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Introduction

Let G be a bounded simply-connected domain of the complex plane C with
the boundary γ = ∂G. A set of functions satisfying the condition

‖f‖Lp(G)

def
=




∫∫

G

|f(z)|pdxdy




1
p

< ∞, z = x + iy, p ≥ 1,

is denoted by Lp(G).
For a function F , given in the domain G, on γ we determine the function

F ∗
α(t) and put

F ∗
α(t) = sup{|F (z)| : z ∈ Gt,α}, α ∈ (1,∞)

if the set Gt,α is not empty, and F ∗
α(t) = 0 otherwise, where ρ(z, γ) is an Euclidean

distance from the point z to the curve γ, and Gt,α = {z ∈ G : |z− t| < αρ(z, γ)}.
The function F ∗

α is a natural analog of a non-tangential maximal function (see
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[1, Ch. 1, §5̇, p. 36]) for the case of functions F determined in the arbitrary
domains of the plane C.

Everywhere in the sequel, if there is no other restrictions on G, we will consider
γ as a Jordan rectifiable curve.

Let m be a Lebesgue measure on γ. A complex valued function f on γ that
is measurable with respect to the measure m is said to be A-integrable on γ if

m{t ∈ γ : |f(t)| > λ} = o

(
1
λ

)
, λ → +∞, (0.1)

and there exists a finite limit

(A)
∫

γ

f(t)dt
def
= lim

λ→+∞

∫

{t∈γ:|f(t)|≤λ}

f(t)dt. (0.2)

An attempt to determine an integral by means of limit (0.2) can hardly be
referred to any author. Without suitable restrictions this attempt meets an ob-
stacle because the integral determined by means of limit (0.2) has no additivity
property [2].

Titchmarch [2] showed that, when applied to the theory of trigonometric series
conjugate to the Fourier–Lebesgue series, this integration (determined through
the integral (0.2)) gives many natural results. Kolmogorov [3] showed that the
function conjugate to a summable function possesses the property (0.1). Titch-
march [2] noticed that it is the property (0.1) that guarantees the additivity of
A-integral.

The papers by P.L. Ulyanov [4, 6], Yu.S. Ochan [7], T.S. Salimov [8] were
devoted to the problem of application of A-integral to the theory of trigonometric
series and to the theory of boundary properties of analytic functions.

It is known [9, 10] that if the analytic function F (z) is a Cauchy-type integral
of some finite measure, then ν, then F (z) almost everywhere on γ has a finite
angular boundary value F (t). P.L. Ulyanov proved the following theorem.

Theorem A [6, Theorem 4]. Let a finite domain G be bounded by a contour
γ that satisfies the conditions of C (see the definition in [6]). Thereby, if

F (z) =
1

2πi

∫

γ

ϕ(t)
t− z

dt (z ∈ G),

then
F (z) =

1
2πi

(A)
∫

γ

F (t)
t− z

dt (z ∈ G).

In other words, the Cauchy-type integral of absolutely continuous measure is
a Cauchy A-integral of its own boundary values.
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The author of [11] gave an appropriate representation of the analytic function
F (z) in its own boundary values F (t) for a circle in the case of arbitrary finite
measures.

T.S. Salimov [8] considered a problem on the conditions on the analytic func-
tion F (z) determined in the domain G so that F (z) has almost everywhere the
finite angular boundary values F (t), the function F (t) is A-integrable, and F (z)
admits representation on the domain G by the Cauchy A-integral in its own
boundary values.

Theorem B [8, Theorem 2]. Let the function F (z) be analytic in G and for
some α ∈ (2,∞) m{t ∈ γ : F ∗

α(t) > λ} = o
(

1
λ

)
, λ → +∞. Then F has a finite

angular boundary value F (t) for almost all t ∈ γ and the following equalities are
valid:

a) (A)
∫
γ

F (t)dt = 0;

b) F (z) =
1

2πi
(A)

∫
γ

F (t)
t− z

dt, z ∈ G.

Theorem B is also proved for the case α ∈ (1, 2] under some additional con-
ditions set on the domain G (see [8], Theorem 9).

The present paper is devoted to finding the conditions on the arbitrary (not
necessarily analytic) functions F (z), determined in the domain G and having in
G continuous partial derivatives, for validity of the following statements:

i) almost everywhere F (z) has the angular boundary values F (t) on γ = ∂G
(see Theorem 1 in Sec. 1);

ii) the boundary values F (t) are A-integrable on γ (see item a) of the state-
ment of Theorem 2 in Sec. 2);

iii) the analog of the Cauchy–Green formula holds for F (z) (see item b) of the
statement of Theorem 2 in Sec. 2).

