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Let H2
σ(C+), 0 < σ < +∞, be a space of analytic in C+ = {z : Rez > 0}

functions G for which

||G|| := sup
−π

2 <ϕ< π
2





+∞∫

0

|G(reiϕ)|2e−2rσ| sin ϕ|dr





1/2

< +∞.

We obtain the cyclicity conditions for functions G ∈ H2
σ(C+).

Key words: Beurling–Lax Theorem, cyclic function, outer function, weighted
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1. Introduction

Let Hp(C+), 1 ≤ p < +∞, be the Hardy space of analytic in the half-plane
C+ = {z : Rez > 0} functions for which

||f ||∗ = sup
x>0





+∞∫

−∞
|f(x + iy)|pdy





1/p

< +∞.

The properties of these spaces are described in details in [1, 2], where it is shown,
in particular, that the spaces Hp(C+) are Banach relative to the above norm.

The problem of completeness in H2(C+) of the system

{G(z)eτz : τ ≤ 0}, (1)

where G ∈ H2(C+), was studied by P. Lax [3] (the close result for a circle was
obtained by Beurling [4]). We can formulate this statement in the next form (see
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[5, p. 284]). A function G ∈ H2(C+) is called cyclic in H2(C+) if the system (1)
is complete in H2(C+).

The Beurling–Lax Theorem. Let G ∈ H2(C+), G 6≡ 0. Then the following
conditions are equivalent:

1) G is cyclic in H2(C+);
2) the equation

0∫

−∞
f(u + τ)g(u)dw = 0, τ ≤ 0, g ∈ L2(−∞; 0),

where

G(z) =
1

i
√

2π

0∫

−∞
g(u)euzdu,

has only the trivial solution in L2(−∞; 0);
3)the system {g(u − τ) : τ ≤ 0}, where g(u) = 0, u > 0, is complete in

L2(−∞; 0);
4) G has no zero in C+,

lim
x→+∞

ln |G(x)|
x

= 0,

and the singular boundary function of G is constant;
5) G is outer for H2(C+).

T. Srinivasan and J.-K. Wang [6] generalized this result that follows from
1) ⇔ 4) ⇔ 5) for arbitrary p ∈ [1; +∞). The circle of ideas in the theory of the
vector-valued functions and operator theory clustering around the Beurling–Lax
theorem is considered in the books [7, 8].

A function G is said to be outer for Hp(C+) if there is the representation

G(z) = eiα exp





1
π

+∞∫

−∞

tz + i

(t + iz)(1 + t2)
ln |G(it)|dt



 , α ∈ R, G ∈ Lp(∂C+).

The singular boundary function h of G ∈ Hp(C+) is defined with accuracy to an
additive constant and to the values in the points of continuity by the equality

h(t2)− h(t1) = lim
x→0+

t2∫

t1

ln |G(x + iy)|dy −
t2∫

t1

ln |G(iy)|dy. (2)
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The generalization of this theorem for a weighted Hardy space is trivial if
the weight is the module of analytic in C+ and continuous in C+ functions ϕ
for which |ϕ(z)| ≤ 1, z ∈ C+ (therefore, we could not find the formulation of
this result). The full analog of the Beurling–Lax theorem is not found for any
nontrivial weighted Hardy space.

The aim of this paper is to prove such an analog in terms of complete measure
in the sense of A.F. Grishyn (see [9]).

2. Generalizations of Hardy Spaces

P. Rooney, J. Benedetto, H. Heinig and other authors (see, for example, [10,
11]) studied the spaces of the functions analytic in C+ for which

||f || :=



+∞∫

−∞
|w(x + iy)f(x + iy)|pdy




1/p

< +∞,

and the weight w satisfies some additional conditions. They adapted many classi-
cal results, but not the Beurling–Lax theorem. The result obtained by A. Sedlet-
skii [12] opened other way. He showed that the space Hp(C+) can be defined as
a class of analytical in C+ functions for which

||f || := sup
−π

2
<ϕ< π

2





+∞∫

0

|f(reiϕ)|pdr





1/p

< +∞.

