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The main results of the paper are the following two statements. If the
length of the unit circle 9B = {||z|| = 1} on Minkowski plane M? is equal
to O(B) = 8(1 —¢), 0< & < 0.04, then there exists a parallelogram which is
centrally symmetric with respect to the origin o and the sides of which lie
inside an annulus (1+18¢) ! < ||z|| < 1. If the area of the unit sphere 9B in
the Minkowski space M™, n > 3, is equal to O(B) = 2n-w,_1-(1—¢), where
¢ is a sufficiently small nonnegative constant and w,, is a volume of the unit
ball in R™, then in the globular layer (1+¢°)~! < |[z|| < 1,6 =2""-(n!)72
it is possible to place a parallelepiped symmetric with respect the origin o.

Key words: Minkowski space, self-perimeter, self-area, stability.

Mathematics Subject Classification 2000: 52A38, 52A40.

Let B be a normalizing body of the n-dimensional Minkowski space M™",
n > 2. This body is usually called a unit ball, and its boundary 0B is called a
unit sphere in M™. Denote by R" a Euclidean space adjoined to M™ the distance
function of which is used as an auxiliary metric [1, 2]. In its turn, the auxiliary
metric is chosen in such a way that the Euclidean n-dimensional volume V,,(B)
of B equals the volume of the n-dimensional unit ball in R",

We identify the points in M™ with their position vectors from the origin o.
Following Busemann [3], we define an (n — 1)-dimensional area of the surface
of nonempty compact convex body K. Let M™ be an m-dimensional plane
in M"™. Then the m-dimensional Minkowski volume in M™ (1 < m < n) is an
m-dimensional Lebesgue measure of V.5 in M™ normalized such that

VB(BNM™) = wpn,
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where M is a translant (i.e., a result of some translation) of M which passes
through the origin o. For any compact convex set K in M™,

VEB(K) = wn - Vi (K) /Vin (B M), 1<m<n,

where V;,, is an arbitrary taken (affine) m-dimensional Lebesgue measure.
Isoperimetriz I in M™ is an o centrally symmetric compact convex body with
the support function h; given on the unit sphere Q = {< u, u >=1} C R™ by

hi(u) = w1 -V, (B0 Ay(u)), (1)

where V,,_; is a Euclidean (n — 1)-dimensional volume and A,(u) is a hyperplane
having the normal v and passing through the origin o .

Notice that the isoperimtrix I in M"™ depends only on the normalizing body
B and does not depend on the choice of the auxiliary metric [1, p. 279].

Let Ky and K; be convex bodies in R". Consider a segment Ky = (1 —0) -
Ko+6-K; (0 <6 <1) connecting the bodies Ky and K. In [4], Minkowski,
introducing the notion of the mixed volumes, expressed the volume V(Kj) as

V(Eg) = Cp-(1—=6)"" 6"V, (Ko, K1), (2)
v=0

where V,(Kp, K1) is a mixed volume of the bodies Ky and K; which corresponds
to the parameter v. Here we use the standard notations [5, p. 113]. By Minkowski,
the value

Op(K)=mn-Vi(K,I)

is called a surface area of the body K.
By a self-area of the surface of the unit ball B we understand the value

O(B) = Op(B) = n - Vi(B, I). (3)

In the case of n = 2, the value O(B) is called a self-perimeter of the unit circle.
In 1932, Golab S. [6] found optimal estimations for the perimeter: 6 < O(B) < 8.
In 1956, Busemann H. and Petti K. [7] obtained the following result.

Theorem A. If B is a unit ball in the n-dimensional Minkowski space M™,
then O(B) < 2n - wy_1, and the equality holds only when B is a parallelepiped.

In this paper we study a stability of the unit ball B in the case when the
self-area O(B) is close to the greatest possible value 2n - w,_1. There are proved
the following theorems.
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Theorem 1. Let the self-perimeter of a unit ball B on Minkowski plane M? be
equal to O(B) =8 (1 —¢), where 0 < & < 5=. Then there exists a parallelogram
P which is centrally symmetric with respect to the origin o and for which the

mclusions
PcBcCc(1+18:-¢)-P (4)

hold.

Theorem 2. Let the self-area O(B) of a unit sphere OB in Minkowski space
M™ n >3, be equal to O(B) = 2n - wy_1 - (1 —¢). Then there exists a positive
constant €9 depending only on the dimension n and the centrally symmetric w.r.
to the origin o parallelepiped P for which the inclusions

PCBcC(1+¢%)- P, (5)
hold, where 0 < e <eg and § =27 (n!)_Q.

