begin{array}{l}
\tilde{y}(T)=-\left(\bar{\lambda}_{1}-\bar{\alpha}\right) T_{\lambda_{1}, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{+}(T) ; \tag{2.9}\\
y(T)=-\left(\bar{\lambda}_{2}-\bar{\alpha}\right) T_{\lambda_{2}, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{2}^{*} \tilde{u}_{+}(T) ; \\
\tilde{u}_{-}(T)=K^{*} \tilde{u}_{+}(T)+i \psi_{-}^{*} \tilde{y}(T) .
\end{array}\right.
$$

Double representation of $\tilde{y}(T)$ in (2.9) signifies that

$$
\begin{equation*}
\left\{\left(\bar{\lambda}_{1}-\bar{\alpha}\right) \tilde{N}_{1}^{*}-\left(\bar{\lambda}_{2}-\bar{\alpha}\right) \tilde{N}_{2}^{*}-\left(\bar{\lambda}_{1}-\bar{\alpha}\right)\left(\bar{\lambda}_{2}-\bar{\alpha}\right) \tilde{\Gamma}^{*}\right\} \tilde{u}_{+}(T)=0, \tag{2.10}
\end{equation*}
$$

which is the corollary of the consistency condition (1.21).
Similarly to the statement of Theorem 2.1,

$$
\begin{equation*}
\stackrel{+}{S}_{1}\left(\lambda_{1}\right) \tilde{u}_{+}(T)=\stackrel{+}{S}_{2}\left(\lambda_{2}\right) \tilde{u}_{+}(T) \tag{2.11}
\end{equation*}
$$

takes place on condition that $\tilde{u}_{+}(T)$ satisfies relation (2.10), where $\stackrel{+}{S}_{p}\left(\lambda_{p}\right)$ equals

$$
\begin{equation*}
\stackrel{+}{S} p\left(\lambda_{p}\right) \stackrel{\text { def }}{=} K^{*}-i\left(\bar{\lambda}_{p}-\bar{\alpha}\right) \psi_{-}^{*} T_{\lambda_{p}, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{p}^{*}, \quad p=1,2 \tag{2.12}
\end{equation*}
$$

The functions $S_{p}(\lambda)(2.3)$ and $\stackrel{+}{S}_{p}\left(\lambda_{p}\right)(2.12)$ are linked to each other by the relations

$$
\begin{equation*}
N_{p}^{*} \stackrel{+}{S}_{p}\left(\lambda_{p}\right)=S_{p}^{*}\left(\lambda_{p}\right) \tilde{N}_{p}^{*}, \quad p=1,2 . \tag{2.13}
\end{equation*}
$$

The equality (1.22) implies that the vector function $\tilde{u}_{-}(T)=\stackrel{+}{S}_{1}\left(\lambda_{1}\right) \tilde{u}_{+}(T)$ satisfies the equality

$$
\begin{equation*}
\left\{\left(\bar{\lambda}_{1}-\bar{\alpha}\right) N_{1}^{*}-\left(\bar{\lambda}_{2}-\bar{\alpha}\right) N_{2}^{*}-\left(\bar{\lambda}_{1}-\bar{\alpha}\right)\left(\bar{\lambda}_{2}-\bar{\alpha}\right) \Gamma^{*}\right\} \tilde{u}_{-}(T)=0 . \tag{2.14}
\end{equation*}
$$

For $\stackrel{+}{S}_{1}\left(\lambda_{1}\right)(2.12)$, the intertwining property also holds

$$
\stackrel{+}{S}_{1}\left(\lambda_{1}\right)\left(N_{1}^{*}\right)^{-1}\left[\left(\bar{\lambda}_{1}-\bar{\alpha}\right) \tilde{\Gamma}^{*}+\tilde{N}_{2}^{*}\right]=\left(N_{1}^{*}\right)^{-1}\left[\left(\bar{\lambda}_{1}-\bar{\alpha}\right) \Gamma^{*}+N_{2}^{*}\right] \stackrel{+}{S}_{1}\left(\lambda_{1}\right),
$$

which follows from (2.6) if one takes into account (2.13). The algebraic curves corresponding to $(2.10),(2.14)$ are the complex adjoints of the curves (2.7).
III. 1) (1.13) and 1) (1.23) imply

$$
\begin{gather*}
\frac{\sigma_{1}^{-}-S_{1}^{*}\left(w_{1}\right) \sigma_{1}^{+} S_{1}\left(\lambda_{1}\right)}{i\left(\lambda_{1}-\bar{w}_{1}\right)}=N_{1}^{*} \psi_{-}^{*} T_{w_{1}, \alpha}^{*} T_{\lambda_{1}, \alpha} \psi-N_{1} ; \\
\frac{\left(\stackrel{+}{S}_{1}\left(w_{1}\right)\right)^{*} \tau_{1}^{-} \stackrel{+}{S}_{1}\left(\lambda_{1}\right)-\tau_{1}^{+}}{i\left(\bar{\lambda}_{1}-w_{1}\right)}=\tilde{N}_{1} \psi_{+} T_{w_{1}, \alpha} T_{\lambda_{1}, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} ; \tag{2.15}\\
\frac{S_{1}\left(\lambda_{1}\right)-S_{1}\left(w_{1}\right)}{i\left(\lambda_{1}-w_{1}\right)}=\psi_{+} T_{w_{1}, \alpha} T_{\lambda_{1}, \alpha} \psi_{-} N_{1} .
\end{gather*}
$$

Define the operator function $K(\lambda, w)$ in $E_{-} \oplus E_{+}$

$$
K(\lambda, w) \stackrel{\text { def }}{=}\left[\begin{array}{cc}
\frac{\sigma_{1}^{-}-S_{1}^{*}(w) \sigma_{1}^{+} S_{1}(\lambda)}{i(\lambda-\bar{w})} & N_{1}^{*} \frac{\stackrel{+}{S}_{1}(\lambda)-\stackrel{+}{S}_{1}(w)}{i(\bar{w}-\bar{\lambda})} \tag{2.16}\\
\tilde{N}_{1} \frac{S_{1}(\lambda)-S_{1}(w)}{i(\lambda-w)} & \frac{\left(\stackrel{+}{S}_{1}(w)\right)^{*} \tau_{1}^{-} \stackrel{+}{S}_{1}(\lambda)-\tau_{1}^{+}}{i(\bar{\lambda}-w)}
\end{array}\right] .
$$

It is obvious that the kernel $K(\lambda, w)(2.16)$ is positively defined [10, 11] as λ, $w \in \Omega$ since $K(\lambda, w)=\Pi^{*}(w) \Pi(\lambda)$, where $\Pi(\lambda)=\left[T_{\lambda, \alpha} \psi_{-} N_{1}, T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*}\right]$ and $T_{\lambda, \alpha}=I+(\lambda-\alpha) R_{1}(\lambda)$.

A subspace $H_{1} \subseteq H$ is said to be a reducing one $[3,5,6]$ for a commutative system of the linear unbounded operators $\left\{A_{1}, A_{2}\right\}$ if there exists nonempty common domain of holomorphy Ω of resolvents $R_{p}(\lambda)=\left(A_{p}-\lambda I\right)^{1}$ such that in every point $\lambda \in \Omega R_{p}(\lambda) P_{1}=P_{1} R_{p}(\lambda), p=1,2$, where P_{1} is the orthoprojector on H_{1}.

For the commutative colligation Δ (1.1), define the subspace H_{1} in H :

$$
\begin{equation*}
H_{1}=\operatorname{span}\left\{R_{2}(w) R_{1}(\lambda) \psi_{-} u_{-}+R_{2}^{*}(\tilde{w}) R_{1}^{*}(\tilde{\lambda}) \psi_{+}^{*} u_{+}: u_{ \pm} \in E_{ \pm} ; \lambda, w, \tilde{\lambda}, \tilde{w} \in \Omega\right\} . \tag{2.1.1}
\end{equation*}
$$

Theorem 2.3. Let the operators N_{1} and \tilde{N}_{1} be invertible. Then the subspace H_{1} (2.17) reduces the commutative operator system $\left\{A_{1}, A_{2}\right\}$ of the colligation Δ (1.1), besides, the restriction of $\left\{A_{1}, A_{2}\right\}$ to $H_{0}=H \ominus H_{1}$ is the commutative system of selfadjoint operators.

Proof. The analyticity of the resolvents

$$
\begin{equation*}
R_{p}(\lambda)=\sum_{k=0}^{\infty}(\lambda-\alpha)^{k} R_{p}^{k+1}, \quad p=1,2, \tag{2.18}
\end{equation*}
$$

in the neighborhood $U_{\delta}(\alpha)=\{\lambda \in \Omega:|\lambda-\alpha|<\delta\}$ of the point $\alpha \in \Omega$ yields that the subspace $H_{1}(2.17)$ generates the vectors

$$
R_{2}^{m} R_{1}^{n} \psi_{-} u_{-}+\left(R_{2}^{*}\right)^{p}\left(R_{1}^{*}\right)^{q} \psi_{+}^{*} u_{+}
$$

where $u_{ \pm} \in E_{+} ; m, n, p, q \in \mathbb{Z}_{+}$. The equalities

$$
\begin{gather*}
R_{2} \psi_{-}=R_{1} \psi_{-} N_{2} N_{1}^{-1}+\psi_{-} \Gamma N_{1}^{-1} \\
R_{2}^{*} \psi_{+}^{*}=R_{1}^{*} \psi_{+}^{*} \tilde{N}_{2}^{*}\left(\tilde{N}_{1}^{*}\right)^{-1}+\psi_{+}^{*} \tilde{\Gamma}^{*}\left(\tilde{N}_{1}^{*}\right)^{-1} \tag{2.19}
\end{gather*}
$$

(taking into account 5) (1.2)) imply that the subspace $H_{1}(2.17)$ is given by

$$
\begin{equation*}
H_{1}=\operatorname{span}\left\{R_{1}^{n} \psi_{-} u_{-}+\left(R_{1}^{*}\right)^{m} \psi_{+}^{*} u_{+}: u_{ \pm} \in E_{ \pm} ; n, m \in \mathbb{Z}_{+}\right\} \tag{2.20}
\end{equation*}
$$

It is easy to ascertain [11] that the subspace $H_{1}(2.20)$ reduces A_{1}, besides, the restriction of A_{1} to $H_{0}=H \ominus H_{1}$ is a selfadjoint operator. Therefore the operator $T_{1}=I+i 2 \operatorname{Im} \alpha R_{1}$, being the Caley transform of the operator A_{1} restricted to H_{0}, is a unitary operator.

It remains to prove that the subspace $H_{1}(2.20)$ also reduces the operator A_{2} and that the restriction $\left.A_{2}\right|_{H_{0}}$ is a selfadjoint operator. The equalities (2.19) imply that to prove the reducibility of the A_{2} by the subspace $H_{1}(2.20)$, it is necessary to make sure that

$$
R_{2}\left(R_{1}^{*}\right)^{m} \psi_{+}^{*} u_{+} \in H_{1} ; \quad R_{2}^{*} R_{1}^{n} \psi_{-} u_{-} \in H_{1}
$$

for all $u_{ \pm} \in E_{ \pm}$and all $n, m \in \mathbb{Z}_{+}$. For instance, prove that

$$
\begin{equation*}
R_{2}^{*} R_{1}^{n} \psi_{-} u_{-} \in H_{1}, \quad \forall u_{-}, n \in \mathbb{Z}_{+} \tag{2.21}
\end{equation*}
$$

To do this, consider the following subspaces:

$$
L^{n}=\operatorname{span}\left\{R_{2}^{*} R_{1}^{n} \psi_{-} u_{-}: u_{-} \in E_{-}\right\}, \quad n \in \mathbb{Z}_{+}
$$

and let $L^{n}=L_{1}^{n} \oplus L_{0}^{n}$, where $L_{q}^{n}=P_{q} L^{n}$ and P_{q} is the orthoprojector on H_{q}, $q=0,1$. Since $H_{1}(2.20)$ reduces A_{1}, then $R_{1}^{*} L_{q}^{n} \subset H_{q}$ and $T_{1}^{*} L_{q}^{n} \subset H_{q}, q=0,1$, for all $n \in \mathbb{Z}_{+}$. Prove that $L_{0}^{n}=\{0\}$ for all $n \in \mathbb{Z}_{+}$, which signifies that inclusion (2.21) is true. The point 3) (1.2) yields that $T_{1}^{*} \psi_{-}=\psi_{+}^{*} \sigma_{1}^{+} K N_{1}^{-1}$, therefore $T_{1}^{*} R_{2}^{*} \psi_{-} u_{-}=-R_{2}^{*} \psi_{+}^{*} \sigma_{1}^{+} K N_{1}^{-1} u_{-} \in H_{1}$ and thus $T_{1}^{*} L_{0}^{0} \subseteq L_{1}^{0}$. This implies that $L_{0}^{0}=\{0\}$, in view of the unitarity of the restriction of T_{1}^{*} on H_{0}. Let, in view
of the mathematical induction principle, $L_{0}^{k}=\{0\}$ be proved as $k=0,1, \ldots, n$, now prove that $L_{0}^{n+1}=\{0\}$. Really,

$$
\begin{gathered}
T_{1}^{*} R_{2}^{*} R_{1}^{n+1} \psi_{-}=R_{2}^{*} T_{1}^{*} \frac{1}{i 2 \operatorname{Im} \alpha}\left(T_{1}-I\right) R_{1}^{n} \psi_{-}=\frac{1}{i 2 \operatorname{Im} \alpha} R_{2}^{*} T_{1}^{*} T_{1} R_{1}^{n} \psi_{-} \\
-\frac{1}{i 2 \operatorname{Im} \alpha} T_{1}^{*} R_{2}^{*} R_{1}^{n} \psi_{-}=\frac{1}{i} R_{2}^{*} B_{1} R_{1}^{n} \psi_{-}+\frac{1}{i 2 \operatorname{Im} \alpha} R_{2}^{*} R_{1}^{n} \psi_{-}-\frac{1}{i 2 \operatorname{Im} \alpha} T_{1}^{*} R_{2}^{*} R_{1}^{n} \psi_{-}
\end{gathered}
$$

where $B_{p}=i R_{p}-i R_{p}^{*}+2 \operatorname{Im} \alpha R_{p}^{*} R_{p}, \tilde{B}_{p}=i R_{p}-i R_{p}^{*}+2 \operatorname{Im} \alpha R_{p} R_{p}^{*}, p=1,2$ [11]. Using $B_{1}=\psi_{+}^{*} \sigma_{1}^{+} \psi_{-}$(see [11]), we obtain

$$
T_{1}^{*} L_{0}^{n+1} \subset \operatorname{span}\left\{L_{0}^{n}+T_{1}^{*} L_{0}^{n}\right\}=\{0\}
$$

and thus $L_{0}^{n+1}=\{0\}$ in view of unitarity of $\left.T_{1}^{*}\right|_{H_{0}}$.
To complete the proof of the theorem, it remains to determine that the restriction of A_{2} to H_{0} is a selfadjoint operator. Prove that the operator $T_{2}=$ $I+i 2 \operatorname{Im} \alpha \cdot R_{2}$ restricted to H_{0} is unitary. Since $B_{2} H=\psi_{+}^{*} \sigma_{2}^{+} \psi_{+} H$ and $\tilde{B}_{2} H=\psi_{-} \tau_{2}^{-} \psi_{-}^{*} H$ (see [11]) belong to H_{1} (2.20), then $H_{0} \subset \operatorname{Ker} B_{2}$ and $H_{0} \subset \operatorname{Ker} \tilde{B}_{2}$, what guarantees that the restriction of T_{2} to H_{0} is unitary.

The colligation Δ (1.1) is said to be simple if $H=H_{1}$, where H_{1} is given by (2.17).

Consider two commutative colligations Δ and $\hat{\Delta}$ (1.1) such that

$$
\begin{gathered}
E_{ \pm}=\hat{E}_{ \pm} ; \quad \sigma_{p}^{ \pm}=\hat{\sigma}_{p}^{ \pm} ; \quad \tau_{p}^{ \pm}=\hat{\tau}_{p}^{ \pm} ; \quad N_{p}=\hat{N}_{p} ; \quad \tilde{N}_{p}=\tilde{\hat{N}}_{p}, \quad p=1,2 \\
\Gamma=\hat{\Gamma} ; \quad \tilde{\Gamma}=\tilde{\hat{\Gamma}} ; \quad K=\hat{K}
\end{gathered}
$$

and, moreover, $\alpha=\hat{\alpha} \in \Omega \cap \hat{\Omega} \neq\{\emptyset\}$. These colligations are said to be unitarily equivalent if there exists such a unitary operator $U: H \rightarrow \hat{H}$ that

$$
\begin{gather*}
U A_{p}=\hat{A}_{p} U ; \quad U \mathfrak{D}\left(A_{p}\right)=\mathfrak{D}\left(\hat{A}_{p}\right) ; \quad U A_{p}^{*}=\hat{A}_{p}^{*} U \\
U \mathfrak{D}\left(A_{p}^{*}\right)=\mathfrak{D}\left(\hat{A}_{p}^{*}\right) \quad(p=1,2) ; \quad U \psi_{-}=\hat{\psi}_{-} ; \quad \hat{\psi}_{+} U=\psi_{+} \tag{2.22}
\end{gather*}
$$

It is easy to show that the characteristic functions of unitarily equivalent colligations Δ and $\hat{\Delta}$ coincide, $S_{1}\left(\lambda_{1}\right)=\hat{S}_{1}\left(\lambda_{1}\right)(2.3)$ for all $\lambda \in \Omega \cap \tilde{\Omega}$.

