Journal of Mathematical Physics, Analysis, Geometry 2011, vol. 7, No. 2, pp. 158–175

On Stability of a Unit Ball in Minkowski Space with Respect to Self-Area

A.I. Shcherba

Cherkassy State Technological University 460 Shevchenko Blvd., Cherkassy, 18006, Ukraine E-mail: shcherba_anatoly@mail.ru

Received February 23, 2010

The main results of the paper are the following two statements. If the length of the unit circle $\partial B = \{||x|| = 1\}$ on Minkowski plane M^2 is equal to $O(B) = 8(1 - \varepsilon), 0 \le \varepsilon \le 0.04$, then there exists a parallelogram which is centrally symmetric with respect to the origin o and the sides of which lie inside an annulus $(1+18\varepsilon)^{-1} \le ||x|| \le 1$. If the area of the unit sphere ∂B in the Minkowski space $M^n, n \ge 3$, is equal to $O(B) = 2n \cdot \omega_{n-1} \cdot (1-\varepsilon)$, where ε is a sufficiently small nonnegative constant and ω_n is a volume of the unit ball in \mathbb{R}^n , then in the globular layer $(1 + \varepsilon^{\delta})^{-1} \le ||x|| \le 1, \delta = 2^{-n} \cdot (n!)^{-2}$ it is possible to place a parallelepiped symmetric with respect the origin o.

Key words: Minkowski space, self-perimeter, self-area, stability. Mathematics Subject Classification 2000: 52A38, 52A40.

Let B be a normalizing body of the n-dimensional Minkowski space M^n , $n \geq 2$. This body is usually called a unit ball, and its boundary ∂B is called a unit sphere in M^n . Denote by R^n a Euclidean space adjoined to M^n the distance function of which is used as an auxiliary metric [1, 2]. In its turn, the auxiliary metric is chosen in such a way that the Euclidean n-dimensional volume $V_n(B)$ of B equals the volume of the n-dimensional unit ball in R^n ,

$$V_n(B) = \omega_n := \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}.$$

We identify the points in M^n with their position vectors from the origin o. Following Busemann [3], we define an (n-1)-dimensional area of the surface of nonempty compact convex body K. Let M^m be an m-dimensional plane in M^n . Then the m-dimensional Minkowski volume in M^m $(1 \le m \le n)$ is an m-dimensional Lebesgue measure of V_m^B in M^m normalized such that

$$V_m^B(B \cap M_o^m) = \omega_m,$$

© A.I. Shcherba, 2011

where M_o^m is a translant (i.e., a result of some translation) of M^m which passes through the origin o. For any compact convex set K in M^m ,

$$V_m^B(K) = \omega_m \cdot V_m(K) / V_m(B \cap M_o^m), \quad 1 \le m \le n,$$

where V_m is an arbitrary taken (affine) *m*-dimensional Lebesgue measure.

Isoperimetrix I in M^n is an o centrally symmetric compact convex body with the support function h_I given on the unit sphere $\Omega = \{ \langle u, u \rangle = 1 \} \subset \mathbb{R}^n$ by

$$h_I(u) = \omega_{n-1} \cdot V_{n-1}^{-1}(B \cap A_o(u)), \tag{1}$$

where V_{n-1} is a Euclidean (n-1)-dimensional volume and $A_o(u)$ is a hyperplane having the normal u and passing through the origin o.

Notice that the isoperimtrix I in M^n depends only on the normalizing body B and does not depend on the choice of the auxiliary metric [1, p. 279].

Let K_0 and K_1 be convex bodies in \mathbb{R}^n . Consider a segment $K_{\theta} = (1 - \theta) \cdot K_0 + \theta \cdot K_1$ ($0 \le \theta \le 1$) connecting the bodies K_0 and K_1 . In [4], Minkowski, introducing the notion of the mixed volumes, expressed the volume $V(K_{\theta})$ as

$$V(K_{\theta}) = \sum_{\nu=0}^{n} C_n^{\nu} \cdot (1-\theta)^{n-\nu} \cdot \theta^{\nu} \cdot V_{\nu}(K_0, K_1), \qquad (2)$$

where $V_{v}(K_{0}, K_{1})$ is a mixed volume of the bodies K_{0} and K_{1} which corresponds to the parameter v. Here we use the standard notations [5, p. 113]. By Minkowski, the value

$$O_B(K) = n \cdot V_1(K, I)$$

is called a *surface area* of the body K.

By a *self-area* of the surface of the unit ball B we understand the value

$$O(B) = O_B(B) = n \cdot V_1(B, I).$$
(3)

In the case of n = 2, the value O(B) is called a *self-perimeter* of the unit circle. In 1932, Golab S. [6] found optimal estimations for the perimeter: $6 \le O(B) \le 8$. In 1956, Busemann H. and Petti K. [7] obtained the following result.

Theorem A. If B is a unit ball in the n-dimensional Minkowski space M^n , then $O(B) \leq 2n \cdot \omega_{n-1}$, and the equality holds only when B is a parallelepiped.

In this paper we study a stability of the unit ball B in the case when the self-area O(B) is close to the greatest possible value $2n \cdot \omega_{n-1}$. There are proved the following theorems.

Theorem 1. Let the self-perimeter of a unit ball B on Minkowski plane M^2 be equal to $O(B) = 8 \cdot (1 - \varepsilon)$, where $0 \le \varepsilon \le \frac{1}{25}$. Then there exists a parallelogram P which is centrally symmetric with respect to the origin o and for which the inclusions

$$P \subset B \subset (1 + 18 \cdot \varepsilon) \cdot P \tag{4}$$

hold.

Theorem 2. Let the self-area O(B) of a unit sphere ∂B in Minkowski space M^n , $n \geq 3$, be equal to $O(B) = 2n \cdot \omega_{n-1} \cdot (1-\varepsilon)$. Then there exists a positive constant ε_0 depending only on the dimension n and the centrally symmetric w.r. to the origin o parallelepiped P for which the inclusions

$$P \subset B \subset (1 + \varepsilon^{\delta}) \cdot P, \tag{5}$$

hold, where $0 \leq \varepsilon \leq \varepsilon_0$ and $\delta = 2^{-n} \cdot (n!)^{-2}$.

The main results of the paper can be formulated in terms of the metric ||x|| of Minkowski space M^n . For example, Theorem 1 can be reformulated as follows: *if* the self-area of a unit sphere is equal to $2n\omega_{n-1} \cdot (1-\varepsilon)$, where ε is a small enough nonnegative constant, then in the globular layer $(1+\varepsilon^{\delta})^{-1} \leq ||x|| \leq 1$ of the space M^n $(n \geq 3)$ it is possible to place some parallelepiped P symmetric w.r. to the origin o. And also the area of P satisfies $(1+\varepsilon^{\delta})^{1-n} \cdot O(B) \leq O_B(P) \leq O(B)$ that follows at once from definition (3) and monotonicity of the mixed volume.