The main results of the paper can be formulated in terms of the metric ||z|| of
Minkowski space M™. For example, Theorem 1 can be reformulated as follows: if
the self-area of a unit sphere is equal to 2nw,_1-(1—¢), where € is a small enough
nonnegative constant, then in the globular layer (14+¢°)~ < ||z|| < 1 of the space
M"™ (n > 3) it is possible to place some parallelepiped P symmetric w.r. to the
origin 0. And also the area of P satisfies (1 +£°)!™" . O(B) < Op(P) < O(B)
that follows at once from definition (3) and monotonicity of the mixed volume.

Studying the possibility of the equality O(B) = 2n - w,—1, Busemann H. and
Petti K. used the fact that the body B, being a cylindrical one, possesses n linearly
independent one-dimensional generators. Discussing the results obtained in this
paper, Diskant V.I. drew my attention that I used only one such a generator in
the proof of Theorem 2. In fact, it is proved by induction over the dimension
m of M™ (n > m > 2) by constructing a cylinder in Minkowski space, which
approximates a unit ball with a given accuracy. In our opinion, this construction
is of independent interest.

If K is a convex body in M™, then there are two supporting hyperplanes H}?
and H; parallel to any given (n — 1)-dimensional hyperplane H. By Minkowski,
the value

AB(K, H) = min{||x1 — IL‘QH 1x € H;E, T9 € H;(}

is called the width of the convex body K in M™ w.r. to H [2, p. 106], [8]. Since
the isoperimetrix I is symmetric w.r. to the origin o, its width satisfies the
equality Agp(I,H) = 2 -min{||z| : z € H;}, where H; is one of two supporting
hyperplanes. Consider the body B as the one located in some adjoint space R"
and specify a unit vector u normal to Hy = Hy(u). Let hy(u) and hp(u) be the
supporting numbers of I and B. Then Ag(I, H) = 2-h;(u)-hjz" (u). There follows
the theorem on the stability of the unit ball B w.r. to the width of isoperimetrix.
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Theorem 3. If Ag(I,H) = 4(1 — ¢) - wn_1/wn, 0<e <107*"" then there
exists a cylinder Cp, (D) with one-dimensional generators such that:

1. Cy (D) is centrally symmetric w.r. to the origin o;

2. Cn(D) cross-section D is parallel to H;
_1
3. Co(D) C B C Co(D) - (1 + 5) . (6)

This result is close to that obtained by Diskant V.I. on the estimation from above
for the width of the isoperimetrix Ag(l, H) < 4w,_1 - w, ', where the equality

holds only when B is a cylinder [8].

Proof of the Theorem 1. Let Q2 be a parallelogram of the smallest
area and let it be centered at o and circumscribed around B. The midpoints
of the Qs sides necessarily lie on OB [1, p. 121]. On M?, chose an auxiliary
Euclidean metric such that on the adjoint plane R? with the Cartesian system
xoy the parallelogram Q2 becomes a square abed with the vertices a(—1;1), b(1;1),
¢(1;—1), d(—1; —1). The points e(0;1), f(1;0), g(0; —1), p(—1;0) lie on Q2 and
efgp C B. Denote by n and m the points of intersection of straight lines y = z
and y = —z with 9B in a half-plane y > 0. Let 0 < £ < % and 0 < n < % be the
parameters that determine n and m by n(1—¢,1—¢) and m(—1+mn;1—n). From
the symmetry B = —B, the points —n(—1+ & —1+¢) and —m(1 —n; —1 +n)
lie on 9B. Draw the straight lines (pm), (ab) and denote their intersection by
az = (pm) N (ab); draw the straight lines (em), (da) and denote their intersection
by a1 = (em) N (da). Set by = (en) N (bc), b1 = (fn) N (ab), c12 = —ai2,
di2 = —b12. Since B is convex, its line of support at m crosses the segments
[aze] and [pai], and hence the segment [a1a2] does not have common points with

the interior é Therefore, B C ajasbibacicadids, and it follows then that
8- (1 — 8) S O(B) S OB(alagblbgclcgdldg) S OB(QQ) = 8. (7)

Denote by ||z|| the length of a vector # on M? with a normalizing body B
and by |z|, its Euclidean length on R2?. Taking into account (7), we have

lpar]l + [laraz|l + [laze] < [lapl| + [lae]] = 2,

lebu ]l + [[orbal + [[b2 fI] < 2,
4 —de < (llparll + llaraz|l + llazell) + (llebr|l + [[brball + [|b2f]]) < 4.