Theorem on the unitary equivalence 2.4. Let Δ and $\hat{\Delta}$ (1.1) be two simple commutative colligations such that $E_{ \pm}=\hat{E}_{ \pm} ; \sigma_{p}^{ \pm}=\hat{\sigma}_{p}^{ \pm} ; \tau_{p}^{ \pm}=\hat{p}^{ \pm} ; N_{p}=$ $\left.\hat{N}_{p} ; \tilde{N}_{p}=\tilde{\{ } \hat{N}_{p}\right\}, p=1,2 ; \Gamma=\hat{\Gamma} ; \tilde{\Gamma}=\tilde{\hat{\Gamma}} ;$ and $\alpha=\hat{\alpha} \in \Omega \cap \hat{\Omega}(\neq \emptyset)$. Then if the operators N_{1} and \tilde{N}_{1} are invertible and in some neighborhood $U_{\delta}(\alpha)$ of point α the characteristic functions coincide, $S_{1}\left(\lambda_{1}\right)=\hat{S}_{1}\left(\lambda_{1}\right)$ (2.3), the colligations Δ and $\hat{\Delta}$ are unitarily equivalent.

Proof. The coincidence of characteristic functions, $S_{1}\left(\lambda_{1}\right)=\hat{S}_{1}\left(\lambda_{1}\right)$, as $\lambda_{1} \in U \delta(\alpha)$ and N_{1}, \tilde{N}_{1} are unitary, and (2.15) imply that

$$
\begin{aligned}
& \psi_{-}^{*} T_{w_{1}, \alpha} T_{\lambda_{1}, \alpha} \psi_{-}=\hat{\psi}_{-}^{*} \hat{T}_{w_{1}, \alpha}^{*} \hat{T}_{\lambda_{1}, \alpha} \hat{\psi}_{-} ; \\
& \psi_{+} T_{w_{1}, \alpha} T_{\lambda_{1}, \alpha}^{*} \psi_{+}^{*}=\hat{\psi}_{+} \hat{T}_{w_{1}, \alpha} \hat{T}_{\lambda_{1}, \alpha} \hat{\psi}_{+}^{*} ; \\
& \psi_{+} T_{w_{1}, \alpha} T_{\lambda_{1}, \alpha} \psi_{-}=\hat{\psi}_{+} \hat{T}_{w, \alpha} \hat{T}_{\lambda_{1}, \alpha} \hat{\psi}_{-}
\end{aligned}
$$

for all $\lambda_{1}, w_{1} \in U_{\delta}(\alpha)$. Taking into account holomorphy (2.18) of the resolvents $R_{1}\left(\lambda_{1}\right)$ and $\hat{R}_{1}\left(\lambda_{1}\right)$ in the neighborhood $U_{\delta}(\alpha)$, we can rewrite these equalities in the equivalent form

$$
\begin{align*}
\psi_{-}^{*}\left(R_{1}^{*}\right)^{m} R_{1}^{n} \psi_{-} & =\hat{\psi}_{-}^{*}\left(\hat{R}_{1}^{*}\right)^{m} \hat{R}_{1}^{n} \hat{\psi}_{-} ; \\
\psi_{+} R_{1}^{m}\left(R_{1}^{*}\right)^{n} \psi_{+}^{*} & =\hat{\psi}_{+} \hat{R}_{1}^{m}\left(\hat{R}_{1}^{*}\right)^{n} \hat{\psi}_{+}^{*} ; \tag{2.23}\\
\psi_{+} R_{1}^{m} R_{1}^{n} \psi_{-} & =\hat{\psi}_{+} \hat{R}_{1}^{m} \hat{R}_{1}^{n} \hat{\psi}_{-}
\end{align*}
$$

for all $n, m \in \mathbb{Z}_{+}$. Define the linear operator $U: H \rightarrow \hat{H}$

$$
\begin{equation*}
U R_{1}^{n} \psi_{-} u_{-} \stackrel{\text { def }}{=} \hat{R}_{1}^{n} \hat{\psi}_{-} u_{-} ; \quad u\left(R_{1}^{*}\right)^{m} \psi_{+}^{*} u_{+} \stackrel{\text { def }}{=}\left(\hat{R}_{1}^{*}\right)^{m} \hat{\psi}_{+}^{*} u_{+}, \tag{2.24}
\end{equation*}
$$

where $u_{ \pm} \in E_{ \pm}$and $n, m \in \mathbb{Z}_{+}$. The simplicity of the colligations $\Delta, \hat{\Delta}$ and the invertibility of N_{1}, \tilde{N}_{1} yield that the spaces H and \hat{H} are given by (2.20), and thus the operator U (2.24) is unitary in view of (2.23). It is easy to prove (see [11]) that

$$
U R_{1}=\hat{R}_{1} U ; \quad U \psi_{-}=\hat{\psi}_{-} ; \quad \hat{\psi}_{+} U=\psi_{+} .
$$

It remains to prove that $U R_{2}=\hat{R}_{2} U$. And since the application of the resolvent $R_{2}\left(R_{2}^{*}\right)$ to the vectors $R_{1}^{n} \psi_{-} u$ (correspondingly, to $\left.\left(R_{1}^{*}\right)^{m} \psi_{+}^{*} u_{+}\right)$is expressed also in terms of these vectors, then it is obvious that

$$
\begin{equation*}
\left(U R_{2}-\hat{R}_{2} U\right) R_{1}^{n} \psi_{-} u_{-}=0 ; \quad\left(U R_{2}^{*}-\hat{R}_{2}^{*} U\right)\left(R_{1}^{*}\right)^{m} \psi_{+}^{*} u_{+}=0 \tag{2.25}
\end{equation*}
$$

for all $u_{ \pm} \in E_{+}$and all $n, m \in \mathbb{Z}_{+}$. Thus, it is necessary to prove that

$$
\begin{equation*}
\left(U R_{2}-\hat{R}_{2} U\right)\left(R_{1}^{*}\right)^{m} \psi_{+}^{*} u_{+}=0 \tag{2.26}
\end{equation*}
$$

for all $u_{+} \in E_{+}$and all $m \in \mathbb{Z}_{+}$. It is easy to see that when $m=0$

$$
\begin{aligned}
& \hat{T}_{1}\left(U R_{2}-\hat{R}_{2} U\right) \psi_{+}^{*} u_{+}=\left(U R_{2}-\hat{R}_{2} U\right) T_{1} \psi_{+}^{*} u_{+} \\
& \quad=-\left(U R_{2}-\hat{R}_{2} U\right) \psi_{-} \tau_{1}^{-} K^{*}\left(\tilde{N}_{1}^{*}\right)^{-1} u_{+}=0
\end{aligned}
$$

in view of (2.25) and $T_{1} \psi_{+}^{*} \tilde{N}_{1}^{*}+\psi_{-} \tau_{1}^{-} K^{*}=0$ (see 3) (1.2)). Prove that this implies (2.26) when $m=0$. One can see that

$$
\begin{gathered}
0=\hat{T}_{1}^{*} T_{1}\left(U R_{2}-\hat{R}_{2} U\right) \psi_{+}^{*}=2 \operatorname{Im} \alpha \hat{B}_{1}\left(U R_{2}-\hat{R}_{2} U\right) \psi_{+}^{*} \\
+\left(U R_{2}-\hat{R}_{2} U\right) \psi_{+}^{*},
\end{gathered}
$$

and to prove (2.26) $(m=0)$, it is necessary to establish that

$$
\hat{\psi}_{+}^{*} \sigma_{1}^{+} \hat{\psi}_{+}\left(U R_{2}-\hat{R}_{2} U\right) \psi_{+}^{*}=0
$$

And the last,

$$
\hat{\psi}_{+}\left(U R_{2}-\hat{R}_{2} U\right) \psi_{+}^{*}=\psi_{+} R_{2} \psi_{+}^{*}-\hat{\psi}_{+} \hat{R}_{2} \hat{\psi}_{+}=0
$$

follows easily from the definition of U (2.24) and formulas (2.19), (2.23). Thus, relation (2.26) for $m=0$ is proved.

Using the principle of mathematical induction, suppose that equality (2.26) is already proved for $m=n$; prove that it is also true for $m=n+1$. It is easy to see that

$$
\begin{gathered}
\hat{T}_{1}\left(U R_{2}-\hat{R}_{2} U\right)\left(R_{1}^{*}\right)^{n+1} \psi_{+}^{*} u_{+}=\left(U R_{2}-\hat{R}_{2} U\right) T_{1} R_{1}^{*}\left(R_{1}^{*}\right)^{n} \psi_{+}^{*} u_{+} \\
=\frac{1}{i 2 \operatorname{Im} \alpha}\left(U R_{2}-\hat{R}_{2} U\right) T_{1}\left(T_{1}^{*}-I\right)\left(R_{1}^{*}\right)^{n} \psi_{+}^{*} u_{+} \\
=i\left(U R_{2}-\hat{R}_{2} U\right) \tilde{B}_{1}\left(R_{1}^{*}\right)^{n} \psi_{+}^{*} u_{+} \\
=i\left(U R_{2}-\hat{R}_{2} U\right) \psi_{-} \tau_{1}^{-} \psi_{-}^{*}\left(R_{1}^{*}\right)^{n} \psi_{+}^{*} u_{+}=0
\end{gathered}
$$

in view of the induction supposition and of (2.25). And since

$$
\begin{gathered}
0=\hat{T}_{1}^{*} \hat{T}_{1}\left(U R_{2}-\hat{R}_{2} U\right)\left(R_{1}^{*}\right)^{n+1} \psi_{+}^{*} u_{+} \\
=2 \operatorname{Im} \alpha \hat{B}_{1}\left(U R_{2}-\hat{R}_{2} U\right)\left(R_{1}^{*}\right)^{n+1} \psi_{+}^{*} u_{+}+\left(U R_{2}-\hat{R}_{2} U\right)\left(R_{1}^{*}\right)^{n+1} \psi_{+}^{*} u_{+}
\end{gathered}
$$

then to prove (2.26) for $m=n+1$, it is sufficient to prove that

$$
\hat{\psi}_{+}\left(U R_{2}-\hat{R}_{2} U\right)\left(R_{1}^{*}\right)^{n+1} \psi_{+}^{*}=\psi_{+} R_{2}\left(R_{1}^{*}\right)^{n+1} \psi_{+}^{*}-\hat{\psi}_{+} \hat{R}_{2}\left(\hat{R}_{1}^{*}\right)^{n+1} \hat{\psi}_{+}^{*}=0
$$

and this obviously follows from (2.23) and (2.19).

Thus, the characteristic function $S_{1}\left(\lambda_{1}\right)(2.3)$ and the "external set of parameters" $\left\{\sigma_{p}^{ \pm}\right\}_{1}^{2} ;\left\{\tau_{p}^{ \pm}\right\}_{1}^{2} ;\left\{N_{p}\right\}_{1}^{2} ;\left\{\tilde{N}_{p}\right\}_{1}^{2} ; \Gamma ; \tilde{\Gamma}$, on condition that the operators N_{1} and \tilde{N}_{1} are invertible, define the simple commutative colligation Δ (1.1) up to the unitary equivalence.
IV. Since $S_{1}\left(\lambda_{1}\right)(2.3)$ is the main analytic object, in terms of which the simple commutative colligation Δ (1.1) is characterized, here we describe the main properties of the function

$$
\begin{equation*}
S_{1}(\lambda)=K+i(\lambda-\alpha) \psi_{+} T_{\lambda, \alpha} \psi_{-} N_{1}, \tag{2.27}
\end{equation*}
$$

where for simplicity we denote $T_{\lambda, \alpha}=I+(\lambda-\alpha) R_{1}(\lambda)$.
Consider the generating vector function (2.1)

$$
\begin{equation*}
y=-(\lambda-\alpha) T_{\lambda, \alpha} \psi_{-} N_{1} u_{-}, \tag{2.28}
\end{equation*}
$$

where $\lambda, \alpha \in \Omega$, and $u_{-} \in E_{-}$. As in (1.4), using y (2.28) construct

$$
\begin{equation*}
y_{1}=R_{1} y=-(\lambda-\alpha) R_{1}(\lambda) \psi_{-} N_{1} u_{1} \in \mathfrak{D}\left(A_{1}\right) . \tag{2.29}
\end{equation*}
$$

Then the colligation relation 4) (1.2),

$$
\begin{equation*}
2 \operatorname{Im}\left\langle A_{1} y_{1}, y_{1}\right\rangle=\left\langle\sigma_{1}^{+} \varphi_{+}^{1} y_{1}, \varphi_{+}^{1} y_{1}\right\rangle \tag{2.30}
\end{equation*}
$$

when $y_{1}(2.29)$ is chosen in this way, signifies that

$$
\begin{gathered}
\frac{1}{i}\left\langle A_{1} R_{1}(\lambda) \psi_{-} N_{1} u_{-}, R_{1}(w) \psi_{-} N_{1} \hat{u}_{-}\right\rangle-\frac{1}{i}\left\langle R_{1}(\lambda) \psi_{-} N_{1} u_{-}, A_{1} R_{1}(w) \psi_{-} N_{1} \hat{u}_{-}\right\rangle \\
=\left\langle\sigma_{1}^{+} \psi_{+} T_{\lambda, \alpha} \psi_{-} N_{1} u_{-}, \psi_{+} T_{w, \alpha} \psi_{-} N_{1} \hat{u}_{-}\right\rangle
\end{gathered}
$$

for all $u_{-}, \hat{u}_{-} \in E_{-}$and all $\lambda, w, \alpha \in \Omega$. Using $A_{1} R_{1}(\lambda)=\lambda R_{1}(\lambda)+I$, we obtain

$$
\begin{gathered}
\frac{1}{i} N_{1}^{*} \psi_{-}^{*}\left\{R_{1}^{*}(w)\left[\lambda R_{1}(\lambda)+I\right]-\left[\bar{w} R_{1}^{*}(w)+I\right] R_{1}(\lambda)\right\} \psi_{-} N_{1} \\
\quad=\frac{1}{(\lambda-\alpha)(\bar{w}-\bar{\alpha})}\left[S_{1}^{*}(w)-K^{*}\right] \sigma_{1}^{+}\left[S_{1}(\lambda)-K\right] .
\end{gathered}
$$

And, since

$$
\begin{gathered}
{\left[S_{1}^{*}(w)-K^{*}\right] \sigma_{1}^{+}\left[S_{1}(\lambda)-K\right]=S_{1}^{*}(w) \sigma_{1}^{+} S_{1}(\lambda)+K^{*} \sigma_{1}^{+}\left[K-S_{1}(\lambda)\right]} \\
+\left[K^{*}-S_{1}^{*}(w)\right] \sigma_{1}^{+} K-K^{*} \sigma_{1}^{+} K
\end{gathered}
$$

then, taking into account (2.27) and 1., 3. (1.2), we obtain the equality

$$
\left[S_{1}^{*}(w)-K^{*}\right] \sigma_{1}^{+}\left[S_{1}(\lambda)-K\right]=S_{1}^{*}(w) \sigma_{1}^{+} S_{1}(\lambda)-\sigma_{1}^{-}
$$

$$
+i N_{1}^{*} \psi_{-}^{*}\left\{(\lambda-\alpha) T_{\lambda, \bar{\alpha}}-(\bar{w}-\bar{\alpha}) T_{w, \bar{\alpha}}^{*}+(\alpha-\bar{\alpha}) I\right\} \psi_{-} N_{1}
$$

Therefore,

$$
\begin{gathered}
\frac{1}{(\lambda-\alpha)(\bar{w}-\bar{\alpha})}\left(S_{1}^{*}(w) \sigma_{1}^{+} S_{1}(\lambda)-\sigma_{1}^{-}\right)=i N_{1}^{*} \psi_{-}^{*}\left\{(\bar{w}-\lambda) R_{1}^{*}(w) R_{1}(\lambda)\right. \\
+R_{1}(\lambda)-R_{1}^{*}(w)-\frac{1}{\bar{w}-\bar{\alpha}}\left(I+(\lambda-\bar{\alpha}) R_{1}(\lambda)\right)+\frac{1}{\lambda-\alpha}\left(I+(\bar{w}-\alpha) R_{1}^{*}(w)\right) \\
\left.-\frac{\alpha-\bar{\alpha}}{(\lambda-\alpha)(\bar{w}-\bar{\alpha})} I\right\} \psi_{-} N_{1}
\end{gathered}
$$

After elementary calculations, we obtain the relation

$$
S_{1}^{*}(w) \sigma_{1}^{+} S_{1}(\lambda)-\sigma_{1}^{-}=i(\bar{w}-\lambda) N_{1}^{*} \psi_{-}^{*} T_{w, \alpha}^{*} T_{\lambda, \alpha} \psi_{-} N_{1}
$$

which exactly coincides with the first equality of (2.15).
Lemma 2.1. If (2.30) holds for the operator A_{1} of the commutative colligation Δ (1.1) on the vector functions y_{1} (2.29), then the first formula in (2.15) is true for the characteristic function $S_{1}(\lambda)$ (2.27).