Studying the possibility of the equality $O(B) = 2n \cdot \omega_{n-1}$, Busemann H. and Petti K. used the fact that the body B, being a cylindrical one, possesses n linearly independent one-dimensional generators. Discussing the results obtained in this paper, Diskant V.I. drew my attention that I used only one such a generator in the proof of Theorem 2. In fact, it is proved by induction over the dimension m of M^m ($n \ge m \ge 2$) by constructing a cylinder in Minkowski space, which approximates a unit ball with a given accuracy. In our opinion, this construction is of independent interest.

If K is a convex body in M^n , then there are two supporting hyperplanes H_K^+ and H_K^- parallel to any given (n-1)-dimensional hyperplane H. By Minkowski, the value

$$\Delta_B(K,H) = \min\left\{ \|x_1 - x_2\| : x_1 \in H_K^+, \ x_2 \in H_K^- \right\}$$

is called the width of the convex body K in M^n w.r. to H [2, p. 106], [8]. Since the isoperimetrix I is symmetric w.r. to the origin o, its width satisfies the equality $\Delta_B(I, H) = 2 \cdot \min \{ ||x|| : x \in H_I \}$, where H_I is one of two supporting hyperplanes. Consider the body B as the one located in some adjoint space R^n and specify a unit vector u normal to $H_I = H_I(u)$. Let $h_I(u)$ and $h_B(u)$ be the supporting numbers of I and B. Then $\Delta_B(I, H) = 2 \cdot h_I(u) \cdot h_B^{-1}(u)$. There follows the theorem on the stability of the unit ball B w.r. to the width of isoperimetrix.

Theorem 3. If $\Delta_B(I, H) = 4(1 - \varepsilon) \cdot \omega_{n-1}/\omega_n$, $0 \le \varepsilon \le 10^{-4n^3}$, then there exists a cylinder $C_n(D)$ with one-dimensional generators such that:

- 1. $C_n(D)$ is centrally symmetric w.r. to the origin o;
- 2. $C_n(D)$ cross-section D is parallel to H;

3.
$$C_n(D) \subset B \subset C_n(D) \cdot \left(1 + \varepsilon^{\frac{1}{2n^2}}\right).$$
 (6)

This result is close to that obtained by Diskant V.I. on the estimation from above for the width of the isoperimetrix $\Delta_B(I, H) \leq 4\omega_{n-1} \cdot \omega_n^{-1}$, where the equality holds only when B is a cylinder [8].

P r o o f of the Theorem 1. Let Q_2 be a parallelogram of the smallest area and let it be centered at o and circumscribed around B. The midpoints of the Q_2 sides necessarily lie on ∂B [1, p. 121]. On M^2 , chose an auxiliary Euclidean metric such that on the adjoint plane R^2 with the Cartesian system xoy the parallelogram Q_2 becomes a square *abcd* with the vertices a(-1;1), b(1;1), b(1;1c(1;-1), d(-1;-1). The points e(0;1), f(1;0), g(0;-1), p(-1;0) lie on ∂Q_2 and $efgp \subset B$. Denote by n and m the points of intersection of straight lines y = xand y = -x with ∂B in a half-plane y > 0. Let $0 < \xi < \frac{1}{2}$ and $0 < \eta < \frac{1}{2}$ be the parameters that determine n and m by $n(1-\xi, 1-\xi)$ and $m(-1+\eta; 1-\eta)$. From the symmetry B = -B, the points $-n(-1+\xi; -1+\xi)$ and $-m(1-\eta; -1+\eta)$ lie on ∂B . Draw the straight lines (pm), (ab) and denote their intersection by $a_2 = (pm) \cap (ab)$; draw the straight lines (em), (da) and denote their intersection by $a_1 = (em) \cap (da)$. Set $b_2 = (en) \cap (bc)$, $b_1 = (fn) \cap (ab)$, $c_{1,2} = -a_{1,2}$, $d_{1,2} = -b_{1,2}$. Since B is convex, its line of support at m crosses the segments $[a_2e]$ and $[pa_1]$, and hence the segment $[a_1a_2]$ does not have common points with the interior B. Therefore, $B \subset a_1 a_2 b_1 b_2 c_1 c_2 d_1 d_2$, and it follows then that

$$8 \cdot (1 - \varepsilon) \le O(B) \le O_B(a_1 a_2 b_1 b_2 c_1 c_2 d_1 d_2) \le O_B(Q_2) = 8.$$
(7)

Denote by ||x|| the length of a vector x on M^2 with a normalizing body B and by |x|, its Euclidean length on R^2 . Taking into account (7), we have

$$\begin{cases} \|pa_1\| + \|a_1a_2\| + \|a_2e\| \le \|ap\| + \|ae\| = 2, \\ \|eb_1\| + \|b_1b_2\| + \|b_2f\| \le 2, \\ 4 - 4\varepsilon \le (\|pa_1\| + \|a_1a_2\| + \|a_2e\|) + (\|eb_1\| + \|b_1b_2\| + \|b_2f\|) \le 4. \end{cases}$$

Hence,

$$\begin{cases} 0 \le 2 - (\|pa_1\| + \|a_1a_2\| + \|a_2e\|) \le 4\varepsilon, \\ 0 \le 2 - (\|eb_1\| + \|b_1b_2\| + \|b_2f\|) \le 4\varepsilon. \end{cases}$$

By calculating

$$|aa_2| = |a_1a| = \frac{\eta}{1-\eta},$$

we can see that

$$||a_2e|| = ||pa_1|| = 1 - \frac{\eta}{1-\eta}$$

and

$$|a_1a_2|| = \frac{|a_1a_2|}{|on|} = \frac{|aa_2|}{n_x} = \frac{\eta}{(1-\eta)(1-\xi)}$$

Consequently,

$$2 - 4\varepsilon \le \|pa_1\| + \|a_1a_2\| + \|a_2e\| = 2 - \frac{\eta}{1 - \eta} \left(2 - \frac{1}{1 - \xi}\right).$$

After the similar calculations for n, compose the system

$$\begin{cases} \eta(1-2\xi) \le 4\varepsilon(1-\eta)(1-\xi), \\ \xi(1-2\eta) \le 4\varepsilon(1-\eta)(1-\xi), \end{cases}$$

where $0 \le \xi$, $\eta \le \frac{1}{2}$.

