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Since the time the book [1] was published, the number of papers on spectral
theory of singular differential operators initiated by E. Fermi and developed by
Ya.B. Zeldovich, F.A. Berezin, R.A. Minlosov, L.D. Faddeev (references to the
papers by these authors can be found in [1]) has considerably increased. Notice
that in the mentioned monograph only the classes of solvable models of quan-
tum mechanics with pointwise interaction in the spaces of no more than three
dimensions were studied.

1. The goal of our paper is to give a strict sense to the formal operator

l(D) +
l∑

j=1

Cjδ (x− tj) , (1)
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where t1, t2, . . . , tl is a set of l pairwise different points in Rn, x = (x1, x2, . . . , xn)
∈ Rn,

l(D) =
∑

|α|=α1+α2+···+αn≤m

aαDα


P0(ξ) =

∑

|α|≤m

(−1)|α|aαξα ∈ R1, ∀ξ ∈ R̂n




is an elliptic differential expression of the m-th order with constant coefficients,
δ(x) is Dirac’s δ−function, c1, c2, . . . , cl are real numbers.

Following Berezin and Faddeev’s method [3], at first we consider the operator

H̃0 := l(D)
∣∣∣
C∞0 (Rn\S)

, S = {tk}l
k=1 ⊂ Rn,

in the space L2(Rn) and denote by H0 = H̃0 its closure in L2(Rn), i.e.

D(H0) =
◦

W
m

2 (Rn\S) (Sobolev space) and

H0ψ(x) = l(D)ψ(x), for ∀ψ(x) ∈ D(H0).

Then, after having found the deficiency index of the operator H0, by using the
theory of self-adjoint extensions of symmetric operators (von Neumann’s theory)
[4] and the method of renormalization of relation constants c1, c2, . . . , cl, standing
before δ-function [3], we describe the pointwise interactions with (with the center
at the points of the set S) l-centers.

The following conjecture is crucial in proving a theorem on the deficiency
index of the operator H0.

Conjecture 1 (see [5, p. 154]). Let En,m(x) be a fundamental solution for
an elliptic operator l(D). Then the following estimate is valid in a neighborhood
of the point x = 0 :

|DαEn,m(x)| ≤ C0 + C1|x|m−n−|α|, |α| = 0, 1, 2, . . . , m− 1; |α| 6= m− n,

|DαEn,m(x)| ≤ C0 + C1 ln
(

1
|x|

)
, |α| = m− n.

Let us denote by Hj,0, j = 0, 1, . . . , l, a closure of minimal operators H̃j,0,
j = 0, 1, 2, . . . , l, defined in the space L2(Rn) by the formulas

H̃j,0 = l(D), D
(
H̃j,0

)
= C∞

0 (Rn\ {tj}) , tj ∈ S, j = 1, 2, . . . , l,

H̃0,0 = l(D), D
(
H̃0,0

)
= C∞

0 (Rn\ {0}) .
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The following two lemmas are used in the proof of the deficiency index theo-
rem.

Lemma 1.

def(H0) =
l∑

j=1

def (Hj,0) = l · def (H0,0) .

The proof of this lemma follows from the local nature of interactions.

Lemma 2. Let f(x) ≡ f (x1, x2, . . . , xn) be a sufficiently smooth function,
and

An,m(f) = {Dαf(x)}|α|≤m

be a totality of all its different derivatives (in Schwartz’s sense) up to the order
m inclusively. Then the equality

ν (An,m(f)) =
{

Cm
n+m, m ∈ N,

1, m = 0
(2)

is true for number ν (An,m(f)) of elements of the set An,m(f).
P r o o f. Since the number of different derivatives (in Schwartz’s sense) of

the m-th order of the function f(x) equals

Cm−1
m−1 + Cm−1

m + · · ·+ Cm−1
n+m−2,

then formula (2) follows from the equalities

Cm−1
m−1 + Cm−1

m + · · ·+ Cm−1
n+m−2 = Cm

n+m−1,

and
Cm

n+m−1 + Cm−1
n+m−1 = Cm

n+m.

In the following theorem we study the dependence of deficiency numbers of
the operator H0,0 on the dimension of space and on the order of elliptic differential
expression l(D).