Also, the last norm is equivalent to the norm || · ||∗. Therefore, B. Vinnitskii [13]
considered the following generalization of the Hardy space. Let Hp

σ(C+), σ ≥ 0,
1 ≤ p < +∞, be the space of functions analytic in C+ for which

||f || := sup
−π

2
<ϕ< π

2





+∞∫

0

|f(reiϕ)|pe−prσ| sin ϕ|dr





1/p

< +∞. (3)

The Wiener class of the entire functions of exponential type ≤ σ, which belong
to L2(R), is the subset of Hp

σ(C+) [14, 15]. The space Hp
σ(C+) was studied

in [13, 16], where the functions f from these spaces are shown to have almost
everywhere (a.e.) on ∂C+ the angular boundary values, which we also denote by
f(iy), and f(iy)e−σ|y| ∈ Lp(R). The singular boundary function of the functions
G ∈ Hp

σ(C+) exists [9, 17] and it is defined with accuracy to an additive constant
and to the values in the points of continuity by equality (2). Thus, the space
Hp

σ(C+), 1 ≤ p < +∞, is a Banach space.
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3. The Main Result

For the formulation of the main result we will consider some spaces. By
definition, put Dα,β = {z : |Rez| < 0, α < Imz < β}, D∗

α,β = C\Dα,β, α < β.
Let Ep[Dα,β] and Ep

∗ [Dα,β], 1 ≤ p < +∞, be the spaces of the functions f analytic
in Dα,β and D∗

α,β, respectively, for which

sup





∫

γ

|f(z)|p|dz|




1/p

< +∞,

where the supremum is considered on all segments γ which lay accordingly in
Dα,β and D∗

α,β and are parallel to one of the legs of ∂Dα,β. The functions f
from these spaces have [13] a.e. on ∂Dσ the angular boundary values, which we
denote f(z) and f ∈ Lp[∂Dσ]. Also, we suppose Dσ = D−σ,σ, D∗

σ = D∗−σ,σ,
Ep[Dσ] = Ep[D−σ,σ], and Ep

∗ [Dσ] = Ep
∗ [D−σ,σ].

Between the spaces H2
σ(C+) and E2∗ [Dσ] there exists the bijection [13] which

is determined by each of the formulas

G(z) =
1

i
√

2π

∫

∂Dσ

g(w)ezwdw (4)

and

g(w) =
1√
2π

+∞∫

0

G(x)e−xwdx, Rew > 0. (5)

A function G ∈ H2
σ(C+) is called cyclic in H2

σ(C+) if the system (1) is complete
in this space.

Theorem 1. Let G ∈ H2
σ(C+), σ > 0, G 6≡ 0. Then the following conditions

are equivalent:
1) G is cyclic for H2

σ(C+);
2) the equation

∫

∂Dσ

f(w + τ)g(w)dw = 0, τ ≤ 0, g ∈ E2
∗ [Dσ], (6)

where g is defined by (5), has only the trivial solution f ∈ E2[Dσ];
3) the system {g(w − τ) : τ ≤ 0} is complete in E2∗ [Dσ];
4) G has no zero in C+, the singular boundary function of G is constant, and
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one of the following equivalent conditions is satisfied:

a) lim
r→+∞

(
KG(r)− σ

π
ln r

)
= −∞;

b) lim
r→+∞

(
KG(r)− σ

π
ln r

)
= −∞;

c) G(z) exp
(

2σ

π
z ln z − cz

)
6∈ Hp(C+) for everyone c ∈ R;

d) lim
x→+∞

(
ln |G(x)|

x
+

2σ

π
lnx

)
= +∞;

e) lim
x→+∞

(
ln |G(x)|

x
+

2σ

π
lnx

)
= +∞,

where KG(r) =
1
2π

∫

1<|t|≤r

(
1
t2
− 1

r2

)
ln |G(it)|dt. (7)

The Beurling–Lax theorem is not a particular case of Theorem 1 because for
the case of σ = 0 this theorem (but not Theorem 2) is not valid.

The equivalence of the conditions 1), 2), and 3) of Theorem 1 is established
in [18]. In [19] it is shown that from condition 1) there follows 4) with condition a).
In [13, 19] it is proven that if G has at least one zero in C+ or the singular
boundary function of G is not constant, then G is not cyclic in H2

σ(C+).