Combining the inequalities, we get

$$(1+8\varepsilon)(\xi+\eta) \le (1+2\varepsilon)4\xi\eta + 8\varepsilon$$

Since $4\xi\eta \leq (\xi + \eta)^2$, the value $z = \xi + \eta$ satisfies the square inequality

$$(1+2\varepsilon)z^2 - (1+8\varepsilon)z + 8\varepsilon \ge 0.$$

It is obvious that either

$$0 \leq \xi + \eta \leq \frac{1 + 8\varepsilon - \sqrt{1 - 16\varepsilon}}{2(1 + 2\varepsilon)} \quad \text{or} \quad \frac{1 + 8\varepsilon + \sqrt{1 - 16\varepsilon}}{2(1 + 2\varepsilon)} \leq \xi + \eta \leq 1.$$

As a consequence, either

162

$$\max\left\{\xi;\eta\right\} \le \frac{1+8\varepsilon - \sqrt{1-16\varepsilon}}{2(1+2\varepsilon)} \quad \text{or} \quad \max\left\{\frac{1}{2}-\xi;\frac{1}{2}-\eta\right\} \le \frac{1-4\varepsilon - \sqrt{1-16\varepsilon}}{2(1+2\varepsilon)}.$$

If $0 \le \varepsilon \le \frac{1}{25}$, then $\sqrt{1 - 16\varepsilon} \ge 1 - 10\varepsilon$. There are two cases:

1)
$$\max\left\{\xi;\eta\right\} \le \frac{9\varepsilon}{1+2\varepsilon} \le 9\varepsilon;$$
 2) $\max\left\{\frac{1}{2}-\xi;\frac{1}{2}-\eta\right\} \le \frac{3\varepsilon}{1+2\varepsilon} \le 3\varepsilon.$

Consider each case separately. Suppose (1) holds. Chose a square $r_1r_2r_3r_4$ with the vertices at points $r_1(-1+9\varepsilon; 1-9\varepsilon)$, $r_2(1-9\varepsilon; 1-9\varepsilon)$, $r_3(1-9\varepsilon; -1+9\varepsilon)$,

 $r_4(-1+9\varepsilon; -1+9\varepsilon)$ to be a parallelogram P in (4). By the construction, $P \subset B \subset Q_2$. Since $Q_2 = \frac{1}{1-9\varepsilon}P$, we have $Q_2 \subset (1+18\varepsilon)P$. Suppose (2) holds. Chose a square efgp to be P in (4). As noticed above,

Suppose (2) holds. Chose a square efgp to be P in (4). As noticed above, $[a_1a_2] \cap \overset{\circ}{B} = \emptyset$. The points $a_1(-1; 1 - \frac{\eta}{1-\eta})$ and $a_2(-1 + \frac{\eta}{1-\eta}; 1)$ lie on a straight line $y = x + 2 - \frac{\eta}{1-\eta}$. For $\frac{1}{2} - \eta \leq 3\varepsilon$ we have

$$2 - \frac{\eta}{1 - \eta} \le 1 + \frac{12\varepsilon}{1 + 6\varepsilon} \le 1 + 12\varepsilon,$$

and hence the figure B is under a straight line $y = x + 1 + 12\varepsilon$. For the segments $[b_1b_2], [c_1c_2], [d_1d_2]$ we draw the straight lines $y = -x + 1 + 12\varepsilon, y = x - 1 - 12\varepsilon, y = -x - 1 - 12\varepsilon$. Denote by S_2 a square with vertices at $e_1(0; 1 + 12\varepsilon), f_1(1 + 12\varepsilon; 0), g_1(0; -1 - 12\varepsilon, p_1(-1 - 12\varepsilon; 0))$. Then $B \subset S_2 = (1 + 12\varepsilon) \cdot P$. The proof is complete.

To prove Theorem 3 we need some auxiliary statements. Without loss of generality, further we will consider a proper convex compact body B symmetric w.r. to the origin o and located in the corresponding adjoint Euclidean space \mathbb{R}^n $(n \geq 2)$.

Proposition 1. Let K_0 and K_1 be convex compact bodies in \mathbb{R}^m , $m \ge 2$, with the m-dimensional Euclidean volumes satisfying $V(K_0) \le V(K_1)$. Let V_0 be a constant such that $V(K_{\theta}) \le V_0$, $0 \le \theta \le 1$. Then

$$V_1(K_0, K_1) - V(K_0) \le e(V_0 - V(K_0)).$$
(8)

Proof. The Brunn inequality implies

$$V^{\frac{1}{m}}(K_{\theta}) \ge (1-\theta)V^{\frac{1}{m}}(K_{0}) + \theta V^{\frac{1}{m}}(K_{1}) \ge V^{\frac{1}{m}}(K_{0}),$$

and hence $V(K_{\theta}) \geq V(K_0)$.

Using the identity

$$1 = \sum_{\nu=0}^{m} C_m^{\nu} (1-\theta)^{m-\nu} \theta^{\nu},$$

rewrite (2) in the form of

$$V(K_{\theta}) - V(K_{0}) = \sum_{\nu=0}^{m} C_{m}^{\nu} (1-\theta)^{m-\nu} \theta^{\nu} \left[V_{\nu}(K_{0}, K_{1}) - V(K_{0}) \right].$$
(9)

Write down the inequality for the mixed volumes

$$V_{\upsilon}^{m}(K_{0}, K_{1}) \ge V^{m-\upsilon}(K_{0})V^{\upsilon}(K_{1}),$$

which is a consequence of a more general A.D. Aleksandrov's inequality [9, p. 78]. Then $V_{\upsilon}^{m}(K_{0}, K_{1}) \geq V^{m}(K_{0})$ and $V_{\upsilon}(K_{0}, K_{1}) - V(K_{0}) \geq 0$. Since all terms in the right-hand side of (9) are nonnegative, then

$$m(1-\theta)^{m-1}\theta \left[V_1(K_0, K_1) - V(K_0) \right] \le V(K_\theta) - V(K_0) \le V_0 - V(K_0).$$

The inequality holds for all $0 \le \theta \le 1$. For $\theta = \frac{1}{m}$ we get

$$\left(1-\frac{1}{m}\right)^{m-1}\left[V_1(K_0,K_1)-V(K_0)\right] \le V_0-V(K_0).$$

Since the Euler sequence $a_n = \left(1 + \frac{1}{n}\right)^n < e$ is monotonously increasing, then

$$\left(1-\frac{1}{m}\right)^{m-1} = \left(1+\frac{1}{m-1}\right)^{1-m} > \frac{1}{e}$$

Therefore,

$$\frac{1}{e} \left[V_1(K_0, K_1) - V(K_0) \right] \le V_0 - V(K_0),$$

which completes the proof of Proposition 1.