Theorem 1. a) If n ≥ 2m, then the operator H0,0 has deficiency indices
(0, 0);

b) if n = 2m− 2p + j, j = 0, 1; p = 1, 2, . . . ,m, then deficiency indices of the
operator H0,0 are (rp, rp), where

rp =
{

Cp−1
n+p−1, if p = 2, 3, . . . , m,

1, if p = 1.

P r o o f. We denote a fundamental solution of the differential operator
l(D) − λ (here λ is an arbitrary nonreal complex number) by En,m(x, λ). Since
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the function En,m(x, λ) and its derivatives of any order are square integrable near
∞ (see [6, p. 287]), the amount of functions DαEn,m(x, λ) belonging to L2(Rn),
depends on the amount of functions DαEn,m(x, λ) lying in L2 near zero. From
Lemma 2 and Conjecture 1 it follows that all the functions

DαEn,m(x, λ), |α| ≤ n + 2p− j

2
, p = 1, 2, . . . ,m; j = 0, 1,

belong to L2(Rn). Since the system of functions {DαEn,m(x, λ)} is linear inde-
pendent, then the dimension of the deficiency subspace

Mλ = L
(
{DαEn,m(x, λ)}|α|≤n+2p−j

2
; p=1,2,...,m; j=0,1

)
(3)

of the operator H0,0 for n = 2m− 2p+ j, p = 1, 2, . . . ,m; j = 0, 1, equals rp, and
for n ≥ 2m, equals zero, and thus the theorem is proved.

Remarks to Theorem 1:
1) for m = 2, statement a) of the theorem is proved in [2, p. 184];
2) physical sense of statement a) of the theorem is that for n ≥ 2m there are

no pointwise interactions;
3) for n = 1, m = 2, the operator H0,0 has deficiency indices (2,2). Since the

operator H0,0 has four parametric families (see Th. 3) of selfadjoint extensions
in the space L2(R1), then in addition to δ-interaction there exist supplementary
types of pointwise interactions (for example, δ′-interactions (see [1, p. 121])).

Now, we formulate the main theorem on the deficiency index of the opera-
tor H0.

Theorem 2. If n = 2m− 2p + j, p = 1, 2, . . . ,m; j = 0, 1, then the operator
H0 has deficiency indices (lrp, lrp).

The proof of Theorem 2 follows from Lemma 1 and Theorem 1.
Remarks to Theorem 2:
1) in Theorems 1 and 2, j = 0 should be taken for even n, and j = 1, for

odd n;
2) theorem 2 for a single-center Schrödinger operator in three-dimensional

case was proved in the paper [3], and for multicenter Schrödinger operator, in [9].

2. Additional remarks. Notice that Theorem 2 can be generalized for an
elliptic operator acting in the space of vector-functions.

Conjecture 2. Let A : C∞
0 (Rn\{tk}l

k=1, C
d) → L2(Rn, Cd) (here Cd is

a d-dimensional complex field) be a minimal operator generated by an elliptic
differential operator of the m-th order with constant coefficients acting in the
space of vector-functions. Then the operator A has a deficiency index (lrpd, lrpd).
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Thus, the operator A may be represented in the form of direct sum d of scalar
operators of the type considered in Theorem 2.

In Svendsen’s paper [8] a more general situation is considered. In parti-
cular, the deficiency numbers (see [8, Cor. 3.2, p. 538]) of the operator A :
C∞

0 (Ω\M, Cd) → L2(Ω, Cd) (here M is C∞-manifold with codimM > 0), act-
ing in the space of vector-functions that was generated by an elliptic differential
expression with C∞-coefficients, were studied. Notice that if codimM > 0 and
the number of the elements of the set M is infinite, then the deficiency num-
bers of the operator A equal ∞, i.e. in this case Corollary 3.2 is obvious, but if
codimM > 0 and the number of the elements of the set M is finite, Conjecture 2
agrees with Svendsen’s Corollary 3.2. Svendsen himself notes (see [8, the example
after Th. 3.1, p. 558]) that ellipticity conditions mast not be rejected. Theorem
3.2 (consequently, Cor. 3.2) of the paper [8] is obliquely based on Theorem 2.1,
where C∞-manifold M (the manifolds consisting of finite elements can hardly
be considered as a C∞-manifold, if only we suppose that) locally straightens
out to some finite–dimensional space Rk. In general, if we study only deficiency
numbers, then Svendsen’s technique on which a specially constructed approxi-
mate sequence, the Sobolev inequality, the ”straightening” mentioned above, and
property (2) are based (see [8, p. 561] for its proof see [7, p. 196–199]), is very
complicated to be used. One can easily notice some misprints and inaccuracies
in the paper [8]. For example, in formulation of Theorem 3.2 (see. [8, p. 558]) in
the first statement there should be the sign of inequality, and in the second one,
the sign of equality. The elements E(3.2), E(3.3), E(3.4), E(3.5), E(6.6), E(6.7) of
Table 1 (see. [8, p. 560]) should be equal to 3, 4, 1, 1, 28, 36, respectively.