4. The Auxiliary Results

The proof of Theorem 1 is based essentially on the following two statements,
the last of which may be considered as the Phragmen–Lindelof type theorem.

Theorem 2. Let G ∈ H2
σ(C+), σ > 0, f(z) 6= 0, for all z ∈ C+, and a singular

boundary function of the function G be constant. Then the conditions a), b), c),
d), and e) of Theorem 1 are equivalent.

This result is contained in [20].

Theorem 3. Suppose F̃1(z)e−iσz ∈ H2
σ(C+), F̃3(z)eiσz ∈ H2

σ(C+), F̃2 ∈
H2

2σ(C+), F̃2(x)e
2σ
π

x ln x ∈ L2(0;+∞),

F̃1(z) + F̃2(z) + F̃3(z) ≡ 0, z ∈ C+, (8)

and

lim
x→+∞

ln |F̃j(x)|
x

= −∞, j ∈ {1; 3}. (9)
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Then there exists such c ∈ R that

F̃1(z)e−iσze
2σ
π

z ln ze−cz ∈ H2(C+), F̃3(z)eiσze
2σ
π

z ln ze−cz ∈ H2(C+), (10)

where ln z is the main branch of the logarithm in C+.

P r o o f of Theorem 3. Consider the functions

f̃j(w) =
1√
2π

+∞∫

0

F̃j(x)e−xwdx, j ∈ {1; 2; 3}, (11)

and suppose D1 = D−2σ,0, D2 = D−2σ,2σ, D3 = D0,2σ. Then from (5) we have
f̃j ∈ E2∗ [Dj ], j ∈ {1; 2; 3}, hence by (8) we obtain

f̃1(w) + f̃2(w) + f̃3(w) ≡ 0, w ∈ D∗
2. (12)

Naturally, the dual formulas

F̃j(z) =
1

i
√

2π

∫

∂Dj

f̃j(w)ezwdw, j ∈ {1; 2; 3}, (13)

also hold. The functions f̃1, f̃2 and f̃3 are entire because the integrals in the
right-hand member of (11) under the condition (9) converge uniformly on every
compact set on C. Using (12) and (13), we get

F̃1(z) = − 1
i
√

2π

∫

∂D1

(f̃2(w) + f̃3(w))ezwdw.

But f̃3 ∈ E2∗ [D3] ⊂ E2[D1], therefore f̃3(w)ewz ∈ E1[D1], z ∈ C+ [11]
∫

∂D1

f̃3(w)ezwdw = 0, z ∈ C+.

Thus we have
F̃1(z) = − 1

i
√

2π

∫

∂D1

f̃2(w)ezwdw.

The function f̃2(w)ezw is entire for each z ∈ C+. Hence, using the Coshey
theorem, in a rectangle Mk := {z : z ∈ D1, Rez > k}, k < 0 we obtain

∫

∂Mk

f̃2(w)ezwdw = 0.
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Thus we have

F̃1(z) = − 1
i
√

2π

∫

∂(D1\Mk)

f̃2(w)ezwdw, z ∈ C+, k < 0. (14)

Furthermore,

|F̃1(x)| ≤ 1√
2π

∫

∂(D1\Mk)

|f̃2(w)|exu|dw| = 1√
2π

(I1 + I2 + I3),

where x > 0, w = u+ iv, k < 0. Let k = −2σ
π ln x, then by the Schwarz inequality

and the formula f̃2(u− 2iσ) ∈ L2(−∞; 0), for x > 1 we get

I1 =

k∫

−∞
|f̃2(u− 2iσ)|exudu ≤




k∫

−∞
|f̃2(u− 2iσ)|2du

k∫

−∞
e2xudu


 1

2

≤



0∫

−∞
|f̃2(u− 2iσ)|2du

exp
(−4σ

π x ln x
)

2x


 1

2
=

c1√
x

exp
(
−2σ

π
x lnx

)
.

We also have f̃1 ∈ L2(−∞; 0) and f̃3 ∈ L2(−∞; 0). If we combine this with (12),
we get f̃2 ∈ L2(−∞; 0). Analogously,

I3 =

k∫

−∞
|f̃2(u)|exudu ≤ c2√

x
exp

(
−2σ

π
x ln x

)
.