Thus, the observance of the conservation law 1) (1.13), $p=1$, is adequate to the colligation relation (2.32) for the operator A_{1}.

Using (1.4), construct the vector function y_{2} by the generating function y (2.28)

$$
\begin{equation*}
y_{2}=R_{2} y=-(\lambda-\alpha) R_{2} T_{\lambda, \alpha} \psi_{-} N_{1} u_{-} \in \mathfrak{D}\left(A_{2}\right) \tag{2.31}
\end{equation*}
$$

where $u_{-} \in E_{-}$, and $\lambda, \alpha \in \Omega$. Write the colligation relation 4. (1.2) for y_{2}

$$
\begin{equation*}
2 \operatorname{Im}\left\langle A_{2} y_{2}, y_{2}\right\rangle=\left\langle\sigma_{2}^{+} \varphi_{+}^{2} y_{2}, \varphi_{+}^{2} y_{2}\right\rangle \tag{2.32}
\end{equation*}
$$

which is equivalent to

$$
\begin{aligned}
& \frac{1}{i}\left\langle A_{2} R_{2} T_{\lambda, \alpha} \psi_{-} N_{1} u_{-}, R_{2} T_{w, \alpha} \psi_{-} N_{1} \hat{u}_{-}\right\rangle \\
- & \frac{1}{i}\left\langle R_{2} T_{\lambda, \alpha} \psi_{-} N_{1} u_{-}, A_{2} R_{2} T_{w, \alpha} \psi_{-} N_{1} \hat{u}_{-}\right\rangle \\
= & \left\langle\sigma_{2}^{+} \psi_{+} T_{\lambda, \alpha} \psi_{-} N_{1} u_{-}, \psi_{+} T_{w, \alpha} \psi_{-} N_{1} \hat{u}_{-}\right\rangle
\end{aligned}
$$

for all $u_{-}, \hat{u}_{-} \in E_{-}$and all $\lambda, w, \alpha \in \Omega$. Since $A_{2} R_{2}=\alpha R_{2}+I$, the last equality yields

$$
\begin{gathered}
\frac{1}{(\lambda-\alpha)(\bar{w}-\bar{\alpha})}\left[S_{1}^{*}(w)-K^{*}\right] \sigma_{2}^{+}\left[S_{1}(\lambda)-K\right] \\
=N_{1}^{*} \psi_{-}^{*}\left\{\frac{\alpha-\bar{\alpha}}{i} R_{2}^{*} T_{w, \alpha}^{*} T_{\lambda, \alpha} R_{2}+\frac{1}{i} R_{2}^{*} T_{w, \alpha}^{*} T_{\lambda, \alpha}-\frac{1}{i} T_{w, \alpha}^{*} T_{\lambda, \alpha} R_{2}\right\} \psi_{-} N_{1}
\end{gathered}
$$

It is obvious that

$$
\begin{equation*}
T_{\lambda, \alpha} R_{2} \psi_{-} N_{1}=\frac{1}{\lambda-\alpha}\left[T_{\lambda, \alpha} \psi_{-} N_{1} L_{\lambda}-\psi_{-} N_{2}\right] \tag{2.33}
\end{equation*}
$$

where L_{λ} is the linear bundle of the operators

$$
\begin{equation*}
L_{\lambda}=N_{1}^{-1}\left[(\lambda-\alpha) \Gamma+N_{2}\right] \tag{2.34}
\end{equation*}
$$

Using the form of function $S_{1}(\lambda)(2.3)$ and (2.35), we obtain

$$
\begin{gathered}
S_{1}^{*}(w) \sigma_{2}^{+} S_{1}(\lambda)-K^{*} \sigma_{2}^{+} S_{1}(\lambda)-K^{*} \sigma_{2}^{+} K-i(\lambda-\alpha) K^{*} \sigma_{2}^{+} \psi_{+} T_{\lambda, \alpha} \psi_{-} N_{1} \\
\quad+i(\bar{w}-\bar{\alpha}) N_{1}^{*} \psi_{-}^{*} T_{w, \alpha}^{*} \psi_{+}^{*} \sigma_{2}^{+} K \\
=\frac{\alpha-\bar{\alpha}}{i}\left\{L_{w}^{*} N_{1}^{*} \psi_{-}^{*} T_{w, \alpha}^{*}-N_{2}^{*} \psi_{-}^{*}\right\}\left\{T_{\lambda, \alpha} \psi_{-} N_{1} L_{\lambda}-\psi_{-} N_{2}\right\} \\
+\frac{\lambda-\alpha}{i}\left\{L_{w}^{*} N_{1}^{*} \psi_{-}^{*} T_{w, \alpha}^{*}-N_{2}^{*} \psi_{-}^{*}\right\} \cdot T_{\lambda, \alpha} \psi_{-} N_{1} \\
-\frac{\bar{w}-\bar{\alpha}}{i} N_{1}^{*} \psi_{-}^{*} T_{w, \alpha}^{*}\left\{T_{\lambda, \alpha} \psi_{-} N_{1} L_{\lambda}-\psi_{-} N_{2}\right\}
\end{gathered}
$$

Denote by $K^{1,1}(\lambda, w)$ the left upper block of the kernel $K(\lambda, w)(2.16)$

$$
\begin{equation*}
K^{1,1}(\lambda, w)=\frac{\sigma_{1}^{-}-S_{1}^{*}(w) \sigma_{1}^{+} S_{1}(\lambda)}{i(\lambda-\bar{w})}=N_{1}^{*} \psi_{-}^{*} T_{w, \alpha}^{*} T_{\lambda, \alpha} \psi_{-} N_{1} \tag{2.35}
\end{equation*}
$$

Rewrite condition 3) (1.2) as $K^{*} \sigma_{2}^{+} \psi_{+}+N_{2}^{*} \psi_{-}\left(I+(\alpha-\bar{\alpha}) R_{2}\right)=0$. Then, taking into account (2.33), we have

$$
\begin{aligned}
K^{*} \sigma_{2} \psi_{+} T_{\lambda, \alpha} \psi_{-} N_{1}=-N_{2}^{*} \psi_{-}^{*} & \left(I+(\alpha-\bar{\alpha}) R_{2}\right) T_{\lambda, \alpha} \psi_{-} N_{1}=-N_{2}^{*} \psi_{-}^{*} T_{\lambda, \alpha} \psi_{-} N_{1} \\
-(\alpha-\bar{\alpha}) N_{2}^{*} \psi_{-}^{*} T_{\lambda, \alpha} R_{2} \psi_{-} N_{1} & =-N_{2}^{*} \psi_{-}^{*} T_{\lambda, \alpha} \psi_{-} N_{1}-\frac{\alpha-\bar{\alpha}}{\lambda-\alpha} N_{2}^{*} \psi_{-}^{*} T_{\lambda, \alpha} \psi_{-} N_{1} L_{\lambda} \\
+ & \frac{\alpha-\bar{\alpha}}{\lambda-\alpha} N_{2}^{*} \psi_{-}^{*} \psi_{-} N_{2}
\end{aligned}
$$

Therefore, using 1) (1.2), (2.35), after simple calculations we obtain the equality

$$
\begin{gather*}
\frac{i}{\alpha-\bar{\alpha}}\left\{S_{1}^{*}(w) \sigma_{2}^{+} S_{1}(\lambda)-\sigma_{2}^{-}\right\}=L_{w}^{*} K^{1,1}(\lambda, w) L_{\lambda} \\
-\frac{\lambda-\alpha}{\bar{\alpha}-\alpha} L_{w}^{*} K^{1,1}(\lambda, w)-\frac{\bar{w}-\bar{\alpha}}{\alpha-\bar{\alpha}} K^{1,1}(\lambda, w) L_{\lambda} \tag{2.36}
\end{gather*}
$$

The fact that this relation follows easily from the conservation law 2) (1.13) is an important observation. Really, let $u_{ \pm}(t)=e^{i\langle\lambda, t\rangle} u_{ \pm}(0)$ and $\hat{u}_{ \pm}(t)=e^{i\langle w, t\rangle} \hat{u}_{ \pm}(0)$, then 2) (1.13) implies

$$
\left(\lambda_{2}-\bar{w}_{2}\right)\left(\lambda_{1}-\alpha\right)\left(\bar{w}_{1}-\bar{\alpha}\right)\left\{\left\langle\sigma_{1}^{-} u_{-}(0), \hat{u}_{-}(0)\right\rangle-\left\langle\sigma_{1}^{+} u_{+}(0), \hat{u}_{+}(0)\right\rangle\right\}
$$

$$
=\left(\lambda_{1}-\bar{w}_{1}\right)\left(\lambda_{2}-\alpha\right)\left(\bar{w}_{2}-\bar{\alpha}\right)\left\{\left\langle\sigma_{2}^{-} u_{-}(0), \hat{u}_{-}(0)\right\rangle-\left\langle\sigma_{2}^{+} u_{+}(0) ; \hat{u}_{+}(0)\right\rangle\right\} .
$$

And since

$$
\begin{equation*}
L_{\lambda_{1}} u_{-}(0)=\frac{\lambda_{1}-\alpha}{\lambda_{2}-\alpha} u_{-}(0) ; \quad L_{w_{1}} \hat{u}(0)=\frac{w_{1}-\alpha}{w_{2}-\alpha} \hat{u}_{-}(0) ; \tag{2.37}
\end{equation*}
$$

in view of (2.2), then, taking into consideration $u_{+}(0)=S_{1}(\lambda) u_{-}(0) ; \hat{u}_{+}(0)=$ $S_{1}(w) \hat{u}_{-}(0)$, we obtain

$$
\begin{gathered}
\left(\lambda_{2}-\bar{w}_{2}\right)\left\langle\left\{\sigma_{1}^{-}-S_{1}^{*}\left(w_{1}\right) \sigma_{1}^{+} S_{1}\left(\lambda_{1}\right)\right\} L_{\lambda_{1}} u_{-}(0), L_{w_{1}} \hat{u}_{-}(0)\right\rangle \\
=\left(\lambda_{1}-\bar{w}_{1}\right)\left\langle\left\{\sigma_{2}^{-}-S_{1}^{*}\left(w_{1}\right) \sigma_{2}^{+} S_{1}\left(\lambda_{1}\right)\right\} u_{-}(0), \hat{u}_{-}(0)\right\rangle .
\end{gathered}
$$

(2.37) implies

$$
\left(\lambda_{2}-\alpha\right) L_{\lambda_{1}} u_{-}(0)=\left(\lambda_{1}-\alpha\right) u_{-}(0) ; \quad\left(w_{2}-\alpha\right) L_{w_{1}} \hat{u}_{-}(0)=\left(w_{1}-\alpha\right) \hat{u}_{-}(0) .
$$

Therefore, taking into consideration (2.35), we have

$$
\begin{aligned}
&\left\langle\left\{(\alpha-\bar{\alpha}) L_{w_{1}}^{*} K^{1,1}\left(\lambda_{1}, w_{1}\right) L_{\lambda_{1}}+\left(\lambda_{1}-\alpha\right) L_{w}^{*} K^{1,1}\left(\lambda_{1}, w_{1}\right)\right.\right. \\
&\left.\left.-\left(\bar{w}_{1}-\bar{\alpha}\right) K^{1,1}\left(\lambda_{1}, w_{1}\right)\right\} u_{-}(0), \hat{u}_{-}(0)\right\rangle \\
&= i\left\langle\left\{S_{1}^{*}\left(w_{1}\right) \sigma_{2}^{+} S_{1}\left(\lambda_{1}\right)-\sigma_{2}^{-}\right\} u_{-}(0), \hat{u}_{-}(0)\right\rangle,
\end{aligned}
$$

which, in view of the arbitrariness of $u_{-}(0), \hat{u}_{-}(0) \in E_{-}$, gives us (2.36).
Lemma 2.2. Let the commutative colligation Δ (1.1) be given and N_{1} be invertible. Then the colligation relation (2.32) for the operator A_{2}, where y_{2} is given by (2.31), implies that the characteristic function $S_{1}(\lambda)$ (2.27) satisfies equality (2.36), besides, $K^{1,1}(\lambda, w)$ and L_{λ} are given by formulas (2.35) and (2.34), respectively. Moreover, relation (2.36) is equivalent to the conservation law 2) (1.13).

Proceed to the consideration of colligation relations 4. (1.2) for the adjoint operators A_{1}^{*} and A_{2}^{*} of the commutative colligation Δ (1.1). Specify now the generating function (2.9)

$$
\begin{equation*}
\tilde{y}=-(\bar{\lambda}-\bar{\alpha}) T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{+}, \tag{2.38}
\end{equation*}
$$

where $\tilde{u}_{+} \in E_{+}$, and $\lambda, \alpha \in \Omega$. According to (1.15), construct the vector function by \tilde{y},

$$
\begin{equation*}
\tilde{y}_{1}=R_{1}^{*} \tilde{y}=-(\bar{\lambda}-\bar{\alpha}) R_{1}^{*}(\lambda) \psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{+} \in \mathfrak{D}\left(A_{1}^{*}\right) . \tag{2.39}
\end{equation*}
$$

As in the previous case (see Lemma 1.1), it is easy to show that the colligation relation

$$
\begin{equation*}
-2 \operatorname{Im}\left\langle A_{1}^{*} \tilde{y}_{1}, \tilde{y}_{1}\right\rangle=\left\langle\tau_{1}^{-}\left(\varphi_{-}^{1}\right)^{*} \tilde{y}_{1},\left(\varphi_{-}^{1}\right)^{*} \tilde{y}_{1}\right\rangle \tag{2.40}
\end{equation*}
$$

for $\tilde{y}_{1}(2.39)$, implies that the block $K^{2,2}(\lambda, w)$ of the kernel $K(\lambda, w)(2.16)$ is given by

$$
\begin{equation*}
K^{2,2}(\lambda, w)=\frac{\left(\stackrel{+}{S}_{1}(w)\right)^{*} \tau_{1}^{-} \stackrel{+}{S}_{1}(\lambda)-\tau_{1}^{+}}{i(\lambda-w)}=\tilde{N}_{1} \psi_{+} T_{w, \alpha} T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} \tag{2.41}
\end{equation*}
$$

besides, (2.12), (2.13)

$$
\stackrel{+}{S}_{1}(\lambda)=\left(N_{1}^{*}\right)^{-1} S_{1}^{*}(\lambda) \tilde{N}_{1}^{*}=K^{*}-i(\bar{\lambda}-\bar{\alpha}) \psi_{-}^{*} T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} .
$$

Lemma 2.3. If for the operator A_{1}^{*} of the commutative colligation Δ (1.1) relation (2.40) is true on the vector functions \tilde{y}_{1} (2.31), then for the block $K^{2,2}(\lambda, w)$ of the kernel $K(\lambda, w)$ (2.16) representation (2.41) takes place.

By the generating function $\tilde{y}(2.38)$ according to (2.9), define \tilde{y}_{2}

$$
\begin{equation*}
\tilde{y}_{2}=R_{2}^{*} \tilde{y}=-(\bar{\lambda}-\bar{\alpha}) R_{2}^{*} T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{+} \in \mathfrak{D}\left(A_{2}^{*}\right) \tag{2.42}
\end{equation*}
$$

and consider the colligation relation 4) (1.2) for A_{2}^{*}

$$
\begin{equation*}
-2 \operatorname{Im}\left\langle A_{2}^{*} \tilde{y}_{2}, \tilde{y}_{2}\right\rangle=\left\langle\tau_{2}^{-}\left(\varphi_{-}^{2}\right)^{*} \tilde{y}_{2},\left(\varphi_{-}^{2}\right)^{*} \tilde{y}_{2}\right\rangle, \tag{2.43}
\end{equation*}
$$

where \tilde{y}_{2} is given by (2.42). Applying similar considerations (see the proof of Lemma 2.2), it is easy to prove that

$$
\begin{gather*}
\frac{i}{\alpha-\bar{\alpha}}\left\{\left(\stackrel{+}{S}_{1}(w)\right)^{*} \tau_{2}-\stackrel{+}{S}_{1}(\lambda)-\tau_{2}^{+}\right\}=\left(L_{w}^{+}\right)^{*} K^{2,2}(\lambda, w) L_{\lambda}^{+} \\
-\frac{\bar{\lambda}-\bar{\alpha}}{\alpha-\bar{\alpha}}\left(L_{w}^{+}\right)^{*} K^{2,2}(\lambda, w)-\frac{w-\alpha}{\bar{\alpha}-\alpha} K^{2,2}(\lambda, w) L_{\lambda}^{+}, \tag{2.44}
\end{gather*}
$$

where L_{λ}^{+}is the linear bundle,

$$
\begin{equation*}
L_{\lambda}^{+}=\left(\tilde{N}_{1}^{*}\right)^{-1}\left[(\bar{\lambda}-\bar{\alpha}) \tilde{\Gamma}^{*}+\tilde{N}_{2}^{*}\right] \tag{2.45}
\end{equation*}
$$

and $K^{2,2}(\lambda, w)$ are given by (2.41).
Lemma 2.4. Let Δ (1.1) be a commutative colligation and \tilde{N}_{1} be invertible. Then relation (2.43) for the operator A_{2}^{*} on the vectors \tilde{y}_{2} (2.42) implies that (2.44) holds for the characteristic function $\stackrel{+}{S}_{1}(\lambda)$ (2.12), where $K^{2,2}(\lambda, w)$ and L_{λ}^{+}are given by formulas (2.41) and (2.45), and $\stackrel{+}{S} 1(\lambda)$ is constructed by $S_{1}(\lambda)$ (2.3) by rule (2.13). Moreover, equality (2.44) is equivalent to the conservation law 2) (1.23).