Further we will use a method suggested by V.I. Diskant [10, 11] for studying a stability in the theory of convex bodies. Denote by $q = q(K_0, K_1)$ a capacity coefficient of K_1 w.r. K_0 , i.e., the greatest of γ 's for which the body $\gamma \cdot K_1$ is embedded into K_0 by a translation. Recall one of Diskant's inequalities for the mixed volumes [10, p. 101]:

$$V_1^{\frac{m}{m-1}}(K_0, K_1) - V(K_0)V^{\frac{1}{m-1}}(K_1) \ge \left[V_1^{\frac{1}{m-1}}(K_0, K_1) - qV^{\frac{1}{m-1}}(K_1)\right]^m.$$
 (10)

Proposition 2. Let the bodies K_0 and K_1 meet the requirements of Proposition 1. Set $\alpha = 3(V_0/V(K_0) - 1) \leq \frac{1}{4}$. Then the capacity coefficient q satisfies

$$q(K_0, K_1) \ge 1 - 2\alpha^{\frac{1}{m}}.$$
(11)

P r o o f. To estimate $q(K_0, K_1)$ from below, we use inequality (10) (see formula (2.1) in [10, p. 110])

$$q \ge \left[\frac{V_1(K_0, K_1)}{V(K_1)}\right]^{\frac{1}{m-1}} - \left[V_1^{\frac{m}{m-1}}(K_0, K_1) - V(K_0)V^{\frac{1}{m-1}}(K_1)\right]^{\frac{1}{m}} \cdot V^{\frac{-1}{m-1}}(K_1).$$

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 2

Transform this inequality

$$q \ge \left[\frac{V_1(K_0, K_1)}{V(K_1)}\right]^{\frac{1}{m-1}} - \left[\frac{V_1(K_0, K_1)}{V(K_1)}\right]^{\frac{1}{m}} \left\{ \left(\frac{V_1(K_0, K_1)}{V(K_1)}\right)^{\frac{1}{m-1}} - \frac{V(K_0)}{V_1(K_0, K_1)} \right\}^{\frac{1}{m}}.$$
 (12)

The inequality $V_1(K_0, K_1) \ge V(K_0)$ implies

$$\frac{V_1(K_0, K_1)}{V(K_1)} \ge \frac{V(K_0)}{V(K_1)} \ge \frac{V(K_0)}{V_0} = \frac{1}{1 + \frac{\alpha}{3}} \ge 1 - \frac{\alpha}{3}.$$
 (13)

By (8), we have $V_1(K_0, K_1) - V(K_0) \le 3 \cdot (V_0 - V(K_0))$, and hence

$$\frac{V_1(K_0, K_1)}{V(K_1)} \le \frac{V_1(K_0, K_1)}{V(K_0)} \le 1 + 3(\frac{V_0}{V(K_0)} - 1) = 1 + \alpha.$$
(14)

Besides,

$$\frac{V(K_0)}{V_1(K_0, K_1)} \ge \frac{1}{1+\alpha} \ge 1-\alpha.$$
(15)

Substituting (13), (14), (15) into (12), we obtain

$$q \ge \left(1 - \frac{\alpha}{3}\right)^{\frac{1}{m-1}} - (1 + \alpha)^{\frac{1}{m}} \left\{ (1 + \alpha)^{\frac{1}{m-1}} - (1 - \alpha) \right\}^{\frac{1}{m}}.$$

For $p \ge 1$ we have

(1)
$$(1+x)^{\frac{1}{p}} \le 1 + \frac{x}{p}, \quad 0 \le x \le 1;$$

(2) $(1-x)^{\frac{1}{p}} \ge 1 - \frac{12}{11}x, \quad 0 \le x \le \frac{1}{12}.$

Therefore,

$$q \ge 1 - \frac{4}{11}\alpha - \left(1 + \frac{\alpha}{m}\right) \left\{\frac{m}{m-1}\alpha\right\}^{\frac{1}{m}} \ge 1 - \frac{4}{11}\alpha - \frac{9}{8}\left(\frac{m}{m-1}\right)^{\frac{1}{m}}\alpha^{\frac{1}{m}}.$$

The conditions $m \ge 2$ and $0 \le \alpha \le \frac{1}{4}$ provide

$$\alpha \leq \frac{1}{2} \alpha^{\frac{1}{m}} \text{and} \left(\frac{m}{m-1}\right)^{\frac{1}{m}} \leq \sqrt{2}.$$

Finally,

$$q \ge 1 - \frac{2}{11}\alpha^{\frac{1}{m}} - \frac{9}{8}\sqrt{2}\alpha^{\frac{1}{m}} \ge 1 - 2\alpha^{\frac{1}{m}}.$$

Denote by $A_t(u)$ a hyperplane in \mathbb{R}^n which is parallel to $A_o(u)$ and is at the distance t in the direction of the vector u. If t < 0, then $A_t(u)$ is at the same distance from $A_o(u)$ in the direction of the vector -u.

We denote by $h_B = h(u)$ $(u \in \Omega)$ a supporting function of the normalizing body B. Denote by H(u) the hyperplanes of support that correspond to h(u).

Let $B_t(u) = B \cap A_t(u)$. If $-h(u) \le t \le h(u)$, then $B_t(u) \ne \emptyset$. The central symmetry of the unit ball B = -B provides the equalities $B_{-t}(u) = -B_t(u)$.

Consider the function

$$\phi_u(t) = V_{n-1}^{\frac{1}{n-1}}(B_t(u)), \quad t \in [-h(u); h(u)].$$

The function is even, $\phi_u(-t) = \phi_u(t)$, and by the Brunn inequality it is convex upwards. Then max $\phi_u(t) = \phi_u(0)$, and this provides the estimation

$$V_n(B) \le 2h(u) \cdot V_{n-1}(B_0(u)).$$

Denote by $\Delta V(u)$ the difference

$$\Delta V(u) = 2h(u)V_{n-1}(B_0(u)) - V_n(B).$$

Proposition 3. Let u_0 be a unit normal vector of some hyperplane of support $H_0 = H_I(u_0)$ for the isoperimetrix I. If a Minkowski width of I in the direction u_0 is equal to $\Delta_B(I, H_0) = 4(1 - \varepsilon)\omega_{n-1}\omega_n^{-1}$, $0 \le \varepsilon < 1$, then

$$\Delta V(u_0) = \varepsilon 2h(u_0) V_{n-1}(B_0(u_0)).$$
(16)

P r o o f. Indeed, from the expression in the terms of supporting numbers for the Minkowski width of the body I in the adjoint space \mathbb{R}^n and the explicit expression for the isoperimetrix I supporting function h_I given by (1), we get

$$\Delta_B(I, H_0) = 2\frac{h_I(u_0)}{h_B(u_0)} = 2\frac{\omega_{n-1}}{h(u_0)V_{n-1}(B_0(u_0))}$$

Taking into account the normalization $V_n(B) = \omega_n$, we have

$$\Delta_B(I, H_0) = 4 \frac{\omega_{n-1}}{\omega_n} \frac{V_n(B)}{2h(u_0)V_{n-1}(B_0(u_0))}$$

Together with the condition imposed on Δ_B by the hypothesis, the latter equality provides (16).

Set $V_0 = V_{n-1}(B_0(u_0))$, $h_0 = h_B(u_0)$, $\phi_0(t) = \phi_{u_0}(t)$ and $\Delta V(u_0) = 2h_0 V_0 \varepsilon$. Denote by B^* a Schwartz-symmetrized body B w.r. to a straight line $L(u_0)$ which is parallel to u_0 and passes through the origin o. By the construction,

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 2

 $V_n(B^*) = V_n(B)$. By the Brunn theorem, the body of rotation B^* is convex [5, p. 89]. On R^2 with the Cartesian coordinates xoy, define the function

$$x(y) = \phi_0(y)\omega_{n-1}^{-\frac{1}{n-1}}, \quad -h_0 \le y \le h_0.$$

Set for brevity x(0) = r. The function x = x(y) defines the radii of the (n-1)dimensional balls that generate B^* . On the graph of this function, mark the point $M_0(x_0; y_0)$ which is an intersection point of the graph and a straight line $y = \frac{h_0}{r}x$. We have $0 < x_0 \le r$, $0 < y_0 \le h_0$. It is convenient to use a parameter $\tau = r - x_0$. Then $M_0(r - \tau, h_0 - \frac{h_0}{r}\tau)$.