1. Existence of Angular Boundary Values

We will need the following known theorems.

Theorem C [12, Theorem 1.16]. If f =
∂g

∂z
∈ L1(G), then

g(z) = Φ(z) + (TGf)(z), z ∈ G,

where Φ is analytic in G, (TGf)(z) = − 1
π

∫∫
G

f(ζ)
ζ − z

dξdη, ζ = ξ + iη.

Theorem D [12, Theorem 1.19]. If f ∈ Lp(G) for some p ∈ (2,∞), then the
function TGf satisfies the condition

|(TGf)(z1)− (TGf)(z2)| ≤ Mp ‖f‖Lp(G) |z1 − z2|α, α = (p− 2)/p,
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where z1 and z2 are arbitrary points of the plane C, and Mp is a constant depen-
dent only on p.

Theorem E [8, Lemma 6]. Let the function F be analytic in G and for some
α ∈ (1,∞) F ∗

α(t) be finite for all t from the measurable set P ⊂ γ. Then F has
the finite angular boundary value F (t) for almost all t ∈ P .

Theorem 1. Let the function F be determined in the domain G and satisfy
the following conditions:

1) F is absolutely continuous in G, moreover,
∂F

∂z
∈ Lp(G), z = x + iy, for

some p ∈ (2,∞);
2) for some α ∈ (1,∞),

m{t ∈ γ : F ∗
α(t) > λ} = o

(
1
λ

)
, λ → +∞.

Then, for m-almost all t ∈ γ there exists the finite angular boundary value F (t).

P r o o f. Assume

h(z) =
(

TG
∂F

∂ζ

)
(z) = − 1

π

∫∫

G

∂F

∂ζ

dξdη

ζ − z
.

It follows from Theorem C that the function Ψ(z) = F (z) − h(z) is analytic in
G, and from Theorem D we get that the function h(z) is continuous in G. Hence
and from condition 2) of Theorem 1 it follows that the function Ψ(z) satisfies
all the conditions of Theorem E. Thus, Ψ(z) has a finite angular boundary value
Ψ(t) for almost all t ∈ γ. On the other hand, the function h(z) is continuous
in G, and therefore the function F (z) = Ψ(z) + h(z) also has the finite angular
boundary value F (t) for almost all t ∈ γ.

Theorem 1 is proved.

Corollary 1. If the function F (z) is bounded and has a bounded derivative
∂F

∂z
in G, then there exists the finite angular boundary value F (t) for m-almost

all t ∈ γ.
In fact, the second condition of Theorem 1 follows from the boundedness of

F (z), and the first condition follows from the boundedness of the derivative
∂F

∂z
.

Therefore, F (z) has the finite angular boundary value F (t) for almost all t ∈ γ.
Remark 1. M.B. Balk [13] proved the following statement: if a polyana-

lytic function F (z), i.e. the function of the form F (z) = ϕ0(z) + zϕ1(z) + ... +
zn−1ϕn−1(z), where ϕi(z) are analytic functions, i = 0, n− 1, together with its
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derivative
∂F

∂z
is bounded in G and there is an analytic arch Γ on the boundary

γ = ∂G, then there exists the finite angular boundary value F (t) almost every-
where on Γ. Corollary 1 shows that the existence of almost everywhere finite
angular boundary value holds for any bounded functions F (z) bounded by the

derivative
∂F

∂z
. Moreover, neither polyanaliticity nor the analytic arch Γ on the

curve γ is required.

2. Cauchy–Green Formula

In this section we prove the following

Theorem 2. Let the function F be determined in the domain G and satisfy
the following conditions:

1) F has the continuous partial derivatives
∂F

∂x
and

∂F

∂y
in G, moreover,

∂F

∂z
∈ L1(G), z = x + iy;

2) for some α ∈ (1,∞),

m{t ∈ γ : F ∗
α(t) > λ} = o

(
1
λ

)
, λ → +∞;

3) for m-almost all t ∈ γ there exists the finite angular boundary value F (t).
Then
a)

(A)
∫

γ

F (t)dt = 2i

∫∫

G

∂F

∂ζ
dξdη, ζ = ξ + iη, (2.1)

where F (t) is a finite angular boundary value of the function F (z) as z → t ∈ γ;
b) for all z ∈ G,

F (z) =
1

2πi
(A)

∫

γ

F (t)
t− z

dt− 1
π

∫∫

G

∂F

∂ζ
· dξdη

ζ − z
. (2.2)

Remark 2. If
∂F

∂z
∈ Lp(G) for some p > 2, then the condition 3) follows

from Theorem 1 and can be eliminated.
Remark 3. Since for the function F (z) analytic in the domain G the integral

in the right-hand side of (2.1) equals zero, then it follows from Theorems 1 and
2 that the statement of Theorem B holds for α ∈ (1,∞).

