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The modified Korteveg de Vries equation

qt + 6q2qx + qxxx = 0

on the line is considered. The initial data is the pure step function, i.e.
q(x, 0) = cr for x ≥ 0 and q(x, 0) = cl for x < 0, where cl > cr > 0 are
arbitrary real numbers. The goal of this paper is to study the asymptotic
behavior of the solution of initial-value problem as t → −∞, i.e. to study
the long-time dynamics of the rarefaction wave. Using the steepest descent
method and the so-called g-function mechanism we deform the original os-
cillatory matrix Riemann–Hilbert problem to the explicitly solvable model
forms and show that the solution of the initial-value problem has differ-
ent asymptotic behavior in different regions of the xt-plane. In the regions
x < 6c2

l t and x > 6c2
rt, the main term of asymptotics of the solution is equal

to cl and cr, respectively. In the region 6c2
l t < x < 6c2

rt, the asymptotics of

the solution tends to
√

x

6t
.

Key words: nonlinear equations, Riemann–Hilbert problem, the steepest
descent method, asymptotics.
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1. Introduction

The step-like initial value problems for the Korteweg–de Vries equation were
firstly studied by Gurevich, Pitaevsky [1] and Khruslov [2]. Using the inverse
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scattering transform in the form of Marchenko integral equations and the so-called
asymptotic solitons, Khruslov and Kotlyarov (sf. [3–8]) studied the asymptotic
behavior of solutions of the step-like initial value problems in a neighborhood
of leading edge. Egorova, Teschl and coauthors (see [9, 10] and the references
therein) obtained very deep and rigorous results related to the Toda hierarchy
with quasi-periodic background and the Cauchy problem for the Korteweg–de
Vries equation with step-like finite-gap initial data. Remarkable results on the
problems for integrable PDEs with the different finite-gap boundary conditions
as x → ±∞ were obtained by Bikbaev [11–13], Novokshenov [14] and others (see
the references in [11–14]).

In the short note [11] the initial value problem

qt + 6q2qx + qxxx = 0, (1.1)

q(x, 0) = q0(x) →
{

cr, x → +∞
cl, x → −∞ (1.2)

was considered. The initial function was supposed to be an arbitrary step-like
function, i.e. q0(x) was sufficiently smooth and q0(x) → cl as x → −∞, q0(x) →
cr as x → ∞ (cl > cr ≥ 0). The author announced (without any justification)

that the solution of the problem tends to
√

x

6t
when 6c2

l t < x < 6c2
rt and t → −∞,

and it becomes equal to cl or cr when x < 6c2
l t and x > 6c2

rt, respectively. Our
goal is to justify this result in a modern rigorous form and to bring new results
to the theory of shock problems, especially for the case of non self-adjoint Lax
operators, and to develop the so-called g-function mechanism which allows us to
deform the original oscillatory matrix Riemann–Hilbert problem to the explicitly
solvable model forms. We suppose that the solution q(x, t) of this problem

• exists for x ∈ R, and t ∈ R+;

• is sufficiently smooth;

• tends (rapidly) to the constant cr as x → ∞ and to the constant cl as
x → −∞.

2. Jost Solutions of the Lax Equations

To study the initial value problem (1.1)–(1.2), we will use the Lax represen-
tation of the mKdV equation given in [15, 16] in the form of the overdetermined
system of differential equations

Φx + ikσ3Φ = Q(x, t)Φ, (2.1)
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Φt + 4ik3σ3Φ = Q̂(x, t, k)Φ, (2.2)

where Φ = Φ(x, t, k) is a 2× 2 matrix-valued function,

σ3 :=
(

1 0
0 −1

)
, Q(x, t) :=

(
0 q(x, t)

−q(x, t) 0

)
,

Q̂(x, t, k) = 4k2Q(x, t, k)−2ik(Q2(x, t, k)+Qx(x, t, k))σ3+2Q3(x, t, k)−Qxx(x, t, k),

and k ∈ C. Equations (2.1) and (2.2) are compatible if and only if the function
q(x, t) satisfies mKdV equation (1.1). To apply the inverse scattering transform
to problem (1.1)–(1.2), we have to define the matrix valued Jost solutions of the
Lax equations. We define them as the solutions of compatible equations (2.1)
and (2.2) satisfying the asymptotic conditions

Φr(x, t, k) = Er(x, t, k) + o (1) , x → +∞, Im k = 0, (2.3)

Φl(x, t, k) = El(x, t, k) + o (1) , x → −∞, Im k = 0. (2.4)

Here El(x, t, k), Er(x, t, k) are the solutions of the linear differential equations

Elx + ikσ3El = Qcl
El,

Elt + 4ik3σ3El = Q̂cl
(k)El, (2.5)

Erx + ikσ3Er = QcrEr,

Ert + 4ik3σ3Er = Q̂cr(k)Er (2.6)

with the constant matrix coefficients

Qcl
:=

(
0 cl

−cl 0

)
,

Q̂cl
(k) = 4k2Qcl

− 2ikQ2
cl
σ3 + 2Q3

cl
,

Qcr :=
(

0 cr

−cr 0

)
,

Q̂cr(k) = 4k2Qcr − 2ikQ2
cr

σ3 + 2Q3
cr

.

We choose the solutions El(x, t, k), Er(x, t, k) in the form

El,r(x, t, k) =
1
2




κl,r(k) +
1

κl,r(k)
κl,r(k)− 1

κl,r(k)

κl,r(k)− 1
κl,r(k)

κl,r(k) +
1

κl,r(k)




e−ixXl,r(k)σ3−itΩl,r(k)σ3 ,
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where

Xl,r(k) =
√

k2 + c2
l,r, Ωl,r(k) = 2(2k2 − c2

l,r)Xl,r(k), κl,r(k) = 4

√
k − icl,r

k + icl,r
.

(2.7)
The branches of the roots are fixed by the conditions Xl,r(1) > 0, κl,r(∞) = 1.
Then the functions Xl,r(k) and κl,r(k) are analytic in C\[ic,−ic], where c = cl

and c = cr, respectively.
Solutions (2.3), (2.4) can be represented in the forms

Φl(x, t, k) =El(x, t, k) +

x∫

−∞
Kl(x, y, t)El(y, t, k)dy, Im k = 0, (2.8)

Φr(x, t, k) =Er(x, t, k) +

∞∫

x

Kr(x, y, t)Er(y, t, k)dy, Im k = 0, (2.9)

where the kernels Kl,r(x, y, t) are sufficiently smooth and decrease to zero rapidly
as x + y → ±∞. Omitting details of the proof of these representations, we
formulate below the properties of the solutions.