Hence,
{ 0 <2 — (llpasl| + [laraz|| + llaze]]) < 4e,

0 <2—(llebe] + [|brball + [[b2f]]) < 4e.
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By calculating

laas| = |ara| = —"—,
1—n
we can see that
laze]l = [lpasl| = 1 — ——
1—n
and
HG1G2H _ ‘CUCLQ’ _ |a’a’2| _ n
|on| ng  (1-=n)1-%
Consequently,
2~ e < |lpar] + laraall + azel =2 — —— (2 - —
— a ala asel| =2 — —— - .
= [|pa1 142 2 1—1q 1—¢

After the similar calculations for n, compose the system
{ n(l—2¢) <4e(1—n)(1-¢),
§(1—2n) <4e(1—n)(1 -9,

where 0 <&, n < %
Combining the inequalities, we get

(1+82)(€+1n) < (1+2¢)4én + 8e.
Since 4¢n < (€ +n)?, the value z = ¢ 4 1 satisfies the square inequality
(14 2¢)22 — (14 8)z 48 > 0.

It is obvious that either

1+ 8 — 1 —16¢ 148 ++1—16¢

< <
Os&tns —aT99 o 2(1 + 2¢)

<&E+n< 1.

As a consequence, either

148 — /1 —16¢ 1 1 1—4e —+/1—16¢
or maxq—-—&=-—n, < .
2(1 + 2¢) 2 2 2(14 2¢)

max {£;n} <

Ifo<e< %, then /1 — 16e > 1 — 10e. There are two cases:

9e 1 1 3e
1 int < < O¢; 2 — =& - — < — < 3e.
) maxfind <y <9 D max{g-Ggonf < o <o

Consider each case separately. Suppose (1) holds. Chose a square ri7a7374
with the vertices at points r1(—149¢;1—9¢), r2(1—9¢; 1—9¢), r3(1—9¢; —1+9¢),
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r4(—1 4 9e;—1 4 9¢) to be a parallelogram P in (4). By the construction, P C
B C Q». Since Qo = 1_—19513, we have Q2 C (1 + 18¢)P.

Suppose (2) holds. Chose a square efgp to be P in (4). As noticed above,
[a1az] N B =0. The points a1 (—1;1 — 1%777) and az(—1+ l%n; 1) lie on a straight

1iney:x+2—%. For £ —n < 3¢ we have

12
<1 S <1412,
1—n 1+ 6¢

and hence the figure B is under a straight line y = = + 1+ 12¢. For the segments
[b1b2], [c1c2], [d1d2] we draw the straight linesy = —z+14+12¢, y = 2—1—-12¢, y =
—x—1—12¢. Denote by Ss a square with vertices at e;(0; 14 12¢), f1(1+12¢;0),
91(0; —1 — 12¢, p1(—1 — 12¢;0). Then B C Sz = (1 4+ 12¢) - P. The proof is
complete. [

To prove Theorem 3 we need some auxiliary statements. Without loss of
generality, further we will consider a proper convex compact body B symmetric
w.r. to the origin o and located in the corresponding adjoint Euclidean space R"
(n>2).

Proposition 1. Let Ky and K1 be convex compact bodies in R™, m > 2, with
the m-dimensional Euclidean volumes satisfying V(Ko) < V(K1). Let Vi be a
constant such that V(Ky) <V, 0<60 <1. Then

Vi(Ko, K1) — V(Kp) < e(Vo — V(Kp)). (8)

P roof. The Brunn inequality implies
Vi (Kg) > (1 - 0)Vm (Ko) + 0V (K1) > Vir (Ko),

and hence V(Ky) > V(K)).
Using the identity

1= fj%(l —g)ymge,
v=0

rewrite (2) in the form of
V(Kg) = V(Ko) = ) Cpi(1 = 0)" 0" [Vo(Ko, K1) = V(Ko). (9)
v=0

Write down the inequality for the mixed volumes

va(K07 Kl) > Vm_U(KO)VU(K1)7
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which is a consequence of a more general A.D. Aleksandrov’s inequality [9, p. 78].
Then V" (Ko, K1) > V™(Kp) and V,, (Ko, K1) — V(Kp) > 0. Since all terms in
the right-hand side of (9) are nonnegative, then

m(1—0)" 10 [Vi (Ko, K1) — V(Ko)] < V(Kp) — V(Ko) < Vo — V(Ko).