To prove Theorem 2 we will need the following known statements proved by
A.S. Bezikovich [14] and P.L. Ulyanov [6].
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Theorem F ([14], Ch. 1, § 1, p. 13). Let A be a bounded set in Rn, and for
each x ∈ A there be given a closed Euclidean ball B(x, r(x)) centered in x and
of radius r(x). Then from the set {B(x, r(x)) : x ∈ A} we can choose at most a
denumerable set of balls {Bk} satisfying the following conditions:

i) A ⊂ ∪
k
Bk;

ii) none of the points from Rn is contained in more than θn balls from the set
{Bk}, where θn is a number dependent only on n;

iii) a set of the balls {Bk} can be divided into the ξn families of disjoint balls,
where ξn is a number dependent only on n.

Theorem G [6, Lemma 2]. Let the functions f(x) and ϕ(x) be determined
on the segment [a; b]. Thereby, if m{x ∈ [a, b] : |f(x)| > λ = o(1/λ), λ → +∞,
|ϕ(x)| ≤ D for x ∈ [a, b], where D is a positive constant, then

lim
λ→+∞





∫

{x∈[a;b]:|f(x)ϕ(x)|≤λ}

f(x)ϕ(x)dx−
∫

{x∈[a;b]:|f(x)|≤λ}

f(x)ϕ(x)dx





= 0.

2.1. Let E be an open set on γ = ∂G, E 6= ∅, E 6= γ, and α > 1 be a given
number. Denote P = γ\E,

r =
α− 1
3α

, β =
2α + 1
α + 2

, δ =
1
2

arccos
1
β

, n =
[π

δ

]
+ 1, (2.3)

where [x] is an entire part of a number x ∈ R.
Using Theorem F , from the system {B(t, rρ(t, P ))}t∈E we choose at most a

denumerable set of the circles {Bq}q∈Q (Bq = B(tq, rρ(tq, P )), q ∈ Q), such that

E ⊂ ∪
q∈Q

Bq (2.4)

and each point from C is overlapped by at most θ circles from {Bq}, and the
number θ is an absolute constant. As each point from E is overlapped by at most
θ circles from {Bq}, we get the estimation

∑

q∈Q

m(E ∩Bq) ≤ θmE.

Since the point tq (the center of the circle Bq) belongs to the set E, then the
measure of intersection of the set E with the circle Bq is smaller than the diameter
of the circle Bq, i.e. m(E ∩Bq) ≥ 2rρ(tq, P ), q ∈ Q, and thus we have

∑

q∈Q

ρ(tq, P ) ≤ θ

2r
mE. (2.5)
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Let lk, k = 0, n− 1 be straight lines in the plane C given by the equations

x · sin
(π

n
k
)
− y · cos

(π

n
k
)

= 0, k = 0, n− 1.

For each point tq, q ∈ Q, divide the plane C into 2n sectors by the straight lines
parallel to lk, k = 0, n− 1, and crossing the point tq. Denote these sectors by
S

(k)
q , k = 1, 2n. Let

P (k)
q = P ∩ S

(k)
q , k = 1, 2n.

Since the set P
(k)
q is closed, we can take a point t

(k)
q ∈ P

(k)
q , k = 1, 2n, such that

ρ
(
tq, P

(k)
q

)
= |tq − t(k)

q |, k = 1, 2n.

