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On the Solution of the Monge–Ampere Equation

ZxxZyy − Z2
xy = f (x, y) with Quadratic Right Side
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For the Monge–Ampere equation ZxxZyy−Z2
xy = b20x

2+b11xy+b02y
2+

b00 we consider the question on the existence of a solution Z(x, y) in the
class of polynomials such that Z = Z(x, y) is a graph of a convex surface. If
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Z is a polynomial of odd degree, then the solution does not exist. If Z is a
polynomial of 4-th degree and 4b20b02 − b2

11 > 0, then the solution also does
not exist. If 4b20b02 − b2

11 = 0, then we have solutions.
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1. Introduction

Numerous works are devoted to the study of the Monge–Ampere equation.
The well-known Jörgens theorem [1] affirms that the equation

ZxxZyy − Z2
xy = 1 (1)

has a unique solution

Z = a20x
2 + a11xy + a02y

2 + a10x + a01y + a00

with the condition 4a20a02 − a2
11 = 1 if Z(x, y) is convex and a complete surface

is determined on the whole plane x, y.
In the work by Yu. Volkov and S. Vladimirova [2] the Jörgens theorem was

applied to the proof of the following remarkable result: every isometric immersion
of the Euclidean plane into Lobachevsky space L3 is either a horosphere or a
surface of rotation of some equidistant of a geodesic around this geodesic.

The Jörgens theorem has been generalized to the n-dimensional case for the
equation

det |Zij | = 1,

where
Z = Z(x1, . . . , xn),

by Calabi for the case n = 3, 4 [3] and by Pogorelov for n ≥ 5 [4].
Now the methods of construction of solutions for nonlinear differential equa-

tions in the form of solitons are well elaborated with the help of inverse scattering
problem, but taking into attention the possibility to approximate every continue
function by polynomials at x, y, it is natural to apply the straight method to find
the solution in the form of polynomials for the equation

ZxxZyy − Z2
xy = f(x, y), (2)

where f(x, y) is a polynomial, in particular, of the second degree.
We will prove the following theorems.

204 Journal of Mathematical Physics, Analysis, Geometry, 2011, v. 7, No. 3



On the Solution of the Monge–Ampere Equation

Theorem 1. The equation

ZxxZyy − Z2
xy = b20x

2 + b11xy + b02y
2 + b00 (3)

with the conditions

b20 > 0, b02 > 0, 4b20b02 − b2
11 ≥ 0, b00 > 0 (4)

does not have a solution in the form of a polynomial of odd degree.

Theorem 2. The equation

ZxxZyy − Z2
xy = b20x

2 + b11xy + b02y
2 + b00 (5)

with the conditions

b20 > 0, b02 > 0, 4b20b02 − b2
11 ≥ 0, b00 > 0 (6)

has a solution in the class of polynomials of the 4-th degree if and only if

4b20b02 − b2
11 = 0.

Hence, if 4b20b02−b2
11 > 0, then equation (5) with condition (6) does not have

a solution in the class of polynomial of 4-th degree.
We remark that (4) is the consequence of convexity of the surface Z = Z(x, y).
Let us represent Z(x, y) in the form

Z =
4∑

r=2

∑

i+j=r

aijx
iyj . (7)

We prove that in the case 4b20b02 − b2
11 = 0 the solution has the form

Z = t2
(√

b20x + ε
√

b02y
)4

+ a20x
2 + a11xy + a02y

2 (8)

if
24t2

(
a20b20 − ε

√
b20b02a11 + a02b02

)
= 1, (9)

and
4a20a02 − a2

11 = b00, (10)

where t 6= 0 is an independent parameter, and ε = ±1.
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2. Proof of Theorem 1

If Z is a polynomial of odd order 2r + 1,

Z = a2r+1,0x
2r+1 + a2r,1x

2ry + . . . , (11)

then, without loss of generality, we can suppose that

a2r+1,0 > 0,

because this condition can be obtained by rotation in the plane x, y.
So we have the second derivative on the axis y = 0,

Zxx = (2r + 1)(2r)a2r+1,0x
2r−1 + . . . . (12)

If x → ∞, then Zxx > 0, and similarly, if x → −∞, then Zxx < 0. Thus we
can deduce that Zxx = 0 at some point. Consequently, at this point

ZxxZyy − Z2
xy = −Z2

xy ≤ 0. (13)

But this contradicts our condition that ZxxZyy − Z2
xy = −Z2

xy > 0. So our
theorem is proved.