Proposition 4. If the conditions of Proposition 3 hold, then

$$\tau \le r \sqrt{\frac{\varepsilon}{2}}.\tag{17}$$

P r o o f. If $\tau = 0$, then inequality (17) is trivial. Notice that by the Minkowski–Brunn theorem, the equality $\tau = 0$ holds only when the body B is a cylinder with the generators parallel to u_0 .

Suppose $\tau > 0$. Draw a supporting straight line to x = x(y) at M_0 . The intersection points of this line and straight lines $y = h_0$ and x = r denote by P and Q, respectively. The points $P_1 = (0; h_0)$, $Q_1 = (r; 0)$ and the whole segment $[P_1Q_1]$ are to the left of the convex curve x = x(y), $0 \le y \le h_0$. Therefore, $0 < \tau \le \frac{r}{2}$. Rewrite the coordinates of P and Q in the terms of a and b, namely, $P = (r - a; h_0)$ and $Q = (r; h_0 - b)$.

Define the function $r_1 = r_1(y), y \in [-h_0; h_0]$ by

$$r_1(y) = \begin{cases} r, & \text{if } b - h_0 \le y \le h_0 - b; \\ r - a - \frac{a}{b}(y - h_0), & \text{if } h_0 - b \le y \le h_0; \\ r - a + \frac{a}{b}(y + h_0), & \text{if } - h_0 \le y \le b - h_0. \end{cases}$$

In \mathbb{R}^n , construct a rotation body \widehat{B} with the axis $L(u_0)$ and the radii of the (n-1)-dimensional spheres given by the function $r_1 = r_1(y)$. By the construction, $x(y) \leq r_1(y)$, which provides $B^* \subset \widehat{B}$. Estimate from below a difference $\Delta V(u_0)$ in the terms of $V_n(\widehat{B})$

$$\begin{aligned} \Delta V(u_0) &= 2h_0 V_0 - V_n(B^*) \ge 2h_0 V_0 - V_n(\widehat{B}) \\ &= 2\omega_{n-1} r^{n-1} b - 2\omega_{n-1} \int_0^b (r - \frac{a}{b} z)^{n-1} dz \\ &= 2\omega_{n-1} \frac{b}{na} \left[(r-a)^n - r^n + nar^{n-1} \right]. \end{aligned}$$

It is easy to verify that the function

$$\phi(s) = (1-s)^n - 1 + ns - \frac{n}{2}s^2, \quad 0 \le s \le 1, \quad n \ge 2,$$

is monotonously increasing. Multiplying the inequality

$$(1-s)^n - 1 + ns \ge \frac{n}{2}s^2$$

by r^n and denoting rs = a, we obtain

$$(r-a)^n - r^n + nr^{n-1}a \ge \frac{n}{2}r^{n-2}a^2.$$

Thus,

$$\Delta V(u_0) \ge \omega_{n-1} r^{n-2} ab. \tag{18}$$

The chosen point $M_0(r-\tau; h_0 - \frac{h_0}{r}\tau)$ lies on the supporting straight line, therefore a and b are connected by the equation

$$\frac{\tau}{a} + \frac{h_0}{r}\frac{\tau}{b} = 1.$$

The product ab in the right-hand side of (18) can be expressed in the terms of b

$$ab = \tau(b + \frac{h_0}{r}a) = \frac{rb^2\tau}{rb - h_0\tau} = f(b)$$

Estimate ab from below by $\min f(b) = f(b_0)$, where $b_0 = 2\frac{h_0}{r}\tau$, $a_0 = 2\tau$. Then

$$ab \ge a_0 b_0 = 4 \frac{h_0}{r} \tau^2.$$

The hypotheses of Proposition 3, (16) and (18) imply

$$\varepsilon 2h_0 V_0 = \Delta V(u_0) \ge 4\omega_{n-1}r^{n-3}h_0\tau^2 = 4\frac{V_0}{r^2}h_0\tau^2, \quad \text{or} \quad \varepsilon \ge 2\left(\frac{\tau}{r}\right)^2.$$

Corollary 1. A cross-section $B_t = B \cap A_t(u_0)$, which corresponds to M_0 , is defined by $T = h_0 - \frac{h_0}{r} \cdot \tau$. Besides, the distance between $A_T(u_0)$ and $A_0(u_0)$ is

$$T \ge t_0 = h_0 \left(1 - \sqrt{\frac{\varepsilon}{2}} \right). \tag{19}$$

The Euclidean (n-1)-dimensional volume of the section B_T satisfies

$$V_{n-1}(B_T) = \omega_{n-1}(r-\tau)^{n-1}$$

$$\geq \omega_{n-1}r^{n-1}\left(1-\sqrt{\frac{\varepsilon}{2}}\right)^{n-1} = V_0\left(1-\sqrt{\frac{\varepsilon}{2}}\right)^{n-1}.$$
 (20)

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 2

The following theorem (the analog of Theorem 3 for the plane) illustrates the importance of inequalities (19) and (20).

Theorem 4. If the width of the isoperimetrix I on M^2 , which corresponds to a straight line H_0 , satisfies $\Delta_B(I, H_0) = \frac{8}{\pi}(1 - \varepsilon)$, $0 \le \varepsilon \le \frac{1}{6}$, then there exists a symmetric w.r. to the origin o parallelogram P with a side parallel to H_0 such that $P \subset B \subset (1 + 2\sqrt{\varepsilon}) \cdot P$.

P r o o f. As above, denote by u_0 a normal vector of the isoperimetrix I supporting the straight line $H_I = H_I(u_0)$, $H_I||H_0$ in the adjoint plane R^2 . If n = 2, then the section B_T is a segment [ab]. Set c = -a, d = -b. Then $B_{-T} = -B_T = [cd]$. Denote $B_0 = [ef]$. Then |oe| = |of| = r. We assume that the points a, b, f, c, d, e are on ∂B in the cyclic order and clockwise.