Denoting

τ (k)
q = tq +

tq − t
(k)
q

β2 − 1
, k = 1, 2n,

we set

Kq =
2n∩

k=1
B

(
τ (k)
q ,

β

β2 − 1
|tq − t(k)

q |
)

, q ∈ Q, (2.6)

and
G(E,α) = G\ ∪

q∈Q
Kq. (2.7)

Remark 4. In the paper [8], T.S. Salimov considered the set G(E, α) =
G\ ∪q∈Q B′

q, where B′
q is a circle centered at the point tq and of radius hρ(tq, P ),

h ∈ (0; 1). Unfortunately, this set is not suitable for obtaining the necessary result
for α ∈ (1; 2] for the domains with boundaries having external angles smaller
than 4 arccos α

2 . Under such structure of the set G(E,α), if E is a sufficiently
small vicinity of the point t0 on γ = ∂G, with an external angle smaller than
4 arccos α

2 , then for the point z0 on the internal bisectrix (and for the points z
in some proximity z0) at the distance rρ(t0, P ) from t0, neither the inequality
ρ(z, P ) < α · ρ(z, γ) (see Lemma 2.1 below) that provides inclusion z ∈ F ∗

α(t0),
nor the inequality |F (z)| ≤ λ is fulfilled.

In the present paper, we consider the set G(E, α) = G\ ∪q∈Q Kq, where Kq

is determined by formula (2.6) that allows to establish Theorem B for the case of
the values α ∈ (1; 2).

Lemma 2.1. If z ∈ G(E, α), then ρ(z, P ) < αρ(z, γ).
P r o o f. Choose a point t ∈ γ such that ρ(z, γ) = |z − t|. In the case t ∈ P

we get ρ(z, P ) = |z − t| = ρ(z, γ) < αρ(z, γ). Consider the case t ∈ E. By (2.4),
t ∈ Bq for some q ∈ Q, hence for any k = 1, 2n

|tq − t| ≤ rρ(tq, P ) ≤ rρ(tq, P (k)
q ) = r|tq − t(k)

q |. (2.8)
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Further, in virtue of z 6∈ Kq (see (2.7)) there exists k0 ∈ {1, 2, . . . , 2n} such that
for

z 6∈ B

(
τ (k0)
q ,

β

β2 − 1
|tq − t(k0)

q |
)

. (2.9)

It is easy to show that the geometric place of the points ξ, satisfying the inequality

|ξ − t(k0)
q | ≥ β|ξ − tq|,

is the circle B

(
τ

(k0)
q ,

β

β2 − 1
|tq − t

(k0)
q |

)
. Therefore, from (2.9) we get

|z − t(k0)
q | < β|z − tq|. (2.10)

By virtue of the triangle inequality, from (2.8) and (2.10) we have

|z − tq| ≤ |z − t|+ |tq − t| ≤ |z − t|+ r|tq − t(k0)
q |

≤ |z − t|+ r
{
|z − tq|+ |z − t(k0)

q |
}

< |z − t|+ r(1 + β)|z − tq|,
whence

|z − tq| < 1
1− r(1 + β)

|z − t|. (2.11)

Taking into account that |z − t| = ρ(z, γ) and ρ(z, P ) ≤ ρ(z, P
(k0)
q ) ≤ |z − t

(k0)
q |,

by (2.10), (2.11) and (2.3) we get

ρ(z, P ) ≤ |z − t(k0)
q | < β|z − tq| < β

1− r(1 + β)
ρ(z, γ) = αρ(z, γ).

Lemma 2.2. Let t ∈ P and a tangent to γ exist at the point t. Then there
might be found a number ε > 0 such that for all the points z lying on the internal
normal to G at the point t and satisfying the inequality |z − t| < ε, the inclusion
z ∈ G(E,α) holds.

P r o o f. Choose ε1 > 0 such that if the point z lies on the internal normal
to G at the point t and |z− t| < ε1, then z ∈ G. Choose ε2 > 0 such that if τ ∈ γ
and |τ − t| < ε2, then the angle between the tangent at the point t and the ray
(tτ) is smaller than δ0.

Assume ε = min{ε1,
β − 1

β
ε2}. Let the point z lie on the internal normal to G

at the point t and |z− t| < ε. Then |z− t| < ε1, and therefore z ∈ G. For proving
the lemma, by (2.7) it is enough to verify that z 6∈ Kq for all q ∈ Q. Since for
any q ∈ Q the plane C is divided into 2n sectors S

(k)
q , then there exists such a

number k1 ∈ {1, 2, . . . , 2n} that t ∈ S
(k1)
q . Denote an angle between the tangent
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at the point t and the chord [t, tq] by ϕ1, and the angle between the straight lines
(ttq) and (tqt

(k1)
q ) by ϕ2. Two cases are possible.