The matrices Φl(x, t, k) and Φr(x, t, k) are defined by (2.8), (2.9) and their
columns Φlj(x, t, k) and Φrj(x, t, k), j = 1, 2 have the following properties:

1. Determinants:
det Φl,r(x, t, k) = 1;

2. Analyticity:
Φr1(x, t, k) is analytic in k ∈ Dr− := C− \ [0,−icr],
Φr2(x, t, k) is analytic in k ∈ Dr+ := C+ \ [0, icr],
Φl1(x, t, k) is analytic in k ∈ Dl+ := C+ \ [0, icl],
Φl2(x, t, k) is analytic in k ∈ Dl− := C− \ [−icl, 0];

3. Continuity:
Φr1(x, t, k) is continuous for k ∈ Dr− ∪ (−icr, icr)− ∪ (−icr, icr)+,
Φr2(x, t, k) is continuous for k ∈ Dr+ ∪ (−icr, icr)− ∪ (−icr, icr)+,
Φl1(x, t, k) is continuous for k ∈ Dl+ ∪ (−icl, icl)− ∪ (−icl, icl)+,
Φl2(x, t, k) is continuous for k ∈ Dl− ∪ (−icl, icl)− ∪ (−icl, icl)+,
where (−icl,r, icl,r)− and (−icl,r, icl,r)+ are the left and the right banks of
the interval (−icl,r, icl,r);

4. Symmetries:

Φ22(x, t, k) = Φ11(x, t, k), Φ22(x, t,−k) = Φ11(x, t, k),
Φ12(x, t, k) = −Φ21(x, t, k), Φ12(x, t,−k) = −Φ21(x, t, k),
Φjl(x, t,−k) = Φjl(x, t, k), j, l = 1, 2,
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where Φ(x, t, k) denotes Φl(x, t, k) or Φr(x, t, k);

5. Large k asymptotics:

Φr1(x, t, k)e+ikx+4ik3t

Φl2(x, t, k)e−ikx−4ik3t

}
= 1 + O

(
1
k

)
, k →∞, Im k ≤ 0,

Φl1(x, t, k)e+ikx+4ik3t

Φr2(x, t, k)e−ikx−4ik3t

}
= 1 + O

(
1
k

)
, k →∞, Im k ≥ 0;

6. Jump:

Φ−(x, t, k) = Φ+(x, t, k)
(

0 i
i 0

)
, k ∈ (ic,−ic),

where Φ(x, t, k) and c denotes Φl(x, t, k) and cl or Φr(x, t, k) and cr, re-
spectively, and Φ±(x, t, k) are the non-tangential boundary values of matrix
Φ(x, t, k) from the left (−) and from the right (+) of the downward-oriented
interval (−ic, ic).

The matrices Φl(x, t, k) and Φr(x, t, k) are the solutions of (2.1) and (2.2).
Hence, they are linear dependent, i.e. there exists the independent of x, t matrix

T (k) = Φ−1
r (x, t, k)Φl(x, t, k), k ∈ R, (2.10)

which is defined for real k. Some elements of this matrix have an extended domain
of definition. Indeed, using (2.10), we find

T11(k) = det(Φl1, Φr2),
T21(k) = det(Φr1, Φl1),
T12(k) = det(Φl2, Φr2),
T22(k) = det(Φr1, Φl2).

Then the above properties of the solutions Φr(x, t, k) and Φl(x, t, k) imply:

• T11(k) is analytic in k ∈ C+\[0, icl] and has a continuous extension to
(0, icl)−

⋃
(0, icl)+;

• T22(k) is analytic in k ∈ C−\[0, icl] and has a continuous extension to
(−icl, 0)−

⋃
(−icl, 0)+;

• T21(k) is continuous in k ∈ (−∞, 0)
⋃

(0,−icl)−
⋃

(−icl, 0)+
⋃

(0, +∞);

• T12(k) is continuous in k ∈ (−∞, 0)
⋃

(0, icl)−
⋃

(icl, 0)+
⋃

(0,+∞),

where, as before, the signs − and + denote the left and the right banks of the
interval;
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• T22(k) = T11(k), T22(−k) = T11(k),

• T12(k) = −T21(k), T12(−k) = −T21(k),

• Tjk(−k) = Tjk(k), j, k = 1, 2.

Denote
a(k) = T11(k),

b(k) = T21(k).

Define the reflection coefficient

r(k) =
b(k)
a(k)

.

It has the following property:

r(−k) = r(k).

The columns of the matrices Φl and Φr satisfy the following jump conditions:

7.
(Φl1)−(x, t, k)

a−(k)
− (Φl1)+(x, t, k)

a+(k)
= f1(k)Φr2(x, t, k), k ∈ (icr, icl);

8.
(Φl2)−(x, t, k)

a−(k)
− (Φl2)+(x, t, k)

a+(k)
= f2(k)Φr1(x, t, k), k ∈ (−icr,−icl),

where

f1(k) =
i

a−(k)a+(k)
, k ∈ (0, icl), f2(k) = −f1(k), k ∈ (−icl, 0).

