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We study the set M(X) of full non-atomic Borel measures p on a non-
compact locally compact Cantor set X. The set M, = {z € X :
for any compact open set U > x we have pu(U) = oo} is called defective. p is
non-defective if y(90,,) = 0. The set M°(X) C M(X) consists of probability
and infinite non-defective measures. We classify the measures from M°(X)
with respect to a homeomorphism. The notions of goodness and the compact
open values set S(u) are defined. A criterion when two good measures are
homeomorphic is given. For a group-like set D and a locally compact zero-
dimensional metric space A we find a good non-defective measure p on X
such that S(u) = D and 9, is homeomorphic to A. We give a criterion
when a good measure on X can be extended to a good measure on the
compactification of X.
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1. Introduction

The problem of classification of Borel finite or infinite measures on topological
spaces has a long history. Two measures u and v defined on the Borel subsets of a
topological space X are called homeomorphic if there exists a self-homeomorphism
h of X such that uy = v o h, i.e, u(E) = v(h(FE)) for every Borel subset E of
X. The topological properties of the space X are important for the classification
of measures up to a homeomorphism. For instance, Oxtoby and Ulam [1] gave
a criterion for a Borel probability measure on the finite-dimensional cube to be
homeomorphic to the Lebesgue measure. Similar results were obtained for various
manifolds (see [2, 3]).
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A Cantor set (or a Cantor space) is a non-empty zero-dimensional compact
perfect metric space. For Cantor sets the situation is much more complicated
than for connected spaces. During the last decade, in the papers [4-8] Borel
probability measures on Cantor sets were studied. In [9] infinite Borel measures
on Cantor sets were considered. For many applications in dynamical systems the
state space is only locally compact. In this paper, we study Borel both finite and
infinite measures on non-compact locally compact Cantor sets.

It is possible to construct uncountably many full (the measure of every non-
empty open set is positive) non-atomic measures on a Cantor set X which are
pairwise non-homeomorphic (see [10]). This is due to the existence of a countable
base of clopen subsets of a Cantor set. The clopen values set S(u) is the set of
finite values of a measure p on all clopen subsets of X. The set provides an
invariant for homeomorphic measures, although it is not a complete invariant.

For the class of the so-called good probability measures, S(u) is a complete
invariant. By definition, a full non-atomic probability or non-defective measure p
is good if, whenever U, V are clopen sets with p(U) < u(V'), there exists a clopen
subset W of V such that u(W) = p(U) (see [9, 11]). Good probability measures
are exactly invariant measures of uniquely ergodic minimal homeomorphisms of
Cantor sets (see [11, 12]). For an infinite Borel measure y on a Cantor set X,
denote by 9, the set of all points in X whose clopen neighbourhoods have only
infinite measures. The full non-atomic infinite measures p such that p(91,) = 0
are called non-defective. These measures arise as ergodic invariant measures for
homeomorphisms of a Cantor set and the theory of good probability measures
can be extended to the case of non-defective measures (see [9]).

In Sec. 2, we define a good probability measure and a good non-defective
measure on a non-compact locally compact Cantor set X and extend the results
concerning good measures on Cantor sets to non-compact locally compact Cantor
sets. For a Borel measure p on X, the set S(u) is defined as a set of all finite
values of 11 on the compact open sets. The defective set 91, is the set of all points
x in X such that every compact open neighbourhood of x has an infinite measure.
We prove the criterion when two good measures on non-compact locally compact
Cantor sets are homeomorphic. For every group-like subset D C [0,1) we find a
good probability measure u on a non-compact locally compact Cantor set such
that S(u) = D. For every group-like subset D C [0, 00) and any locally compact
zero-dimensional metric space A (including A = ) we find a good non-defective
measure p on a non-compact locally compact Cantor set such that S(u) = D and
9M,, is homeomorphic to A.

In Sec. 3, the compactifications of non-compact locally compact Cantor sets
are studied. We investigate whether a compactification can be used to classify
the measures on non-compact locally compact Cantor sets. We consider only
the compactifications which are Cantor sets and extend the measure p by giving
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the remainder of compactification a zero measure. It turns out that in some
cases a good measure can be extended to a good measure on a Cantor set, while
in other cases the extension always produces a measure which is not good. The
extensions of a non-good measure are always non-good. After compactification of
a non-compact locally compact Cantor set, new compact open sets are obtained.
We study how the compact open values set changes. Basing on this study, we
give a criterion when a good measure on a non-compact locally compact Cantor
set remains good after the compactification.

Section 4 contains the examples to the results of Secs. 2 and 3. For instance,
the Haar measure on the set of p-adic numbers and the invariant measure for
(C, F)-construction are good. We give the examples of good ergodic invariant
measures on the generating open dense subset of a path space of stationary Brat-
teli diagrams such that any compactification gives a non-good measure.

2. Measures on Locally Compact Cantor Sets

Let X be a non-compact locally compact metrizable space with no isolated
points and with a (countable) basis of compact and open sets. Hence X is totally
disconnected. The set X is called a non-compact locally compact Cantor set.
Every two non-compact locally compact Cantor sets are homeomorphic (see [13]).
Take a countable family of the compact open subsets O, C X such that X =
U;L.Ozl O,. Denote X1 = 01, X9 = Oy \ 01, X3 = O3 \ (01 U 02),... . The
subsets X, are compact open pairwise disjoint, and X = |J;_, X,,. Since X
is non-compact, we may assume without loss of generality that all X,, are non-
empty. Since X has no isolated points, every X, has the same property. Thus,
we represent X as a disjoint union of a countable family of the compact Cantor
sets X,,.