1) Case |t− tq| < ε2. Here, by tq ∈ γ and t ∈ S
(k1)
q , there follows that ϕ1 < δ

and ϕ2 <
2π

2n
< δ, respectively (see (2.3)). Let ` be a tangent to γ at the point

t. Since β =
2α + 1
α + 2

< 2 and δ =
1
2

arccos
1
β

<
π

6
for any α > 1, we have

|z − τ (k1)
q | ≥ np`

[
z; τ (k1)

q

]
= np` [t; tq] + np`

[
tq; τ (k1)

q

]
= |tq − t| · cosϕ1

+|τ (k1)
q − tq| · cos(ϕ1 + ϕ2) > cos(2δ) ·

[
|tq − t|+ |τ (k1)

q − tq|
]
,

where np`[z1; z2] is a length of the projection of the segment [z1, z2] on the straight
line `.

Taking into consideration that cos(2δ) = 1/β (see (2.3)), |tq− t| ≤ ρ(tq, P
(k1)
q )

= |tq− t
(k1)
q | by t ∈ S

(k1)
q , and |τ (k1)

q − tq| = 1
β2 − 1

|tq− t
(k1)
q | by definition of τ

(k)
q ,

we get

|z − τ (k1)
q | > 1

β

[
|tq − τ (k1)

q |+ 1
β2 − 1

|tq − t(k1)
q |

]
=

β

β2 − 1
|tq − t(k1)

q |.

Hence it follows that z 6∈ B

(
τ

(k1)
q ,

β

β2 − 1
|tq − t

(k1)
q |

)
and, consequently, z 6∈ Kq.

2) Case |t − tq| ≥ ε2. By the triangle inequality and the condition |z − t| <

ε ≤ β − 1
β

ε2 we have

|z − τ (k1)
q | ≥ |t− τ (k1)

q | − |t− z|

≥ |t− τ (k1)
q | − β − 1

β
· ε2 ≥ |t− τ (k1)

q | − β − 1
β

|t− tq|. (2.12)

Denote by τ ′ a projection of the point τ
(k1)
q on the straight line (ttq). Since

ϕ2 < δ <
π

6
, then

|t− τ (k1)
q | ≥ |t− τ ′| = |t− tq|+ |tq − τ ′| = |t− tq|+ |τ (k1)

q − tq| cosϕ2

> |t− tq|+ |τ (k1)
q − tq| cos(2δ) = |t− tq|+ 1

β
|τ (k1)

q − tq|.

From the above and from (2.12) it follows that

|z − τ (k1)
q | ≥ 1

β

[
|t− tq|+ |τ (k1)

q − tq|
]
.

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 1 11
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Further, taking into account that |tq − t| ≥ ρ(tq, P
(k1)
q ) = |tq − t

(k1)
q |, by t ∈ S

(k1)
q

and |τ (k1)
q − tq| = 1

β2 − 1
|tq − t

(k1)
q | by the definition of τ

(k)
q , we get

|z − τ (k1)
q | ≥ 1

β

[
|tq − t(k1)

q |+ 1
β2 − 1

|tq − t(k1)
q |

]
=

β

β2 − 1

[
|tq − t(k1)

q |
]

and, consequently, z 6∈ Kq.
Lemma 2.2 is proved.

Lemma 2.3. G(E,α) is an open subset of the plane C.
P r o o f. Let z ∈ G(E,α). By (2.7), z ∈ G and therefore ρ(z, γ) > 0. At

first prove that for all q ∈ Q there holds the inclusion

Kq ⊂ B

(
tq,

1
β − 1

ρ(tq, P )
)

. (2.13)

In fact, for any point z ∈ Kq, by the definition of the set Kq, we have z ∈
B

(
τ

(k)
q ,

β

β2 − 1
|tq − t

(k)
q |

)
for each k = 1, 2n. Then, |z− τ

(k)
q | < β

β2 − 1
|tq − t

(k)
q |

and

|z − tq| = |z − τ (k)
q + τ (k)

q − tq| =
∣∣∣∣∣z − τ (k)

q +
tq − t

(k)
q

β2 − 1

∣∣∣∣∣

≤ |z − τ (k)
q |+ 1

β2 − 1
· |tq − t(k)

q | < β

β2 − 1
· |tq − t(k)

q |+ 1
β2 − 1

· |tq − t(k)
q |

=
1

β − 1
· |tq − t(k)

q | ≤ 1
β − 1

ρ(tq, P ),

whence inclusion (2.13) follows.