Note that the structure and properties of other blocks of the kernel $K(\lambda, w)$ (2.16) are also determined by the properties of the commutative system $\left\{A_{1}, A_{2}\right\}$ of the colligation Δ (1.1).

Consider the obvious equality

$$
\begin{equation*}
\left\langle A_{1} y_{1}, \tilde{y}_{1}\right\rangle=\left\langle y_{1}, A_{1}^{*} \tilde{y}_{1}\right\rangle, \tag{2.46}
\end{equation*}
$$

assuming that y_{1} and \tilde{y}_{1} are given by (2.29) and (2.39), respectively. This implies

$$
\begin{aligned}
& (\lambda-\alpha)(w-\alpha)\left\langle A_{1} R_{1}(\lambda) \psi_{-} N_{1} u_{-}, R_{1}^{*}(w) \psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{+}\right\rangle \\
= & (\lambda-\alpha)(w-\alpha)\left\langle R_{1}(\lambda) \psi_{-} N_{1} u_{-}, A_{1}^{*} R_{1}^{*}(w) \psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{1}\right\rangle,
\end{aligned}
$$

and since $A_{1} R_{1}(\lambda)=\lambda R_{1}(\lambda)+I$, then

$$
\begin{aligned}
& \lambda \tilde{N}_{1} \psi_{+}\left(T_{w, \alpha}-I\right)\left(T_{\lambda, \alpha}-I\right) \psi_{-} N_{1}+(\lambda-\alpha) \tilde{N}_{1} \psi_{+}\left(T_{w, \alpha}-I\right) \psi_{-} N_{1} \\
= & w \tilde{N}_{1} \psi_{+}\left(T_{w, \alpha}-I\right)\left(T_{\lambda, \alpha}-I\right) \psi_{-} N_{1}+(w-\alpha) \tilde{N}_{1} \psi_{+}\left(T_{\lambda, \alpha}-I\right) \psi_{-} N_{1} .
\end{aligned}
$$

Therefore,
$(\lambda-w) \tilde{N}_{1} \psi_{+} T_{w, \alpha} T_{\lambda, \alpha} \psi_{-} N_{1}=(\lambda-\alpha) \tilde{N}_{1} \psi_{+} T_{\lambda, \alpha} \psi_{-} N_{1}-(w-\alpha) \tilde{N}_{1} \psi_{+} T_{w, \alpha} \psi_{-} N_{1}$.
Taking into account the form of $S_{1}(\lambda)(2.27)$, we have

$$
\begin{equation*}
K^{2,1}(\lambda, w)=\tilde{N}_{1} \frac{S_{1}(\lambda)-S_{1}(w)}{i(\lambda-w)}=\tilde{N}_{1} \psi_{+} T_{w, \alpha} T_{\lambda, \alpha} \psi_{-} N_{1} . \tag{2.47}
\end{equation*}
$$

Lemma 2.5. If (2.46) holds for the operator A_{1} of the commutative colligation Δ (1.1), then the block $K^{2,1}(\lambda, w)$ of the kernel $K(\lambda, w)$ (2.16) has representation (2.47).

Study the similar to (2.46) equality for A_{2}

$$
\begin{equation*}
\left\langle A_{2} y_{2}, \tilde{y}\right\rangle=\left\langle y_{2}, A_{2}^{*} \tilde{y}_{2}\right\rangle \tag{2.48}
\end{equation*}
$$

assuming that y_{2} and \tilde{y}_{2} are given by formulas (2.31) and (2.42). In view of $A_{2} R_{2}=\alpha R_{2}+I$, it is easy to see that (2.48) leads to the relation

$$
\tilde{N}_{1} \psi_{+} R_{2} T_{w, \alpha} T_{\lambda, \alpha} \psi_{-} N_{1}=\tilde{N}_{1} \psi_{+} T_{w, \alpha} T_{\lambda, \alpha} R_{2} \psi_{-} N_{1}
$$

We can write this equality in the following way:

$$
\begin{aligned}
& (\lambda-\alpha)\left[\tilde{L}_{w} \psi_{+} T_{w, \alpha}-\tilde{N}_{1}^{-1} N_{2} \psi_{+}\right] \cdot T_{\lambda, \alpha} \psi_{-} N_{1} \\
& =(w-\alpha) \psi_{+} T_{w, \alpha}\left[T_{\lambda, \alpha} \psi_{-} N_{1} L_{\lambda}-\psi_{-} N_{2}\right],
\end{aligned}
$$

where

$$
\begin{equation*}
\tilde{L}_{\lambda}=\tilde{N}_{1}^{-1}\left[(\lambda-\alpha) \tilde{\Gamma}+\tilde{N}_{2}\right] . \tag{2.49}
\end{equation*}
$$

It is obvious that $\tilde{L}_{\lambda}(2.49)$ and L_{λ}^{+}(2.45) satisfy the relation

$$
\begin{equation*}
L_{\lambda}^{+}=\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{L}_{\lambda}^{*} \tilde{N}_{1}^{*} \tag{2.50}
\end{equation*}
$$

Using the definition of $S_{1}(\lambda)$ (2.27) and the last formula of (2.15), we obtain

$$
\begin{aligned}
& \frac{\lambda-\alpha}{\lambda-w} \tilde{L}_{w}\left[S_{1}(\lambda)-S_{1}(w)\right]-\tilde{N}_{1}^{-1} \tilde{N}_{2} S_{1}(\lambda) \\
= & \frac{w-\alpha}{\lambda-w}\left[S_{1}(\lambda)-S_{1}(w)\right] L_{\lambda}-S_{1}(w) N_{1}^{-1} N_{2} .
\end{aligned}
$$

This easily implies that

$$
(w-\alpha)\left[\tilde{L}_{\lambda} S_{1}(\lambda)-S_{1}(\lambda) L_{\lambda}\right]=(\lambda-\alpha)\left[\tilde{L}_{w} S_{1}(w)-S_{1}(w) L_{w}\right]
$$

and the above implies that the relation

$$
\frac{1}{\lambda-\alpha}\left[\tilde{L}_{\lambda} S_{1}(\lambda)-S_{1}(\lambda) L_{\lambda}\right]=C
$$

is constant and does not depend on λ. Thus,

$$
\tilde{L}_{\lambda} S_{1}(\lambda)-S_{1}(\lambda) L_{\lambda}=(\lambda-\alpha) C
$$

which is impossible when $C \neq 0$, because the coefficient of the expression $\tilde{L}_{\lambda} S_{1}(\lambda)-$ $S_{1}(\lambda) L_{\lambda}$ when $(\lambda-\alpha)$ is equal to zero

$$
\tilde{N}_{1}^{-1} \tilde{\Gamma} K+i \tilde{N}_{1}^{-1} \tilde{N}_{2} \psi_{+} \psi_{-} N_{1}-K N_{1}^{-1} \Gamma-i \psi_{+} \psi_{-} N_{2}=0
$$

in view of 6) and 7) (1.2). Thus, $C=0$, and we again come to the intertwining condition (2.6).

Lemma 2.6. Let Δ (1.1) be a commutative colligation and the operators N_{1}, \tilde{N}_{1} be invertible. Then equality (2.48) for A_{2} implies the intertwining condition (2.6) for the characteristic function $S_{1}(\lambda)$ (2.27).

Summarizing the statements of Lemmas 2.1-2.6, we obtain the following theorem.

Theorem 2.5. Let Δ (1.1) be a commutative colligation and the operators N_{1}, \tilde{N}_{1} be invertible. Then the characteristic function $S_{1}(\lambda)$ (2.27) satisfies the relations:

1) $S_{1}(\lambda) L_{\lambda}=\tilde{L}_{\lambda} S_{1}(\lambda)$;
2) $\frac{i}{\alpha_{-} \bar{\alpha}}\left\{S_{1}^{*}(w) \sigma_{2}^{+} S_{1}(\lambda)-\sigma_{2}^{-}\right\}=L_{w}^{*} K^{1,1}(\lambda, w) L_{\lambda}$
$-\frac{\lambda-\alpha}{\bar{\alpha}-\alpha} L_{w}^{*} K^{1,1}(\lambda, w)-\frac{\bar{w}-\bar{\alpha}}{\alpha-\bar{\alpha}} K^{1,1}(\lambda, w) L_{\lambda} ;$
3) $\frac{i}{\alpha-\bar{\alpha}}\left\{\left(\stackrel{+}{S}_{1}(w)\right) \tau_{2}^{-} \stackrel{+}{S}_{2}(\lambda)-\tau_{2}^{+}\right\}=\left(L_{w}^{+}\right)^{*} K^{2,2}(\lambda, w) L_{\lambda}^{+}$

$$
-\frac{\bar{\lambda}-\bar{\alpha}}{\alpha-\bar{\alpha}}\left(L_{w}^{+}\right)^{*} K^{2,2}(\lambda, w)-\frac{w-\alpha}{\bar{\alpha}-\alpha} K^{2,2}(\lambda, w) L_{\lambda}^{+},
$$

where $L_{\lambda}, \tilde{L}_{\lambda}$, and L_{λ}^{+}are the linear bundles of operators (2.34), (2.49) and (2.45); and $K^{p, s}(\lambda, w)$ are the corresponding blocks of the kernel $K(\lambda, w)$ (2.16). Moreover, $\stackrel{+}{S}(\lambda)$ is defined from $S_{1}(\lambda)$ by formula (2.13), and L_{λ}^{+}and \tilde{L}_{λ} (2.49) are linked to each other by relation (2.50).

Observation 2.1. The colligation relations (2.30), (2.40), and (2.46) for the operators A_{1} and A_{1}^{*} of the commutative colligation Δ (1.1) have the "metric nature" and give the well-known (2.15) representations for the blocks $K^{p, s}(\lambda, w)$ of the positively defined kernel $K(\lambda, w)$ (2.16). Similar relations (2.32), (2.46), and (2.48) for the operators A_{2} and A_{2}^{*} of the commutative colligation Δ (1.1) lead to the new nontrivial conditions for the characteristic function $S_{1}(\lambda)(2.27)$ that should be considered as a corollary of commutativity of the operators A_{1} and A_{2}. Note that the equalities 2) and 3) of (2.51) follow from the conservation laws 2) (1.13), (1.23) and also have the sensible interpretation in terms of conditions (1.2) of the colligation Δ (1.1).

Observation 2.2. Between the "external parameters" of the colligation Δ (1.1) besides the colligation relations 1)-7) (1.2) there exist additional relations. In particular, assuming in 2) and 3) (2.51) that $\lambda=w=\alpha$, we obtain

$$
\begin{aligned}
& K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}=N_{2}^{*}\left(N_{1}^{*}\right)^{-1}\left\{K^{*} \sigma_{1}^{+} K-\sigma_{1}^{-}\right\} N_{1}^{-1} N_{2} \\
& K \tau_{2}^{-} K^{*}-\tau_{2}^{+}=\tilde{N}_{2} \tilde{N}_{1}^{-1}\left\{K \tau_{1}^{-} K^{*}-\tau_{1}^{+}\right\}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*}
\end{aligned}
$$

Probably, these are not the only possible conditions of dependance between "external parameters" of the colligation Δ (1.1).

3. Theorem of Existence and Analogue of Hamilton-Caley Theorem

I. In this section, we prove the theorem of the existence, namely, describe the properties which the operator function $S_{1}\left(\lambda_{1}\right)$ from E_{-}into E_{+}must satisfy to be a characteristic function of some colligation Δ (1.1). Moreover, we prove that in the case of the finite dimension of E_{-}and E_{+}there exists such a polynomial $P\left(\lambda_{1}, \lambda_{2}\right)$ that "annihilates" A_{1} and A_{2}.

In H_{1} (2.17), define the vector functions

$$
\begin{equation*}
F\left(\lambda, u_{-}\right)=T_{\lambda, \alpha} \psi_{-} N_{1} u_{-} ; \quad \tilde{F}\left(\lambda, u_{+}\right)=T_{\lambda, \alpha}^{*} \psi_{+}^{-} \tilde{N}_{1}^{*} u_{+}, \tag{3.1}
\end{equation*}
$$

where $u_{ \pm} \in E_{ \pm} ; \lambda, \alpha \in \Omega$; and $T_{\lambda, \alpha}=I+(\lambda-\alpha) R_{1}(\lambda)$. Obviously, the linear span of the $F\left(\lambda, u_{-}\right)$and $\tilde{F}\left(\lambda, u_{+}\right)$, on condition of the invertibility of N_{1} and \tilde{N}_{1}, generates the whole H_{1}.

Theorem 3.1. Let there be given the commutative colligation Δ (1.1), the operators N_{1} and \tilde{N}_{1} of which are invertible. Then the resolvents $\left\{R_{1}, R_{2}\right\}$ and $\left\{R_{1}^{*}, R_{2}^{*}\right\}$ act on the vector functions $F\left(\lambda, u_{-}\right)$and $\tilde{F}\left(\lambda, u_{+}\right)(3.1)$ in the following way:

1) $\quad R_{1} F\left(\lambda, u_{-}\right)=\frac{F\left(\lambda, u_{-}\right)-F\left(\alpha, u_{-}\right)}{\lambda-\alpha}$;
2) $\quad R_{2} F\left(\lambda, u_{-}\right)=\frac{F\left(\lambda, L_{\lambda} u_{-}\right)-F\left(\alpha, L_{\alpha} u_{-}\right)}{\lambda-\alpha}$;
3) $R_{1}^{*} F\left(\lambda, u_{-}\right)=\frac{F\left(\lambda, u_{-}\right)+\tilde{F}\left(\alpha,\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+} S_{1}(\lambda) u_{-}\right)}{\lambda-\bar{\alpha}}$;
4) $R_{2}^{*} F\left(\lambda, Q_{\lambda} u_{-}\right)=F\left(\lambda, L_{\lambda} u_{-}\right)+\tilde{F}\left(\alpha,\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{2}^{+} S_{1}(\lambda) u_{-}\right)$;
5) $R_{1}^{*} \tilde{F}\left(\lambda, u_{+}\right)=\frac{\tilde{F}\left(\lambda, u_{+}\right)-\tilde{F}\left(\alpha, u_{+}\right)}{\bar{\lambda}-\bar{\alpha}}$;
6) $R_{2}^{*} \tilde{F}\left(\lambda, u_{+}\right)=\frac{\tilde{F}\left(\lambda, L_{\lambda}^{+} u_{+}\right)-\tilde{F}\left(\alpha, L_{\alpha}^{+} u_{+}\right)}{\bar{\lambda}-\bar{\alpha}}$;
7) $\quad R_{1} \tilde{F}\left(\lambda, u_{+}\right)=\frac{\tilde{F}\left(\lambda, u_{+}\right)+F\left(\alpha, N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}_{1}(\lambda) u_{+}\right)}{\bar{\lambda}-\alpha}$;
8) $R_{2} \tilde{F}\left(\lambda, Q_{\lambda}^{+} u_{+}\right)=\tilde{F}\left(\lambda, L_{\lambda}^{+} u_{+}\right)+F\left(\alpha, N_{1}^{-1} \tau_{2}^{-} \stackrel{+}{S}_{1}(\lambda) u_{+}\right)$
for all $u_{ \pm} \in E_{ \pm}$and all $\lambda, \alpha \in \Omega$, besides, the linear bundles Q_{λ} and Q_{λ}^{+}are given by

$$
\begin{array}{ll}
Q_{\lambda}=(\lambda-\alpha) I+(\alpha-\bar{\alpha}) L_{\lambda} ; & L_{\lambda}=N_{1}^{-1}\left[(\lambda-\alpha) \Gamma+N_{2}\right] ; \\
Q_{\lambda}^{+}=(\bar{\lambda}-\bar{\alpha}) I+(\bar{\alpha}-\alpha) L_{\lambda}^{+} ; & L_{\lambda}^{+}=\left(\tilde{N}_{1}^{*}\right)^{-1}\left[(\bar{\lambda}-\bar{\alpha}) \tilde{\Gamma}^{*}+\tilde{N}_{2}^{*}\right], \tag{3.3}
\end{array}
$$

$S_{1}(\lambda)$ and $\stackrel{+}{S}_{1}(\lambda)$ are given by (2.3) and (2.12).