Recall that a Borel measure on a locally compact Cantor space is called full
if every non-empty open set has a positive measure. It is easy to see that for
a non-atomic measure p the support of u in the induced topology is a locally
compact Cantor set. We can consider the measures on their supports to obtain
full measures. Denote by M (X) the set of full non-atomic Borel measures on X.
Then M(X) = M (X)UMy(X), where M(X) = {p € M(X): u(X) < oo} and
Moo (X) ={p e M(X): p(X) = oo}. For a measure p € My (X), denote M, =
{z € X : for any compact and open set U > = we have u(U) = oo}. It will be
shown that 901, is a Borel set. Denote M2 (X) = {u € M(X) : p(M,) = 0}.
Let MY(X) = Mp(X)U M2 (X). Throughout the paper we will consider only
the measures from M°(X). We normalize the measures from M(X) such that
u(X) =1 for any p € My(X).

Recall that u € M°(X) is locally finite if every point of X has a neighbourhood
of a finite measure. The properties of the measures from the class M°(X) are
collected in the following proposition.
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Proposition 2.1. Let u € M°(X). Then
(1) The measure p is locally finite if and only if M, = 0.
(2) The set X \ M, is open. The set M, is F.
(3) For any compact open set U with u(U) = oo and any a > 0 there exists a
compact open subset V-.C U such that a < u(V') < oo.
(4) The set M,, is nowhere dense.
(5) X = L2, ViU, where each V; is a compact open set of a finite measure
and M, is a nowhere dense Fy and is of zero measure. The measure p is o-finite.
(6) w is uniquely determined by its values on the algebra of the compact open sets.

Proof (1) The condition M, = () means that every point z € X has a
compact open neighbourhood of a finite measure. Hence p is locally finite and
vise versa.

(2) We have X \ M, = {& € X : there exists a compact open set U, >
x such that u(U,) < oo}. Then for every point € X'\, we have U, C X \M,,.
Hence X \ 9, is open. Therefore, for every n € N the set X, \ 9, is open and
X N, is closed. Then M, = | |, oy (X NOM,) is i, set.

(3) Let U be a non-empty compact open subset of X such that u(U) = oo.
Since p € M°(X), we have u(U) = p(U\9M,,). Since U is open, the set U\ M, =
UN(X\9M,) is open. There are only countably many compact open subsets in X,
hence the open set U \ M, can be represented as a disjoint union of the compact
open subsets {U;}ien of a finite measure. We have p(U) = > .72, u(U;) = oo,
hence for every a € R there is a compact open subset V = |_|Z]i o Ui such that
a<pV) < oo.

(4) Let U be a compact open subset of X. It suffices to show that there exists
a non-empty compact open subset V' C U such that V N9, = 0. If u(U) < oo,
then U N9, = 0. Otherwise, by (3), there exists a compact open subset V C U
such that 0 < u(V) < co. Obviously, VN, = 0.

(5) Follows from the proof of (3).

(6) Follows from (5). [

For a measure u € MY(X) define the compact open values set as the set of all
finite values of the measure y on the compact open sets:

S(u) ={wu(U) : U is compact open in X and p(U) < oo}.

For each measure u € M°(X), the set S(u) is a countable dense subset of the
interval [0, 4(X)). Indeed, the set S(u) is dense in [0, u(V')] for every compact
open set V' of a finite measure (see [10]). By Proposition 2.1, S(u) is dense in
0, u(X)).

Let X1, X2 be two non-compact locally compact Cantor sets. It is said that
the measures p; € M(X7) and pe € M(Xsq) are homeomorphic if there exists a
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homeomorphism h: X; — Xo such that pi(E) = po(h(E)) for every Borel subset
E C X;. Clearly, S(u1) = S(p2) for any homeomorphic measures p1 and po.
We call the two Borel infinite measures py € M2 (X1) and pup € M2 (X2) weakly
homeomorphic if there exists a homeomorphism h: X; — Xo and a constant
C > 0 such that p;(E) = Cua(h(FE)) for every Borel subset £ C X;. Then
S(p) = CS(p2).

Let D be a dense countable subset of the interval [0,a) where a € (0, o).
Then D is called group-like if there exists an additive subgroup G of R such that
D = GnNJ0,a). Tt is easy to see that D is group-like if and only if for any «, 5 € D
such that o < 8 we have § —a € D (see [9, 11)).

Definition 2.2. Let X be a locally compact Cantor space (either compact or
non-compact) and € M°(X). A compact open subset V of X is called good for
w (or just good when the measure is understood) if for every compact open subset
U of X with p(U) < u(V) there exists a compact open set W such that W C V
and p(W) = uw(U). A measure p is called good if every compact open subset of
X is good for p.