If some circle B

(
tq,

1
β − 1

ρ(tq, P )
)

intersects a circle B(z, ρ(z, γ)/2), then

by tq ∈ γ it follows that

1
β − 1

ρ(tq, P ) + ρ(z, γ)/2 ≥ ρ(z, γ)

and thus ρ(tq, P ) ≥ β − 1
2

ρ(z, γ). The above and inclusion (2.4) gives

that the circle B(z, ρ(z, γ)/2) can intersect only a finite number of circles from{
B

(
tq,

1
β − 1

ρ(tq, P )
)}

q∈Q

. Taking also into account inequality (2.11), we get

that the circle B(z, ρ(z, γ)/2) can intersect only a finite number of sets from the
family {Kq}q∈Q. Since the sets Kq, q ∈ Q are closed, then for some δ > 0 the
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circle B(z, δ) intersects none of the sets Kq, q ∈ Q. Then, by z ∈ G and (2.7) it
follows that some vicinity of the point z is contained in G(E, α).

Lemma 2.3. is proved.

Lemma 2.4. The following relations hold:

∂G(E, α) ∩ E = ∅, ∂G(E,α) ⊂ P ∪
(
∪

q∈Q
∂Kq

)
,

where P = γ\E.
P r o o f. It follows from the definition of the set G(E, α) (2.7) and Lemma

2.3 that

∂G(E,α) ⊂ γ ∪
(
∪

q∈Q
∂Kq

)
.

Therefore, it is enough to prove that ∂G(E,α) ∩ E = ∅. If t ∈ E, then by
(2.4), t ∈ Bq for some q ∈ Q. Subsequently, |t − tq| ≤ rρ(tq, P ). Since for any
k ∈ {1, 2, . . . , 2n} the inequality |tq − t

(k)
q | ≥ ρ(tq, P ) is fulfilled, and by (2.3),

r < (β + 1)−1, we have

|t− τ (k)
q | ≤ |t− tq|+ |tq − τ (k)

q | ≤ rρ(tq, P )

+
1

β2 − 1
|tq − t(k)

q | ≤
[
r +

1
β2 − 1

]
|tq − t(k)

q | < β

β2 − 1
|tq − t(k)

q |.

From whence it follows that t is an internal point of the set Kq, and therefore
t 6∈ ∂G(E, α).

Lemma 2.4 is proved.
Let {Gj}j∈J be the connected components of the set G(E, α). From the

construction of G(E, α) it follows that ∂Gj is a Jordan curve for any j ∈ J .
Further, by Lemma 2.4 we have

∂Gj\γ ⊂ ∪
q∈Q

∂Kq, (2.14)

∂Gj ∩ γ ⊂ P, j ∈ J. (2.15)

The set Kq is an intersection of the 2n circles and therefore Kq is a convex set.

Since one of these circles is of radius
β

β2 − 1
ρ(tq, P ) and Kq is a subset of this

circle, then the length of the boundary Kq is not greater than the boundary of

the indicated circle, i.e. not greater than
2πβ

β2 − 1
ρ(tq, P ). Therefore, from (2.14)

and (2.5) we get that ∂Gj is rectifiable, j ∈ J .

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 1 13



R.A. Aliyev

If at the point t ∈ P there exists a tangent γ, then by Lemma 2.2, t ∈ ∂Gj

for some j ∈ J and, consequently,

m

(
P\ ∪

j∈J
∂Gj

)
= 0. (2.16)

Lemma 2.5. If j1, j2 ∈ J and j1 6= j2, then the intersection ∂Gj1 ∩ ∂Gj2

contains at most one point.
P r o o f. By the construction of G(E, α), ∂Gj1 ∩ ∂Gj2 does not contain an

arch. Therefore, if this set contains at least two points, then the set C\(Gj1∪Gj2)
contains a bounded connected component D. Since ∂D ⊂ (∂Gj1 ∪ ∂Gj2) ⊂ G,
then from the coherence of G we get D ⊂ G. Furthermore, D ∩ G(E, α) 6= D,
otherwise the set Gj1∪Gj2∪D would be contained in some connected component
of the set G(E,α), that is impossible. Further, by D ⊂ G and D ∩G(E, α) 6= D,
we have D∩Kq 6= D for some q ∈ Q. Thus, taking into account the inclusion D ⊂
G, we get that the intersection of ∂D with the interior of Kq is not empty. The
last statement contradicts the inclusion ∂D ⊂ (∂Gj1 ∪ ∂Gj2) and the inequality
(2.5), and this proves the lemma.

2.2. Proof of item a) of Theorem 2.
Denote

Eλ = {t ∈ γ; F ∗
α > λ}, Pλ = γ\Eλ.