3. The Basic Riemann–Hilbert Problem

Scattering relations (2.10) between the matrix-valued functions Φl(x, t, k) and
Φr(x, t, k) and jump conditions 6, 7, 8 can be rewritten in terms of the Rie-
mann–Hilbert problem. To do this, define the matrix-valued function

M(ξ, t, k) =





(
Φl1(x, t, k)

a(k)
eitθ(k,ξ), Φr2(x, t, k)e−itθ(k,ξ)

)
, k ∈ C+\[0, icl],

(
Φr1(x, t, k)eitθ(k,ξ),

Φl2(x, t, k)

a(k)
e−itθ(k,ξ)

)
, k ∈ C−\[−icl, 0],

(3.1)

64 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 1



Asymptotics of Rarefaction Wave Solution to the mKdV Equation

where x = 12ξt and θ(k, ξ) = 4k3 + 12kξ (ξ = x/12t). To make our presentation
more transparent, we consider below the simplest shock problem where the initial
function is discontinuous and piecewise constant (pure step function)

q0(x) =

{
cr, x ≥ 0
cl, x < 0

. (3.2)

Then

a(k) =
1
2

(
κ(k) +

1
κ(k)

)
, b(k) =

1
2

(
κ(k)− 1

κ(k)

)
, r(k) =

κ2(k)− 1
κ2(k) + 1

(3.3)

are analytic in k ∈ C\ ([−icl,−icr] ∪ [icl, icr]) since the function κ(k) :=
κl(k)
κr(k)

(see (2.7)) is analytic in this domain. The transition coefficient a−1(k) is bounded
in k ∈ C+\[icl, icr] because the function a(k) equals zero nowhere and, hence, the
set of eigenvalues of the linear problem (2.1) is empty. We also have

f(k) := f1(k) = f2(k) = r−(k)− r+(k), k ∈ (−ic, ic). (3.4)

Let us define the oriented contour Σ = R ∪ (icl,−icl) as in Figure 1. Then the

icl

icr

-icr

-icl

Re k

Fig. 1. Oriented contour Σ.

matrix (3.1) solves the next Riemann–Hilbert problem:

• the matrix valued function M(ξ, t, k) is analytic in the domain C \ Σ;

• M(ξ, t, k) is bounded in the neighborhood of the end points icl, icr, −icl,
−icr and at the origin (k = 0);
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• M−(ξ, t, k) = M+(ξ, t, k)J(ξ, t, k), k ∈ Σ \ {0},
where

J(ξ, t, k) =
(

1 r(k)e−2itθ(k,ξ)

−r(k)e2itθ(k,ξ) 1 + |r(k)|2
)

, k ∈ R\{0}, (3.5)

=
(

1 0
f(k)e2itθ(k,ξ) 1

)
, k ∈ (icr, icl), (3.6)

=
(

1 f(k)e−2itθ(k,ξ)

0 1

)
, k ∈ (−icr,−icl), (3.7)

=
(

ir(k) ie−2itθ(k,ξ)

f(k)e2itθ(k,ξ) −ir(k)

)
, k ∈ (0, icr), (3.8)

=
( −ir(k) f(k)e−2itθ(k,ξ)

ie2itθ(k,ξ) ir(k)

)
, k ∈ (0,−icr); (3.9)

• M(ξ, t, k) = I + O(k−1), k →∞,

where r(k) = −r(k̄) = −r(−k) is given in (3.3), and f(k) in (3.4).

If the initial function is an arbitrary step-like data, then a(k) can have zeroes
in the domain of analyticity. In this case the matrix M(ξ, t, k) will be meromor-
phic and the residue relations between the columns of the matrix M(ξ, t, k) must
be added.

In what follows we suppose that the solution q(x, t) of shock problem (1.1)–
(1.2) with pure step initial function (3.2) does exist. The above Riemann–Hilbert
problem gives q(x, t) in the form

q(x, t) = 2i lim
k→∞

k[M(x/12t, t, k)]12, (3.10)

where [M(x/12t, t, k)]12 is the appropriate entry of the matrix M(x/12t, t, k).

4. Long-Time Asymptotic Analysis of the Riemann–Hilbert
Problem

4.1. The phase function. The jump matrix J(ξ, t, k) in (3.5)–(3.9) depends
on exp{±2itθ(k, ξ)}. Hence the table of signs of the imaginary part of θ(k, ξ) plays
a very important role as the phase function. The table of signs of the function

Im θ(k, ξ) = 4(3 Re2 k − Im2 k + 3ξ) Im k
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a) ξ > 0 b) ξ = 0 c) ξ < 0

Fig. 2. The table of signs of the function Im θ(k) for different ξ.

is depicted in Figures 2. Further, we will deform the contour and therefore the
initial RH problem into some chain of other RH problems. Some of them admit
explicit solutions and give the main contribution to the final asymptotics, while
the solutions of others are much more complicated and thus cannot be obtained
in an appropriate form. Fortunately, there is a possibility to overcome these dif-
ficulties. We choose the deformed contours in such a way that the corresponding
jump matrices tend to identity matrix as t → −∞. Then these RH problems
do not contribute to the main terms of asymptotics but they yield appropriate
estimates. Thus, we must impose some restrictions on a new phase function on
the vertical segment [icl,−icl] preserving the main properties of the initial phase
function θ(k, ξ). More explicitly, we will use the phase function g(k, ξ), which
takes different forms for different intervals of variable ξ

g(k, ξ) = (4k2 − 2c2
l + 12ξ)Xcl

(k), ξ >
c2
l

2
; (4.1)

= 4X3√
2ξ(k), ξ ∈

(
c2
r

2
,
c2
l

2

)
; (4.2)

= (4k2 − 2c2
r + 12ξ)Xcr(k), ξ <

c2
r

2
. (4.3)

Here Xd(k) =
√

k2 + d2 is analytic in C\[id,−id] and has the following asymptotic

behavior near the infinity: Xd(k) = k + O

(
1
k

)
.
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id

-id

a) ξ >
c2
l

2
b)

c2
r

2
< ξ <

c2
l

2
Fig. 3. The table of signs of the function Im g(k) for different ξ

The function g(k, ξ) possesses the following properties:

• for any ξ g(k, ξ) is analytic in k in C\[−id, id];

• for any ξ ∃ lim
k→∞

(g(k, ξ)− θ(k, ξ)) = 0;

• Im (g(k, ξ)) is bounded in k in some neighborhood of [−id, id];

• the table of signs of Im (g(k, ξ)) is depicted in one of Figures 3, 4.

The first three properties are evident. Let us consider the fourth one and

pict the table of signs for Im g(k, ξ). For definiteness we consider ξ ∈
(

c2
r

2
,
c2
l

2

)
.

Other cases are treated in a similar way. First, we note that the function Xd(k) =√
k2 + d2, where d =

√
2ξ, makes a conformal map from the complex k-plane with

the cut along (−id, id) to the complex plane of variable X with the cut along
(−d, d). Therefore, we can draw the table of signs for Im g(k, ξ) in the X-plane
and then make the inverse conformal map to the k-plane. Denote by X1 and X2

the real and imaginary parts of X. Then we have

Im g(k, ξ) = Im(4X3) = Im(4(X1 + iX2)3) = 4X2(3X2
1 −X2

2 ).