If p € MY(X) is a good measure and v € M?(X) is (weakly) homeomorphic to
4, then, obviously, v is good. It is easy to see that in the case of a compact Cantor
set the definition of a good measure coincides with the one given in [11]. For a
compact open subset U C X, let u|y be the restriction of the measure u to the
Cantor space U. Then the set U is good if and only if S(u|y) = S(u|x)N[0, u(U)].
Denote by H,(X) the group of all homeomorphisms of a space X preserving the
measure p. The action of H,(X) on X is called transitive if for every x1, 29 € X
there exists h € H,(X) such that h(x1) = x2. The action is called topologically
transitive if there exists a dense orbit, i.e., there is z € X such that the set
O(xz) ={h(z) : h € H,(X)} is dense in X.

We extend naturally the notion of partition basis introduced in [4]. A partition
basis B for a non-compact locally compact Cantor set X is a collection of the
compact open subsets of X such that every non-empty compact open subset of
X can be partitioned by the elements of B.

The properties of good measures on non-compact locally compact Cantor sets
are gathered in the following proposition. The proofs for the measures on compact
Cantor spaces can be found in [4, 9, 11].

Proposition 2.3. Let X be a locally compact Cantor space (either compact
or non-compact). Let p € M°(X). Then

(a) If p is good and C > 0, then Cp is good and S(Cp) = CS(p).

(b) If p is good and U is a non-empty compact open subset of X, then the
measure p|y is good and S(ply) = S(w) N[0, u(U)].

(¢) p is good if and only if every compact open subset of a finite measure is
good.
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(d) p is good if and only if for every non-empty compact open subset U of a
finite measure the measure p|y is good.

(e) If p is good, then S(u) is group-like.

(f) If a compact open set U admits a partition by good compact open subsets,
then U is good.

(g9) The measure i is good if and only if there exists a partition basis B con-
ststing of the compact open sets which are good for .

(h) If p is good, then the group H,(X) acts transitively on X \ 9M,. In
particular, the group H,(X) acts topologically transitively on X.

(1) If p is a good measure on X and v is the counting measure on {1,2,...,n},
then p X v is a good measure on X x {1,2,...,n}.

Proof. (a), (b) are clear.

(c) Suppose that every compact open subset of finite measure is good. Let
V' be any compact open set with (V) = oo and U be a compact open set with
w(U) < oo. By Proposition 2.1, there exists a compact open subset W C V
such that p(U) < pu(W) < co. By assumption, W is good. Hence there exists a
compact open set Wi C W with u(W7) = u(U) and V is good.

(d) Suppose that for every non-empty compact open subset U of finite mea-
sure, the measure p|y is good. We prove that every compact open subset of
finite measure is good, then use (c). Let U, V be compact open sets with
0<u(U) <p(V)<oo. Set W=UUV. Then W is a compact open set of finite
measure. Since p|py is good, there exists Wi C V such that p(W1) = u(U).

(e) If p is good, then for any o, € S(u) such that § —a > 0 we have
B —a € S(u). Hence S(u) is group-like.

(f) See [4] for the case of the finite measure and [9] for the infinite measure.

(g) If there exists a partition basis B consisting of compact open sets which
are good for pu, then, by (f), every compact open set is good.

(h) For any x,y € X \ 9, there exists a compact open set U of finite measure
such that z,y € U. By (d), the measure p|y is a good finite measure on a Cantor
space U. By Theorem 2.13 from [11], there exists a homeomorphism h: U — U
which preserves p and h(z) = y. Define hy € H,(X) to be hon U and the identity
on X \ U. For every x € X \ M, we have O(x) = X \ M,. By Proposition 2.1,
the set X \ 9, is dense in X. Hence H,(X) acts topologically transitively on X.

(i) The rectangular compact open sets U x {z}, where U is compact open
in X and z € {1,2,...,n}, form a partition basis for X x {1,2,...,n}. Since
ux v(U x{z}) = p(U), these sets are good. The measure p is good by (g). =

For GG, an additive subgroup of R we call a positive real number § a divisor
of G if G = G. The set of all divisors of G is called Div(G). By a full measure
on a discrete countable topological space Y we mean a measure v such that
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0 < v({y}) < oo for every y € Y. We will use the following theorem for Y = Z,
but the proof remains correct for any discrete countable topological space Y.

Theorem 2.4. Let u be a good measure on a non-compact locally compact
Cantor space X. Let v be a full measure on Z, where 7, is endowed with discrete
topology. Let G be an additive subgroup of R generated by S(p). Then u X v is
good on X x Z if and only if there exists C > 0 such that v({i}) € C- Div(G) for
every i € 7.

Proof Let us prove the “if” part. Suppose p is good on X and
v({i}) € C - Div(G) for some C > 0 and every i € Z. By Proposition 2.3
(g), it suffices to prove that a compact open set of the form U x {i} is good
for any compact open U C X and any ¢ € Z. Thus, it suffices to show that
S(uxv|gxgy) = S(pxv|xxz)N[0, uxv(Ux{i})]. The inclusion S(pux vy y) C
S X v|xxz) N[0,u x v(U x {i})] is always true, hence we have to prove the
inverse inclusion. We have S(u x v|yxgy) = v({i})S(ulv) = C6S(u|y) for some
d € Div(G). Since p is good on X, we obtain S(u|y) = G N[0, u(U)]. Hence
S(uxvlyxgy) = CGN[0,Cou(U)] = CGN[0, uxv(U x{i})]. Note that Cou(U) €
CG because 6 € Div(G). Therefore, it suffices to prove that S(u x v|xxz) C CG.
The set S(uxv|xxz) consists of all finite sums 3, . u(U;)v({j}), where each Uj is
a compact open set in X and j € Z. We have >, . u(U)v({j}) = >_,; ; u(U;)C6; C
CG, here 6; € Div(G). Hence S(u X v|yxgiy) D S(pxv|xxz) N[0, ux v(U x {i})]
and U x {i} is good.