The inequality holds for all 0< 6 < 1. For 6 = % we get
1 m—1
(1—> [V1(Ko, K1) — V(Ko)] < Vo — V(Ko).

m

Since the Euler sequence a,, = (1 + %)n < e is monotonously increasing, then
1 m—1 1 1-m 1
<1_) :<1+> > 1
m m—1 e

% (V1 (Ko, K1) — V(Ko)] < Vo — V(Ko),

Therefore,

which completes the proof of Proposition 1. [

Further we will use a method suggested by V.I. Diskant [10, 11] for studying
a stability in the theory of convex bodies. Denote by ¢ = q(Ky, K1) a capacity
coefficient of K; w.r. Ko, i.e., the greatest of +’s for which the body ~ - K is
embedded into Ky by a translation. Recall one of Diskant’s inequalities for the
mixed volumes [10, p. 101]:

m 1 m

1 1 1
V" (Ko, K1) — V(Ko)Vm=1(K1) > |V (Ko, K1) — V™1 (K1) . (10)

Proposition 2. Let the bodies Ko and K1 meet the requirements of Proposi-
tion 1. Set a = 3(Vo/V (Ko) — 1) < 1. Then the capacity coefficient q satisfies

q(Ko, K1) > 1 — 2am. (11)

Proof. To estimate ¢(Ky, K1) from below, we use inequality (10) (see
formula (2.1) in [10, p. 110])

1
m

> [Vl(KoﬂKl) V(K.
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Transform this inequality

. [V1<K0,K1>]"31

V(K1)
1
1 1 ™
_ [Vl(KmKl)] ™ <V1(K0,K1))m1 _ V(Ko) (12)
V(K) V(Ky) Vi(Ko, K1) .
The inequality V; (Ko, K1) > V(Kj) implies
Ky, K K K 1
V(K1) V(K1) Vo 1+5 3
By (8), we have V1(Ko, K1) — V(Ko) <3- (Vo — V(Kp)), and hence
Vi(Ko, K1) _ Vi(Ko, K1) Vo
< <1+3 —1)=14+a. 14
VIK) S V(Ko VK Y -
Besides,
V (Ko) 1
> >1—a. 15
Vi(Ko, K1) = 1+a = ° (15)
Substituting (13), (14), (15) into (12), we obtain
1 1
QN m-1 1 1 m
> —— — m m— —_— _—
q_(1 3) (1+a) {(1+a) T (1 a)}
For p > 1 we have
(1) (I+a)p<1+%  O0<z<l
2 (1-z)r>1-2z 0<a<lL
Therefore,
4 1 49 O
o' m m \m 1
>1— —a— — ——a— - — ™
TR <1+m){m— 0‘} R TR <m—l> “
The conditions m > 2 and 0< o < i provide
. 1
a< fa%and <m) < V2.
2 m—1
Finally,
11— 2w =2 Vaam > 1—2an
q> T g V2am = am.
[
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Denote by A;(u) a hyperplane in R™ which is parallel to A,(u) and is at the
distance ¢ in the direction of the vector w. If t < 0, then A;(u) is at the same
distance from A,(u) in the direction of the vector —u.

We denote by hp = h(u) (u € Q) a supporting function of the normalizing
body B. Denote by H(u) the hyperplanes of support that correspond to h(u).

Let Bi(u) = BN Ag(u). If —h(u) <t < h(u), then By(u) # 0. The central
symmetry of the unit ball B = —B provides the equalities B_y(u) = —B;(u).

Consider the function

bult) = VT (Biw),  t € [~h(u);h(u)]

The function is even, ¢, (—t) = ¢ (t), and by the Brunn inequality it is convex
upwards. Then max ¢u(t) = ¢4,(0), and this provides the estimation

Vi(B) < 2h(u) - Vi—1(Bo(u)).
Denote by AV (u) the difference
AV (u) = 2h(w)V,,_1(Bo(u)) = V,,(B).