We get the lines, where the imaginary part of g(k, ξ) is zero, which are real axis
of the X-plane and two lines which intersect the real axis at the origin. Finally,
after inverse conformal mapping, we get Figure 3, b.
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-icr

icr

id

-id

a) −c2
r

2
< ξ <

c2
r

2
b) ξ < −c2

r

2
Fig. 4. The table of signs of the function Im g(k) for different ξ.

When ξ ∈
(

c2
r

2
,
c2
l

2

)
, then d = d(ξ) varies over (cr, cl). Thus, g(k, ξ) has the

following properties on the vertical cut:

• ξ >
c2
r

2
. Then g(., ξ) is analytic in C\[id,−id] and

g+(k, ξ) + g−(k, ξ) = 0, k ∈ (−id, id),

where we define d = d(ξ) as follows:

d = d(ξ) =

√
ξ +

c2
r

2
, for ξ ∈

(
−c2

r

2
,
c2
r

2

)
, (4.4)

=
√

2ξ, for ξ ∈
(

c2
r

2
,
c2
l

2

)
, (4.5)

= cl, for ξ >
c2
l

2
; (4.6)

• ξ <
c2
r

2
. Then g(., ξ) is analytic in C\[icr,−icr] and

g+(k, ξ) + g−(k, ξ) = 0, k ∈ (−icr, icr).

The functions g+(k, ξ) and g−(k, ξ) are boundary values of the function g(k, ξ)
for k on vertical cuts. Also, for all g(k, ξ) we have

lim
k→∞

(g(k, ξ)− θ(k, ξ)) = 0.
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4.2. Changing of phase function. The Riemann–Hilbert problem for
matrix M(ξ, t, k) with the jump contour Σ = R ∪ (icl,−icl) has to be considered
now with a new phase function g(k, ξ), where g is defined in (4.1)–(4.3). Let us
define a new matrix

M (1)(ξ, t, k) = M(ξ, t, k)G(1)(ξ, t, k),

where G(1)(ξ, t, k) = eit(g(k,ξ)−θ(k,ξ))σ3 . Then the function M (1)(ξ, t, k) solves the
following RH problem:

M
(1)
− (ξ, t, k) = M

(1)
+ (ξ, t, k)J (1)(ξ, t, k), M (1)(ξ, t, k) → I, k →∞,

where

J (1)(ξ, t, k) =
(

1 r(k)e−2itg(k,ξ)

−r(k)e2itg(k,ξ) 1 + |r(k)|2
)

, k ∈ R\{0}, (4.7)

=
(

eit(g−(k,ξ)−g+(k,ξ)) 0
f(k)eit(g−(k,ξ)+g+(k,ξ)) e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (icr, icl), (4.8)

=
(

eit(g−(k,ξ)−g+(k,ξ)) f(k)e−it(g−(k,ξ)+g+(k,ξ))

0 e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (−icr,−icl),

(4.9)

=
(

ir(k)eit(g−(k,ξ)−g+(k,ξ)) ie−it(g−(k,ξ)+g+(k,ξ))

f(k)eit(g−(k,ξ)+g+(k,ξ)) −ir(k)e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (0, icr),

(4.10)

=
( −ir(k)eit(g−(k,ξ)−g+(k,ξ)) f(k)e−it(g−(k,ξ)+g+(k,ξ))

ieit(g−(k,ξ)+g+(k,ξ)) ir(k)e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (0,−icr).

(4.11)

4.3. δ-transformation. To transfer the jump contour from the real axis,
we use the following factorizations of the jump matrix on the real axis:

J (1)(ξ, t, k) =
(

1 0
−r(k)e2itg(k,ξ) 1

)(
1 r(k)e−2itg(k,ξ)

0 1

)
, (4.12)

J (1)(ξ, t, k) =

 1

r(k)e−2itg(k,ξ)

1 + |r(k)|2
0 1







1
1 + |r(k)|2 0

0 1 + |r(k)|2







1 0
−r(k)e2itg(k,ξ)

1 + |r(k)|2 1


 .

(4.13)
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It is easy to see that the first (second) factor in product (4.12) tends to the
identity matrix as t → −∞ in the domains where Im g(k, ξ) < 0 (Im g(k, ξ) > 0).
In product (4.13) the first (third) factor tends to the identity matrix as t → −∞
in the domains where Im g(k, ξ) > 0 (Im g(k, ξ) < 0). To remove the diagonal
matrix in the second product, we use a transformation

M (2)(ξ, t, k) = M (1)(ξ, t, k)δ−σ3(k, ξ), δ−σ3(k, ξ) =
(

δ−1(k, ξ) 0
0 δ(k, ξ)

)
,

where an analytic in C\R function δ(k, ξ) must be defined. Then the jump matrix
J (2)(ξ, t, k) for k ∈ R admits the factorizations

J (2)(ξ, t, k) =
(

1 0
−r(k)δ−2(k, ξ)e2itg(k,ξ) 1

)(
1 r(k)δ2(k, ξ)e−2itg(k,ξ)

0 1

)
,

J (2)(ξ, t, k) =



1
rδ2

+e−2itg(k,ξ)

1 + |r|2

0 1







δ+

δ−
(1 + |r|2)−1 0

0
δ−
δ+

(
1 + |r|2)







1 0

−re2itg(k,ξ)

(1 + |r|2)δ2−
1


 .

To make the middle matrix factor in the second formula equal to the unit matrix,
on δ(k, ξ) we impose the following conditions:

δ+(k, ξ) = δ−(k, ξ)(1 + |r(k)|2)

for ξ > −c2
r

2
and k ∈ R or ξ < −c2

r

2
and k ∈ R\[−λ(ξ), λ(ξ)]

and
δ+(k, ξ) = δ−(k, ξ)

for ξ < −c2
r

2
and k ∈ [−λ(ξ), λ(ξ)]. Here λ(ξ) =

√
−ξ − c2

r

2
for ξ < −c2

r

2
.