3. The obvious forms of the basis elements of deficiency subspaces Mλ and
Mλ (see. (3)) allow to describe all selfadjoint extensions of the operator H0

and to choose the selfadjoint extension that corresponds to the dynamics of the
described system.

Take some orthonormed bases
{
e+
k (x)

}lrp

k=1
and

{
e−k (x)

}lrp

k=1
in the subspaces

Mλ and Mλ, respectively. Let U = (ukj) be a unitary matrix of order lrp.
We denote a selfadjoint extension of the operator H0, that corresponds to uni-
tary matrix U, by Hu. Applying the general theory of extensions of symmetric
operators (see [4, p. 166]), we arrive at the following theorem.

Theorem 3. Selfadjoint extensions Hu of the operator H0 are given by the
formulae

D (Hu) =
{

ψ(x) = ϕ(x) +
lrp∑

j=1

dj

[
e+
j (x) +

lrp∑

k=1

ukje
−
j (x)

]
:

ϕ(x) ∈ D(H0), dj ∈ C, j = 1, 2, . . . , lrp

}
,
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Huψ(x) = H0ϕ(x) + λ

lrp∑

j=1

dje
+
j (x) + λ

lrp∑

j=1

lrp∑

k=1

ukje
−
j (x).

The following theorem describes the spectral properties of the operator Hu.

Theorem 4. i) A continuous part of the spectrum of any selfadjoint extension
Hu of the operator H0 is absolutely continuous and covers the range of values
E (P0(ξ)) of the function P0(ξ).

ii) If
min [E (P0(ξ))] = P0 > −∞,

then a part of the spectrum of any selfadjoint extension Hu lying to the left of
P0 may consist of only finite numbers of eigenvalues whose sum of multiplicities
does not exceed lrp.

P r o o f. Taking into account that Fridrich’s extension H−E with absolutely
continuous spectrum is among the selfadjoint extensions of the operator H0 and
the continuous spectrum does not depend on the choice of extension, we get the
validity of statement i). Statement ii) follows directly from M.G. Krein’s theorem
(see [4, Th. 16, p. 179]).

4. Now, we will show that the selfadjoint extension of the operator H0,
that corresponds to a finite number of δ-interactions, is of the form Hu(θ1,θ2,...,θl),
where u (θ1, θ2, . . . , θl) = diag (u1, u2, . . . , ul) is a diagonal block matrix of order
lrp, ui = diag (θi,−1, . . . ,−1) are diagonal matrices of order rp, θi are complex
numbers satisfying the condition |θi| = 1, i = 1, 2, . . . , l. Taking into account the
local nature of interactions, it suffices to consider the operator

L = l (D) + εδ (x) . (4)

Consider the Fourier transformation of expression (4)

L̂ψ̂ (ξ) = P (−iξ) ψ̂ (ξ) +
ε

(2π)n

∫

Rn

ψ̂ (ξ) dξ. (5)

It is easy to get the expressions for H0 and Hu in ξ-representation

D
(
Ĥ0

)
=

{ ∫

Rn

|P (−iξ) ϕ̂ (ξ)|2 dξ < +∞,

∫

Rn

ϕ̂ (ξ) ξαdξ = 0, |α| ≤ rp−1
}

, (6)

Ĥ0ϕ̂ (ξ) = P (−iξ) ϕ̂ (ξ) ;
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for ψ̂ (ξ) ∈ D
(
Ĥu