Further,

I2 =

0∫

−2σ

|f̃2(k + iv)|exkdv = exp
(
−2σ

π
x ln x

) 0∫

−2σ

∣∣∣∣∣∣
1√
2π

+∞∫

0

F̃2(t)e−t(k+iv)dt

∣∣∣∣∣∣
dv

≤ exp
(
−2σ

π
x ln x

) 0∫

−2σ

1√
2π

+∞∫

0

∣∣∣F̃2(t)e−tk
∣∣∣ dtdv

=
exp

(−2σ
π x ln x

)
√

2π

0∫

−2σ

+∞∫

0

∣∣∣F̃2(t)e−tk
∣∣∣ dtdv

≤ exp
(−2σ

π x ln x
)

√
2π

2σ




+∞∫

0

∣∣∣F̃2(t)e
2σ
π

t ln t
∣∣∣ 2dt ·

+∞∫

0

e
−4σ

π
t ln t+ 4σ

π
t ln xdt


 1

2
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≤ c3 exp
(
−2σ

π
x ln x

) (√
xe

4σ
πe

x
) 1

2
= c3 exp

(
−2σ

π
x ln x

)
4
√

xe
4σ
πe

x.

The penultimate inequality follows from the estimation of the Laplace transform
in [21, p. 326]. Therefore,

|F̃1(x)| ≤ c4e
c5x exp

{
−2σ

π
x lnx

}
, x > 1. (15)

We can apply a theorem of the Phragmen–Lindelof type (see [16, 9]) to the
function ϕ1(z) = F̃1(z) exp

{−2σ
π z ln z

}
e−iσze−c5z. In fact, from (15) we have

ϕ1(x)e−εx ∈ L2(0;+∞), ε > 0, and under the condition of the theorem, F̃1(z)e−iσz

∈ H2
σ(C+), for each γ ∈ (1, 2] we obtain

(∀ε > 0) : sup
|ϕ|< π

2





+∞∫

0

∣∣ϕ1(reiϕ)
∣∣2 exp {−εrγ} dr



 < +∞.

Since ϕ1 ∈ L2[∂C+], then ϕ1 ∈ H2(C+). Therefore, the first formula of (10) is
proved, and the second formula can be proved in a similar way.

5. Proof of Main Results

For the proof of Theorem 1 we need some auxiliary statements.

Lemma 1. Let c ∈ R be such a number that Gc(z) := eczG(z) ∈ H2
σ(C+).

The equation (8) has a nontrivial solution if and only if the equation
∫

∂Dσ

f(w + τ)gc(w)dw = 0, τ ≤ 0,

where

gc(w) =
1√
2π

+∞∫

0

Gc(x)e−xwdx, Rew > 0,

has a nontrivial solution.

Let T 2
σ (C−) be a set of points F = (F1, F2, F3), where F1(z)e−iσz ∈ H2(C−),

F3(z)eiσz ∈ H2(C−), F2 is an entire function of exponential type ≤ σ, and F1(z)+
F2(z) + F3(z) ≡ 0 for z ∈ C− := {Rez < 0}.
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Lemma 2. The equalities

Fj(z) =
1√
2π

∫

lj

f(w)e−zwdw, f ∈ E2[Dσ], j ∈ {1, 2, 3}, (16)

establish a bijection of the spaces T 2
σ (C−) and E2[Dσ], where l1, l3 and l2 are the

legs of ∂Dσ (accordingly to the rays laying under and above the real axis, and the
segment [−iσ; iσ]) and their orientation coincides with the positive orientation
of Dσ.

Lemma 3. Let g ∈ E2∗ [Dσ] and G(x) ln(2 + x) ∈ L2(0;+∞) for G, defined
by (4). Then the function f ∈ E2[Dσ] is a solution of (6) if and only if one of
the following conditions is valid:
1) values of function Φ1, where

Φj(iy) = Fj(iy)G(iy), y ∈ R, j ∈ {1, 2, 3}, (17)

coincide a.e. on ∂C+ with the angular boundary values of such function P1 that
P1(z)e−iσz ∈ H1

σ(C+);
2) values of function Φ3 coincide a.e. on ∂C+ with the angular boundary values
of such function P3 that P3(z)eiσz ∈ H1

σ(C+);

Lemma 4. For f ∈ Hp
σ(C+), 1 ≤ p < +∞, there exists the singular bound-

ary function h. It is nonincreasing and defined with exactitude to an additive
constant, and by equality (2) the values in the points of continuity h′(t) = 0 for
almost all t ∈ R.