Proposition 3. Let ug be a unit normal vector of some hyperplane of support
Hy = Hj(ug) for the isoperimetriz I. If a Minkowski width of I in the direction
ug is equal to Ag(I, Hy) = 4(1 — &)wp_q1w, !, 0< e < 1, then

AV(UU) = €2h(UO)Vn_1(BO(UO)). (16)

Proof Indeed, from the expression in the terms of supporting numbers
for the Minkowski width of the body I in the adjoint space R™ and the explicit
expression for the isoperimetrix I supporting function h; given by (1), we get

hi(uo) _ “n—1
hp(uo)  h(uo)Va-1(Bo(uo))

Taking into account the normalization V,,(B) = wy,, we have

Ap(I,Hy) =2

_ 4Wn—1 VN(B)
wrp 2h(ug)Vi—1(Bo(ugp))

Ag(I, Hyp)

Together with the condition imposed on Ap by the hypothesis, the latter equality
provides (16). [

Set V() = Vn_l(Bo(uO)), h(] = hB(uo), qbo(t) = ¢u0(t) and AV(U()) = 2h0‘/b€.
Denote by B* a Schwartz-symmetrized body B w.r. to a straight line L(uy)
which is parallel to ug and passes through the origin o. By the construction,
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Vo(B*) = V,(B). By the Brunn theorem, the body of rotation B* is convex [5,
p. 89]. On R? with the Cartesian coordinates roy, define the function

1

2(y) = ¢o(y)w, 1", —ho <y < ho.

Set for brevity z(0) = r. The function x = z(y) defines the radii of the (n — 1)-
dimensional balls that generate B*. On the graph of this function, mark the
point My(xo;yo) which is an intersection point of the graph and a straight line
Yy = %x We have 0 < zg <7, 0 < yg < hg. It is convenient to use a parameter
T =1 —x9. Then My(r — 7, hy — %T)

Proposition 4. If the conditions of Proposition 8 hold, then

T<r = (17)

Proof If 7 =0, then inequality (17) is trivial. Notice that by the
Minkowski—Brunn theorem, the equality 7 = 0 holds only when the body B is a
cylinder with the generators parallel to ug.

Suppose 7 > 0. Draw a supporting straight line to z = x(y) at My. The
intersection points of this line and straight lines y = hg and x = r denote by P
and @, respectively. The points P; = (0; hg), @1 = (r;0) and the whole segment
[P1Q1] are to the left of the convex curve x = z(y), 0 < y < hgy. Therefore,
0 <7 < 5. Rewrite the coordinates of P and @ in the terms of a and b, namely,
P = (r—a;ho) and Q = (r; ho — b).

Define the function r; = r1(y), y € [—ho; ho] by

T, if b—ho<y<hy—b;
r(y) =< r—a—%(y—hg), if ho—b<y< ho;
r—a—i—%(y—i—ho), if —ho <y <b-—ho.

In R, construct a rotation body B with the axis L(up) and the radii of the
(n—1)-dimensional spheres given by the function 1 = r1(y). By the construction,
x(y) < ri(y), which provides B* C B. Estimate from below a difference AV (up)
in the terms of V,(B)

AV(ug) = 2hoViy — Vu(B*) > 2hoVo — Viu(B)
b
= w1 — 2w, [(r— %z)”_ldz
0

= 2wn,1n% [(r—a)" ="+ nar"'].
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It is easy to verify that the function

¢(3):(1—S)"—1+n3—g,92, 0<s<1, n=>2,

is monotonously increasing. Multiplying the inequality

(1—8)”—1+n82g82

by ™ and denoting rs = a, we obtain

_ n ,._
(,r_ )n r nr™ 1 > Zpn 2 2.
I hUS,

AV (up) > Wn_17""2ab.

(18)
The chosen point My(r—7; ho— %T) lies on the supporting straight line, therefore
a and b are connected by the equation

a rb

The product ab in the right-hand side of (18) can be expressed in the terms of b

h() 7“527'

Estimate ab from below by min f(b) = f(bg), where by = 2%7’, ap = 27. Then
h
ab > agby = 47072.

The hypotheses of Proposition 3, (16) and (18) imply

Vi
e2hoVp = AV (ug) > Qwp_17"3hor? = 4—gh07'2, or ¢
T

()

Corollary 1. A cross-section By = B N Ai(ug), which corresponds to My, is
defined by T = hg — "0 - 7. Besides, the distance between Ar(up) and Ag(ug) is

3

The FEuclidean (n — 1)-dimensional volume of the section Br satisfies

(19)

anl(BT) = anl(r - T)n_l

n—1 n—1
> w1/ — vy (1—,/ (2
o (1-05) = (1-y5) o
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The following theorem (the analog of Theorem 3 for the plane) illustrates the
importance of inequalities (19) and (20).