)
for λ = i we have

ψ̂ (ξ) = ϕ̂ (ξ) +
rp∑

k=1

dk
Qk (−iξ)

P (−iξ) + i
+

rp∑

k=1




rp∑

j=1

ukjdj


 Qk (−iξ)

P (−iξ)− i
, (7)

Ĥuψ̂ (ξ) = P (−iξ) ϕ̂ (ξ)− i

rp∑

k=1

dk
Qk (−iξ)

P (−iξ) + i

+ i

rp∑

k=1




rp∑

j=1

ukjdj


 Qk (−iξ)

P (−iξ)− i
, (8)

where ϕ̂ (ξ) ∈ D
(
Ĥ0

)
, Qk (−iξ) = (−iξ)α, moreover Q1 (−iξ) = 1.

Using (7) and (8), we get

Ĥuψ̂ (ξ) = P (−iξ) ψ̂ (ξ)− d1 (1 + u11)−
rp∑

k=2


dk +

rp∑

j=1

ukjdj


 Qk (−iξ) . (9)

For (9) to get the form of (5), we must assume

dk +
rp∑

j=1

ukjdj = 0, k = 2, 3, . . . , rp.

Due to the arbitrariness of the coefficients dj , j = 1, 2, . . . , rp, we have

ukk = −1, ukj = 0, k = 2, 3, . . . , rp, j 6= k. (10)

It follows from (10) and the unitarity of matrix U that

u11 = θ (θis a complex number with |θ| = 1), u1j = 0, j = 2, 3, . . . , rp. (11)

Thus, if (10) and (11) are fulfilled, then we have

ψ̂ (ξ) = ϕ̂ (ξ) + d1

(
1

P (−iξ) + i
+ θ

1
P (−iξ)− i

)

+
rp∑

k=2

dk

(
1

P (−iξ) + i
− 1

P (−iξ)− i

)
Qk (−iξ) (12)

and
Ĥ(θ,−1,−1,...,−1)ψ̂ (ξ) ≡ Hθψ̂ (ξ) = P (−iξ) ψ̂ (ξ)− d1 (1 + θ) . (13)
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The functional d1

(
ψ̂, θ

)
is obtained from the asymptotic formulae for the

integrals ∫

Rn

χN (ξ) ψ̂ (ξ)Qk (−iξ) dξ as N → +∞,

where χN (ξ) is a characteristic function of the ball with the center at zero and
with the radius N . Comparing (13) and (5), we find relation between ε and θ.
In some cases this dependence is expressed directly and in some cases via the
renormalization of relation constant ε. We explain briefly (since this theme is a
subject of a separate paper) what the renormalization of the relation constant ε
means. The equation

P (−iξ) ψ̂ (ξ) +
ε

(2π)n

∫

Rn

ψ̂ (ξ) dξ = λψ̂, λ > 0 (14)

is replaced by

P (−iξ) ψ̂N (ξ) + εN (θ) χN (ξ)

( ∫

Rn

χN (t) ψ̂N (t)dt

)
= λψ̂N (ξ) .

The form of εN (θ) is determined from the equation

d1 (1 + θ) = lim
N→+∞

εN (θ)
∫

Rn

χN (t) ψ̂ (ξ) dξ.

Thus, the limit ψ̂ (ξ) of the sequence ψ̂N (ξ) as N → +∞ is a solution of the
problem of scattering theory for the operator Hθ. Thereby, the mathematical
background of equation (14) is in the replacement of the expression

|ξ|2 ·+ ε

(2π)n

∫

Rn

· dξ

by the operator Hθ.
The following examples show that this generalization is well agreed for second

order differential operators. All the examples are cited in ξ-representation, since
it is easy to get x-representation from them.

Example 1. n = 1; m = 2. Consider the Schrodinger equation

L̂ψ̂ (ξ) ≡ ξ2ψ̂ (ξ) +
ε

2π

∞∫

−∞
ψ̂ (ξ) dξ = λψ̂ (ξ) . (15)
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By Ĥ0 we denote an operator of multiplication by ξ2 in L2 (R1) with the domain
of definition

D (H0) =





∞∫

−∞
ξ4 |ϕ̂ (ξ)|2 dξ < +∞,

∞∫

−∞
ϕ̂ (ξ) ξjdξ = 0, j = 0, 1



 .