Lemma 5. If f ∈ Hp
σ(C+), 1 ≤ p < +∞ and f 6≡ 0, then

f(z) = eia0+a1zΠ∗f (z)S∗f (z) exp





1
πi

+∞∫

−∞
Q(t, z) ln |f(it)|dt



 , (18)

where a0, a1 are real constants,

Π∗f (z) =
∏

|λn|≤1

z − λn

z + λn

∏

|λn|>1

1− z/λn

1 + z/λn

exp
(

z

λn
+

z

λn

)
,

S∗f (z) = exp





1
πi

+∞∫

−∞
Q(t, z)dh(t)



 ,

(19)

(λn) is a sequence of zeroes of the function f in C+,

Q(t, z) =
(tz + i)2

(1 + t2)2(t + iz)
.
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Therefore, the conditions
∑

|λn|≤1

Reλn < ∞, ln |f(iy)| ∈ L1(−1; 1), f(iy)e−σ|y| ∈ Lp(R), (20)

lim
r→+∞ (Sf (r) + Pf (r)−Kf (r)) < +∞, (21)

where

Sf (r) =
∑

1<|λn|≤r

(
1
|λn| −

|λn|
r2

)
Reλn

|λn| , Pf (r) =
1
2π

∫

1<|t|≤r

(
1
t2
− 1

r2

)
|dh(t)|

are valid. Here Kf (r) is defined by equality (7), thus all products and integrals
in (18) converge absolutely and uniformly on every compact set on C+.

Lemma 6. Let (λn) be a sequence of numbers on C+ for which the first
condition of (20) is satisfied, and

lim
r→+∞

(
Sf (r)− σ

π
ln r

)
< +∞. (22)

Then the function Π∗f is analytic in C+, and

∣∣Π∗f (z)
∣∣ ≤ exp

(
2σ

π
x ln r + c6x

)
, z = x + iy = reiϕ ∈ C+. (23)

Lemma 7. Let h be a nonincreasing function on R, and h′(t) = 0 for almost
all t ∈ R. Then if

lim
r→+∞

(
Pf (r)− σ

π
ln r

)
< +∞, (24)

then the function S∗f is analytic in C+, and

∣∣S∗f (z)
∣∣ ≤ exp

(
2σ

π
x ln r + c7x

)
, z = x + iy = reiϕ ∈ C+. (25)

Lemma 1 is contained, in [19], Lemma 2, in [18], Lemmas 3, 4, and 5, in [19],
Lemma 6, in [13], and Lemma 7, in [22].

Lemma 8. Let the function G, defined by equality (4), have no zeroes in
C+ and the singular boundary function of G be constant, and let a nontrivial
solution of the equations (6) exist. Then there is such (F1, F2, F3) ∈ T 2

σ (C−) that
the functions Φ1 and Φ3, defined by equalities (17), are the angular boundary
functions on ∂C+ of such functions P1 and P3 that P1(z)e−iσze−cz ∈ H1

σ(C+)
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and P3(z)eiσze−cz ∈ H1
σ(C+) for some c ∈ R. Moreover, the functions F1 and F3

are specified analytically up to the entire functions, and

F1(z)e−iσz exp
{
−2σ

π
z ln z − c7z

}
∈ H2

σ(C+),

F3(z)eiσz exp
{
−2σ

π
z ln z − c8z

}
∈ H2

σ(C+).
(26)

P r o o f. If the equation (6) has a nontrivial solution, it is possible to consider
that G(x) ln(2 + x) ∈ L2(0;+∞) (otherwise, by Lemma 1 we may consider the
function G(z)e−c9z, c9 > 0). Then, by Lemma 3, the functions Φ1 and Φ3, defined
by equalities (17), are the angular boundary functions on ∂C+ of such functions
P1 and P3 that P1(z)e−iσze−c10z ∈ H1

σ(C+), P3(z)eiσze−c10z ∈ H1
σ(C+). Let

Ψj(z) =





Fj(z), z ∈ C−,

Pj(z)
G(z)

, z ∈ C+,
j ∈ {1; 3}.