Proof. The proof of 1) (3.2) follows easily from the Hilbert identity for resolvents

$$
\begin{aligned}
R_{1} F\left(\lambda, u_{-}\right) & =R_{1} T_{\lambda, \alpha} \psi_{-} N_{1} u_{-}=\left[R_{1}(\alpha)+(\lambda-\alpha) R_{1}(\alpha) R_{1}(\lambda)\right] \psi_{-} N_{1} u_{-} \\
& =R_{1}(\lambda) \psi_{-} N_{1} u_{-}=\frac{T_{\lambda, \alpha}-I}{\lambda-\alpha} \psi_{-} N_{1} u_{-}=\frac{F\left(\lambda, u_{-}\right)-F\left(\alpha, u_{-}\right)}{\lambda-\alpha} .
\end{aligned}
$$

Relation 5) (3.2) is proved in a similar way. It is easy to see that the equalities 2) and 6) (3.2) follow from formulas 5) (1.2). Since the relations 3) and 7) (3.2) have the dual nature, it is sufficient to prove one of them, for instance, 7) (3.2). It is obvious that

$$
\begin{aligned}
R_{1} \tilde{F}\left(\lambda, u_{+}\right)= & R_{1}\left(I+(\bar{\lambda}-\bar{\alpha}) R_{1}^{*}(\lambda)\right) \psi_{+}^{*} \tilde{N}_{1}^{*} u_{+}=R_{1} \psi_{+}^{*} \tilde{N}_{1}^{*} u_{+} \\
& +(\bar{\lambda}-\bar{\alpha}) R_{1} R_{1}^{*} T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} u_{+}
\end{aligned}
$$

since $R_{1} T_{\lambda, \alpha}=R_{1}(\lambda) .(\alpha-\bar{\alpha}) R_{1} R_{1}^{*}=i \psi_{-} \tau_{1}^{-} \psi_{-}^{*}+R_{1}-R_{1}^{*}$ imply that

$$
\begin{aligned}
& R_{1} \tilde{F}\left(\lambda, u_{+}\right)=R_{1} \psi_{+}^{*} \tilde{N}_{1}^{*} u_{+}+\frac{\bar{\lambda}-\bar{\alpha}}{\alpha-\bar{\alpha}}\left\{i \psi_{-} \tau_{1}^{-} \psi_{-}^{*}+R_{1}-R_{1}^{*}\right\} T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} u_{+} \\
& =R_{1} \psi_{+}^{*} \tilde{N}_{1}^{*} u_{+}+\frac{1}{\alpha-\bar{\alpha}} \psi_{-} \tau_{1}^{-}\left[K^{*}-\stackrel{+}{S}_{1}(\lambda)\right] u_{+}+\frac{\bar{\lambda}-\bar{\alpha}}{\alpha-\bar{\alpha}} R_{1} T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} u_{+}-
\end{aligned}
$$

in view of the definition of $\stackrel{+}{S}_{1}(\lambda)$ (2.12) and 5) (3.2). Hence,

$$
(\alpha-\bar{\lambda}) R_{1} \tilde{F}\left(\lambda, u_{+}\right)=-\psi_{-} \tau_{1}^{-} \stackrel{+}{S}_{1}(\lambda) u_{+}-T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tilde{N}_{1}^{*} u_{+}
$$

since $(\alpha-\bar{\alpha}) R_{1} \psi_{+}^{*} \tilde{N}_{1}^{*}+\psi_{-} \tau_{1}^{-} K^{*}+\psi_{+}^{*} \tilde{N}_{1}^{*}=0$, in view of condition 3) (1.2) of the colligation Δ (1.1). Thus, formula 7) (3.2) is proved. Prove that formulas 4) and 8) (3.2) are true. Prove, for instance, equality 4). To do this, use the fact that $R_{2}^{*}=R_{2}-(\alpha-\bar{\alpha}) R_{2}^{*} R_{2}+i \psi_{+}^{*} \sigma_{2}^{+} \psi_{+}$. It is easy to see that

$$
\begin{gathered}
R_{2}^{*} T_{\lambda, \alpha} \psi_{-} N_{1}=R_{2} T_{\lambda, \alpha} \psi_{-} N_{1}-(\alpha-\bar{\alpha}) R_{2}^{*} R_{2} T_{\lambda, \alpha} \psi_{-} N_{1}+i \psi_{+}^{*} \sigma_{2}^{+} \psi_{+} T_{\lambda, \alpha} \psi_{-} N_{1} \\
=\frac{1}{\lambda-\alpha}\left\{T_{\lambda, \alpha} \psi_{-} N_{1} L_{2}-\psi_{-} N_{2}-(\alpha-\bar{\alpha}) R_{2}^{*}\left[T_{\lambda, \alpha} \psi_{-} N_{1} L_{\lambda}-\psi_{-} N_{2}\right]\right. \\
\left.+\psi_{+}^{*} \sigma_{2}^{+}\left[S_{1}(\lambda)-K\right]\right\}
\end{gathered}
$$

in virtue of 2) (3.2) and the definition of $S_{1}(\lambda)$ (2.12). Taking now into account $\psi_{+}^{*} \sigma_{2}^{+} K+\left[I+(\bar{\alpha}-\alpha) R_{2}^{*}\right] \psi_{-} N_{2}=0$, we obtain

$$
R_{2}^{*} T_{\lambda, \alpha} \psi_{-} N_{1}\left\{(\lambda-\alpha) I+(\alpha-\bar{\alpha}) L_{\lambda}\right\}=T_{\lambda, \alpha} \psi_{-} N_{1} L_{\lambda}+\psi_{+}^{*} \sigma_{2}^{+} S_{1}(\lambda) .
$$

This equality exactly coincides with 4) (3.2).

Corollary 3.1. If the suppositions of Theorem 3.1 hold, then the formulas

$$
\begin{equation*}
T_{\lambda, \alpha} F\left(\alpha, u_{-}\right)=F\left(\lambda, u_{-}\right) ; \quad T_{\lambda, \alpha}^{*} \tilde{F}\left(\alpha, u_{+}\right)=\tilde{F}\left(\lambda, u_{+}\right) \tag{3.4}
\end{equation*}
$$

take place for all $u_{ \pm} \in E_{ \pm}$and all $\lambda, \alpha \in \Omega$.
II. Proceed now to the description of the class of functions formed by the characteristic functions $S_{1}(\lambda)$ (2.3) of the commutative colligation Δ (1.1).

Theorem 3.2. Let the commutative colligation Δ (1.1) be given and the operators N_{1} and \tilde{N}_{1} be boundedly invertible. Suppose that the operators

$$
\left(K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}\right)^{-1} \text { and }\left(K \tau_{2}^{-} K^{*}-\tau_{2}^{+}\right)^{-1}
$$

exist and are bounded in E_{-}and E_{+}, respectively.
Then there exists a neighborhood $U_{\delta}(\alpha)=\{\lambda \in \mathbb{C}:|\lambda-\alpha|<\delta\}$ of the point α such that the linear bundles Q_{λ}, L_{λ} and $Q_{\lambda}^{+}, L_{\lambda}^{+}$(3.3) are invertible for all $\lambda \in U_{\delta}(\alpha)$.

Proof. Prove that the operators Q_{λ} and L_{λ} are boundedly invertible in some neighborhood $U_{\delta}(\alpha)$ of the point α (the proof is similar for Q_{λ}^{+}and L_{λ}^{+}). The point 2) (2.54) implies that

$$
\begin{equation*}
i\left\{K^{*} \sigma_{2}^{+} S_{1}(\lambda)-\sigma_{2}^{-}\right\}=N_{2}^{*}\left(N_{1}^{*}\right)^{-1} K^{1,1}(\lambda, \alpha) \cdot Q_{\lambda} \tag{3.5}
\end{equation*}
$$

Prove that the invertibility of $K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}$necessitates the bounded invertibility of the operator $\left\{K^{*} \sigma_{2}^{+} S_{1}(\lambda)-\sigma_{2}^{-}\right\}$in some neighborhood $U_{\delta}(\alpha)$ of the point α. Since

$$
K^{*} \sigma_{2}^{+} S_{1}(\lambda)-\sigma_{2}^{-}=K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}+i(\lambda-\alpha) K^{*} \sigma_{2}^{+} \psi_{+} T_{\lambda, \alpha} \psi _N_{1}
$$

then the series

$$
\begin{gathered}
\left\{K^{*} \sigma_{2}^{+} S_{1}(\lambda)-\sigma_{2}^{-}\right\}^{-1} \\
=\left\{K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}\right\}^{-1} \cdot \sum_{p=0}^{\infty}(\lambda-\alpha)^{p}\left[-i K^{*} \sigma_{2}^{+} \psi_{+} T_{\lambda, \alpha} \psi_{-} N_{1}\left\{K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}\right\}^{-1}\right]^{p}
\end{gathered}
$$

converges uniformly when $|\lambda-\alpha| \ll 1$ in virtue of holomorphy of $S_{1}(\lambda)(2.3)$ in the point $\lambda=\alpha$. Thus, the operator $\left\{K^{*} \sigma_{2}^{+} S_{1}(\lambda)-\sigma_{2}^{-}\right\}$is boundedly invertible in some neighborhood $U_{\delta}(\alpha)$ of the point α.

Let $C=i\left\{K^{*} \sigma_{2}^{+} S_{1}(\lambda)-\sigma_{2}^{-}\right\}, A=N_{2}^{*}\left(N_{1}^{*}\right)^{-1} K^{1,1}(\lambda, \alpha)$ and $B=Q_{\lambda}$, then equality (3.5) in this notation is $C=A \cdot B$. The bounded invertibility of C implies

$$
n\left\|u_{-}\right\| \leq\left\|C u_{-}\right\|, \quad 0<n<\infty
$$

for all $u_{-} \in E_{-}$, and since the operator A is bounded when $\lambda \in U_{\delta}(\alpha)$, then

$$
n\left\|u_{-}\right\| \leq\left\|C u_{-}\right\| \leq\|A\| \cdot\left\|B u_{-}\right\|
$$

Therefore, for B the estimation

$$
m\left\|u_{-}\right\| \leq\left\|B u_{-}\right\|
$$

is true for all $u_{-} \in E_{-}$, where $m=n \cdot\|A\|^{-1}>0$. Thus, the invertibility of the linear bundle Q_{λ} (3.3) for $\lambda \in U_{\delta}(\alpha)$ is proved.
(3.3) implies that

$$
Q_{\lambda}-(\lambda-\alpha) I=(\alpha-\bar{\alpha}) L_{\lambda} ;
$$

and for the invertibility of L_{λ} it is necessary to establish that $\left(Q_{\lambda}-(\lambda-\alpha) I\right)^{-1}$ exists and it is bounded when $\lambda \in U_{\delta}(\alpha)$. The last obviously follows from the uniform convergence of the series

$$
\left(Q_{\lambda}-(\lambda-\alpha) I\right)^{-1}=Q_{\lambda}^{-1}\left(I-(\lambda-\alpha) Q_{\lambda}^{-1}\right)^{-1}=\sum_{p=0}^{\infty}(\lambda-\alpha)^{p}\left[Q_{\lambda}^{-1}\right]^{p+1}
$$

The theorem is proved.
Observation 3.1. The invertibility of the bundles Q_{λ} and $L_{\lambda}\left(Q_{\lambda}^{+}\right.$ and $\left.L_{\lambda}^{+}\right)$in the point $\lambda=\alpha$ implies that the operator $N_{2}\left(\tilde{N}_{2}^{*}\right)$ is boundedly invertible. Thus, Theorem 3.2 yields that the invertibility of the expressions

$$
K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-} ; \quad K \tau_{2}^{-} K^{*}-\tau_{2}^{*}
$$

ensures the existence of the bounded inverse of the operators N_{2} and \tilde{N}_{2}^{*}.
Proceed to the definition of the class of operator functions generated by characteristic functions $S_{1}(\lambda)(2.3)$ of the commutative colligations Δ (1.1).

Class $\Omega_{\alpha}(\sigma, \tau, N, \Gamma)$. Let $E_{ \pm}$be Hilbert spaces, $\alpha \in \mathbb{C} \backslash \mathbb{R}_{+}$, and, moreover, suppose that in E_{-}, correspondingly in E_{+}, the linear bounded operators

$$
\begin{array}{lllll}
\left\{\sigma_{p}^{-}\right\}_{1}^{2} ; & \left\{\tau_{p}^{-}\right\}_{1}^{2} ; & \left\{N_{p}\right\}_{1}^{2} ; & \Gamma: & E_{-} \rightarrow E_{-} \\
\left\{\sigma_{p}^{+}\right\}_{1}^{2} ; & \left\{\tau_{p}^{+}\right\}_{1}^{2} ; & \left\{\tilde{N}_{p}\right\}_{1}^{2} ; & \tilde{\Gamma}: & E_{+} \rightarrow E_{+} \tag{3.6}
\end{array}
$$

are specified, where $\left\{\sigma_{p}^{ \pm}\right\}_{1}^{2}$ and $\left\{\tau_{p}^{ \pm}\right\}_{1}^{2}$ are selfadjoint, and N_{1} and \tilde{N}_{1} are invertible.

An operator function $S(\lambda): E_{-} \rightarrow E_{+}$is said to belong to the class $\Omega_{\alpha}(\sigma, \tau, N, \Gamma)$ if:

1) the function $S(\lambda)$ is holomorphic in some neighborhood $U_{\delta}(\alpha)=\{\lambda \in \mathbb{C}$: $|\lambda-\alpha|<\delta\}$ of a point α and $S(\alpha) \neq 0$;
2) the kernel $K(\lambda, w)$ (2.16) constructed by the functions $S(\lambda)$ and $S^{+}(\lambda)=$ $\left(N_{1}^{*}\right)^{-1} S^{*}(\lambda) \tilde{N}_{1}^{*}$ is Hermitian positive for all $\lambda, w \in U_{\delta}(\alpha)$;
3) the operator function $S(\lambda)$ satisfies relations (2.51), where the linear bundles L_{λ} and L_{λ}^{+}are constructed by using formulas (3.3) and $\tilde{L}_{\lambda}=\tilde{N}_{1}^{-1}\left(L_{\lambda}^{+}\right)^{*} \tilde{N}_{1}$;
4) the operators $\left\{K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}\right\}$and $\left\{K \tau_{2}^{-} K^{*}-\tau_{2}^{+}\right\}$are boundedly invertible, where $K=S(\alpha)$;
5) for the operator family (3.6), (1.24) and $S(\alpha) N_{1}=\tilde{N}_{1} S(\alpha)$ take place.

It is obvious that the characteristic function $S_{1}(\lambda)(2.3)$ belongs to the class $\Omega_{\alpha}(\sigma, \tau, N, \Gamma)$.

Theorem of existence 3.3. Let the operator function $S(\lambda): E_{-} \rightarrow E_{+}$ belong to the class $\Omega_{\alpha}(\sigma, \tau, N, \Gamma)$. Then there exists a commutative colligation Δ (1.1) such that the characteristic function $S_{1}(\lambda)$ (2.3) of the operator A_{1} coincides with $S(\lambda), S_{1}(\lambda)=S(\lambda)$ for all $\lambda \in U_{\delta}(\alpha)$.

Proof. Consider the family of " δ-functions" $e_{\lambda} f$ assuming that every $e_{\lambda} f$ has the support concentrated in the point $\lambda \in U_{\delta}(\alpha)$ and possesses the value $f=\left(u_{-}, u_{+}\right) \in E_{-} \oplus E_{+}$. The formal linear combinations

$$
\sum_{k=1}^{N} e_{\lambda_{k}} f_{k}
$$

where $\lambda_{k} \in U_{\delta}(\alpha), f_{k} \in E_{-} \oplus E_{+}, 1 \leq k \leq N, N \in \mathbb{Z}_{+}$, constitute the linear manifold L on which we, by means of the kernel $K(\lambda, w)$ (2.16), define the Hermitian nonnegative bilinear form

$$
\begin{equation*}
\left\langle e_{\lambda} f, e_{w} g\right\rangle_{K} \stackrel{\text { def }}{=}\langle K(\lambda, w) f, g\rangle_{E_{-} \oplus E_{+}} . \tag{3.7}
\end{equation*}
$$

As a result of closure of the linear span L by norm generated by form (3.7) and of factorization by the kernel of this metric, we obtain the Hilbert space H_{K} [9].