Theorem 4. If the width of the isoperimetriz I on M?, which corresponds to
a straight line Hy, satisfies Ag(I, Hy) = %(1 —g), 0<e< %, then there exists a
symmetric w.r. to the origin o parallelogram P with a side parallel to Hy such
that P C B C (1+24/¢) - P.

Proof.  As above, denote by ug a normal vector of the isoperimetrix
I supporting the straight line H; = Hj(ug), H;||Hp in the adjoint plane RZ.
If n = 2, then the section Br is a segment [ab]. Set ¢ = —a, d = —b. Then
B_p = —Bp = [cd]. Denote By = [ef]. Then |oe| = |of| = r. We assume that
the points a, b, f, ¢, d, e are on OB in the cyclic order and clockwise.

Show that P = abcd can be taken as a required parallelogram. The inclusion
P C B is obvious. Prove now the inclusion B C (1 4 21/¢)P. Denote a1 =
(de) N (ab); di = (ae) N (ed); by = (cf) N (ab); c1 = (bf) N (de). The segments
[eai], [edi], [fbi1], [fc1] do not have any common points with B. Therefore,
the figure B is in a strip bounded by the two parallel straight lines (dya;) and
(Clbl). Denote ag = (dlal) N H(UO), by = (Clbl) N H(UQ), Co = (Clbl) N H(—UO),
dy = (d1a1) N H(—ug). Mark also the points f; = (¢b)N(ef) and e; = (da)N(ef).
Due to (20), we have

|ab] = 2]of1| = 2(r —7) = 2r (1— \/i) and |fif|=7< r\/g.

A similarity of the triangles Acfif and Acbb, implies |bbi| = 2|f1f] < rV/2e.
Besides, |ce1| = |dd1| = |aa1| = |bb1| < 7V/2¢. It is easy to see that

|agba| < |ab| + 2rv/2¢ <14 V2e <1425
|ab| |ab| 1-./5
The estimation (19) provides
b h
[eabal 0 <14V2e

b~ ho (1— /%)

By the construction, the parallelogram asbecods D B, hence B C (1+24/¢)P.
The theorem is proved. [

To prove Theorem 3 for the case of n > 3 we need an estimation from below
for the capacity coefficient of By w.r. to B_r.
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Corollary 2. If0 < e < 1072, then the capacity coefficient satisfies
1
q¢(=Br; Br) > 1 —5e2=1 n > 3. (21)

Proof By means of translation, place the convex bodies By and B_p
in the (n — 1)-dimensional hyperplane A,(up). Denote by B} = Br — Tuy,
B’ = B_r + Tugp the corresponding traslants. The equalities V,,_1(B%) =
Vo-1(B" ;) and q(—Br, Br) = q(B’ 4, B) are obvious. The line segment Ky =
(1-0)Br+0B_71,0< 0 < 1is in the section B(;_s9)r = BN A(1_29)1(uo). Thus,
for K, = (1 —6)B}. 4+ 6B’ ., we have

Va-1(Kp) = Va—1(Kp) < Vo = Va—1(Bo(wp)).

Take Ko = B’ ; and K| = B/ from the hypothesis of Proposition 2. Then
from (20) we get

ooty ) =5((D) )

and for the capacity coefficient

) o\l — !
q(—BT;BT)21—2><3nl<1—<1— 2> > (1— 2) .

Form>2, 0<x< %, 0 < & < 1072 the inequalities

1

(3%)" <3 a-a-om

hold. The estimation (21) follows at once from the above. [

3=
AN
3
3|~
&
3=
—
|
=
vV
H‘H
= o

Proof of the Theorem 3. Let Br be defined as in Corollary 1 and
the relations (19)-(21) be fulfilled. Let B/, and B’} respectively denote the
tranlants of By and B_r after a translation on A,(u). Notice that B’ ,, = —B/.
Let v = q(B/,, —Bl.). Then there is a vector a in the hyperplane A,(u) such that
a+v(—=B}) C Bl.. On A,(u) consider a mapping ¢(z) = a — vz, x € A,(u).
Evidently, ¢(B}) = a—vB}, = a+~(—B’.) C B/.. Since V;,_1(B%) = V,—1(B’_ 1),
then v < 1. If v = 1, then the bodies B}, and B’ ;. coincide after a translation
on the vector a. In general, v < 1. Denote by xp a solution of the equation
To = a — ywo, i.e., vg = (1 +7) La.