Under conditions of the lemma, G(z) 6= 0 for all z ∈ C+ and the singular bound-
ary function of G is constant. If we combine this with Lemma 5, for the functions
Ψ1, Ψ3 we get

Ψ1(z) = eiσzeia0+a1zΠ∗P1
(z)S∗P1

(z)

× exp





1
πi

+∞∫

−∞
Q(t, z) ln

∣∣Φ1(it)eσt/G(it)
∣∣ dt



 , z ∈ C+.

(27)

But the angular boundary values on ∂C+ of the functions Ψ1 from C+ and C−
coincide a.e., and F1(z)e−iσz ∈ H2(C−). Hence, Φ1(it)eσt/G(it) = F1(it)eσt ∈
L2(−∞; +∞) and [1, p. 119] imply

+∞∫

−∞

| ln |F1(it)eσt||
1 + t2

dt < +∞. (28)

Using
1
i
Q(t, z) =

1
it− z

− it(2 + t2)
(1 + t2)2

− zt2

(1 + t2)2
,

we get [1, p. 119]

(∃c11 ∈ R) : exp





1
πi

+∞∫

−∞
Q(t, z) ln

∣∣Φ1(it)eσt/G(it)
∣∣ dt− c11z



 ∈ H2(C+). (29)
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From the condition (21) we get

lim
r→+∞ (SP1(r) + PP1(r)−KP1(r)) < +∞.

We obviously have KP1(r) = KP1(z)e−iσz(r) = KΨ1(z)e−iσz(r) + KG(r), and after
a designation ln+ t = max{ln t; 0}, by (28), we obtain

KΨ1(z)e−iσz(r) ≥ −1
2π

∫

1<|t|≤r

(
1
t2
− 1

r2

)
ln+ 1

|Ψ1(it)eσt|dt

≥ −1
2π

∫

1<|t|≤r

1
t2

ln+ 1
|Ψ1(it)eσt|dt ≥ −1

π

∫

1<|t|≤r

∣∣ln ∣∣Ψ1(it)eσt
∣∣∣∣

t2 + 1
dt > −∞.

Since

KG(r) ≤ 1
2π

∫

1<|t|≤r

(
1
t2
− 1

r2

)
ln+ |G(it)|dt

≤ 1
2π

∫

1<|t|≤r

(
1
t2
− 1

r2

)
ln+

∣∣∣G(it)e−σ|t|
∣∣∣ dt +

1
2π

∫

1<|t|≤r

1
t2

σ|t|dt

≤ 1
2π

∫

1<|t|≤r

1
t2

∣∣∣G(it)e−σ|t|
∣∣∣ 2dt +

σ

2π

∫

1<|t|≤r

1
|t|dt ≤ c12 +

σ

π
ln r,

it follows
lim

r→+∞

(
SP1(r) + PP1(r)−

σ

π
ln r

)
< +∞.

We obviously have SΨ1(r) = SP1(r), PΨ1(r) = PP1(r) and nonnegativity of SΨ1

and PΨ1 . Then the conditions (22) and (24) are valid for the function Ψ1. From
this, considering the first condition of (20), from Lemmas 6 and 7, we get the
estimations (23) and (25). From (23), (25) and (29) it follows that the function
Ψ1 belongs to the Smirnov class E2 ⊂ E1 in 4c(0; 1) for each c ∈ R, where
4c(a; b) = {z : a < Rez < b, c < Imz < c + 1}. As Ψ1(z)e−iσz ∈ H2(C−), it
also follows that this function belongs to the class E2 ⊂ E1 in 4c(−1; 0) for each
c ∈ R. Therefore [22, Ch. 3, § 7] for z ∈ 4c(−1; 0) ∪4c(0; 1) the representation

Ψ1(z) =
1

2πi

∫

∂4c(−1;0)