Specify the linear operators $K: E_{-} \rightarrow E_{+}, \psi_{-}: E_{-} \rightarrow H_{K}, \psi_{+}^{*}: E_{+} \rightarrow H_{K}$ using the formulas

$$
\begin{equation*}
K=S(\alpha) ; \quad \psi_{-} u_{-}=e_{\alpha} N_{1}^{-1} u_{-} ; \quad \psi_{+}^{*} u_{+}=e_{\alpha}\left(\tilde{N}_{1}^{*}\right)^{-1} u_{+} \tag{3.8}
\end{equation*}
$$

and prove that relations 1) (1.2) take place for K, ψ_{-}, ψ_{+}(3.8). Taking into account the form of the block $K^{1,1}(\lambda, w)$ of the kernel $K(\lambda, w)(5.16)$, we have

$$
\begin{gathered}
\left\langle\psi_{-} N_{1} u_{-}, \psi_{-} N_{1} u_{-}^{\prime}\right\rangle_{K}=\left\langle e_{\alpha} u_{-}, e_{\alpha} u_{-}^{\prime}\right\rangle_{K}=\left\langle K^{1,1}(\alpha, \alpha) u_{-}, u_{-}^{\prime}\right\rangle \\
=\left\langle\frac{\sigma_{1}^{-}-K^{*} \sigma_{1}^{+} K}{i(\alpha-\bar{\alpha})} u_{-}, u_{-}^{\prime}\right\rangle
\end{gathered}
$$

which proves that $2 \operatorname{Im} \alpha N_{1}^{*} \psi_{-}^{*} \psi_{-} N_{1}=K^{*} \sigma_{1}^{+} K-\sigma_{1}^{-}$. To prove $2 \operatorname{Im} \alpha \cdot N_{2}^{*} \psi_{-}^{*} \psi_{-} N_{2}$ $=K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}$, consider

$$
\begin{gathered}
\left\langle\psi_{-} N_{2} u_{-}, \psi_{-} N_{2} u_{-}^{\prime}\right\rangle_{K}=\left\langle e_{\alpha} N_{1}^{-1} N_{2} u_{-}, e_{\alpha} N_{1}^{-1} N_{2} u_{-}^{\prime}\right\rangle_{K} \\
=\left\langle N_{2}^{*} \cdot\left(N_{1}^{*}\right)^{-1} K^{1,1}(\alpha, \alpha) N_{1}^{-1} N_{2} u_{-}, u_{-}^{\prime}\right\rangle=\frac{i}{\alpha-\bar{\alpha}}\left\langle\left(K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}\right) u_{-}, u_{-}^{\prime}\right\rangle
\end{gathered}
$$

in view of 2) (2.51). The relations $2 \operatorname{Im} \alpha \tilde{N}_{p} \psi_{+} \psi_{+}^{*} \tilde{N}_{p}^{*}=K \tau_{p}^{-} K^{*}-\tau_{p}^{+}, p=1,2$, are proved in the similar way taking into account the form of the block $K^{2,2}(\lambda, w)$ of the kernel $K(\lambda, w)$ and equality 3) (2.51).

It is easy to show that

$$
\begin{align*}
& \psi_{-}^{*} e_{\lambda} f=\left(N_{1}^{*}\right)^{-1} \frac{\sigma_{1}^{-}-K^{*} \sigma_{1}^{+} S(\lambda)}{i(\lambda-\bar{\lambda})} u_{-}+\frac{\stackrel{+}{S}(\lambda)-K^{*}}{i(\bar{\alpha}-\bar{\lambda})} u_{+} \\
& \psi_{+} e_{\lambda} f=\frac{S(\lambda)-K}{i(\lambda-\alpha)} u_{-}+\tilde{N}_{1}^{-1} \cdot \frac{K \tau_{1}^{-} \stackrel{+}{S}(\lambda)-\tau_{1}^{+}}{i(\bar{\lambda}-\alpha)} u_{=} \tag{3.9}
\end{align*}
$$

As in (3.2), define the action of the resolvents $\left\{R_{1}, R_{2}\right\}$ and $\left\{R_{1}^{*}, R_{2}^{*}\right\}$ in H_{K} by using the formulas:
$R_{1} e_{\lambda} f=e_{\lambda}\left(\frac{u_{-}}{\lambda-\alpha}, \frac{u_{+}}{\bar{\lambda}-\alpha}\right)+e_{\alpha}\left(\frac{N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}(\lambda)}{\bar{\lambda}-\alpha} u_{+}-\frac{u_{-}}{\lambda-\alpha}, 0\right) ;$
$R_{1}^{*} e_{\lambda} f=e_{\lambda}\left(\frac{u_{-}}{\lambda-\bar{\alpha}}, \frac{u_{+}}{\bar{\lambda}-\bar{\alpha}}\right)+e_{\alpha}\left(0, \frac{\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+} S(\lambda) u_{-}}{\lambda-\bar{\alpha}}-\frac{u_{+}}{\bar{\lambda}-\bar{\alpha}}\right) ;$
$R_{2} e_{\lambda} f=e_{\lambda}\left(\frac{L_{\lambda} u_{-}}{\lambda-\alpha}, L_{\lambda}^{+}\left(Q_{\lambda}^{+}\right)^{-1} u_{+}\right)+e_{\alpha}\left(N_{1}^{-1} \tau_{2}^{-} \stackrel{+}{S}(\lambda)\left(Q_{\lambda}^{+}\right)^{-1} u_{+}-\frac{L_{\alpha} u_{-}}{\lambda-\alpha}, 0\right) ;$
$R_{2}^{*} e_{\lambda} f=e_{\lambda}\left(L_{\lambda}\left(Q_{\lambda}\right)^{-1} u_{-}, \frac{L_{\lambda}^{+} u_{+}}{\bar{\lambda}-\bar{\alpha}}\right)+e_{\alpha}\left(0,\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{2}^{+} S(\lambda) Q_{\lambda}^{-1} u_{-}-\frac{L_{\alpha}^{+} u_{+}}{\bar{\lambda}-\bar{\alpha}}\right)$,
where $\lambda \in U_{\delta}(\alpha), f=\left(u_{-}, u_{+}\right) \in E_{-} \oplus E_{+}$, and the linear bundles $L_{\lambda}, Q_{\lambda}, L_{\lambda}^{+}, Q_{\lambda}^{+}$ are given by (3.3). Prove that relations 3) (1.2) are true. So, to prove $K^{*} \sigma_{1}^{+} \varphi_{+}^{1}+$ $N_{1}^{*} \psi_{-}^{*}\left(A_{1}-\bar{\alpha} I\right)=0$, write this equality in the following way: $\psi_{+}^{*} \sigma_{1}^{+} K+\varphi_{-} N_{1}+$ $(\bar{\alpha}-\alpha) R_{1}^{*} \psi_{-} N_{1}=0$. Then, taking into account (3.8) and (3.10), we obtain

$$
\begin{gathered}
\psi_{+}^{*} \sigma_{1}^{+} K u_{-}+\psi_{-} N_{1} u_{-}+(\bar{\alpha}-\alpha) R_{1}^{*} \psi_{-} N_{1} u_{-}=e_{\alpha}\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+} K u_{-}+e_{\alpha} u_{-} \\
+(\bar{\alpha}-\alpha) e_{\alpha} \frac{u_{-}}{\alpha-\bar{\alpha}}+(\bar{\alpha}-\alpha) \cdot e_{\alpha} \frac{\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+} K}{\alpha-\bar{\alpha}} u_{-}=0
\end{gathered}
$$

q.e.d. $K \tau_{1}^{-}\left(\varphi_{-}^{1}\right)^{*}+\tilde{N}_{1} \psi_{+}\left(A_{1}^{*}-\alpha I\right)=0$ is proved in a similar way. Rewrite the equality $K \tau_{2}^{-}\left(\varphi_{-}^{2}\right)^{*}+\tilde{N}_{2} \psi_{+}\left(A_{2}^{*}-\alpha I\right)=0$ as $\psi_{-} \tau_{2}^{-} K^{*}+\psi_{+}^{*} \tilde{N}_{2}^{*}+(\alpha-\bar{\alpha}) R_{2} \psi_{+}^{*} \tilde{N}_{2}^{*}$ $=0$. Then, using (3.8), we have

$$
\begin{gathered}
e_{\alpha} N_{1}^{-1} \tau_{2}^{-} K^{*} u_{+}+e_{\alpha}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*} u_{+}+(\alpha-\bar{\alpha}) R_{2} e_{\alpha}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*} u_{+} \\
=e_{\alpha} N_{1}^{-1} \tau_{2}^{-} K^{*} u_{+}+e_{\alpha}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*} u_{+}-R_{2} e_{\alpha} Q_{\alpha}^{+} u_{+}=0
\end{gathered}
$$

since $Q_{\alpha}^{+}=(\bar{\alpha}-\alpha) L_{\alpha}^{+}=(\bar{\alpha}-\alpha)\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*}$ in view of the definition of Q_{λ}^{+}and $L_{\lambda}^{+}(3.3)$ and (3.10). $K^{*} \sigma_{2}^{+} \varphi_{+}^{2}+N_{2}^{*} \psi_{-}^{*}\left(A_{2}-\bar{\alpha} I\right)=0$ is proved in exactly the same way.

It is obvious that the intertwining condition $\left.S(\lambda) L_{\lambda}=\tilde{L}_{\lambda} S(\lambda) 1\right)$ (2.51) and $K N_{1}=\tilde{N}_{1} K$, definition of the class $\Omega_{\alpha}(\sigma, \tau, N, \Gamma)$, yield $K N_{2}=\tilde{N}_{2} K$, which proves 7) (1.2).

Note that

$$
\begin{equation*}
T_{\lambda, \alpha} e_{\alpha} u_{-}=e_{\lambda} u_{-} ; \quad T_{\lambda, \alpha}^{*} e_{\alpha} u_{+}=e_{\lambda} u_{+} \tag{3.11}
\end{equation*}
$$

take place for all $\lambda, \alpha \in \Omega$ and all $u_{ \pm} \in E_{ \pm}$. In fact, (3.10) imply $(\lambda-\alpha) R_{1} e_{\lambda} u_{-}=$ $e_{\lambda} u_{-}-e_{\alpha} u_{-}$, and thus $T_{\alpha, \lambda} e_{\lambda} u_{-}=e_{\alpha} u_{-}$, which proves the first equality of (3.11).

To prove the first condition in 5) (1.2), consider

$$
\begin{gathered}
T_{\lambda, \alpha}\left[R_{2} \psi_{-} N_{1} u_{-}-R_{1} \psi_{-} N_{2}-\psi_{-} \Gamma u_{-}\right]=R_{2} T_{\lambda, \alpha} e_{\alpha} u_{-}-R_{1} T_{\lambda, \alpha} e_{\alpha} N_{1}^{-1} N_{2} u_{-} \\
\quad-T_{\lambda, \alpha} e_{\alpha} N_{1}^{-1} \Gamma u_{-}=R_{2} e_{\lambda} u_{-}-R_{1} e_{\lambda} N_{1}^{-1} N_{2} u_{-}-e_{\lambda} N_{1}^{-1} \Gamma u_{-} \\
=\frac{1}{\lambda-\alpha}\left\{e_{\lambda} L_{\lambda} u_{-}-e_{\alpha} L_{\alpha} u_{-}\right\}-\frac{1}{\lambda-\alpha}\left\{e_{\lambda} N_{1}^{-1} N_{2} u_{-}-e_{\alpha} N_{1}^{-1} N_{2} u_{-}\right\} \\
-e_{\lambda} N_{1}^{-1} \Gamma u_{-}=\frac{1}{\lambda-\alpha} e_{\lambda}\left\{L_{\lambda}-N_{1}^{-1} N_{2}-(\lambda-\alpha) N_{1}^{-1} \Gamma\right\}=0 .
\end{gathered}
$$

Taking into account the invertibility of $T_{\lambda, \alpha}, T_{\lambda, \alpha} T_{\alpha, \lambda}=I$, we obtain the required. The proof of the second equality in 5) (1.2) is of a similar nature, besides, it is necessary to use the second relation of (3.11).

Since $A_{p} R_{p}=\alpha R_{p}+I$, then

$$
\begin{gathered}
\frac{1}{i}\left\langle A_{p} R_{p} e_{\lambda} f, R_{p} e_{w} g\right\rangle_{K}-\frac{1}{i}\left\langle R_{p} e_{\lambda} f, A_{p} R_{p} e_{w} g\right\rangle_{K} \\
=\frac{1}{i}\left\langle\left(\alpha R_{p}+I\right) e_{\lambda} f, R_{p} e_{w} g\right\rangle_{K}-\frac{1}{i}\left\langle R_{p} e_{\lambda} f,\left(\alpha R_{p}+I\right) e_{w} g\right\rangle_{K} \\
=\left\langle\left\{\frac{\alpha-\bar{\alpha}}{i} R_{p}^{*} R_{p}-i R_{p}^{*}+i R_{p}\right\} e_{\lambda} f, e_{w} g\right\rangle_{K}
\end{gathered}
$$

for $p=1,2$. Therefore, to prove 4. (1.2), we have to prove that

$$
\begin{equation*}
B_{p}=i R_{p}-i R_{p}^{*}+\frac{\alpha-\bar{\alpha}}{i} R_{p}^{*} R_{p}=\psi_{+}^{*} \sigma_{p}^{+} \psi_{+}, \quad p=1,2, \tag{3.12}
\end{equation*}
$$

where R_{p} and R_{p}^{*} are given by (3.10), and ψ_{+}^{*} and ψ_{+}are given by formulas (3.8) and (3.9), respectively. To prove (3.12) when $p=1$, consider

$$
\begin{gathered}
B_{1} e_{\lambda} f=i R_{1} e_{\lambda} f-i R_{1}^{*} e_{\lambda} f+\frac{\alpha-\bar{\alpha}}{i} R_{1}^{*} R_{1} e_{\lambda} f \\
=e_{\lambda}\left(\frac{i u_{-}}{\lambda-\alpha}, \frac{i u_{+}}{\bar{\lambda}-\alpha}\right)+e_{\alpha}\left(\frac{i N_{1}^{-1} \tau_{1}^{-}{ }_{S}^{+}(\lambda) u_{+}}{\bar{\lambda}-\alpha}-\frac{i u_{-}}{\lambda-\alpha}, 0\right) \\
+e_{\lambda}\left(\frac{-i u_{-}}{\lambda-\bar{\alpha}}, \frac{-i u_{+}}{\bar{\lambda}-\bar{\alpha}}\right)+e_{\alpha}\left(0, \frac{-i\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+} S(\lambda) u_{-}}{\lambda-\bar{\alpha}}+\frac{i u_{+}}{\bar{\lambda}-\bar{\alpha}}\right) \\
+\frac{\alpha-\bar{\alpha}}{i} R_{1}^{*}\left\{e_{\lambda}\left(\frac{u_{-}}{\lambda-\alpha}, \frac{u_{+}}{\overline{\lambda-\alpha}}\right)+e_{\alpha}\left(\frac{N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}(\lambda) u_{+}}{\bar{\lambda}-\alpha}-\frac{u_{-}}{\lambda-\alpha}, 0\right)\right\} \\
=e_{\alpha}\left(\frac{i N_{1}^{-1} \tau_{1}^{-}}{\bar{\lambda}-\alpha}(\lambda) u_{+}\right. \\
\left.+\frac{i u_{-}}{\lambda-\alpha}, \frac{-i\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+} S(\lambda) u_{-}}{\lambda-\bar{\alpha}}+\frac{i u_{+}}{\bar{\lambda}-\bar{\alpha}}\right) \\
+\frac{\alpha-\bar{\alpha}}{i} e_{\alpha}\left(0, \frac{\left(\tilde{N}_{1}^{*}\right)^{-1}}{\lambda-\bar{\alpha}} \sigma_{1}^{+} S(\lambda)\right. \\
\left.\quad+\frac{u_{-}}{\lambda-\alpha}-\frac{1}{\overline{\lambda-\bar{\alpha}}} \cdot \frac{u_{+}}{\bar{\lambda}-\alpha}\right) \\
i \\
e_{\alpha}\left(\frac{1}{\alpha-\bar{\alpha}}\left[\frac{N_{1}^{-1} \tau_{1}^{-}}{\bar{\lambda}-\alpha} \stackrel{+}{S}(\lambda) u_{+}-\frac{u_{-}}{\lambda-\alpha}\right], 0\right) \\
+\frac{\alpha-\bar{\alpha}}{i} e_{\alpha}\left(0, \frac{\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+} K}{\alpha-\bar{\alpha}} \cdot\left\{\frac{N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}(\lambda) u_{+}}{\bar{\lambda}-\alpha}-\frac{u_{-}}{\lambda-\alpha}\right\}\right) \\
=e_{\alpha}\left(0,\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+} \frac{S(\lambda)-K}{i(\lambda-\alpha)} u_{-}+\tilde{N}_{1}^{*-1} \frac{\sigma_{1}^{+} \tilde{N}_{1}^{-1} K \tau_{1}^{-} \stackrel{+}{S}(\lambda)-\tilde{N}_{1}^{*}}{i(\bar{\lambda}-\alpha)} u_{+}\right) .
\end{gathered}
$$

And if one takes into account 5) of the definition of class $\Omega_{\alpha}(\sigma, \tau, N, \Gamma), \tilde{N}_{1}^{*}=$ $\sigma_{1}^{+} \tilde{N}_{1}^{-1} \tau_{1}^{+}$(1.24), one can get

$$
B_{1} e_{\lambda} f=e_{\alpha}\left(0,\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+}\left\{\frac{S(\lambda)-K}{i(\lambda-\alpha)} u_{-}+\tilde{N}_{1}^{-1} \frac{K \tau_{1}^{-} \stackrel{+}{S}(\lambda)-\tau_{1}^{+}}{i(\bar{\lambda}-\alpha)} u_{+}\right\}\right)
$$

$$
=\psi_{+}^{*} \sigma_{1}^{+} \psi_{+} e_{\lambda} f
$$

in view of the definition of $\psi_{+}^{*}(3.8)$ and (3.9), which proves (3.12) when $p=1$.
Analogously, (3.12) is proved for B_{2}.
Using $A_{p}^{*} R_{p}^{*}=\bar{\alpha} R_{p}^{*}+I$, we obtain

$$
\begin{aligned}
& -\frac{1}{i}\left\langle A_{p}^{*} R_{p}^{*} e_{\lambda} f, R_{p}^{*} e_{w} g\right\rangle+\frac{1}{i}\left\langle R_{p}^{*} e_{\lambda} f, A_{p}^{*} R_{p}^{*} e_{w} g\right\rangle \\
= & \left\langle\left\{\frac{\alpha-\bar{\alpha}}{i} R_{p} R_{p}^{*}+i R_{p}-i R_{p}^{*}\right\} e_{\lambda} f, e_{w} g\right\rangle, p=1,2,
\end{aligned}
$$

and thus to prove the second relation of 4 . (1.2), it is sufficient to prove that

$$
\begin{equation*}
\tilde{B}_{p}=i R_{p}-i R_{p}^{*}+\frac{\alpha-\bar{\alpha}}{i} R_{p} R_{p}^{*}=\psi_{-} \tau_{p}^{-} \psi_{-}^{*}, \quad p=1,2 \tag{3.13}
\end{equation*}
$$

where R_{p} and R_{p}^{*} are given by formulas (3.10), ψ_{-}and ψ_{-}^{*} are given by (3.8), (3.9). The proof of formulas (3.13) is similar to that of (3.12).