By the choice, ¢(xg) = xo. Let By = Bl — x, B_p = B’ ;. + xp. Then
§_T = —ET. It is easy to check that after this replacement we have 'yE_T C ET.
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Hence, the inclusions 'y(—ET) C ET C % (—§T> hold. Moreover, q(ET, —ET) =

q(—ET7 ET) = ~. On the hyperplane A,(ug), construct a body D = Brn <—§T)
which is centrally symmetric w.r. to the origin 0. Set v = xy + Tug. By the
construction, Dr =D +v C By and D_7 = D — v C B_7. Notice also that

D>~(B,UB._,). (22)

Denote by C,,(D) C R™ a cylinder whose cross-sections coincide with D and
whose 1-dimensional generators are parallel to v and bounded by the hyperplanes
Ap(up) and A_p(up). This cylinder is symmetric w.r. to the origin o: C, (D) =
—Cy (D). Since the symmetric body B is convex, the inclusion C, (D) C B holds.

Estimate from below the capacity coefficient ¢(C, (D), B). By formula (22),

Vi (B) > Vi (C(D)) = 2TV,,_1(D) > 2TV,,_1(yBr) = 277" 'V,,_1(Br).
Using estimations (19)—(21), we conclude

£

1 n—1 n
Va(B) > 2hoVp (1 — 5572(%1)) <1 - 2)

For further calculations to be substantial, we assume 0 < & < (10(n — 1))~2(»=1,

Initially, 2hoVp > V,,(B) (see, for example, equality (16)). Hence,

Vo(B) > Vi (Co(D)) > Viu(B) (1 ~5(n— 1)&-%) (1 . n\/§> ,

or
1

(B 1\l .
1< B (1—7(71—1)62("1*1)) <1+ 14(n—1)e2e-1,

~ Va(Cn(D))

Consider a segment Ky = (1—60)C,,(D)+6-B, 0< 6 < 1 inside B. In Proposition 2
assume that Ko = C, (D), Ki = B, Vp = V,,(B), where V,,(Kp) < V,(B). Then

1
a < 50(n — 1)e2-D | and the capacity coefficient ¢(Cy, (D), B) can be estimated
by (11),
1
¢1=q(Cr(D),B) >1—10e2n»-1) | n > 3.

The bodies C,, (D) and B being centrally symmetric w.r. to the origin o, we

will get 1B C Cp(D) and B C qilCn(D). Since 12~ < 142z, 0< z < , we have
1

Co(D)C B C (1 + 2057%(%1)) Cu(D). (23)

Finally, if 0< ¢ < 107"", then the inclusions (6) hold. The theorem is proved. m
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Proof of the Theorem 2. The proof is based on the idea of Busemann—
Petti (see Theorem 7.4.1 [2]) and on the properties of a superficial function of
convex body introduced by Aleksandrov A.D. [9, p. 39].

For a convex body B, the superficial function F(B,w) on a unit sphere (2 is
defined by the following construction. Let a Lebesgue measurable set w be given
on €. Denote by o(w) a set of all points on the surface of the convex body B
having a normal u directed to w. The superficial function F'(o(w)) is the area of
o(w).

Write down the first mixed volume from definition (3) in the terms of the
Stieltjes—Radon integral for the continuous isoperimetrix I supporting function
hr(u) over a unit sphere,

O(B) = / hi(u)F(B, dw).
Q
Since the origin o is inside of B, then hp(u) > 0, and hence the ratio

hi(u)/hp(u) is a continuous function on 2. By the integral mean value theo-
rem, there is a vector ug on €2 such that

O(B) = / Z;EZ)) his () (B, dw)
Q

h[(UQ)
hp(up)

= (o) U w) = n
- Q/ s () P(B. ) = Vu(B).

The plane of support Hy = Hj(up) for I is given by the supporting number
hi(up). By Theorem 2, the area O(B) = 2nw,—1(1 — €), and hence the width

AB(I,H()) = QhI(uO)/hB(u()) = 4(1 — z—:)wn,l/wn.

By Theorem 3, in M™ there is a cylinder with the cross-section perpendicular to
ug for which (6) holds.