Ψ1(t)
t− z

dt +
1

2πi

∫

∂4c(0;1)

Ψ1(t)
t− z

dt =
1

2πi

∫

∂4c(−1;1)

Ψ1(t)
t− z

dt

is valid.
As Ψ1 ∈ L2[∂4c(−1; 1)], [23, Ch. 3, § 5], then the function Ψ1 is analytic

in 4c(−1; 1) for every c ∈ R. By Lemmas 6 and 7, the functions Π∗Ψ1
and S∗Ψ1
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are analytic in C+. Hence we have that Ψ1 is an entire function. But then
the singular boundary function of the function Ψ1 is constant, and S∗Ψ1

(z) ≡ 1,
PΨ1(r) ≡ 0. If we combine this with (27), (23) and (29), we get the first formula
of (26). The second formula is proved in a similar way.

Lemma 9. If (F1, F2, F3) ∈ T 2
σ (C−), the functions F1, F3 are entire, and

(∃c13 ∈ R) : F1(z)e−iσze−c13z ∈ H2(C+), (∃c14 ∈ R) : F3(z)eiσze−c14z ∈ H2(C+),

then (F1, F2, F3) ≡ (0, 0, 0).

P r o o f. From the conditions of the lemma it follows that F1 and F3 are
entire functions of exponential type. Let

dj = lim
x→+∞

ln |F1(x)|
x

, j ∈ {1; 3},

then [1, p. 119] F1(z)e−iσze−d1z ∈ H2(C+), F3(z)eiσze−d3z ∈ H2(C+). If d1 ≤ 0,
d3 ≤ 0, then F1(z)e−iσz ∈ H2(C+) and, consequently, is bounded in C, from what
follows that F1 ≡ 0 and, analogously, F3 ≡ 0. Hence, (F1, F2, F3) ≡ (0, 0, 0.).
If d1 > 0 or d3 > 0, [21, p. 47–49], then the functions F1 and F3 are the
functions of the totally regular growth. For their indicators we have the estima-
tions hF1(θ) = d1 cos θ − σ sin θ, hF3(θ) = d3 cos θ + σ sin θ, hF2(θ) ≤ σ| sin θ|,
θ ∈ (−π

2 ; π
2

)
. This contradiction completes the proof.

P r o o f of Theorem 1. From the notes after the statement of Theorem 1
it follows that for its proof it is sufficient to prove the lack of nontrivial solutions
of the equation (6) for the case when the function G ∈ H2

σ(C+) has no zeroes in
C+, the singular boundary function of G is constant and the condition b) is not
valid. However, by contradiction we assume that nonzero solution f ∈ E2[Dσ] of
the equations (6) exists. Then by Lemma 8 there exists (F1, F2, F3) ∈ T 2

σ (C+),
for which the values of the functions Φ1 and Φ3, defined by (17), coincide a.e.
on ∂C+ with the angular boundary values of such functions P1 and P3 that
P1(z)e−iσze−c15z ∈ H1

σ(C+), P3(z)eiσze−c16z ∈ H1
σ(C+). Let

F̃j(z) = Fj(z) exp
(
−2σ

π
z ln z

)
e−c17z, j ∈ {1; 2; 3},

where c17 = max{c15, c16, 0}. Then from the formulas of (26) and the definitions
of T 2

σ (C−), we obtain F̃1(z)e−iσz ∈ H2
σ(C+), F̃2 ∈ H2

2σ(C+) F̃3(z)eiσz ∈ H2
σ(C+),

F̃2(x) exp
(

2σ
π z ln z

) ∈ L2(0;+∞) and (8). However, the condition d) is valid by
Theorem 2. Subtracting this equality from the inequality (see [8])

lim
x→+∞

ln |Pj(x)|
x

< +∞, j ∈ {1; 3},
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we get (9), that conditions of Theorem 3 are satisfied. Then the formulas of (10)
are valid, hence by Lemma 9 we finally obtain (F1, F2, F3) ≡ (0, 0, 0).

The author is grateful to N.K. Nikolskii who supported the author’s intention
to publish this paper and to B. Vinnitskii (= Vynnytskyi) for his attention paid
to this paper.
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