The function δ(k, ξ) can be found in the form

δ(k, ξ) =
(

λ(ξ) + k

λ(ξ)− k

)−iν

χ(k, ξ), ξ < −c2
r

2
, (4.14)

= exp


 1

2πi

∞∫

−∞

ln
(
1 + |r(s)|2) ds

s− k


 , ξ > −c2

r

2
,

where

χ(k, ξ) = exp




1
2πi

∫

R\[−λ(ξ),λ(ξ)]

ln
(

1 + |r(s)|2
1 + |r(λ(ξ))|2

)
ds

s− k


 ,
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and

ν = ν(ξ) =
1
2π

ln(1 + |r(λ(ξ))|2), λ(ξ) =

√
−ξ − c2

r

2
.

It is easy to see that δ(k, ξ) is separated from zero and infinity, and

lim
k→∞

δ(k, ξ) = 1.

Thus, the jump matrix J (2)(ξ, t, k) has the lower/upper factorization for ξ <

−c2
r

2
, k ∈ [−λ(ξ), λ(ξ)]:

J (2)(ξ, t, k) =
(

1 0
−r(k)δ−2(k, ξ)e2itg(k,ξ) 1

)(
1 r(k)δ2(k)e−2itg(k,ξ)

0 1

)
,

and the upper/lower factorization for ξ < −c2
r

2
, k ∈ R \ [−λ(ξ), λ(ξ)] and for

ξ > −c2
r

2
, k ∈ R:

J (2)(ξ, t, k) =
(

1 a(k)b(k)δ2
+(k, ξ)e−2itg(k,ξ)

0 1

)(
1 0

−a(k)b(k)δ−2
− (k, ξ)e2itg(k,ξ) 1

)
,

where we use the identity

r(k)
1 + |r(k)|2 =

r(k)
1− r2(k)

= a(k)b(k).

For k ∈ (−icl, icl), the jump matrix J (2)(ξ, t, k) takes the form

J (2)(ξ, t, k)

=
(

eit(g−(k,ξ)−g+(k,ξ)) 0
f(k)δ−2(k, ξ)eit(g−(k,ξ)+g+(k,ξ)) e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (icr, icl),

(4.15)

=
(

eit(g−(k,ξ)−g+(k,ξ)) f(k)δ2(k, ξ)e−it(g−(k,ξ)+g+(k,ξ))

0 e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (−icr,−icl),

(4.16)

=
(

ir(k)eit(g−(k,ξ)−g+(k,ξ)) iδ2(k, ξ)e−it(g−(k,ξ)+g+(k,ξ))

f(k)δ−2(k, ξ)eit(g−(k,ξ)+g+(k,ξ)) −ir(k)e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (0, icr),

(4.17)

=
( −ir(k)eit(g−(k,ξ)−g+(k,ξ)) f(k)δ2(k, ξ)e−it(g−(k,ξ)+g+(k,ξ))

iδ−2(k, ξ)eit(g−(k,ξ)+g+(k,ξ)) ir(k)e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (0,−icr).

(4.18)

The jump contour Σ(2) for M (2)(ξ, t, k)-problem is the initial one, i.e. Σ(2) = Σ.
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4.4. Transferring of the jump contour from the real line. Let us define
a decomposition of the complex k-plane into domains Ω1, Ω2, . . ., separated by
their common boundary Σ(3) as shown in Figures 5, 6, and 7.

-icr

icr

+ +

_
+

_

_
+

0

+
+

_

_

_

l(x)-l(x)

W1

W8

W2

W7

W5

W6

W4

W3

L3

L4

L5

L6

L2

L1

Fig. 5. Contour Σ(3) for M (3)(ξ, t, k)-problem for ξ < −c2
r

2
.

Then the next transformation depends on whether ξ lies in
(
−∞,−c2

r

2

)
or in

(
−c2

r

2
,∞

)
:

M (3)(ξ, t, k) = M (2)(ξ, t, k)G(3)(ξ, t, k),

where for ξ < −c2
r

2

G(3)(ξ, t, k) =
(

1 0
−r(k)δ−2(k, ξ)e2itg(k,ξ) 1

)
, k ∈ Ω5, (4.19)

=
(

1 0
0 1

)
, k ∈ Ω7 ∪ Ω8, (4.20)

=
(

1 −r(k)δ2(k, ξ)e−2itg(k,ξ)

0 1

)
, k ∈ Ω6, (4.21)

G(3)(ξ, t, k) =
(

1 a(k)b(k)δ2(k, ξ)e−2itg(k,ξ)

0 1

)
, k ∈ Ω1 ∪ Ω3, (4.22)

=
(

1 0
a(k)b(k)δ−2(k, ξ)e2itg(k,ξ) 1

)
, k ∈ Ω2 ∪ Ω4, (4.23)
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L1
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L2

Fig. 6. Contour Σ(3) for M (3)(ξ, t, k)-problem for −c2
r

2
< ξ <

c2
l

2
.

and for ξ > −c2
r

2

G(3)(ξ, t, k) =
(

1 a(k)b(k)δ2(k, ξ)e−2itg(k,ξ)

0 1

)
, k ∈ Ω1, (4.24)

=
(

1 0
a(k)b(k)δ−2(k, ξ)e2itg(k,ξ) 1

)
, k ∈ Ω2, (4.25)

=
(

1 0
0 1

)
, k ∈ Ω3 ∪ Ω4. (4.26)

G(3)-transformation leads to the following RH problem:

M
(3)
− (ξ, t, k) = M

(3)
+ (ξ, t, k)J (3)(ξ, t, k), M

(3)
− (ξ, t, k) = I + O(k−1), k →∞,

on the contour Σ(3) depicted in Figure 5. The jump matrix J (3)(ξ, t, k) is
equal to the identity matrix on the real axis and it coincides with the matrix
G(3)(k) or

(
G(3)

)−1
(k) from (4.19)–(4.26) written for the contours k ∈ Lj (j =

1, 2, . . . , 6). It is easy to see that J (3)(ξ, t, k) = I + O(e−εt) as t → ∞ and
k ∈ Lj with the exception of some neighborhoods of the stationary points ±λ(ξ)
or ±d. Therefore, the main contribution to the asymptotics comes from the
jump matrix on the interval (icl,−icl), where it takes the form J (3)(ξ, t, k) =(
G

(2)
+ (k)

)−1
J (2)(ξ, t, k)G(2)

− (k), i.e.
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+

+

+

+

+
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-

-

- -

-
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-icl

Re k

W1

W2

W4

W3

L1L1

L2 L2

W1

W2

Fig. 7. Contour Σ(3) for M (3)(ξ, t, k)-problem for ξ >
c2
l

2
.