Now we prove the “only if part”. Suppose that u x v is good on X x Z. Then
for any i € Z we have S(u X v|xygiy) = S X v|xxz) N[0, 4 x v(X x {i})].
Note that S(u x v|xxy = v({i})S(plx). Denote by G the additive subgroup

of R generated by S(u x v|xxz). Let a = v({i}). Then aG = G. Let j € Z
and 3 = v({j}). By the same arguments, we have 3G = G. Then & € Div(G).

~ B
Indeed, 3G = %G = (. Hence oo = 3, where § € Div(G). Set C' = v({j}).
Then for every i € Z we have v({i}) = CJ;, where §; = v({i}) ¢ Div(G). [

v({7})

Theorem 2.5. Let X, Y be non-compact locally compact Cantor sets. If
p e MYX), ve MY%Y) are good measures, then the product p X v is a good
measure on X XY, and

N
S(pxv)= {Zai <Bita; € S(p), B € S(v),N € N} N[0, u(X) x v(Y)).
=0

Proof LetX =|]>_;X,andY = |[7,Y,, where each X,,, ¥}, is a
Cantor set. Then X x Y = | |7 _; Xy x Yy, and p X v|x,,xv, = plx,, X Vly,-
Since p|x, and vy, are good finite or non-defective measures on a Cantor set,
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the measure p X v|x, xy, is good by Theorem 2.8 [4], Theorem 2.10 [9]. By
Proposition 2.3, i x v is good on X x Y. [ |

Theorem 2.6. Let X, Y be non-compact locally compact Cantor spaces. Let
p € M°%X) and v € MO(Y) be good measures. Let S(u) = S(v). Let M be
the defective set for p and I be the defective set for v. Assume that there is a
homeomorphism h: M — N where the sets M and N are endowed with the induced
topologies. Then there exists a homeomorphism h: X — 'Y which extends h such
that u =v o h.

Conversely, if u € M°(X) and v € M°(Y) are good homeomorphic measures,
then S(p) = S(v), and there is a homeomorphism h: M — N.

Proof. The second part of the theorem is clear. We will prove the first
part. Let X = | |72, X; and ¥V = |_|;°;1Yj where X;, Y; are compact Cantor
spaces.

First, consider the case when 9t = 90 = (), i.e., the measures pu, v are either
finite or infinite locally finite measures. Since S(u) = S(v), we have pu(X;) €
S(v). There exists n € N such that y(|_|;"”:_11 V) < p(X1) < v(Uj;Y;). Since
S(v) is group-like, we see that p(X;) — 1/(|_|;1;11 Y;) € S(v). Since v is good, there
exists a compact open subset W C Y,, such that v(W) = u(X1) — 1/(|_|§L:_11 Yj).
Hence Z = |_|;"”:_11 Y;UW is a compact Cantor set and p(X1) = v(Z). By Theorem
2.9 [11], there exists a homeomorphism hi: X1 — Z such that u|x, = v|z o hy.
Set h|x, = hy. Consider (Y, \ W) LI7Z, 41 Y; instead of Y, and | |2, X; instead of
X. Reverse the roles of X and Y. Proceed in the same way using Y;, \ W instead
of X;. Thus, we obtain countably many homeomorphisms {;}°,. Given z € X,
set h(z) = hi(z) for the corresponding h;. Then h: X — Y is a homeomorphism
which maps g into v.

Now, let M # 0. If u(Xy) < oo, we proceed as in the previous case. If
u(X1) = oo, then X3 NI # (. Then h(X; NOM) is a compact open subset of
I in the induced topology. Hence there exists a compact open set W C Y such
that W NN = h(Xy NIM). Then, by Theorem 2.11 [9], the sets X; and W are
homeomorphic via the measure preserving homeomorphism h; and hi|x,nom = h.
Since W is compact, there exists N such that W C [_]f;[:1 Y,. Reverse the roles

of X and Y and consider |_|g:1 Y, \ W instead of X;. [ |

The corollary for weakly homeomorphic measures follows:

Corollary 2.7. Let p € MY (X) and v € MY (Y) be good infinite measures
on the non-compact locally compact Cantor sets X and Y . Let 9 be the defective
set for p and N be the defective set for v. Then p is weakly homeomorphic to v
if and only if the following conditions hold:
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(1) There ezists ¢ > 0 such that S(u) = cS(v),
(2) There exists a homeomorphism h: M — N where the sets M and N are
endowed with the induced topologies.

Remark 1. Let u € M2 (X) be a good measure on a non-compact locally
compact Cantor set X and V' be any compact open subset of X with u(V) < oc.
Then p on X is homeomorphic to pon X \ V. Let S(u) = GN[0,00). Then p is
homeomorphic to ¢ if and only if ¢ € Div(G).