Show that P = abcd can be taken as a required parallelogram. The inclusion $P \subset B$ is obvious. Prove now the inclusion $B \subset (1 + 2\sqrt{\varepsilon})P$. Denote $a_1 = (de) \cap (ab)$; $d_1 = (ae) \cap (cd)$; $b_1 = (cf) \cap (ab)$; $c_1 = (bf) \cap (dc)$. The segments $[ea_1]$, $[ed_1]$, $[fb_1]$, $[fc_1]$ do not have any common points with \mathring{B} . Therefore, the figure B is in a strip bounded by the two parallel straight lines (d_1a_1) and (c_1b_1) . Denote $a_2 = (d_1a_1) \cap H(u_0)$, $b_2 = (c_1b_1) \cap H(u_0)$, $c_2 = (c_1b_1) \cap H(-u_0)$, $d_2 = (d_1a_1) \cap H(-u_0)$. Mark also the points $f_1 = (cb) \cap (ef)$ and $e_1 = (da) \cap (ef)$. Due to (20), we have

$$|ab| = 2|of_1| = 2(r-\tau) \ge 2r\left(1-\sqrt{\frac{\varepsilon}{2}}\right)$$
 and $|f_1f| = \tau \le r\sqrt{\frac{\varepsilon}{2}}$

A similarity of the triangles $\Delta c f_1 f$ and $\Delta c b b_1$ implies $|bb_1| = 2|f_1 f| \leq r\sqrt{2\varepsilon}$. Besides, $|cc_1| = |dd_1| = |aa_1| = |bb_1| \leq r\sqrt{2\varepsilon}$. It is easy to see that

$$\frac{|a_2b_2|}{|ab|} \leq \frac{|ab| + 2r\sqrt{2\varepsilon}}{|ab|} \leq 1 + \frac{\sqrt{2\varepsilon}}{1 - \sqrt{\frac{\varepsilon}{2}}} \leq 1 + 2\sqrt{\varepsilon}.$$

The estimation (19) provides

$$\frac{|c_2b_2|}{|cb|} \le \frac{h_0}{h_0\left(1 - \sqrt{\frac{\varepsilon}{2}}\right)} \le 1 + \sqrt{2\varepsilon}.$$

By the construction, the parallelogram $a_2b_2c_2d_2 \supset B$, hence $B \subset (1+2\sqrt{\varepsilon})P$. The theorem is proved.

To prove Theorem 3 for the case of $n \ge 3$ we need an estimation from below for the capacity coefficient of B_T w.r. to B_{-T} .

Corollary 2. If $0 \le \varepsilon \le 10^{-2}$, then the capacity coefficient satisfies

$$q(-B_T; B_T) \ge 1 - 5\varepsilon^{\frac{1}{2(n-1)}}, \ n \ge 3.$$
 (21)

P r o o f. By means of translation, place the convex bodies B_T and B_{-T} in the (n-1)-dimensional hyperplane $A_o(u_0)$. Denote by $B'_T = B_T - Tu_0$, $B'_{-T} = B_{-T} + Tu_0$ the corresponding traslants. The equalities $V_{n-1}(B'_T) = V_{n-1}(B'_{-T})$ and $q(-B_T, B_T) = q(B'_{-T}, B'_T)$ are obvious. The line segment $K_{\theta} = (1-\theta)B_T + \theta B_{-T}, 0 \le \theta \le 1$ is in the section $B_{(1-2\theta)T} = B \cap A_{(1-2\theta)T}(u_0)$. Thus, for $K'_{\theta} = (1-\theta)B'_T + \theta B'_{-T}$, we have

$$V_{n-1}(K'_{\theta}) = V_{n-1}(K_{\theta}) \le V_0 = V_{n-1}(B_0(u_0)).$$

Take $K_0 = B'_{-T}$ and $K_1 = B'_T$ from the hypothesis of Proposition 2. Then from (20) we get

$$\alpha = 3\left(\frac{V_0}{V(K_0)} - 1\right) \le 3\left(\left(1 - \sqrt{\frac{\varepsilon}{2}}\right)^{1-n} - 1\right),$$

and for the capacity coefficient

170

$$q(-B_T; B_T) \ge 1 - 2 \times 3^{\frac{1}{n-1}} \left(1 - \left(1 - \sqrt{\frac{\varepsilon}{2}}\right)^{n-1} \right)^{\frac{1}{n-1}} \left(1 - \sqrt{\frac{\varepsilon}{2}}\right)^{-1}.$$

For $m \ge 2$, $0 \le x \le \frac{1}{2}$, $0 \le \varepsilon \le 10^{-2}$ the inequalities

$$\left(\frac{3m}{\sqrt{2}}\right)^{\frac{1}{m}} \le \frac{9}{4}, \qquad (1 - (1 - x)^m)^{\frac{1}{m}} \le m^{\frac{1}{m}} x^{\frac{1}{m}}, \qquad 1 - \sqrt{\frac{\varepsilon}{2}} \ge \frac{10}{11}$$

hold. The estimation (21) follows at once from the above.

P r o o f of the Theorem 3. Let B_T be defined as in Corollary 1 and the relations (19)–(21) be fulfilled. Let B'_T and B'_{-T} respectively denote the tranlants of B_T and B_{-T} after a translation on $A_o(u)$. Notice that $B'_{-T} = -B'_T$. Let $\gamma = q(B'_T, -B'_T)$. Then there is a vector a in the hyperplane $A_o(u_0)$ such that $a + \gamma(-B'_T) \subset B'_T$. On $A_o(u)$ consider a mapping $\varphi(x) = a - \gamma x$, $x \in A_o(u)$. Evidently, $\phi(B'_T) = a - \gamma B'_T = a + \gamma(-B'_T) \subset B'_T$. Since $V_{n-1}(B'_T) = V_{n-1}(B'_{-T})$, then $\gamma \leq 1$. If $\gamma = 1$, then the bodies B'_T and B'_{-T} coincide after a translation on the vector a. In general, $\gamma < 1$. Denote by x_0 a solution of the equation $x_0 = a - \gamma x_0$, i.e., $x_0 = (1 + \gamma)^{-1} a$.

By the choice, $\varphi(x_0) = x_0$. Let $\widetilde{B}_T = B'_T - x_0$, $\widetilde{B}_{-T} = B'_{-T} + x_0$. Then $\widetilde{B}_{-T} = -\widetilde{B}_T$. It is easy to check that after this replacement we have $\gamma \widetilde{B}_{-T} \subset \widetilde{B}_T$.

Hence, the inclusions $\gamma(-\widetilde{B}_T) \subset \widetilde{B}_T \subset \frac{1}{\gamma} \left(-\widetilde{B}_T\right)$ hold. Moreover, $q(\widetilde{B}_T, -\widetilde{B}_T) = q(-\widetilde{B}_T, \widetilde{B}_T) = \gamma$. On the hyperplane $A_o(u_0)$, construct a body $D = \widetilde{B}_T \cap \left(-\widetilde{B}_T\right)$ which is centrally symmetric w.r. to the origin o. Set $\nu = x_0 + Tu_0$. By the construction, $D_T \equiv D + v \subset B_T$ and $D_{-T} \equiv D - v \subset B_{-T}$. Notice also that

$$D \supset \gamma(\tilde{B}_T \cup \tilde{B}_{-T}). \tag{22}$$

Denote by $C_n(D) \subset \mathbb{R}^n$ a cylinder whose cross-sections coincide with D and whose 1-dimensional generators are parallel to v and bounded by the hyperplanes $A_T(u_0)$ and $A_{-T}(u_0)$. This cylinder is symmetric w.r. to the origin $o: C_n(D) =$ $-C_n(D)$. Since the symmetric body B is convex, the inclusion $C_n(D) \subset B$ holds.