J (3)(ξ, t, k) =
(

1 −a+(k)b+(k)δ2(k, ξ)e−2itg+
c (k,ξ)

0 1

)
J (2)(ξ, t, k)

×
(

1 a−(k)b−(k)δ2(k, ξ)e2itg+
c (k,ξ)

0 1

)
, k ∈ (0, id),

=
(

1 0
−a+(k)b+(k)δ−2(k, ξ)e2itg+

c (k,ξ) 1

)
J (2)(ξ, t, k)

×
(

1 0
a−(k)b−(k)δ−2(k, ξ)e−2itg+

c (k,ξ) 1

)
, k ∈ (0,−id),

=J (2)(ξ, t, k), k ∈ (icl, id) ∪ (−id,−icl)

for ξ > −c2
r

2
. For the semi-line ξ < −c2

r

2
, we have

J (3)(ξ, t, k) =
(

1 0
r+(k)δ−2(k, ξ)e2itg+(k,ξ) 1

)
J (2)(ξ, t, k)

×
(

1 0
−r−(k)δ−2(k, ξ)e2itg−(k,ξ) 1

)
, k ∈ (0, icl),

=
(

1 r+(k)δ2(k, ξ)e−2itg+(k,ξ)

0 1

)
J (2)(ξ, t, k)

×
(

1 −r−(k)δ2(k, ξ)e−2itg−(k,ξ)

0 1

)
, k ∈ (0,−icl).

where d = d(ξ) is defined in (4.4)–(4.6). Using the equalities 1+ b±(k)2 = a±(k)2
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and
a−(k) = ib+(k), b−(k) = ia+(k), k ∈ ±(icl, icr),

a−(k) = a+(k), b−(k) = b+(k), k ∈ (icr,−icr),

we obtain

J (3)(ξ, t, k)

=




0 ia−(k)a+(k)δ2(k, ξ)e−it(g−(k,ξ)+g+(k,ξ))

ieit(g−(k,ξ)+g+(k,ξ))

a−(k)a+(k)δ2(k, ξ)
0


 ,

k ∈ (0, id), (4.27)

=


 0

iδ2(k, ξ)eit(g−(k,ξ)+g+(k,ξ))

a−(k)a+(k)
ia−(k)a+(k)δ−2(k, ξ)e−it(g−(k,ξ)+g+(k,ξ)) 0


 ,

k ∈ (0,−id), (4.28)

= J (2)(ξ, t, k), k ∈ ±(icl, id), (4.29)

for ξ > −c2
r

2
, and

J (3)(ξ, t, k)

=
(

eit(g−(k,ξ)−g+(k,ξ)) 0
0 e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ ±(icl, icr), (4.30)

=
(

0 iδ2(k, ξ)e−it(g−(k,ξ)+g+(k,ξ))

iδ−2(k, ξ)eit(g−(k,ξ)+g+(k,ξ)) 0

)
, k ∈ (icr,−icr),

(4.31)

for ξ < −c2
r

2
.

4.5. Constant model problem. To obtain the RH problem with a constant
in k jump matrix on the vertical cut, close to the identity matrix on other lines,
we use different factorizations for different ξ.

4.5.1. Region ξ >
c2
l

2
In this region and for k ∈ [icl,−icl] we use the following factorization of the

matrix J (3)(ξ, t, k):

J (3)(ξ, t, k) =
(

F−1
+ (k, ξ) 0

0 F+(k, ξ)

)(
0 i
i 0

)(
F−(k, ξ) 0

0 F−1
− (k, ξ)

)
. (4.32)
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Direct calculations show that it is possible if

• F (k, ξ) is analytic outside the downward-oriented contour [icl,−icl];

• F (k, ξ) does not vanish;

• F (k, ξ) satisfies the jump relations:

F−(k, ξ)F+(k, ξ) = h̃(k)

=




−if(k)δ−2(k) = (a−(k)a+(k))−1δ−2(k), k ∈ (icl, 0),

i
f(k)δ2(k)

= a−(k)a+(k)δ−2(k), k ∈ (−icl, 0);

• F (k, ξ) is bounded at the infinity;

• a(k)F (k, ξ) is bounded in a small neighborhood of the point icl;

• (a(k))−1F (k, ξ) is bounded in a small neighborhood of the point −icl.

To solve this scalar RH problem, we use the function Xcl
(k) =

√
k2 + c2

l :

[
log F (k, ξ)

Xcl
(k)

]

+

−
[
log F (k, ξ)

Xcl
(k)

]

−
=

log h̃(s)
Xcl+(k)

, k ∈ (icl,−icl).

The function

F (k, ξ) = exp





Xcl
(k)

2πi

0∫

icl

− log(a+(s)a−(s)δ2(k))ds

(s− k)Xcl+(s)





× exp





Xcl
(k)

2πi

−icl∫

0

log(a+(s)a−(s)δ−2(k))ds

(s− k)Xcl+(s)



 (4.33)

satisfies the first, second and third properties. Let us show that F (∞, ξ) ≡ 1.
Indeed,

F (∞, ξ) = exp





1
2πi

0∫

icl

log(a+(s)a−(s)δ2(k))ds

Xcl+(s)





× exp





1
2πi

−icl∫

0

− log(a+(s)a−(s)δ−2(k))ds

Xcl+(s)



 .

Taking into account the following properties of the functions a(s), δ(s, ξ) and
Xcl

(s):
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• for s ∈ (−icl, icl) a+(s) = a+(−s) & a−(s) = a−(−s);

• for s ∈ (−icl, icl) δ(s, ξ) > 0 & δ(−s, ξ) = 1/δ(s, ξ);

• for s ∈ (−icl, icl) Xcl+(−s) = Xcl+(s),

one can find that F (∞, ξ) ≡ 1. Finally, the boundedness of a±1(k)F (k, ξ) near
the points icl and −icl is the consequence of the equality

log a(k) =
Xcl

(k)
2πi

−icl∫

icl

log(a+(s)a−(s))
s− k

ds

Xcl+(s)
,

which can be obtained by the Cauchy theorem applied to the function [log a(k)]/
Xcl

(k) analytic in k ∈ C\[icl,−icl]. Thus, (4.33) gives the solution of the above
scalar RH problem. As a result, the matrix J (3)(ξ, t, k) takes the form

J (3)(ξ, t, k) = F−σ3
+ (k, ξ)J (mod)F σ3− (k, ξ), k ∈ (icl,−icl),

where

J (mod) =
(

0 i
i 0

)
.