Corollary 2.8. Let u be a good finite or non-defective measure on a non-
compact locally compact Cantor set X. Let U, V be two compact open subsets of
X such that ((U) = v(V) < co. Then there is h € H,(X) such that h(U) = V.

Proof SetY =UUYV. ThenY is a Cantor set with u(Y) < oo. By
Proposition 2.11 from [11], there exists a self-homeomorphism A of Y such that
h(U) =V and h preserves u. Set h to be the identity on X \ Y. [

Corollary 2.9. Let y and v be good non-defective measures on non-compact
locally compact Cantor sets X and Y. Let I be the defective set for p and N be
the defective set for v. If there exist compact open sets U C X and V CY such
that u(U) = v(V) < oo and p|U is homeomorphic to v|V', then p is homeomorphic
to v if and only if M and N (with the induced topologies) are homeomorphic.

Proof. Lety=u(U)=wv(V). Since u|U is homeomorphic to v|V, we have
S(u|U) = S(v|V). Since p and v are good, we have S(u) N [0,~] = S(v) N[0,7]
by Proposition 2.3. Since S(u) and S(v) are group-like, we obtain S(u) = S(v).

]

Theorem 2.10. Let u € M°(X) be a good measure on a non-compact lo-
cally compact Cantor set X. Then the compact open values set S(u) is group-
like and the defective set M, is a locally compact zero-dimensional metric space
(including ().

Conversely, for every countable dense group-like subset D of [0,1), there is
a good probability measure p on a non-compact locally compact Cantor set such
that S(u) = D. For every countable dense group-like subset D of [0,00) and any
locally compact zero-dimensional metric space A (including A = () there is a good
non-defective measure p on a non-compact locally compact Cantor set such that
S(pn) = D and M, is homeomorphic to A.

Proof. The first part of the theorem follows from Propositions 2.1, 2.3.

We will prove the second part. First, consider the case of the finite measure.
Let D C [0,1) be a countable dense group-like subset. Then there exists a strictly
increasing sequence {7,}5°; C D such that lim, oy, = 1. Forn =1,2,...,
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set 0, = Y — Yn—1. Denote S, = D N[0,6,]. Then D, = é(D N [0,d,]) is a
group-like subset of [0, 1] with 1 € D,,. In [11], it was proved that there exists a
good probability measure p,, on a Cantor set X,, such that S(uy|x, ) = D,. The
measure v, = Opli, is a good finite measure on X,, with S(v,|x, ) = D N0, dy,].
Set X =|]77, X, and let p|x, = v,,. Then p is a good probability measure on
a non-compact locally compact Cantor space X and S(u|x) = D.

Now consider the case of the infinite measure. Let v € D. Since D C [0, 00)
is group-like, we see that %D N[0, 1] is a group-like subset of [0,1]. In [11], it was
proved that there exists a good probability measure p1 on a Cantor space Y with
S(pr) = %D N [0,1]. Set u = yu1. Then p is a good finite measure on Y and
S(u) = DN0,7]. Endow the set Z with discrete topology. Let v be a counting
measure on Z. Set X =Y x Z and g = p X v. Then, by Theorem 2.4, 1 is good
with S(i) = D and My = 0.

Suppose A is a non-empty compact zero-dimensional metric space. Then, by
Theorem 2.15 [9], there exists a good non-defective measure p on a Cantor space
Y such that S(u) = D and 9M, is homeomorphic to A. By the above, there
exists a good locally finite measure v on a non-compact locally compact set X
with S(v) = D and M, = 0. Set Z =Y U X and |y = p, f|x = v. Then g is
good on a non-compact locally compact Cantor set Z with S(j1) = D and My is
homeomorphic to A.

Suppose that A is a non-empty non-compact, locally compact zero-dimensional
metric space. Then A = | |72, A,, where each A,, is a non-empty compact zero-
dimensional metric space. By Theorem 2.15 [9], for every n = 1,2,... there exists
a good non-defective measure p,, on a Cantor set Y;, such that S(u,) = D and
9, is homeomorphic to A,. Set X = | [>°, Y, and ply, = pn. Then p is
good on a non-compact locally compact Cantor set X with S(u) = D, and My
is homeomorphic to A. ]

Corollary 2.11. Let D be a countable dense group-like subset of [0,00). Then
there exists an aperiodic homeomorphism of a non-compact locally compact Can-
tor set with good non-defective invariant measure ji such that S(j) = D.

Proof. We use the construction similar to the one in the proof of
Theorem 2.10. Let p be a good measure on a Cantor set Y with S(u) = DN[0,~]
for some v € D. Let v be a counting measure on Z. Set g = uxvon X =Y X Z.
Then g1 is a good non-defective measure on a non-compact locally compact Cantor
set X with S(zz) = D. Since the measure p is a good finite measure on Y, there
exists a minimal homeomorphism 7: Y — Y such that p is invariant for T
(see [11]). Let Ty (z,n) = (T'z,n + 1). Then T} is aperiodic homeomorphism of
X. The measure g is invariant for 7. ]
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Remark 2. The measure i built in Corollary 2.11 is invariant for any
skew product with the base (Y,7T') and the cocycle acting on Z.