Estimate from below the capacity coefficient $q(C_n(D), B)$. By formula (22),

$$V_n(B) \ge V_n(C_n(D)) = 2TV_{n-1}(D) \ge 2TV_{n-1}(\gamma B_T) = 2T\gamma^{n-1}V_{n-1}(B_T).$$

Using estimations (19)-(21), we conclude

$$V_n(B) \ge 2h_0 V_0 \left(1 - 5\varepsilon^{\frac{1}{2(n-1)}}\right)^{n-1} \left(1 - \sqrt{\frac{\varepsilon}{2}}\right)^n.$$

For further calculations to be substantial, we assume $0 \le \varepsilon \le (10(n-1))^{-2(n-1)}$. Initially, $2h_0V_0 \ge V_n(B)$ (see, for example, equality (16)). Hence,

$$V_n(B) \ge V_n(C_n(D)) \ge V_n(B) \left(1 - 5(n-1)\varepsilon^{\frac{1}{2(n-1)}}\right) \left(1 - n\sqrt{\frac{\varepsilon}{2}}\right)$$

or

$$1 \le \frac{V_n(B)}{V_n(C_n(D))} \le \left(1 - 7(n-1)\varepsilon^{\frac{1}{2(n-1)}}\right)^{-1} \le 1 + 14(n-1)\varepsilon^{\frac{1}{2(n-1)}}.$$

Consider a segment $K_{\theta} = (1-\theta)C_n(D) + \theta \cdot B$, $0 \le \theta \le 1$ inside *B*. In Proposition 2 assume that $K_0 = C_n(D)$, $K_1 = B$, $V_0 = V_n(B)$, where $V_n(K_{\theta}) \le V_n(B)$. Then $\alpha \le 50(n-1)\varepsilon^{\frac{1}{2(n-1)}}$, and the capacity coefficient $q(C_n(D), B)$ can be estimated by (11),

$$q_1 = q(C_n(D), B) \ge 1 - 10\varepsilon^{\frac{1}{2n(n-1)}}, \ n \ge 3.$$

The bodies $C_n(D)$ and B being centrally symmetric w.r. to the origin o, we will get $q_1B \subset C_n(D)$ and $B \subset \frac{1}{q_1}C_n(D)$. Since $\frac{1}{1-x} \leq 1+2x$, $0 \leq x \leq \frac{1}{2}$, we have

$$C_n(D) \subset B \subset \left(1 + 20\varepsilon^{\frac{1}{2n(n-1)}}\right) C_n(D).$$
(23)

Finally, if $0 \le \varepsilon \le 10^{-4n^3}$, then the inclusions (6) hold. The theorem is proved.

P r o o f of the Theorem 2. The proof is based on the idea of Busemann– Petti (see Theorem 7.4.1 [2]) and on the properties of a superficial function of convex body introduced by Aleksandrov A.D. [9, p. 39].

For a convex body B, the superficial function $F(B, \omega)$ on a unit sphere Ω is defined by the following construction. Let a Lebesgue measurable set ω be given on Ω . Denote by $\sigma(\omega)$ a set of all points on the surface of the convex body Bhaving a normal u directed to ω . The superficial function $F(\sigma(\omega))$ is the area of $\sigma(\omega)$.

Write down the first mixed volume from definition (3) in the terms of the Stieltjes-Radon integral for the continuous isoperimetrix I supporting function $h_I(u)$ over a unit sphere,

$$O(B) = \int_{\Omega} h_I(u) F(B, d\omega).$$

Since the origin o is inside of B, then $h_B(u) > 0$, and hence the ratio $h_I(u)/h_B(u)$ is a continuous function on Ω . By the integral mean value theorem, there is a vector u_0 on Ω such that

$$O(B) = \int_{\Omega} \frac{h_I(u)}{h_B(u)} h_B(u) F(B, d\omega)$$
$$= \frac{h_I(u_0)}{h_B(u_0)} \int_{\Omega} h_B(u) F(B, d\omega) = \frac{h_I(u_0)}{h_B(u_0)} n V_n(B).$$

The plane of support $H_0 = H_I(u_0)$ for I is given by the supporting number $h_I(u_0)$. By Theorem 2, the area $O(B) = 2n\omega_{n-1}(1-\varepsilon)$, and hence the width

$$\Delta_B(I, H_0) = 2h_I(u_0)/h_B(u_0) = 4(1 - \varepsilon)\omega_{n-1}/\omega_n.$$

By Theorem 3, in M^n there is a cylinder with the cross-section perpendicular to u_0 for which (6) holds.

Now we study the cross-section D of the cylinder $C_n = C_n(D)$. Show that the body D, by analogy with (6), can be approximated by some "(n-1) dimensional" cylinder $C_{n-1} = C_{n-1}(D_{n-2})$ with the cross-section D_{n-2} . Denote by $Q = 1 + 20 \cdot \varepsilon^{\frac{1}{2n(n-1)}}$ the factor from (23). Without loss of generality, assume that the generators of the cylinder $C_n(D)$ are perpendicular to the cross-section D, i.e., $v \parallel u_0$. The latter is based on the affine invariancy of the definition of self-area of the surface O(B) and on the free choosing of the auxiliary metric

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 2

in M^n . Notice that the inclusions (23) provide

$$\begin{split} O(B) &\leq O_B(QC_n) = \int\limits_{\Omega} \frac{\omega_{n-1}}{V_{n-1}(B \cap A_0(u))} F(QC_n, d\omega) \\ &\leq Q^{n-1} \int\limits_{\Omega} \frac{\omega_{n-1}}{V_{n-1}(C_n \cap A_0(u))} F(C_n, d\omega) = Q^{n-1} O_{C_n}(C_n(D)). \end{split}$$

From the conditions imposed on O(B) in Theorem 2, we have

$$O_{C_n}(C_n) \ge Q^{1-n}O(B) = Q^{1-n}(1-\varepsilon)2n\omega_{n-1} \ge Q^{-n}2n\omega_{n-1}.$$

Using the inequalities $\frac{1}{1+x} \ge 1-x$ and $(1-x)^n \ge 1-nx$ for

$$0 \le x = 20\varepsilon^{\frac{1}{2n(n-1)}} \le \frac{1}{2n},$$

we obtain

$$O_{C_n}(C_n) \ge 2n\omega_{n-1}\left(1 - 20n\varepsilon^{\frac{1}{2n(n-1)}}\right).$$
 (24)

,

The surface of the cylinder $C_n(D)$ consists of two bases D_T , D_{-T} that are equal to D and of a lateral surface C'_n . Hence,

$$O_{C_n}(C_n) = 2O_{C_n}(D) + O_{C_n}(C'_n) = 2\omega_{n-1} + O_{C_n}(C'_n).$$
(25)