This factorization prompts the next step:

M (4)(ξ, t, k) = M (3)(ξ, t, k)F−σ3(k, ξ), (4.34)

which gives the following RH problem:

M
(4)
− (ξ, t, k) = M

(4)
+ (ξ, t, k)J (4)(ξ, t, k), k ∈ Σ4,

M (4)(ξ, t, k) = I + O(k−1), k →∞, (4.35)

where Σ(4) = Σ(3) = R ∪ (icl,−icl) ∪
2⋃

j=1
Lj , and

J (4)(ξ, t, k) =





I, k ∈ R,

J (mod), k ∈ (icl,−icl),
I + O(e−εt), k ∈ Lj , j = 1, 2.
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4.5.2. Region ξ ∈
(

c2
l

2
,
c2
r

2

)

In this case the segments [icl, id] and [0,−id] lay in the domains where
Im g(k, ξ) > 0, and the segments [id, 0] and [−id,−icl] lay in the domains where
Im g(k, ξ) < 0. Taking into account that g−(k, ξ) = g+(k, ξ) for k ∈ [icl, id] ∪
[−icl,−id], we find

J (3)(ξ, t, k) = I + O
(
e−εt

)
, k ∈ [icl, id] ∪ [−icl,−id].

Therefore, the main contribution to the asymptotics is given by the segment

[id,−id]. Here we use the same factorization (4.32) as in the case ξ >
c2
l

2
with the

function F (k, ξ), defined by (4.33), where the parameter cl is substituted with
d =

√
2ξ. Therefore, we define M (4)(ξ, t, k) as in (4.34). It solves the RH problem

(4.35), where

J (4)(ξ, t, k) =





I, k ∈ R ∪ (icl, id) ∪ (−icl,−id),
J (mod), k ∈ (id,−id),
I + O(e−εt), k ∈ Lj , j = 1, 2.

.

4.5.3. Region ξ ∈
(

c2
r

2
,−c2

r

2

)

In this case the line Im g(k, ξ) = 0 intersects the segment [icl,−icl] at two

points ±d, where d =

√
ξ +

c2
r

2
∈ (0, icr). Therefore, we need another factoriza-

tions on the intervals (icr, id) ∪ (−icr,−id) :

J (3)(ξ, t, k) =F−σ3
+ (k, ξ)




1 0

− r(k)e2itg+(k,ξ)

δ2(k, ξ)F 2
+(k, ξ)

1




(
0 i
i 0

)

×



1 0
r(k)e2itg−(k,ξ)

δ2(k, ξ)F 2−(k, ξ)
1


F σ3− (k, ξ), k ∈ (icr, id),

=F−σ3
+ (k, ξ)


1 −r(k)δ2(k, ξ)F 2

+(k, ξ)
e2itg+(k,ξ)

0 1




(
0 i
i 0

)

×

1

r(k)δ2(k, ξ)F 2−(k, ξ)
e2itg−(k,ξ)

0 1


F σ3− (k, ξ), k ∈ (−icr,−id),

and the previous factorization on the interval (id,−id) :

J (3)(ξ, t, k) = F−σ3
+ (k, ξ)

(
0 i
i 0

)
F σ3− (k, ξ), k ∈ (id,−id), (4.36)
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where

• F (k, ξ) is analytic outside the downward-oriented contour [icr,−icr];

• F (k, ξ) does not vanish;

• F (k, ξ) satisfies the jump relation

F−(k, ξ)F+(k, ξ) = h̃(k, ξ)eit(g−(k,ξ)+g+(k,ξ)),

where

h̃(k) =





−if(k)δ−2(k) = (a−(k)a+(k))−1δ−2(k), k ∈ (id, 0),
i

f(k)δ2(k)
= a−(k)a+(k)δ−2(k), k ∈ (−id, 0),

δ−2(k), k ∈ (icr, id) ∪ (−id,−icr);

(4.37)

• lim
k→∞

F (k, ξ) = 1;

• a(k)F (k, ξ) is bounded in a small neighborhood of the point icl;

• (a(k))−1F (k, ξ) is bounded in a small neighborhood of the point −icl.

This scalar RH problem is solved like in the case of ξ >
c2
l

2
, and the solution

is given by the formula

F (k, ξ) = exp





Xcr(k)
2πi

−icr∫

icr

log h̃(s, ξ)
s− k

ds

Xcr+(s)



 . (4.38)

Due to the properties of g(k, ξ) on the vertical cut [icl,−icl], we have

J (3)(ξ, t, k) = I + O
(
e−εt

)
, k ∈ (icl, icr) ∪ (−icr,−icl), when t → −∞.

In opposite to the previous cases now we add some lenses to our contour

Σ(4) = Σ(3) ∪
8⋃

j=5

Lj ,

as depicted in Figure 8. We define the new matrix-function M (4)(ξ, t, k) as follows:

M (4)(ξ, t, k) = M (3)(ξ, t, k)F−σ3(k, ξ), k /∈
8⋃

j=5

Ωj , (4.39)
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Fig. 8. Contour Σ(4) for M (3)(ξ, t, k)-problem for −c2
r

2
< ξ <

c2
r

2
.