Theorem 2.12. Let X be a non-compact locally compact Cantor set. Then
there exist continuum distinct classes of homeomorphic good measures in My(X).
There also exist continuum distinct classes of weakly homeomorphic good mea-
sures in M2, (X).

Proof. There exist uncountably many distinct group-like subsets { Dy }aen
of [0,1]. By Theorem 2.10, for each D, there exists a good probability measure
to on X such that S(ua) = Do. By Theorem 2.6, the measures {pq}taca are
pairwise non-homeomorphic.

Let Y be a compact Cantor set. Let p be a non-defective measure on Y.
Denote by [u] the class of weak equivalence of p in the set of all non-defective
measures on Y. There exist the continuum distinct classes [pq]| of weakly home-
omorphic good non-defective measures on a Cantor set Y (see Theorem 2.18
in [9]). Moreover, if there exists C' > 0 such that G(S(ua)) = CG(S(ug)), then
1 € [ta). Let v be a counting measure on Z. Then, by Theorem 2.4, p1o X v
is a good measure on a non-compact locally compact Cantor set ¥ x Z, and
G(S(a X v)) = G(S(ua)). Hence, by Corollary 2.7, the measures p, X v and
pp x v are weakly homeomorphic if and only if g € [1a]. [

Proposition 2.13. If p is a Haar measure for some topological group struc-
ture on a non-compact locally compact Cantor space X, then u is a good measure
on X.

Proof. The ball B centered at the identity in the invariant ultrametric is a
compact open subgroup of X. Since y is translation-invariant, by Proposition 2.3,
it suffices to show that u|p is good for every such ball B. Since the restriction of
won B is a Haar measure on a compact Cantor space, p|p is good by Proposition
2.4 in [4]. ]

3. From Measures on Non-Compact Spaces to Measures
on Compact Spaces and Back

Let X be a non-compact locally compact Cantor space. A compactification of
X is a pair (Y, c) where Y is a compact space and ¢: X — Y is a homeomorphic
embedding of X into Y (i.e., ¢: X — ¢(X) is a homeomorphism) such that
TX) =Y, where m is the closure of ¢(X). In the paper, by compactification
we will mean not only a pair (Y, ¢) but also the compact space Y in which X can
be embedded as a dense subset. We will denote the compactifications of a space
X by the symbols cX, wX, etc., where ¢, w are the corresponding homeomorphic
embeddings.
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Let u € M°(X). We will consider only the compactifications cX where cX
is a Cantor set. Since ¢ is a homeomorphism, the measure p on X passes to a
homeomorphic measure on ¢(X). Since we are interested in the classification of
measures up to homeomorphisms, we can identify the set ¢(X) with X. Hence
X can be considered as an open dense subset of cX. The set ¢X \ X is called
the remainder of compactification. As far as X is locally compact, the remainder
cX \ X is closed in ¢X for every compactification c¢X (see [14]). Since X = cX,
the set ¢X \ X is a closed nowhere dense subset of cX.

The compactifications ¢; X and ¢ X of a space X are equivalent if there
exists a homeomorphism f: c;X — X such that fei(z) = cao(x) for every
x € X. We will identify the equivalent compactifications. For any space X one
can consider the family C(X) of all compactifications of X. The order relation
on C(X) is defined as follows: c2X < ¢1X if there exists a continuous map
fraaX — X such that fe; = ¢o. Then we have f(ci1(X)) = co(X) and
flaX \ a(X)) = X\ e(X).

Theorem 3.1 (The Alexandroff compactification theorem). Every non-compact
locally compact space X has a compactification wX with one-point remainder.
This compactification is the smallest element in the set of all compactifications
C(X) with respect to the order <.

The topology on wX is defined as follows. Denote by {co} the point wX \ X.
The open sets in wX are the sets of the form {co} U (X \ F), where F' is a compact
subspace of X, together with all sets that are open in X.

For any Borel measure v on the set ¢ X'\ X with the induced topology, i = p+v
is a Borel measure on ¢X such that |y = p. Since the aim of compactification
is the study of a measure u on a locally compact set X, we will consider only the
extensions g on ¢X where u(cX \ X) =0.

Lemma 3.2. Let X be a non-compact locally compact Cantor set and p €
MOY(X). Let 1 X, c2X be the compactifications of X such that c; X < c2X.
Denote by p1 the extension of y on c1X, and by ue the extension of p on coX.
Then S(p) € S(p1) € S(p2).

Proof Since ;X < X, there exists a continuous map f: co X — 1 X
such that f(ceX \ X) = ey X \ X and fea(z) = c1(x) for any x € X. Since
f is continuous, it suffices to prove that f preserves measure, that is, (V) =
pa(f~1(V)) for any compact open V' C X. Recall that we can identify ¢;(X) with
X. Hence we can consider f as an identity on X C ¢; X and f preserves measure.
That is, for every compact open subset U of X we have u(U) = 1 (U) = pua2(U).
Hence S(p) € S(p1). Since p(e; X \ X) = 0, the measure of any clopen subset
of ¢; X is the sum of the measures of the compact open subsets of X. Hence the
measures of all clopen sets are preserved. Thus, S(u1) C S(u2). [
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Remark 3. We can consider the homeomorphic embedding of a set X
into a non-compact locally compact Cantor set Y such that p(Y \ X) = 0. Then,
by the same arguments as above, the inclusion S(u|x) € S(p|y) holds.