If Eλ 6= ∅ for some λ > 0, then |F (z)| ≤ λ for all z ∈ G and the validity of items
a) and b) of Theorem 2 is established (see [12, pp. 28 and 42]).

Now, let Eλ 6= ∅ for all λ > 0. It follows from the definition of the function F ∗
α

that Eλ is an open subset of γ. Let G(Eλ, α) be a set constructed in subsection 2.1,
{Gj}j∈J be the connected components of G(Eλ, α). On ∂Gj choose the positive
orientation (with respect to Gj). It follows from Lemma 2.1 and the definition
of the function F ∗

α that |F (z)| ≤ λ for z ∈ G(Eλ, α). Therefore, |F (t)| ≤ λ for
almost all t ∈ ∂Gj , and the following equality is valid:

∫

∂Gj

F (t)dt = 2i

∫∫

Gj

∂F

∂ξ
dxdy, ξ = x + iy,

and
∣∣∣∣∣∣∣

∫

∂Gj∩γ

F (t)dt− 2i

∫∫

∂Gj

∂F

∂ξ
dxdy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

∂Gj\γ

F (t)dt

∣∣∣∣∣∣∣
≤ λ

∫

∂Gj\γ

|dt|.
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By summing up these inequalities and taking into account (2.14) and Lemma 2.6,
we get

∑

j∈J

∣∣∣∣∣∣∣

∫

∂Gj∩γ

F (t)dt− 2i

∫∫

Gj

∂F

∂ξ
dxdy

∣∣∣∣∣∣∣
≤ λ

∑

q∈Q

∫

∂Kq

|dt|.

As the length of the boundary of the set Kq is not greater than 2πβ(β2 − 1)−1

×ρ(tq, P ), by using (2.5) and taking into account (2.3), we obtain

∑

j∈J

∣∣∣∣∣∣∣

∫

∂Gj∩γ

F (t)dt− 2i

∫∫

Gj

∂F

∂ξ
dxdy

∣∣∣∣∣∣∣
≤ θ

3πβα

(α− 1)(β2 − 1)
λmEλ.

Further, by (2.15), (2.16) and Lemma 2.5, we have
∫

Pλ

F (t)dt =
∑

j∈J

∫

∂Gj∩γ

F (t)dt.

From the last two relations we get the estimation
∣∣∣∣∣∣∣

∫

Pλ

F (t)dt− 2i

∫∫

G(Eλ,α)

∂F

∂ξ
dxdy

∣∣∣∣∣∣∣
≤ θ

3πβα

(α− 1)(β2 − 1)
λmEλ. (2.17)

Denote by P ′
λ only a set of the points t ∈ γ having the angular boundary value

F (t), and |F (t)| ≤ λ. The conditions of the theorem imply that m(Pλ\P ′
λ) = 0

and, therefore, ∫

P ′λ

F (t)dt =
∫

Pλ

F (t)dt +
∫

P ′λ\Pλ

F (t)dt.

On the other hand, we have
∣∣∣∣∣∣∣

∫

P ′λ\Pλ

F (t)dt

∣∣∣∣∣∣∣
≤ λm(P ′

λ\Pλ) ≤ λm(γ\Pλ) = λmEλ. (2.18)

By estimations (2.17) and (2.18), we get
∣∣∣∣∣∣∣

∫

P ′λ

F (t)dt− 2i

∫∫

G

∂F

∂ξ
dxdy

∣∣∣∣∣∣∣
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≤
[
1 + θ

3πβα

(α− 1)(β2 − 1)

]
λmEλ +

∫∫

G\G(Eλ,α)

∣∣∣∣
∂F

∂ξ

∣∣∣∣ dxdy.

Since the area of the domain G\G(Eλ, α) tends to zero as λ → +∞, then from
conditions 1) and 2) of Theorem 2 there follows the equality from item a) of
Theorem 2.

2.3. Proof of item b) of Theorem 2.
Fixing z ∈ G and using condition 2) of Theorem 2 choose λ0 > 0 such that

mEλ0 <
1
2

min{(β2 − 1)ρ(z, γ), mγ}. (2.19)

Now, let an arbitrary λ > λ0. The set Eλ is open, Eλ 6= ∅, and by (2.19), Eλ 6= γ.
Using the construction from subsection 2.1 (for E = Eλ), we get a system of the
sets {Kq}q∈Q and the set G(Eλ, α). Let {Gj}j∈J be connected components of
G(Eλ, α). Choose the positive orientation on ∂Gj (with respect to Gj), j ∈ J .