Now we study the cross-section D of the cylinder C,, = C, (D). Show that
the body D, by analogy with (6), can be approximated by some ”(n — 1) -
dimensional” cylinder C,,_1 = Cj,—1(D,,—2) with the cross-section D,,_5. Denote
by @Q=1+20- sm the factor from (23). Without loss of generality, assume
that the generators of the cylinder C),(D) are perpendicular to the cross-section
D, ie., v || ugp. The latter is based on the affine invariancy of the definition of
self-area of the surface O(B) and on the free choosing of the auxiliary metric
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in M™. Notice that the inclusions (23) provide

O(B) < 05(QC,) = / Wn—1 F(QC,, dw)

Vn—l (B N AO(U))
Q

n—1 Wn—1
=@ Q/an(CnﬂAo(u))

F(Cp,dw) = Q" 0, (Cn(D)).

From the conditions imposed on O(B) in Theorem 2, we have
Oc, (Cp) > QY "O(B) = Q1™(1 — €)2nwn—1 > Q "2nw,_1.

Using the inequalities 14%7: >1—zand (1 —x)">1—nx for

0< 2= 20700 < -
- — 2n
we obtain )
Oc. (Cp) > 2nwn_1 (1 - 20n572”("*1)) . (24)

The surface of the cylinder C),(D) consists of two bases Dy, D_r that are equal

to D and of a lateral surface CJ. Hence,

Denote by € an intersection of the unit sphere 2 and the (n — 1) dimensional

hyperplane R"~! which corresponds to Ag(ug). Recall the equalities

Vn—l(Cn N A[)(’LU)) = 2]’LOVn_2(D N A[)(’LU)), w e Q/;
Fn,l(C,’L, dw) = Qhanfg(D, d’w), ’

where d'w is a restriction of dw on €. Thus,

/ Wn—1 /
= Fy- )
Wn—1 ! Wn—1
= F, s(D,d = — D).
/ Vi a(D 1 Ag(a)) 2Py dw) = = Op(D)

Q/

Imposing the condition ¢ < (20n)~2"" and taking into account (24) and (25), we
obtain

20m2 1 1
i 52n<n1>) >2(n —1)wp—2 (1 — 827112) .

Op(D) > 2(n — 1)wp—2 <1 -

n—1
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1
Set e = e2+2. Then for the compact proper central symmetric (n — 1)-
dimensional body D the estimate

O(D) > 2(n — Nwp—2(1 — 1)

holds.

Remark. Calculations in the proof of Theorem 3 up to formula (23) remain
valid for the dimension (n — 1) > 3.

Taking initially a body D instead of B, which is in the space R"~! adjoint to
Ao(up), we can construct a centrally symmetric cylinder Cp,—1 = Cp_1(Dp_2)
with the cross-section D, 5 C R" 2 satisfying the inclusions similar to (6).
Namely,

1
Cnfl(ang) cDcC (1 + 612("_1>2> Cnfl(Dn72).

In R™ consider a cylinder Cy,(Cp—1(Dp—2)) whose cross-sections coincide with
the ”(n— 1)-dimensional” cylinder C),_1(D,—_2); the one-dimensional generators
are parallel to up and bounded by the hyperplanes Ap(ug) and A_p(ug). The
cylinder possesses a specific property

1
Cu(Cn-1(Dn-2)) € B C (1+m2) (1 + <>) Cn(Cn-1(Dn-2)). (26)

Using recurrently (n — 2) times the specified above constructions that cor-
respond to the pass from formula (23) to formula (26), we get a cylinder C' =
Cr(Cr=1(...(C3(D3))...)) which approximates the initial normalizing body B
as follows:

~ 1 1 ~
CcBc (1 + eﬁ) (1 + 52%%1)?) (1 N L [T L 32> C.

The cylinder Cy on the plane M? is a parallelogram. Approximate a figure
Dy by the parallelogram; the approximation order is defined on the (n — 1)-step
by en_1 = 2 "("™)7* Recall that on the plane M? there is formula (4) from
Theorem 1, where €,_1 appears to be in the first degree. Thus, it is possible to
approximate the body B by the parallelepiped P for which the inclusions

1
PCBC <1+gﬁ> <1+g22n2<n—1>2> X ...

1 -1
x (1 + 52"4<n!>2> <1 + 1852”4t<n!>2> P (27)
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hold. There is such a sufficiently small positive 9(n) depending only on the
dimension n that the inequalities

—n

n _o\n—1 _ n _
(1182707 <118 T <14 2T (g

hold for 0< ¢ < gg. Put § = 27"(n!)"2. Then from (27) and (28) we derive
formula (5). The theorem is proved. u

The author expresses his sincere gratitude to V.I. Diskant for his useful dis-
cussions of the considered problem.
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