Theorem 3.3. Let X be a non-compact locally compact Cantor set and p €
MO(X) be a good measure. Let cX be any compactification of X. Then u is good
on X if and only if S(ulex) 1[0, (X)) = S(ulx)-

Proof. First, we prove the “if” part. Let V be a clopen set in cX. Consider
two cases. Let VN (¢X \ X) =0. Then V is a compact open subset of X. Since
w is good on X and S(ulcx) N[0, (X)) = S(p|x), we see that V' remains good
in ¢X. Now suppose that VN (¢X \ X) # (. Then V N X is an open set and
p(V)=p(VNX)=p(ll2, Vs) where each V,, is a compact open set in X. Let
U be a compact open subset of X with u(U) < (V). Then there exists N € N
such that p(U) < /L(|_|nN:1 V). The set Z = |_|7]1V:1 Vi, is a compact open subset of
X. Since S(plex) N[0, u(X)) = S(u|lx), we have u(U) € S(u|x). Since p is good
on X, there exists a compact open subset W C Z such that u(W) = u(U).

Now we prove the “only if” part. Assume the converse. Suppose that u is a
good measure and the equality does not hold. Then there exists v € (0, u(X))
such that v € S(p|ex )\ S(p|x). Since S(p|x) is dense in (0, (X)), there exists a
compact open subset U C X such that u(U) > ~. Hence v € S(ul.x) N[0, u(U)]
and v ¢ S(uly). Thus U is not good and we get a contradiction. [ ]

Remark 4. By Proposition 2.1, the set X \ 91, is a non-compact locally
compact Cantor set and X \ M, = X. Thus, the set X \ 9, can be homeo-
morphically embedded into X and then into some compactification ¢X. After
embedding X \ 9, into X, we add only compact open sets of infinite measure.
Hence if p was good on X \ M, it remains good on X and S(u|x\on,) = S(pulx).
We can consider X as a step towards compactification of X \ 91, and include
M, into cX \ X. The measure p € M(X) is locally finite on X \ 9, so we can
consider only locally finite measures among infinite ones.

If 1 is not good on a locally compact Cantor set X, then clearly u is not good
on any compactification c¢X.

Corollary 3.4. Let p be a good infinite locally finite measure on a non-
compact locally compact Cantor set X. Then p is good on wX.

P roof By definition of topology on wX, the “new” open sets have a
compact complement. Since p is locally finite on X, the measure of compact
subsets of X is finite. Hence the measure of each new clopen set is infinite. By
Theorem 3.3, p is good on wX. [
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Theorem 3.5. Let o be a good measure on a non-compact locally compact
Cantor set X. Then for any v € [0, (X)) there exists a compactification c¢X
such that v € S(ulex).

Proof.  The set S(ulx) is dense in [0,u(X)). Hence for every v €
[0, p(X)] there exist {7, }72, C S(p|x) such that lim,,_. 7, = . Since p is good,
there exist the disjoint compact open subsets {U,}°; such that u(U,) = vn.
Then U = | |72, U, is a non-compact locally compact Cantor set. Consider the
compactification ¢X = wU U ¢(X \ U), where ¢(X \ U) is any compactification of
X\ U. Then wU is a clopen set in ¢X, and p(wU) = € S(p|cx)- ]

From Theorems 3.3, 3.5 the corollary follows:

Corollary 3.6. For any measure p on a non-compact locally compact Cantor
space X there exists a compactification ¢X such that p is not good on c¢X.

If a measure p € M?(X) is a good probability measure, then, by Theorem 3.3,
the measure p is good on c¢X if and only if S(u|cx) = S(p|x) U {1}.

Proposition 3.7. Let X be a non-compact locally compact Cantor set and j €
M (X). If there exists a compactification cX such that S(plcx) = S(p|x) U {1},
then 1 € G(S(plx))-

Proof Let~yeS(ulex)n(0,1). Since the complement of a clopen set is
a clopen set, we have 1 — v € S(u|cx). Since S(ulex) = S(plx) U {1}, we have
v, 1 —~ € S(pulx). Hence 1 € G(S(ulx)). [

Thus, if 1 € G(S(p|x)), then for any compactification ¢X the set S(u|x)
cannot be preserved after the extension. The examples are given in the last
section.

The corollary follows from Proposition 3.7 and Theorem 3.3.

Corollary 3.8. Let i be a probability measure on a non-compact locally com-
pact Cantor set X, and 1 ¢ G(S(u|x)). Then for any compactification cX of X,
s not good on cX.