3. Proof of Theorem 2

Verify at first that (8) is a solution if b11 = 2ε
√

b02b20 with ε = ±1.
Let us denote √

b20x + ε
√

b02y = u. (14)

We have

Zx = 4t4u3
√

b20 + 2a20x + a11y,

Zy = 4εt2u3
√

b02 + a11x + 2a02y,

Zxx = 12t2u2b20 + 2a20, (15)

Zxy = 12εt2u2
√

b20b02 + a11,

Zyy = 12t2u2b02 + 2a02.

Hence,

ZxxZyy − Z2
xy = 24t2u2(a20b02 − ε

√
b02b20a11 + a02b20) + 4a20a02 − a2

11

= (b20x
2 + b11xy + b02y

2) + b00. (16)

Thus, the function in (8) is a solution of (5).

206 Journal of Mathematical Physics, Analysis, Geometry, 2011, v. 7, No. 3



On the Solution of the Monge–Ampere Equation

Write the right-hand side of (7) in a more detailed form

Z = a40x
4 + a31x

3y + a22x
2y2 + a13xy3 + a04y

4 + a30x
3 (17)

+ a21x
2y + a12xy2 + a03y

3 + a20x
2 + a11xy + a02y

2.

We divide the system of equations in the coefficients aij into 5 systems (0),
(I), (II), (III), (IV) in accordance with the degree of members, which we obtain
in the expression ZxxZyy − Z2

xy after calculation of derivatives of Z. For readers’
comfort we write the expression of the second derivatives as follows:

Zxx = 12a40x
2 + 6a31xy + 2a22y

2 + 6a30x + 2a21y + 2a20,

Zyy = 12a04y
2 + 6a13xy + 2a22x

2 + 6a03y + 2a12x + 2a02,

Zxy = 3a31x
2 + 4a22xy + 3a13y

2 + 2a21x + 2a12y + a11.

We use the theorem on the equality coefficients of two polynomials and obtain
the following Lemma.

Lemma 3. If Z(x, y) in the form (17) is a solution of (5), then the following
5 systems have place:

4a20a02 − a2
11 = b00, (0)

3a30a02 + a12a20 − a21a11 = 0,
3a03a20 + a21a02 − a12a11 = 0,

(I)

4a22a20 − 6a31a11 + 24a40a02 + 4(3a30a12 − a2
21) = b20,

12a13a20 − 8a22a11 + 12a31a02 + 4(9a30a03 − a12a21) = b11,
24a04a20 − 6a13a11 + 4a22a02 + 4(3a03a21 − a2

12) = b02,
(II)

a22a30 − a31a21 + 2a40a12 + 0 = 0,
3a13a30 − a22a21 + 0 + 6a40a03 = 0,
6a04a30 + 0− a22a12 + 3a31a03 = 0,
0 + 2a04a21 − a13a12 + a22a03 = 0,

(III)

8a40a22 − 3a2
31 = 0,

6a40a13 − a31a22 = 0,
24a40a04 + 3a31a13 − 2a2

22 = 0,
6a31a04 − a22a13 = 0,
8a04a22 − 3a2

13 = 0.

(IV)

We call aij with i + j = m the coefficient of the degree m.
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Lemma 4. If a40a04 6= 0, then all coefficients of the 4-th degree have expres-
sions in terms of a40, a04:

a2
31 = 16a40

√
a40a04,

a22 = 6
√

a40a04, (18)
a2

13 = 16a04
√

a40a04,

that is the consequence of (IV).

If the coefficient a04 = 0, from the system (IV) we obtain that a31 = a22 =
a13 = 0. If a40 = 0 also, then Z is the polynomial of degree of 3-rd order.
Subsequently we can suppose that a40 6= 0. Then, from (III) we obtain a12 =
a03 = 0. From the third equation of (II) we obtain b02 = 0 that contradicts (6).
So we can put a40a04 6= 0. Then a22 6= 0, a31 6= 0, a13 6= 0. From (I) we obtain

(3a30a12 − a2
21)a02 = (3a03a21 − a2

12)a20. (19)

Consequently, there exists some number λ such that

3a30a12 − a2
21 = λa20, (20)

3a03a21 − a2
12 = λa02.

Consider the system (I) as the system for determining of a02, a20

3a30a02 + a12a20 = a21a11, (21)
a21a02 + 3a03a20 = a12a11.

From the system (21) by eliminating a20, we obtain

(9a30a03 − a12a21)a02 = a11(3a12a03 − a2
12) = λa11a02. (22)

Since a02 6= 0, we get

9a30a03 − a12a21 = λa11.

We have the system of equations

3a30a12 − a2
21 = λa20,

9a30a03 − a12a21 = λa11, (23)
3a03a21 − a2

12 = λa02.

