On a Question by A.M. Kagan

A. Il'inskii
Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkiv, 61077, Ukraine
E-mail:Alexander.I.Iljinskii@univer.kharkov.ua

Received January 11, 2010
There is given an example of probability distribution, not having Gaussian components, such that for any two independent identically distributed random variables ξ and η with this distribution and for all $a \neq 0, b \neq 0$ the distribution of the linear form $a \xi+b \eta$ has Gaussian components.

Key words: linear form, characteristic function, Gaussian distribution.
Mathematics Subject Classification 2000: 60E10.
A.M. Kagan posed the question, "Do there exist two independent random variables ξ and η such that the distribution of each of them does not have Gaussian components, but the distribution of the linear form $a \xi+b \eta$ has Gaussian components for any real numbers $a \neq 0$ and $b \neq 0$?". Let us formulate this question in terms of characteristic functions. Recall that the characteristic function of a random variable ξ with distribution P is the function defined for $t \in \mathbf{R}$ by the formula

$$
\varphi_{\xi}(t)=E\left[e^{i t \xi}\right]=\int_{-\infty}^{\infty} e^{i t x} P(d x)
$$

The characteristic function φ_{1} is called a divisor of the characteristic function φ if there exists a characteristic function φ_{2} such that

$$
\varphi(t)=\varphi_{1}(t) \varphi_{2}(t)
$$

for any $t \in \mathbf{R}$. The characteristic function φ is called indecomposable if it is not equal to the function $e^{i a t}(a \in \mathbf{R})$ and if each divisor of φ is equal to $\varphi(t) e^{i b t}$ or $e^{i c t}$, where $b, c \in \mathbf{R}$. The characteristic function of the form $e^{-\sigma t^{2}+i a t}$, where $\sigma>0$ and $a \in \mathbf{R}$, is said to be Gaussian. The factor $e^{i a t}$ is not essential in the problem under consideration. Therefore we can say that the characteristic function φ has a Gaussian divisor if $\varphi(t) e^{\sigma t^{2}}$ is a characteristic function for some positive number σ.

[^0]In terms of characteristic functions A. M. Kagan's question can be stated as, "Do there exist two characteristic functions $f(t)$ and $g(t)$, not having Gaussian divisors, such that the characteristic function $f(a t) g(b t)$ has a Gaussian divisor for all numbers $a \neq 0$ and $b \neq 0$?". The aim of the paper is to give a positive answer to this question.

Theorem. The characteristic function $f(t)=\left(1-t^{2}\right) e^{-t^{2} / 2}$ does not have Gaussian divisors, but the characteristic function $f(a t) f(b t)$ has Gaussian divisors for any nonzero a and b.

Remark 1. This theorem was proved for $a=b$. It is well known (see [1, Ch. $3, \S \S 3$ and 4]) that the characteristic function $f(t)=\left(1-t^{2}\right) e^{-t^{2} / 2}$ of the probability density $(\sqrt{2 \pi})^{-1} x^{2} e^{-x^{2} / 2}$ is indecomposable, but the characteristic function $f^{2}(t)$ has the Gaussian divisor $e^{-t^{2} / 4}$. Notice that the general case $a \neq 0, b \neq 0$ is not an immediate corollary of the particular case $a=b$.

Remark 2. In terms of random variables the theorem means that if ξ and η are the independent and identically distributed random variables with probability density $(\sqrt{2 \pi})^{-1} x^{2} e^{-x^{2} / 2}$ (and characteristic function $\left.\left(1-t^{2}\right) e^{-t^{2} / 2}\right)$, then the distribution of the linear form $a \xi+b \eta$ has Gaussian components for all $a \neq 0$ and $b \neq 0$, although the distributions of ξ and η do not have Gaussian components.

To prove the theorem we need the following lemma.
Lemma. For every $\gamma>0$ the following three functions

$$
\varphi_{1, \gamma}(t)=e^{-\gamma^{2} t^{2} / 2}, \quad \varphi_{2, \gamma}(t)=t^{2} e^{-\gamma^{2} t^{2} / 2}, \quad \varphi_{3, \gamma}(t)=t^{4} e^{-\gamma^{2} t^{2} / 2}
$$

are Fourier transforms of the functions

$$
\begin{aligned}
& p_{1, \gamma}(x)=\frac{1}{\sqrt{2 \pi} \gamma} e^{-\frac{x^{2}}{2 \gamma^{2}}}, \quad p_{2, \gamma}(x)=\frac{1}{\sqrt{2 \pi} \gamma}\left(\frac{1}{\gamma^{2}}-\frac{x^{2}}{\gamma^{4}}\right) e^{-\frac{x^{2}}{2 \gamma^{2}}}, \\
& p_{3, \gamma}(x)=\frac{1}{\sqrt{2 \pi} \gamma}\left(3 \frac{1}{\gamma^{4}}-6 \frac{x^{2}}{\gamma^{6}}+\frac{x^{4}}{\gamma^{8}}\right) e^{-\frac{x^{2}}{2 \gamma^{2}}},
\end{aligned}
$$

respectively. Therefore,

$$
\begin{equation*}
\varphi_{k, \gamma}(t)=\int_{-\infty}^{\infty} e^{i t x} p_{k, \gamma}(x) d x \quad(k=1,2,3) \tag{1}
\end{equation*}
$$