M (4)(ξ, t, k) = M (3)(ξ, t, k)F−σ3(k, ξ)




1 0
−r(k)e2itg(k,ξ)

δ2(k, ξ)F 2(k, ξ)
1


 , k ∈ Ω7,

(4.40)

M (4)(ξ, t, k) = M (3)(ξ, t, k)F−σ3(k, ξ)




1 0
r(k)e2itg(k,ξ)

δ2(k, ξ)F 2(k, ξ)
1


 , k ∈ Ω5,

(4.41)

M (4)(ξ, t, k) = M (3)(ξ, t, k)F−σ3(k, ξ)


1

−r(k)δ2(k, ξ)F 2(k, ξ)
e2itg(k,ξ)

0 1


 , k ∈ Ω8,

(4.42)

M (4)(ξ, t, k) = M (3)(ξ, t, k)F−σ3(k, ξ)


1

r(k)δ2(k, ξ)F 2(k, ξ)
e2itg(k,ξ)

0 1


 , k ∈ Ω6,

(4.43)
which gives the following RH problem:

M
(4)
− (ξ, t, k) = M

(4)
+ (ξ, t, k)J (4)(ξ, t, k), k ∈ Σ(4),

M (4)(ξ, t, k) = I + O(k−1), k →∞, (4.44)

where Σ(4) = R ∪
8⋃

j=1
Lj , and
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J (4)(ξ, t, k) =





I, k ∈ R,

J (mod), k ∈ (icr,−icr),
I + O(e−εt), k ∈ Lj ∪ (icl, icr) ∪ (−icr,−icl), j = 1, 2, . . . , 8.

4.5.4. Region ξ < −c2
r

2
The jump matrix J (3)(ξ, t, k) is supported on the line [icr,−icr] and has the

following factorization:

J (3)(ξ, t, k) = F−σ3
+ (k, ξ)

(
0 i
i 0

)
F σ3− (k, ξ), k ∈ (icr,−icr), (4.45)

where

F (k, ξ) = exp





Xcr(k)
2πi

−icr∫

icr

− log δ2(k, ξ)
(s− k)Xcr+(s)



 .

This factorization leads to the matrix-function

M (4)(ξ, t, k) = M (3)(ξ, t, k)F−σ3(k, ξ), k ∈ C\Σ(4).

M (4)(ξ, t, k) solves the following RH problem:

M
(4)
− (ξ, t, k) = M

(4)
+ (ξ, t, k)J (4)(ξ, t, k), k ∈ Σ(4),

M (4)(ξ, t, k) = I + O(k−1), k →∞,
(4.46)

where Σ(4) = [icl,−icl]
6⋃

j=1
Lj , and

J (4)(ξ, t, k) =





I, k ∈ (icl, icr) ∪ (−icr,−icl),
J (mod), k ∈ (icr,−icr),
I + O(e−εt), k ∈ Lj , j = 1, 2, . . . , 6.

4.6. Solving of model problem and asymptotics for q(x, t). The asymp-
totic analysis of the parametrix solutions near the end points icr, −icr, id, −id
and the stationary points ±λ(ξ) are similar to those done in [18] and [17]. In the
first case, since the local representation of g(k, ξ) at the points icr and −icr is
characterized by a square root type behavior

g(k, ξ) ∼ g0(ic, ξ)
√

k − icr, k → icr, g(k, ξ) ∼ ḡ0(−ic, ξ)
√

k + icr, k → −icr,
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the relevant Riemann–Hilbert problems are solvable in terms of the Bessel func-
tions, while in the second case of the real stationary points ±λ(ξ) they are solv-
able in terms of the parabolic cylinder functions. The main contribution to the
asymptotics is given by the stationary points, and this contribution has the order
O(t−1/2). Therefore, we have

M (4)(ξ, t, k) =
(

I + O

(
1

t1/2

))
M (mod)(k),

where M (mod)(k) solves the zero-gap model problem

M
(mod)
− (k) = M

(mod)
+ (k)J (mod), k ∈ (id1(ξ),−id1(ξ)),

M (mod)(k) = I + O(k−1), k →∞

with the constant jump matrix

J (mod) =
(

0 i
i 0

)
,

where

d1(ξ) =





cl, ξ >
c2
l

2
,

√
2ξ, ξ ∈

(
c2
l

2
,
c2
r

2

)
,

cr, ξ < −c2
r

2
.

(4.47)

To solve the model problem let us use the function

κd1(k) = 4

√
k − id1

k + id1
,

where we fix the branch of the square root in such a way that κd1(∞) = 1. Since
κd1−(k) = iκd1+(k) on the cut (id1,−id1), the explicit solution of the model
problem takes the form

M (mod)(k) =
1
2



κd1(k) +

1
κd1(k)

κd1(k)− 1
κd1(k)

κd1(k)− 1
κd1(k)

κd1(k) +
1

κd1(k)


 .
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Finally, we have the following chain of transformations of the RH problem:

M(ξ, t, k) = M (1)(ξ, t, k)eit[θ(k)−g(k,ξ)]σ3 ,

M (1)(ξ, t, k) = M (2)(ξ, t, k)δσ3(k, ξ),

M (2)(ξ, t, k) = M (3)(ξ, t, k)[G(3)(ξ, t, k)]−1,

M (3)(ξ, t, k) = M (4)(ξ, t, k)F σ3(k, ξ),

M (4)(ξ, t, k) = M (mod)(k)(I + O(t−1/2)).

Let us put
lim

k→∞
[kM (j)(x/12t, t, k)]12 = m

(j)
12 (x, t).

Then, taking into account the chain of our transformations and the equation
(3.10), we find

q(x, t) = 2i lim
k→∞

[kM(x/12t, t, k)]12

= 2im12(x, t) = 2im(1)
12 (x, t) = 2im(2)

12 (x, t)

= 2im(3)
12 (x, t) + O(t−1/2)

= 2im(4)
12 (x, t) + O(t−1/2)

= 2im(mod)
12 (x, t) + O(t−1/2)

= d1(ξ) + O(t−1/2),

where we use the equalities m
(mod)
12 (x, t) = d1(ξ)/2i, F (∞, ξ) ≡ 1. Thus we arrive

to the main result.

Theorem 4.1. For t → −∞ the solution of the IBV problem (1.1)–(1.2) takes
the form

q(x, t) = cl + O(e−Ct), −∞ < x < 6c2
l t,

=
√

x

6t
+ O(t−1/2), 6c2

l t < x < 6c2
rt,

= cr + O(t−1/2), x > 6c2
rt,

where C > 0 is some positive number.

R e m a r k 4.1. The above result is proved for the pure step function (3.2),
but our approach can be extended for an arbitrary sufficiently smooth and fast
decreasing to its limits initial step-like function q0(x).
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