Denote by Ω' an intersection of the unit sphere Ω and the (n-1) dimensional hyperplane \mathbb{R}^{n-1} which corresponds to $A_0(u_0)$. Recall the equalities

$$\begin{cases} V_{n-1}(C_n \cap A_0(w)) = 2h_0 V_{n-2}(D \cap A_0(w)), \ w \in \Omega'; \\ F_{n-1}(C'_n, d\omega) = 2h_0 F_{n-2}(D, d'\omega), \end{cases}$$

where $d'\omega$ is a restriction of $d\omega$ on Ω' . Thus,

$$O_{C_n}(C'_n) = \int_{\Omega} \frac{\omega_{n-1}}{V_{n-1}(C_n \cap A_0(w))} F_{n-1}(C'_n, d\omega)$$
$$= \int_{\Omega'} \frac{\omega_{n-1}}{V_{n-2}(D \cap A_0(w))} F_{n-2}(D, d'\omega) = \frac{\omega_{n-1}}{\omega_{n-2}} O_D(D)$$

Imposing the condition $\varepsilon \leq (20n)^{-2n^3}$ and taking into account (24) and (25), we obtain

$$O_D(D) \ge 2(n-1)\omega_{n-2}\left(1 - \frac{20n^2}{n-1}\varepsilon^{\frac{1}{2n(n-1)}}\right) \ge 2(n-1)\omega_{n-2}\left(1 - \varepsilon^{\frac{1}{2n^2}}\right).$$

Set $\varepsilon_1 = \varepsilon^{\frac{1}{2n^2}}$. Then for the compact proper central symmetric (n-1)-dimensional body D the estimate

$$O(D) \ge 2(n-1)\omega_{n-2}(1-\varepsilon_1)$$

holds.

Remark. Calculations in the proof of Theorem 3 up to formula (23) remain valid for the dimension $(n-1) \ge 3$.

Taking initially a body D instead of B, which is in the space \mathbb{R}^{n-1} adjoint to $A_0(u_0)$, we can construct a centrally symmetric cylinder $C_{n-1} = C_{n-1}(D_{n-2})$ with the cross-section $D_{n-2} \subset \mathbb{R}^{n-2}$ satisfying the inclusions similar to (6). Namely,

$$C_{n-1}(D_{n-2}) \subset D \subset \left(1 + \varepsilon_1^{\frac{1}{2(n-1)^2}}\right) C_{n-1}(D_{n-2}).$$

In \mathbb{R}^n consider a cylinder $C_n(C_{n-1}(D_{n-2}))$ whose cross-sections coincide with the "(n-1)-dimensional" cylinder $C_{n-1}(D_{n-2})$; the one-dimensional generators are parallel to u_0 and bounded by the hyperplanes $A_T(u_0)$ and $A_{-T}(u_0)$. The cylinder possesses a specific property

$$C_n(C_{n-1}(D_{n-2})) \subset B \subset \left(1 + \varepsilon^{\frac{1}{2n^2}}\right) \left(1 + \varepsilon^{\frac{1}{2^2n^2(n-1)^2}}\right) C_n(C_{n-1}(D_{n-2})).$$
(26)

Using recurrently (n-2) times the specified above constructions that correspond to the pass from formula (23) to formula (26), we get a cylinder $\tilde{C} = C_n(C_{n-1}(\ldots(C_3(D_2))\ldots))$ which approximates the initial normalizing body B as follows:

$$\widetilde{C} \subset B \subset \left(1 + \varepsilon^{\frac{1}{2n^2}}\right) \left(1 + \varepsilon^{\frac{1}{2^2n^2(n-1)^2}}\right) \dots \left(1 + \varepsilon^{\frac{1}{2^{n-2n^2(n-1)^2}\dots 3^2}}\right) \widetilde{C}.$$

The cylinder C_2 on the plane M^2 is a parallelogram. Approximate a figure D_2 by the parallelogram; the approximation order is defined on the (n-1)-step by $\varepsilon_{n-1} = \varepsilon^{2^{4-n}(n!)^{-2}}$. Recall that on the plane M^2 there is formula (4) from Theorem 1, where ε_{n-1} appears to be in the first degree. Thus, it is possible to approximate the body B by the parallelepiped P for which the inclusions

$$P \subset B \subset \left(1 + \varepsilon^{\frac{1}{2n^2}}\right) \left(1 + \varepsilon^{\frac{1}{2^2n^2(n-1)^2}}\right) \times \dots \times \left(1 + \varepsilon^{\frac{1}{2^n - 4(n!)^2}}\right) \left(1 + 18\varepsilon^{\frac{1}{2^n - 4_t(n!)^2}}\right) P \quad (27)$$

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 2

hold. There is such a sufficiently small positive $\varepsilon_0(n)$ depending only on the dimension n that the inequalities

$$\left(1+18\varepsilon^{2^{4-n}(n!)^{-2}}\right)^{n-1} \le 1+18n\varepsilon^{2^{4-n}(n!)^{-2}} \le 1+\varepsilon^{2^{-n}(n!)^{-2}}$$
(28)

hold for $0 \le \varepsilon \le \varepsilon_0$. Put $\delta = 2^{-n} (n!)^{-2}$. Then from (27) and (28) we derive formula (5). The theorem is proved.

The author expresses his sincere gratitude to V.I. Diskant for his useful discussions of the considered problem.

References

- [1] K. Leichtweiß, Konvexe Mengen. VEB Deutscher Verlag, Berlin (1980).
- [2] A.C. Thompson, Minkowski Geometry. Cambridge University Press, Cambridge (1996).
- [3] H. Busemann, Intrinsic Area. Ann. Math. 48 (1947), 234–267.
- [4] H. Minkowski, Volume und Oberfläche. Ann. Math. 75 (1903), 447–495.
- [5] T. Bonnesen and W. Fenchel, Teorie der Konvexen Körper. Springer (1934); New York (1948).
- [6] S. Golab, Quelques Problèmes Métriques de la Géometrie de Minkowski. Trav. l'Acad. Mines Cracovie 6 (1932), 1–79.
- [7] H. Busemann and C.M. Petty, Problems on Convex Bodies. Math. Scand. 4 (1956), 88–94.
- [8] V.I. Diskant, Estimates for Diameter and Width for the Isoperimetrix in Minkowski Geometry. — J. Math. Phys., Anal., Geom. 2 (2006), No. 4, 388–395.
- [9] A.D. Aleksandrov, Geometry and Applications. Selected Papers. V. 1. Nauka, Novosibirsk (2006). (Russian)
- [10] V.I. Diskant, Refinement of Isoperimetric Inequality and Stability Theorems in the Theory of Convex Bodies. — Tr. Inst. Mat., Siberian Branch USSR Acad. Sci. 14 (1989), 98–132. (Russian)
- [11] V.I. Diskant, Stability of Solutions of Minkowski and Brunn Equations. Mat. Fiz., Anal., Geom. 6 (1999), No. 3/4, 245–252. (Russian)

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 2