At first prove that

ρ(z,Kq) >
1
2
ρ(z, γ), q ∈ Q. (2.20)

Taking into account that Kq =
2n⋂

k=1

B

(
τ

(k)
q ,

β

β2 − 1
|tq − t

(k)
q |

)
, for any k ∈

{1, 2, . . . , 2n} we have

ρ(z,Kq) ≥ ρ

(
z, B

(
τ (k)
q ,

β

β2 − 1
|tq − t(k)

q |
))

≥ |z − τ (k)
q | ≥ |z − tq| − |tq − τ (k)

q | = |z − tq| − 1
β2 − 1

|tq − t(k)
q |.

Let ρ(tq, Pλ) = |tq − t
(k1)
q |. Since |z − tq| ≥ ρ(z, γ) and ρ(z, Pλ) ≤ mEλ, then we

get

ρ(z, Kq) ≥ ρ(z, γ)− 1
β2 − 1

mEλ.

Noticing also that by (2.19) mEλ >
β2 − 1

2
ρ(z, γ), we prove the validity of the

estimation (2.20).
From (2.7) and (2.20) we have z ∈ G(Eλ, α). Furthermore, it follows from

the definition of the set Pλ and Lemma 2.2 that |F (z′)| ≤ λ for z′ ∈ G(Eλ, α).
Consequently, in G(Eλ, α) the Cauchy–Green integral formula is applicable to
the function F . Thus, we have

F (z) =
1

2πi

∑

j∈J

∫

∂Gj

F (t)
t− z

dt− 1
π

∫∫

G(Eλ,α)

∂F

∂ξ

dxdy

ξ − z
, ξ = x + iy,
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and ∣∣∣∣∣∣∣
F (z)− 1

2πi

∑

j∈J

∫

∂Gj∩γ

F (t)
t− z

dt +
1
π

∫∫

G

∂F

∂ξ

dxdy

ξ − z

∣∣∣∣∣∣∣

≤ 1
2π

∑

j∈J

∫

∂Gj\γ

|F (t)|
|t− z| |dt|+ 1

π

∫∫

G\G(Eλ,α)

∣∣∣∣
∂F

∂ξ

∣∣∣∣
dxdy

|ξ − z|

≤ λ

2π

∑

j∈J

∫

∂Gj\γ

|dt|
|t− z| +

1
π

∫∫

G\G(Eλ,α)

∣∣∣∣
∂F

∂ξ

∣∣∣∣
dxdy

|ξ − z| = 41 +42.

Estimate 41 and 42. Taking into account (2.14), Lemma 2.5 and inequality
(2.20), for 41 we have

41 ≤ λ

πρ(z, γ)

∑

q∈Q

∫

∂Kq

|dt|.

Since the length of the boundary Kq is not greater than 2πβ(β2 − 1)−1ρ(tq, P ),
by inequality (2.5) we get

41 ≤ θ
3βα

(α− 1)(β2 − 1)ρ(z, γ)
λmEλ.

From the above and from condition 2) of Theorem 2 it follows that 41 tends to
zero as λ → +∞.

Further, by inequality (2.20), for 42 we have

42 ≤ 2
πρ(z, γ)

∫∫

G\G(Eλ,α)

∣∣∣∣
∂F

∂ξ

∣∣∣∣ dxdy.

Since the area of the domain G\G(Eλ, α) tends to zero as λ → +∞, it follows
from condition 1) of Theorem 2 that 42 also tends to zero as λ → +∞.

Taking also into account that by (2.15), (2.16) and Lemma 2.5

∑

j∈J

∫

∂Gj∩γ

F (t)
t− z

dt =
∫

Pλ

F (t)
t− z

dt,

we get

F (z) = lim
λ→+∞

1
2πi

∫

Pλ

F (t)
t− z

dt− 1
π

∫∫

G

∂F

∂ξ

dxdy

ξ − z
. (2.21)
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Since m(Pλ\P ′
λ) = 0, then

∣∣∣∣∣∣∣

∫

P ′λ

F (t)
t− z

dt−
∫

Pλ

F (t)
t− z

dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

P ′λ\Pλ

F (t)
t− z

dt

∣∣∣∣∣∣∣

≤ 2λ

ρ(z, γ)
m(P ′

λ\Pλ) ≤ 2λ

ρ(z, γ)
mEλ.

The last expression tends to zero as λ → +∞ by condition 2) of Theorem 2.
Hence, in virtue of (2.21) and Theorem G there follows equality (2.2). The
theorem is proved.
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