Equality (1) for $k=1$ is a direct consequence of the equality

$$
e^{-t^{2} / 2}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i t x} e^{-x^{2} / 2} d x
$$

Multiplying by t^{2} both sides of equality (1) for $k=1$ and integrating twice by parts, we get equality (1) for $k=2$. Analogously, equality (1) for $k=3$ follows from equality (1) for $k=2$.

Proof of the theorem. Since the characteristic function $\left(1-t^{2}\right) e^{-t^{2} / 2}$ is even, we may suppose that $a>0$ and $b>0$. The characteristic function $f(t)=\left(1-t^{2}\right) e^{-t^{2} / 2}$ is indecomposable, hence it does not have Gaussian divisors. Our aim is to prove that the characteristic function

$$
f(a t) f(b t)=\left(1-a^{2} t^{2}\right)\left(1-b^{2} t^{2}\right) \exp \left(-\left(a^{2}+b^{2}\right) t^{2} / 2\right)
$$

has Gaussian divisors for all $a>0$ and $b>0$. Therefore, for every $a>0$ and $b>0$ we have to find $\gamma^{2}, 0<\gamma^{2}<a^{2}+b^{2}$, such that

$$
\begin{equation*}
\varphi_{\gamma}(t):=\left(1-\left(a^{2}+b^{2}\right) t^{2}+a^{2} b^{2} t^{4}\right) \exp \left(-\gamma^{2} t^{2} / 2\right) \tag{2}
\end{equation*}
$$

is a characteristic function. It is sufficient to prove that if $\gamma^{2} \in\left(0, a^{2}+b^{2}\right)$ and γ^{2} is sufficiently close to $a^{2}+b^{2}$, then the function $\varphi_{\gamma}(t)$ is a Fourier transform of a probability density $p_{\gamma}(x)$. It follows from the lemma that the function $\varphi_{\gamma}(t)$ (see (2)) is a Fourier transform of the function

$$
p_{\gamma}(x)=p_{1, \gamma}(x)-\left(a^{2}+b^{2}\right) p_{2, \gamma}(x)+a^{2} b^{2} p_{3, \gamma}(x)=\frac{1}{\sqrt{2 \pi} \gamma} e^{-\frac{x^{2}}{2 \gamma^{2}}} Q_{\gamma}(x),
$$

where

$$
\begin{equation*}
Q_{\gamma}(x)=1-\left(a^{2}+b^{2}\right)\left(\frac{1}{\gamma^{2}}-\frac{x^{2}}{\gamma^{4}}\right)+a^{2} b^{2}\left(3 \frac{1}{\gamma^{4}}-6 \frac{x^{2}}{\gamma^{6}}+\frac{x^{4}}{\gamma^{8}}\right) . \tag{3}
\end{equation*}
$$

We will prove that the polynomial $Q_{\gamma}(x)$ is positive for all $x \in \mathbf{R}$ if a positive number γ^{2} is less than $a^{2}+b^{2}$ and sufficiently close to $a^{2}+b^{2}$. We put $a=r \cos \theta$, $b=r \sin \theta(r>0,0<\theta<\pi / 2)$. Then $a^{2}+b^{2}=r^{2}$, and we can rewrite (3) as follows:

$$
Q_{\gamma}(x)=\left(1-\frac{r^{2}}{\gamma^{2}}+\frac{3}{4} \cdot \frac{r^{4} \sin ^{2} 2 \theta}{\gamma^{4}}\right)+\left(\frac{r^{2}}{\gamma^{4}}-\frac{3}{2} \cdot \frac{r^{4} \sin ^{2} 2 \theta}{\gamma^{6}}\right) x^{2}+\frac{1}{4} \cdot \frac{r^{4} \sin ^{2} 2 \theta}{\gamma^{8}} x^{4}
$$