Since $A_{p} R_{p}=\alpha R_{p}+I$ and $A_{p}^{*} R_{p}^{*}=\bar{\alpha} R_{p}^{*}+I$, (3.10) implies

$$
\begin{align*}
A_{1} R_{1} e_{\lambda} f= & e_{\lambda}\left(\frac{\lambda u_{-}}{\lambda-\alpha}, \frac{\bar{\lambda} u_{+}}{\bar{\lambda}-\alpha}\right)+e_{\alpha}\left(\frac{N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}(\lambda) u_{+}}{\bar{\lambda}-\alpha}-\frac{u_{-}}{\lambda-\alpha}, 0\right) \\
A_{1}^{*} R_{1}^{*} e_{\lambda} f= & e_{\lambda}\left(\frac{\lambda u_{-}}{\lambda-\bar{\alpha}}, \overline{\bar{\lambda}} u_{+}\right) \\
A_{2} R_{2} e_{\lambda} f= & =e_{\lambda}\left(\left(\frac{\alpha L_{\lambda}}{\lambda-\alpha}+I\right) u_{-},\left(\alpha L_{\lambda}^{+}\left(Q_{\lambda}^{+}\right)^{-1}+I\right) u_{+}\right) \\
& +e_{\alpha}\left(N_{1}^{-1} \tau_{2}^{-} \stackrel{+}{S}(\lambda)\left(Q_{\lambda}^{+}\right)^{-1} u_{+}^{+} S(\lambda) u_{-}-\frac{L_{\alpha} u_{-}}{\bar{\lambda}-\bar{\alpha}}, 0\right) ; \\
A_{2}^{*} R_{2}^{*} e_{\lambda} f= & e_{\lambda}\left(\left(\alpha L_{\lambda} Q_{\lambda}^{-1}+I\right) u_{-},\left(\frac{\alpha L_{\lambda}^{+}}{\bar{\lambda}-\bar{\alpha}}+I\right) u_{+}\right) \tag{3.14}\\
& +e_{\alpha}\left(0,\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{2}^{+} S(\lambda) Q_{\lambda}^{-1} u_{-}-\frac{L_{\alpha}^{+} u_{+}}{\bar{\lambda}-\bar{\alpha}}\right)
\end{align*}
$$

for all $\lambda \in U_{\delta}(\alpha)$ and all $f=\left(u_{-}, u_{+}\right) \in E_{-} \oplus E_{+}$, besides, the existence of Q_{λ}^{-1} and $\left(Q_{\lambda}^{+}\right)^{-1}$ follows from 4) of the definition of class $\Omega_{\alpha}(\sigma, \tau, N, \Gamma)$. Specify the operator A_{1} in H_{K}

$$
\begin{equation*}
A_{1} e_{\lambda} f=e_{\lambda}\left(\lambda u_{-}, \bar{\lambda} u_{+}\right) \tag{3.15}
\end{equation*}
$$

Then (3.14) and (3.10) imply that

$$
e_{\lambda} f=R_{1}\left(A_{1}-\lambda I\right) e_{\lambda} f=R_{1} e_{\lambda}\left((\lambda-\alpha) u_{-},(\bar{\lambda}-\alpha) u_{+}\right)
$$

$$
=e_{\lambda} f+e_{\alpha}\left(N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}(\lambda) u_{+}-u_{-}, 0\right)
$$

Therefore, the domain $\mathfrak{D}\left(A_{1}\right)$ of the operator $A_{1}(3.15)$ is given by

$$
\begin{align*}
\mathfrak{D}\left(A_{1}\right)= & \left\{\sum_{p=1}^{N} e_{\lambda_{p}} f_{p} \in H_{K}: \lambda_{p} \in U_{\delta}(\alpha) ; f_{p}=\left(u_{-}^{p}, u_{+}^{p}\right) \in E_{-} \oplus E_{+}\right. \tag{3.16}\\
& \left.u_{-}^{p}=N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}\left(\lambda_{p}\right) u_{+}^{p} ; 1 \leq p \leq N ; N \leq \infty\right\}
\end{align*}
$$

Similar considerations show that the adjoint operator A_{1}^{*} equals

$$
\begin{equation*}
A_{1}^{*} e_{\lambda} f=e_{\lambda}\left(\lambda u_{-}, \bar{\lambda} u_{+}\right) \tag{*}
\end{equation*}
$$

and its domain $\mathfrak{D}\left(A_{1}^{*}\right)$ is represented by

$$
\begin{gather*}
\mathfrak{D}\left(A_{1}^{*}\right)=\left\{\sum_{p=1}^{N} e_{\lambda} f_{p} \in H_{K}: \lambda_{p} \in U_{\delta}(\alpha) ; f_{p}=\left(u_{-}^{p}, u_{+}^{p}\right) \in E_{-} \oplus E_{+}\right. \tag{*}\\
\left.u_{+}^{p}=\left(\tilde{N}_{1}^{*}\right)^{-1} \sigma_{1}^{+} S\left(\lambda_{p}\right) u_{-}^{p} ; 1 \leq p \leq N ; N \leq \infty\right\}
\end{gather*}
$$

It is easy to establish that the operator $A_{1}^{*}\left(3.15^{*}\right),\left(3.16^{*}\right)$ is the adjoint of A_{1} (3.15), (3.16). By (3.14) specify the operator A_{2} in H_{K}

$$
\begin{equation*}
A_{2} e_{\lambda} f=e_{\lambda}\left(\left(\alpha+(\lambda-\alpha) L_{\lambda}^{-1}\right) u_{-},\left(\alpha+\left(L_{\lambda}^{+}\right)^{-1} Q_{\lambda}^{+}\right) u_{+}\right) \tag{3.17}
\end{equation*}
$$

besides, the existence of the inverse of L_{λ} and L_{λ}^{+}again follows from 4) of the definition of class $\Omega_{\alpha}(\sigma, \tau, N, \Gamma)$. Taking now into account (3.10) and (3.14), we have

$$
\begin{aligned}
e_{\lambda} f & =R_{2}\left(A_{2}-\alpha I\right) e_{\lambda} f=R_{2} e_{\lambda}\left((\lambda-\alpha) L_{\lambda}^{-1} u_{-},\left(L_{\lambda}^{+}\right)^{-1} Q_{\lambda}^{+} u_{+}\right) \\
& =e_{\lambda} f+e_{\alpha}\left(N_{1}^{-1} \tau_{2}^{-} \stackrel{+}{S}(\lambda)\left(L_{\lambda}^{+}\right)^{-1} u_{+}-L_{\alpha} L_{\lambda}^{-1} u_{-}, 0\right)
\end{aligned}
$$

Thus, the domain $\mathfrak{D}\left(A_{2}\right)$ of the operator A_{2} represents

$$
\begin{align*}
\mathfrak{D}\left(A_{2}\right) & =\left\{\sum_{p=1}^{N} e_{\lambda_{p}} f_{p} \in H_{K}: \lambda_{p} \in U_{\delta}(\alpha) ; f_{p}=\left(u_{-}^{p}, u_{+}^{p}\right) \in E_{-} \oplus E_{+}\right. \tag{3.18}\\
u_{-}^{p} & \left.=L_{\lambda_{p}} N_{2}^{-1} \tau_{2}^{-} \stackrel{+}{S}\left(\lambda_{p}\right)\left(L_{\lambda_{p}}^{+}\right)^{-1} u_{+}^{p} ; 1 \leq p \leq N ; N \leq \infty\right\}
\end{align*}
$$

It is easy to show that the adjoint A_{2}^{*} of the operator $A_{2}(3.17),(3.18)$ is given by

$$
\begin{equation*}
A_{2}^{*} e_{\lambda} f=e_{\lambda}\left(\left(\bar{\alpha}+L_{\lambda}^{-1} Q_{\lambda}\right) u_{-},\left(\bar{\alpha}+(\bar{\lambda}-\bar{\alpha})\left(L_{\lambda}^{+}\right)^{-1}\right) u_{+}\right) \tag{*}
\end{equation*}
$$

and its domain equals

$$
\begin{gather*}
\mathfrak{D}\left(A_{2}^{*}\right)=\left\{\sum_{p=1}^{n} e_{\lambda_{p}} f_{p} \in H_{K}: \lambda_{p} \in U_{\delta}(\alpha) ; f_{p}=\left(u_{-}^{p}, u_{+}^{p}\right) \in E_{-} \oplus E_{+} ;\right. \\
\left.u_{+}^{p}=L_{\lambda_{p}}^{+}\left(\tilde{N}_{2}^{*}\right)^{-1} \sigma_{2}^{+} S\left(\lambda_{p}\right) L_{\lambda_{p}}^{-1} u_{-}^{p} ; 1 \leq p \leq N ; N \leq \infty\right\} . \tag{*}
\end{gather*}
$$

Construct now the commutative colligation

$$
\begin{gather*}
\Delta_{K}=\left(\left\{\sigma_{p}^{-}\right\} ;\left\{\tau_{p}^{-}\right\}_{1}^{2} ;\left\{N_{p}\right\}_{1}^{2} ; \Gamma ; H_{K} \oplus E_{-} ;\left\{\left[\begin{array}{cc}
A_{p} & \psi_{-} \\
\psi_{+} & K
\end{array}\right]\right\}_{1}^{2} ;\right. \tag{3.19}\\
\left.H_{K} \oplus E_{+} ; \tilde{\Gamma} ;\left\{\tilde{N}_{p}\right\}_{1}^{2} ;\left\{\tau_{p}^{+}\right\}_{1}^{2} ;\left\{\sigma_{p}^{+}\right\}_{1}^{2}\right)
\end{gather*}
$$

where K, ψ_{-}, ψ_{+}, and $\left\{A_{1}, A_{2}\right\}$ are given correspondingly by formulas (3.8), (3.9) and (3.15)-(3.18), $\Omega=U_{\delta}(\alpha)$.

Finally, prove that the characteristic function $S_{1}(\lambda)$ of the operator A_{1} (3.15), (3.16) of the colligation Δ_{K} coincides with $S(\lambda)$. (3.8) and (3.11) imply

$$
T_{\lambda, \alpha} \psi_{-} N_{1} u_{-}=e_{\lambda}\left(u_{-}, 0\right)
$$

Using the form of the operator ψ_{+}(3.9), we have

$$
\psi_{+} T_{\lambda, \alpha} \psi_{-} N_{1} u_{-}=\frac{S(\lambda)-K}{i(\lambda-\alpha)} u_{-}
$$

and thus $S_{1}(\lambda)=S(\lambda)$.
III. Formulas (3.10) imply

$$
\begin{aligned}
& R_{1} e_{\lambda} u_{-}=\frac{e_{\lambda} u_{-}-e_{\alpha} u_{-}}{\lambda-\alpha} \\
& R_{2} e_{\lambda} u_{-}=e_{\lambda} N_{1}^{-1} \Gamma u_{-}+\frac{e_{\lambda} N_{1}^{-1} N_{2} u_{-}-e_{\alpha} N_{1}^{-1} N_{2} u_{-}}{\lambda-\alpha}
\end{aligned}
$$

Therefore, if on the subspace in H_{K},

$$
\begin{equation*}
H_{K}^{-}=\operatorname{span}\left\{e_{\lambda} u_{-}: \lambda \in U_{\delta}(\alpha) ; u_{-} \in E_{-}\right\}, \tag{3.20}
\end{equation*}
$$

the linear bounded operators $N_{p} e_{\lambda} u_{-} \stackrel{\text { def }}{=} e_{\lambda} N_{p} u_{-}, p=1,2$, and $\Gamma e_{\lambda} u_{-} \stackrel{\text { def }}{=} e_{\lambda} \Gamma u_{-}$ are given, then it is obvious that

$$
\begin{equation*}
\left\{N_{1} R_{2}-N_{2} R_{1}-\Gamma\right\} f_{-}=0 \tag{3.21}
\end{equation*}
$$

for all $f_{-} \in H_{K}^{-}$. Consider also the action of the resolvents R_{1} and R_{2} on the elements of another subspace in H_{K},

$$
\begin{equation*}
H_{K}^{+}=\operatorname{span}\left\{e_{\lambda} u_{+}: \lambda \in U_{\delta}(\alpha) ; u_{+} \in E_{+}\right\} . \tag{3.22}
\end{equation*}
$$

Then (5.69) implies

$$
\begin{align*}
(\bar{\lambda}-\alpha) R_{1} e_{\lambda} u_{+} & =e_{\lambda} u_{+}+e_{\alpha} N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}(\lambda) u_{+} ; \tag{3.23}\\
R_{2} e_{\lambda} Q_{\lambda}^{+} u_{+} & =e_{\lambda} L_{\lambda}^{+} u_{+}+e_{\alpha} N_{1}^{-1} \tau_{2}^{-} \stackrel{+}{S}(\lambda) u_{+}
\end{align*}
$$

Therefore

$$
\begin{equation*}
R_{2} e_{\lambda} Q_{\lambda}^{+} u_{+}-R_{1} e_{\lambda}(\bar{\lambda}-\alpha) L_{\lambda}^{+} u_{+}=e_{\alpha} N_{1}^{-1}\left(\tau_{2}^{-} \stackrel{+}{S}(\lambda)-\tau_{1}^{-} \stackrel{+}{S}(\lambda) L_{\lambda}^{+}\right) u_{+} . \tag{3.24}
\end{equation*}
$$

Taking into account the form of the linear bundles Q_{λ}^{+}and L_{λ}^{+}(3.3), transform the left-hand side of the equality

$$
\begin{gathered}
R_{2} e_{\lambda} Q_{\lambda}^{+} u_{+}-(\bar{\lambda}-\alpha) R_{1} e_{\lambda} L_{\lambda}^{+} u_{+}=(\bar{\lambda}-\alpha) R_{2} e_{\lambda} u_{+}+(\alpha-\bar{\alpha}) R_{2} e_{\lambda} u_{+} \\
+(\bar{\alpha}-\alpha)(\bar{\lambda}-\alpha) R_{2} e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} u_{+}+|\alpha-\bar{\alpha}|^{2} R_{2} e_{\lambda}\left(\tilde{N}_{1}^{*}\right) \tilde{\Gamma}^{*} u_{+} \\
+(\bar{\alpha}-\alpha) R_{2} e_{\lambda}\left(\tilde{N}_{1}^{*}\right) \tilde{N}_{2}^{*} u_{+}-(\bar{\lambda}-\alpha)^{2} R_{1} e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} u_{+} \\
-(\bar{\lambda}-\alpha)(\alpha-\bar{\alpha}) R_{1} e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} u_{+}-(\bar{\lambda}-\alpha) R_{1} e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*} u_{+} \\
=(\bar{\lambda}-\alpha)\left\{R_{2} e_{\lambda} u_{+}+(\bar{\alpha}-\alpha) R_{2} e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} u_{+}\right. \\
\left.-(\alpha-\bar{\alpha}) R_{1} e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} u_{+}-R_{1} e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*} u_{+}\right\} \\
+|\alpha-\bar{\alpha}|^{2} R_{2}\left[(\bar{\lambda}-\alpha) R_{1} e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} u_{+}-e_{\alpha} N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}(\lambda)\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} u_{+}\right] \\
+(\bar{\alpha}-\alpha) R_{2}\left[(\bar{\lambda}-\alpha) R_{1} e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*} u_{+}-e_{\alpha} N_{1}^{-1} \tau_{2}^{-} \stackrel{+}{S}(\lambda)\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*} u_{+}\right] \\
+(\bar{\lambda}-\alpha)\left[e_{\lambda}\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} u_{+}+e_{\alpha} N_{1}^{-1} \tau_{1}^{-} \stackrel{+}{S}(\lambda)\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} u_{+}\right]
\end{gathered}
$$

in view of the first relation in (3.23). Define the linear operators $\tilde{N}_{1}^{*}, \tilde{N}_{2}^{*}$, and $\tilde{\Gamma}^{*}$ in $H_{K}^{+}(3.22), \tilde{N}_{p}^{*} e_{\lambda} u_{+} \stackrel{\text { def }}{=} e_{\lambda} \tilde{N}_{p}^{*} u_{+}, p=1,2$, and $\tilde{\Gamma}^{*} e_{\lambda} u_{+} \stackrel{\text { def }}{=} e_{\lambda} \tilde{\Gamma}^{*} u_{+}$.