The operator Ĥ0 is a closed symmetric operator in L2 (−∞,∞) with deficiency
indices (2,2). All selfadjoint extensions are given by the formula

Ĥθψ̂ (ξ) = ξ2ψ̂ (ξ)− d1 (1 + θ) , (16)

where
ψ̂ (ξ) = ϕ̂ (ξ) + d1

1
ξ2 + i

+ d2
ξ

ξ2 + i
+

+d1θ
1

ξ2 − i
− d2

ξ

ξ2 − i
, ϕ̂ (ξ) ∈ D

(
Ĥ0

)
. (17)

From (16) and (17), we get directly

Ĥθψ̂ (ξ) = ξ2ψ̂ (ξ) +
1 + θ

i
√

i + θ i
√−i

1
π

∞∫

−∞
ψ̂ (ξ) dξ. (18)

Comparing (18) and (15), we have

ε =
2 (1 + θ)

i
√

i + θ i
√−i

.

(18) in x-representation means that the operator Hεψ = −ψ′′+ εδ (x) ψ with the
domain of definition

D (Hε) = {ψ (x) ∈ L2
⋂

C (−∞,+∞) : ψ′ (+0)− ψ′ (−0) = εψ (0) ,
−ψ′′ (x) + εδ (x) ψ (x) ∈ L2 (−∞,+∞)}

is a selfadjoint operator in L2 (−∞,∞).

Example 2. n = 2; m = 2. Consider the Schrödinger equation

L̂ψ̂ (ξ) = |ξ|2 ψ̂ (ξ) +
ε

4π2

∫

R2

ψ̂ (ξ) dξ = λψ̂ (ξ) . (19)

By Ĥ0 we denote an operator of multiplication by |ξ|2 in L2 (R2) with the
domain of definition

D
(
Ĥ0

)
=





∫

R2

|ξ|4 |ϕ̂ (ξ)|2 dξ < +∞,

∫

Rn

ϕ̂ (ξ) dξ = 0



 . (20)
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The operator Ĥ0 is a closed symmetric operator with deficiency indices (1, 1).
All selfadjoint extensions are given by the formula

Ĥθψ̂ (ξ) = |ξ|2 ψ̂ (ξ)− d1 (1 + θ) , (21)

where
ψ̂ (ξ) = ϕ̂ (ξ) + d1

1
|ξ|2 + i

+ d1θ
1

|ξ|2 − i
, ϕ̂ (ξ) ∈ D

(
Ĥ0

)
. (22)

From formulae (21) and (22), we have

Ĥαψ̂ (ξ) = |ξ|2 ψ̂ (ξ) +
1
2π

lim
N→+∞

α

1− α ln N

∫

R2

χN (ξ) ψ̂ (ξ) dξ, (23)

where
α =

4 (1 + θ)
πi (1− θ)

; |θ| = 1. (24)

Here, under the renormalization of the relation constants ε we mean that
instead of (19) we consider the equation

|ξ|2 ψ̂N (ξ) + εNχN (ξ)
∫

R2

χN (t) ψ̂N (t) dt = λψ̂N (ξ) , (25)

where
εN =

2πα

1− α lnN
,

and α is determined from formula (24).
The eigenfunctions of the continuous spectrum of the operator Ĥα appear to

be the limits of the sequence ψ̂N (ξ) as N → +∞ in the sense of distributions.
Thus, the mathematical background of equation (19) is in the replacement of the
expression

|ξ|2 ·+ ε

4π2

∫

R2

· dξ

by the operator Hα.
Another instructive example is in [3]. It must be noted that in formula (12′)

in [3] instead of ε there should stand α, and in place of delta-sequence we can
take

− 1
2π2

1
|x|

d

d |x|
(

sinN |x|
|x|

)
,

since in a three-dimensional space the sequence
sinN |x|
|x| converges in the sense

of distributions to zero but not to δ (x).
In conclusion I express my deep gratitude to Doctor of Physico-Mathematical

Sciences Araz Rafig ogly Aliyev for his suggestions on writing this paper as well
as to the referee for his valuable remarks and his referring us to the paper [8].
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