We show that λ = 0.
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From the system (III) we obtain the expressions of a30 and a03

a30 =
a31a21 − 2a40a12

a22
, (24)

a03 =
a13a12 − 2a04a21

a22
,

and by substituting (24) into (23), we obtain

−6a40a
2
12 + 3a31a12a21 − a22a

2
21 = λa22a20,

18(−a40a13a
2
12 + 8a04a40a12a21 − a04a31a

2
21) = λa2

22a11, (25)
−a22a

2
12 + 3a13a12a21 − 6a04a

2
21 = λa22a02.

In the above we can replace a31, a13, a22 with the expressions from Lemma 4.
Let a31 > 0, then also a13 > 0. Denote

T = (a40)
1
4 a12 − (a04)

1
4 a21. (26)

Then we obtain

−6
√

a40T
2 = λa22a20,

−12(a40a04)
1
4 T 2 = λa22a11, (27)

−6
√

a04T
2 = λa22a02.

If λ 6= 0, then

a20 =
a11

2
(
a40

a04
)

1
4 , (28)

a02 =
a11

2
(
a04

a40
)

1
4 .

It gives us
4a20a02 − a2

11 = 0,

that is impossible, because 4a20a02 − a2
11 = b00 > 0. Similarly is considered the

case a31 < 0. Therefore, λ = 0. In this case the system (II) is as follows:

4a22a20 − 6a31a11 + 24a40a02 = b20,

12a13a20 − 8a22a11 + 12a31a02 = b11, (29)
24a04a20 − 6a13a11 + 4a22a02 = b02.

Consider (29) as the system for determining of a20, a11, a22. All the coefficients
of the system have expressions in terms of a40, a04. Denote γ = (a04a40)

1
4 , then

the determinant of the matrix of coefficients is∣∣∣∣∣∣

4a22 −6a31 24a40

12a13 −8a22 12a31

24a04 −6a13 4a22

∣∣∣∣∣∣
= −32 · 36 · 12γ

√
a04a40

∣∣∣∣∣∣

√
a40

√
a40

√
a40

2γ 2γ 2γ√
a04

√
a04

√
a04

∣∣∣∣∣∣
= 0
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if a31 > 0. When a31 < 0, we obtain the same statement.
Hence, it is not difficult to verify that the determinant of the coefficient matrix

is equal to zero as well as all minors of the second order. In fact, it means that
every two vectors from the system

(4a22,−6a31, 24a40),
(12a13,−8a22, 12a31),
(24a04,−6a13, 4a22)

are linearly dependent. Therefore, if the system (29) has a solution, then it must
be

4
3

a22

a31
=

b11

b20
,

4
3

a22

a13
=

b11

b02
. (30)

Taking into attention Lemma 4, we obtain

b2
11

b02b20
=

16a2
22

9a31a13
= 4.

So, Theorem 2 is proved.

Now we suppose that 4b20b02−b2
11 = 0. Let us find the view of polynomial (8).

From (30) we obtain √
a40√
a04

=
a31

a13
=

b20

b02
. (31)

Introduce some positive number t such that
√

a40 = tb20,
√

a04 = tb02. (32)

Lemma 5. All coefficients of the 3-rd degree are equal to zero, i.e., a30 =
a21 = a12 = a03 = 0.

Suppose that a12 6= 0, then a21 6= 0. From (23) we have

3a30 =
a2

21

a12
, (33)

3a03 =
a2

12

a21
.

Further, by substituting (33) into the first equation of (I), we get

a21a02 +
a2

12

a21
a20 − a11a12 = 0.
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We have the equation

a02a
2
21 − a12a21a11 + a2

12a20 = 0.

This equation does not have a solution, except zero, because a2
11−4a20a02 < 0.

So, a12 = a21 = 0. Further, from (II) we obtain a30 = a03 = 0. From Lemmas 4
and 5 there follows the view (8).

We remark that equation (2) with polynomial f(x, y) > 0 sometimes has a
solution in the polynomial form. Besides (12), we can give the following example.
For the polynomial

f(x, y) = (3u2 + 1)2 + 3u2(u2 + u + x2y2)

of degree eight, where

u =
1
2
(x2 + y2),

the solution of (2) is the polynomial of degree six, Z = u(u2 + 1). The surface
Z is complete and convex. Obviously −Z is also the solution. Will these two
functions be unique solutions on the whole plane x, y ?

Our question in consideration is a part of the more general problem: to con-
struct the solutions of (2) as a polynomial, when f is also a polynomial, but
without condition f > 0.
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