Then, in view of the invariancy of the subspace H_{K}^{-}(3.20) with respect to the resolvents R_{1} and R_{2}, we have

$$
\begin{aligned}
& R_{2} e_{\lambda} Q_{\lambda}^{+} u_{+}-(\bar{\lambda}-\alpha) R_{1} e_{\lambda} L_{\lambda}^{+} u_{+}=(\bar{\lambda}-\alpha)\left\{R_{2}+(\bar{\alpha}-\alpha)\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} R_{2}\right. \\
& \quad+(\bar{\alpha}-\alpha)\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} R_{1}-\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*} R_{1}+(\alpha-\bar{\alpha}) R_{1} R_{2}+|\alpha-\bar{\alpha}|^{2} \\
& \left.\times\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*} R_{1} R_{2}+(\bar{\alpha}-\alpha)\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{N}_{2}^{*} R_{1} R_{2}-\left(\tilde{N}_{1}^{*}\right)^{-1} \tilde{\Gamma}^{*}\right\} e_{\lambda} u_{+}+f_{-},
\end{aligned}
$$

where $f_{-} \in H_{K}^{-}(3.20)$. Thus, we can be finally written relation (3.24) as

$$
\begin{gathered}
(\bar{\lambda}-\alpha)\left(\tilde{N}_{1}^{*}\right)^{-1}\left\{\tilde{N}_{1}^{*} R_{2}\left(I+(\alpha-\bar{\alpha}) R_{1}\right)-\tilde{N}_{2}^{*} R_{1}\left(I+(\alpha-\bar{\alpha}) R_{2}\right)\right. \\
\left.-\tilde{\Gamma}^{*}\left(I+(\alpha-\bar{\alpha}) R_{1}\right)\left(I+(\alpha-\bar{\alpha}) R_{2}\right)\right\} e_{\lambda} u_{+}=g_{-},
\end{gathered}
$$

where $g_{-} \in H_{K}^{-}$(3.20). Taking into account (3.21), we have

$$
\begin{gather*}
\left\{N_{1} R_{2}-N_{2} R_{1}-\Gamma\right\} \cdot\left(\tilde{N}_{1}^{*}\right)^{-1}\left\{\tilde{N}_{1}^{*} R_{2}\left(I+(\alpha-\bar{\alpha}) R_{1}\right)\right. \\
\left.-\tilde{N}_{2}^{*} R_{1}\left(I+(\alpha-\bar{\alpha}) R_{2}\right)-\tilde{\Gamma}^{*}\left(I+(\alpha-\bar{\alpha}) R_{1}\right)\left(I+(\alpha-\bar{\alpha}) R_{2}\right)\right\} e_{\lambda} u_{+}=0 . \tag{3.25}
\end{gather*}
$$

Let $\operatorname{dim} E_{ \pm}=n_{ \pm}<\infty$. By using $\mathbb{Q}\left(\lambda_{1}, \lambda_{2}\right)$ and $\tilde{\mathbb{Q}}\left(\lambda_{1}, \lambda_{2}\right)$ (2.8), define the following polynomials:

$$
\begin{align*}
& \mathbb{Q}-\left(\lambda_{1}, \lambda_{2}\right)=\left(\lambda_{1}, \lambda_{2}\right)^{n_{-}} \mathbb{Q}\left(\frac{1}{\lambda_{1}}+\alpha, \frac{1}{\lambda_{2}}+\alpha\right)=\operatorname{det}\left[N_{1} \lambda_{2}-N_{2} \lambda_{1}+\Gamma\right] ; \\
& \tilde{\mathbb{Q}}_{+}\left(\lambda_{1}, \lambda_{2}\right)=\left(\lambda_{1} \lambda_{2}\right)^{n_{+}} \overline{\tilde{\mathbb{Q}}\left(\frac{1+(\bar{\alpha}-\alpha) \bar{\lambda}_{1}}{\bar{\lambda}_{1}}+\alpha, \frac{1+(\bar{\alpha}-\alpha) \bar{\lambda}_{2}}{\bar{\lambda}_{2}}+\alpha\right)} \\
&=\operatorname{det}\left[\tilde{N}_{1}^{*} \lambda_{2}\left(1+(\alpha-\bar{\alpha}) \lambda_{1}\right)-\tilde{N}_{2}^{*} \lambda_{1}\left(1+(\alpha-\bar{\alpha}) \lambda_{2}\right)\right. \tag{3.26}\\
&\left.\quad-\tilde{\Gamma}^{*}\left(1+(\alpha-\bar{\alpha}) \lambda_{1}\right)\left(1+(\alpha-\bar{\alpha}) \lambda_{2}\right)\right] .
\end{align*}
$$

Using $\mathbb{Q}_{-}\left(\lambda_{1}, \lambda_{2}\right)$ and $\tilde{\mathbb{Q}}_{+}\left(\lambda_{1}, \lambda_{2}\right)(3.26)$, construct the polynomial

$$
\begin{equation*}
\mathbb{P}\left(\lambda_{1}, \lambda_{2}\right) \stackrel{\text { def }}{=} \mathbb{Q}_{-}\left(\lambda_{1}, \lambda_{2}\right) \cdot \tilde{\mathbb{Q}}_{+}\left(\lambda_{1}, \lambda_{2}\right) . \tag{3.27}
\end{equation*}
$$

Formulate an analogue of the Hamilton-Caley theorem for a commutative system of unbounded operators $\left\{A_{1}, A_{2}\right\}$.

Theorem 3.4. Let a simple commutative colligation Δ (1.1) be given such that $\operatorname{dim} E_{ \pm}=n_{ \pm}<\infty$, and the operators N_{1}, \tilde{N}_{1} are boundedly invertible. Moreover, suppose that relations (1.24) are true, and $\left\{K^{*} \sigma_{2}^{+} K-\sigma_{2}^{-}\right\},\left\{K \tau_{2}^{-} K^{*}-\tau_{2}^{+}\right\}$ are invertible. Then the resolvents $\left\{R_{1}, R_{2}\right\}$ of the main operators $\left\{A_{1}, A_{2}\right\}$ of the colligation Δ (1.1) annihilate the polynomial

$$
\begin{equation*}
\mathbb{P}\left(R_{1}, R_{2}\right)=0 \tag{3.28}
\end{equation*}
$$

where $\mathbb{P}\left(\lambda_{1}, \lambda_{2}\right)$ is given by (3.27) and constructed by the polynomials $\mathbb{Q}\left(\lambda_{1}, \lambda_{2}\right)$ and $\tilde{\mathbb{Q}}\left(\lambda_{1}, \lambda_{2}\right)$ (2.8) using formulas (3.26).

Proof. Since

$$
\mathbb{Q}_{-}\left(\lambda_{1}, \lambda_{2}\right) I_{E_{-}}=B\left(\lambda_{1}, \lambda_{2}\right)\left\{N_{1} \lambda_{2}-N_{2} \lambda_{1}-\Gamma\right\},
$$

where $B\left(\lambda_{1}, \lambda_{2}\right)$ is a matrix-valued polynomial of λ_{1}, λ_{2}, then (3.21) implies

$$
\mathbb{Q}_{-}\left(R_{1}, R_{2}\right) f_{-}=0
$$

for all $f_{-} \in H_{K}^{-}$(3.20). Similar considerations, by using (3.25), show that

$$
\mathbb{P}\left(R_{1}, R_{2}\right) f_{+}=0
$$

for all $f_{+} \in H_{K}^{+}(3.22)$. And since the closed linear span $H_{K}^{ \pm}$generates the whole space H_{K}, we finally obtain

$$
\mathbb{P}\left(R_{1}, R_{2}\right) f=0
$$

for all $f \in H_{K}$. Application of Theorem 2.4 finishes the proof.
Suppose that the characteristic function $S_{1}(\lambda)$ (2.3) is such that $S_{1}(\alpha)$ is invertible, then the intertwining condition 1) (2.51) implies that $n=n_{-}=n_{+}$ and $\mathbb{Q}\left(\lambda_{1}, \lambda_{2}\right)$. Therefore polynomial (3.27) in this case is given by

$$
\begin{equation*}
\mathbb{P}\left(\lambda_{1}, \lambda_{2}\right)=\mathbb{Q}_{-}\left(\lambda_{1}, \lambda_{2}\right) \cdot \mathbb{Q}_{+}\left(\lambda_{1}, \lambda_{2}\right), \tag{3.29}
\end{equation*}
$$

where $\mathbb{Q}_{ \pm}\left(\lambda_{1}, \lambda_{2}\right)$ are defined by the polynomial $\mathbb{Q}\left(\lambda_{1}, \lambda_{2}\right)(2.8)$ using formulas (3.26). Let

$$
\begin{equation*}
\bar{w}_{p}=\frac{\lambda_{p}}{1+(\alpha-\bar{\alpha}) \lambda_{p}}, \quad p=1,2 . \tag{3.30}
\end{equation*}
$$

Then it is obvious that the inverse transform to (3.30) is equal to

$$
\begin{equation*}
\lambda_{p}=\frac{\bar{w}_{p}}{1+(\bar{\alpha}-\alpha) \bar{w}_{p}}=\overline{\frac{w_{p}}{1+(\alpha-\bar{\alpha}) w_{p}}}, \quad p=1,2 . \tag{3.31}
\end{equation*}
$$

It is easy to see that

$$
\begin{gathered}
\mathbb{P}\left(\lambda_{1}, \lambda_{2}\right)=\mathbb{P}\left(\frac{\bar{w}_{1}}{1+(\bar{\alpha}-\alpha) \bar{w}_{1}}, \frac{\bar{w}_{2}}{1+(\bar{\alpha}-\alpha) \bar{w}_{2}}\right) \\
=\operatorname{det}\left[N_{1} \frac{\bar{w}_{2}}{1+(\bar{\alpha}-\alpha) \bar{w}_{2}}-N_{2} \frac{\bar{w}_{1}}{1+(\bar{\alpha}-\alpha) \bar{w}_{2}}-\Gamma\right] \cdot \operatorname{det}\left\{\frac{1}{1+(\bar{\alpha}-\alpha) \bar{w}_{1}}\right. \\
\left.\times \frac{1}{1+(\bar{\alpha}-\alpha) \bar{w}_{2}} \cdot\left[N_{1}^{*} \bar{w}_{2}-N_{2}^{*} \bar{w}_{1}-\Gamma^{*}\right]\right\}=\left(1+(\bar{\alpha}-\alpha) \bar{w}_{1}\right)^{-2 n}(1 \\
\left.+(\bar{\alpha}-\alpha) \bar{w}_{2}\right)^{-2 n} \frac{1}{\mathbb{P}\left(w_{1}, w_{2}\right)} .
\end{gathered}
$$

Thus, polynomial (3.29) has the "antiholomorphic involution"

$$
\begin{gather*}
\left(1+(\bar{\alpha}-\alpha) \bar{w}_{1}\right)^{2 n}\left(1+(\bar{\alpha}-\alpha) \bar{w}_{2}\right)^{2 n} \mathbb{P}\left(\frac{\bar{w}_{1}}{1+(\bar{\alpha}-\alpha) \bar{w}_{1}}, \frac{\bar{w}_{2}}{1+(\bar{\alpha}-\alpha) \bar{w}_{2}}\right) \\
=\overline{\mathbb{P}\left(w_{1}, w_{2}\right)} \tag{3.32}
\end{gather*}
$$

relatively to transform (3.30).
As known, the broken-linear transformation (3.30) is a holomorphic transformation of the generalized circle into the circle and its boundary (circle) is invariant relatively to this transformation. To find this circle, multiply both sides of the equality

$$
\lambda=\frac{\bar{\lambda}}{1+(\bar{\alpha}-\alpha) \bar{\lambda}}
$$

by $\bar{\alpha}-\alpha$. Then, after elementary transformations, we obtain

$$
1+(\alpha-\bar{\alpha}) \lambda=\frac{1}{1+(\bar{\alpha}-\alpha) \bar{\lambda}} .
$$

This signifies that $\xi=1+(\alpha-\bar{\alpha}) \lambda$ satisfies the relation $\xi=\frac{1}{\bar{\xi}}$, therefore ξ belongs to the unit circle \mathbb{T}. Thus, we obtain the circle

$$
\begin{equation*}
\mathbb{T}_{\alpha}=\left\{\lambda=\frac{\xi-1}{\alpha-\bar{\alpha}} \in \mathbb{C}:|\xi|=1\right\} \tag{3.33}
\end{equation*}
$$

the radius r of which is equal to $r=|2 \operatorname{Im} \alpha|^{-1}$ and the center \mathbb{T}_{α} (3.33) is in the point i (when $\alpha \in \mathbb{C}_{+}$) or in the point $-i$ (when $\alpha \in \mathbb{C}_{-}$). It is obvious that the transformation (3.30) written in the form

$$
1+(\alpha-\bar{\alpha}) w=\frac{1}{1+(\bar{\alpha}-\alpha) \bar{\lambda}}
$$

represents the inversion relatively to the circle \mathbb{T}_{α} (3.33).
Theorem 3.5. The polynomial $\mathbb{P}\left(\lambda_{1}, \lambda_{2}\right)$ (3.29) has the antiholomorphic involution (3.32) given by inversion (3.30) relative to the circle \mathbb{T}_{α} (3.33).

References

[1] M.S. Livs̆ic, On One Class of Linear Operators in Hilbert Space. - Mat. Sb. 19/61 (1946), No. 2, 236-260.
[2] A.V. Kuzhel, On the Reduction of Unbounded Nonselfadjoint Operators to the Triangular Form. - DAN SSSR 119 (1958), No. 5, 868-871. (Russian)
[3] A. Kuzhel, Characteristic Functions and Models of Nonselfadjoint Operator. Kluwer Acad. Publ., Dordrecht, London, 1996.
[4] A.V. Shtraus, Characteristic Functions of Linear Operators. - Izv. AN SSSRR, Ser. Mat. 24 (1960), No. 1, 43-74. (Russian)
[5] E.R. Tsekanovskiy and Yu.L. Shmul'yan, Matters of the Expansion Theory of Unbounded Operators in Framed Hilbert Spaces. - Itogi Nauki. Mat. Analiz VINITI 14 (1977), 59-100. (Russian)
[6] V.A. Derkach and M.M. Malamud, Generalized Resolvents and the Boundary Value Problems for Hermitian Operators with Gaps. - J. Funct. Anal. 95 (1991), No. 1, 1-95.
[7] B.S. Pavlov, Spectral Analysis of Dissipative Shrödinger Operator in Terms of Functional Model. - Itogi Nauki. Sovr. Probl. Mat., Fund. Napravl. VINITI 65 (1991), 95-163. (Russian)
[8] M.S. Livšic, N. Kravitsky, A. Markus, and V. Vinnikov, Theory of Commuting Nonselfadjoint Operators. Kluwer Acad. Publ., Dordrecht, London, 1996.
[9] V.A. Zolotarev, Time Cones and Functional Model on Riemann Surface. - Mat. Sb. 181 (1990), No. 7, 965-994. (Russian)
[10] V.A. Zolotarev, Analitic Methods of Spectral Representations of Nonselfadjoint and Nonunitary Operators. MagPress, Kharkov, 2003. (Russian)
[11] V.A. Zolotarev, On Commutative Systems of Nonselfadjoint Unbounded Linear Operators. - J. Math. Phys., Anal., Geom. 5 (2009), 275-279.