We denote $\delta:=\sin ^{2} 2 \theta$. Then $0<\delta<1$, and we can represent $Q_{\gamma}(x)$ in the form

$$
Q_{\gamma}(x)=\left(1-\frac{r^{2}}{\gamma^{2}}+\frac{3}{4} \delta \frac{r^{4}}{\gamma^{4}}\right)+\left(\frac{r^{2}}{\gamma^{2}}-\frac{3}{2} \delta \frac{r^{4}}{\gamma^{4}}\right) \frac{x^{2}}{\gamma^{2}}+\frac{1}{4} \delta \frac{r^{4}}{\gamma^{4}} \frac{x^{4}}{\gamma^{4}}
$$

Let us denote $s:=\frac{r^{2}}{\gamma^{2}}$ and $y:=\frac{x^{2}}{\gamma^{2}}$. Therefore, $s>1$ and $y \geqslant 0$. The polynomial $Q_{\gamma}(x)$ can be rewritten as follows:

$$
Q_{\gamma}(x)=\left(1-s+\frac{3}{4} \delta s^{2}\right)+\left(s-\frac{3}{2} \delta s^{2}\right) y+\delta s^{2} y^{2}=: \varkappa_{s, \delta}(y) .
$$

We prove that the inequality $\min \left\{\varkappa_{s, \delta}(y): y \geqslant 0\right\}>0$ is valid for every $\delta \in(0,1)$ if $s>1$ and s is sufficiently close to 1 . Since the coefficients of the polynomial $\varkappa_{s, \delta}(y)$ depend continuously on s, it remains to verify that $\min \left\{\varkappa_{1, \delta}(y): y \geqslant\right.$ $0\}>0$ for every $\delta \in(0,1)$. Let us consider the polynomial

$$
\psi_{\delta}(y):=\frac{\varkappa_{1, \delta}(y)}{\delta}=\frac{3}{4}+\left(\frac{1}{\delta}-\frac{3}{2}\right) y+y^{2}
$$

and show that $\min \left\{\psi_{\delta}(y): y \geqslant 0\right\}>0$ for every $\delta \in(0,1)$. If $0<\delta \leqslant 2 / 3$, then $\psi_{\delta}(y) \geqslant 3 / 4$ for all $y \geqslant 0$. If $2 / 3<\delta<1$, then $\psi_{\delta}(y)$ has a minimum at the point $y_{\delta}=\frac{1}{2}\left(\frac{3}{2}-\frac{1}{\delta}\right)>0$. Therefore,

$$
\min _{y \geqslant 0} \psi_{\delta}(y)=\psi_{\delta}\left(y_{\delta}\right)=\frac{3}{4}-\left(\frac{3}{4}-\frac{1}{2 \delta}\right)^{2} \geqslant \frac{3}{4}-\left(\frac{3}{4}-\frac{1}{2}\right)^{2}=\frac{11}{16} .
$$

Hence $\min \left\{\varkappa_{1, \delta}(y): y \geqslant 0\right\} \geqslant \delta \frac{11}{16}$ for every $\delta \in(0,1)$. The theorem is proved.
Remark 3. A simpler example can be given if in A.M. Kagan's question not require the random variables ξ and η to be independent. Let us consider the characteristic function of two variables

$$
f(t, s)=\left(e^{-t^{2} / 2}+e^{-s^{2} / 2}\right) / 2
$$

which is the characteristic function of the mixture with weights $1 / 2$ of standard Gaussian distributions concentrated on the coordinate axes $\{y=0\}$ and $\{x=0\}$. Let (ξ, η) be a random vector with this distribution. We assert that the characteristic functions $f(t, 0)$ and $f(0, s)$ of the coordinates ξ and η of random vector (ξ, η) do not have Gaussian divisors, but the characteristic function $f(a t, b t)$ of the linear form $a \xi+b \eta$ has Gaussian divisors for all $a \neq 0$ and $b \neq 0$. Indeed, the distribution with the characteristic function $f(t, 0)=\left(e^{-t^{2} / 2}+1\right) / 2$ is a mixture with weights $1 / 2$ of standard Gaussian distribution and the degenerate distribution concentrated at the point 0 . Since this distribution has an atom, it does not have absolutely continuous components, so it does not have Gaussian components. However the characteristic function $f(a t, b t)=\left(e^{-a^{2} t^{2} / 2}+e^{-b^{2} t^{2} / 2}\right) / 2$ has Gaussian divisors for any $a \neq 0$ and $b \neq 0$.

I am thankful to G.M. Feldman who attracted my attention to A.M. Kagan's question.

References

[1] Ju.V. Linnik and I.V. Ostrovskiŭ, Decomposition of Random Variables and Vectors. Nauka, Moscow, 1972. (Engl. transl.: Amer. Math. Soc., Providence, RI, 1977.)

[^0]: (c) A. Il'inskii, 2010