Theorem 3.9. Let pu be a good probability measure on a non-compact locally
compact Cantor set X. Then p is good on the Alexandroff compactification wX
if and only if 1 € G(S(plx))-

Proof By Proposition 3.7 and Theorem 3.3, if p is good on wX, then

1€ G(S(plx))-
Suppose p is good on X and 1 € G(S(u|x)). Since p is good, any compact
open subset of p is good, hence for every compact open U C X we have u(U) =
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G(S(p|x))N[0, w(U)] = S(u)N[0, u(U)]. Every clopen subset of wX has a compact
open subset of X as a complement. Hence for every clopen V C wX we have
u(V) =1=p(X\V) € G(S(plx))N(0,1) = S(u|x). So, S(ulwx) = S(ulx)U{1}.
Hence p is good on wX by Theorem 3.3. [

For a Cantor set Y, denote by M°(Y') the set of all either finite or non-defective
measures on Y (see [9]). Since an open dense subset of a Cantor set is a locally
compact Cantor set, the corollary follows:

Corollary 3.10. Let Y be a (compact) Cantor set and the measure p €
MO(Y). Let X C Y be an open dense subset of Y of full measure. If ju is
good on 'Y, then u is good on X.

Proof. Theset X is a locally compact Cantor set, and Y is a compacti-
fication of X. Any compact open subset U of X is a clopen subset of Y and all
clopen subsets of U are compact open sets. Thus, a p|y-good compact open set
in X is, a fortiory, u|x-good. [ ]

Thus, the extensions of a non-good measure are always non-good. The corol-
lary follows from Lemma 3.2, Theorem 3.3 and Corollary 3.10.

Corollary 3.11. Let X be a non-compact locally compact Cantor set and
e MO(X). Let c1 X, co X be compactifications of X such that c1 X > coX. Let
p be good on c1X. Then p is good on ca X. Moreover, if p € My(X), then ple, x
is homeomorphic to pi|e,x -

Remark 5. Recall that the Alexandroff compactification wX is the smallest
element in the set of all compactifications of X. Hence, if 4 is not good on wX,
then u is not good on any compactification ¢X of X.

The following theorem can be proved using the results of Akin [11] for mea-
sures on compact sets.

Theorem 3.12. Let X, Y be non-compact locally compact Cantor spaces, and
JIES MJQ(X), Ve MJQ(Y) be good measures such that their extensions to wX, wY
are good. Then u|x and vly are homeomorphic if and only if S(u|x) = S(v|y).

Proof. The “only if” part is trivial, we prove the “if” part. Since u|,x
and v|,y are good by Theorem 3.3, we have S(u|,x) = S(v|,y). Denote by xg =
wX \ X and yp = wY \ Y. By Theorem 2.9 [11], there exists a homeomorphism
f:wX — wY such that fiu = v and f(zo) = yo. Hence f(X) =Y and the
theorem is proved. [

In Example 1, we present a class of good measures on non-compact locally
compact Cantor sets such that these measures are not good on the Alexandroff
compactifications. Thus, these measures are not good on any compactification of
the corresponding non-compact locally compact Cantor sets.
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4. Examples

Example 1. (Ergodic invariant measures on stationary Bratteli diagrams).
Let B be a non-simple stationary Bratteli diagram with the matrix A transpose
to the incidence matrix. Let p be an ergodic R-invariant measure on B (see [6,
9, 15]). Let a be the class of vertices that defines . Then p is good as a measure
on a non-compact locally compact set X,. The measure p on X, can be either
finite or infinite, but it is always locally finite. The set Xp is a compactification
of X,. Since p is ergodic, we have u(Xp \ Xo) = 0. In [6, 9], the criteria
of goodness for probability or non-defective measure g on Xp were proved in
terms of the Perron—Frobenius eigenvalue and eigenvector of A corresponding to
i (see Theorem 3.5 [6] for probability measures and Corollary 3.4 [9] for infinite
measures). It is easy to see that these criteria are particular cases of Theorem 3.3.

We consider now a class of the stationary Bratteli diagrams and give a crite-
rion when a measure p from this class is good on the Alexandroff compactification
wX,. Fix an integer N > 3 and let

2 0 0

Fy=[1 N 1

1 1 N
be the incidence matrix of the Bratteli diagram By. For Ay = Fﬁ we can
easily find the Perron—Frobenius eigenvalue A = N 4+ 1 and the corresponding

probability eigenvector
/1 N-1 N-1\"
S Y VY Y

Let pun be the measure on By determined by A and the eigenvector x. The
measure py is good on wX, if and only if for there exists R € N such that

w is an integer. This is possible if and only if N = 2¥ + 1, k € N. For
instance, the measure ppy is good on wX, for N = 3,5 but is not good for N = 4.
Note that the criterion for goodness on wX, here is the same as for goodness
on Xp. This example is a particular case of more general result (the notation

from [6] is used below):

Proposition 4.1. Let B be a stationary Bratteli diagram defined by a distin-
guished eigenvalue \ of the matrit A = FT. Denote by x = (21,...,2,)7 the
corresponding reduced vector. Let the vertices 2,...,n belong to the distinguished
class o corresponding to . Then p is good on Xp if and only if u is good on
wX,.

Proof. By Theorem 3.1 and Corollary 3.11, if u is good on Xp, then pu is
good on wX,. We prove the converse. By Theorem 3.5 in [6] and Theorem 3.9,
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it suffices to prove that 1 € G(S(p|x,)) only if there exists R € N such that
Mz € H(za,...,zy,). Note that G(S(ulx,)) = (UN—o A%H(xg, ..., y)), where
H(zgy,...,z,) is an additive group generated by zo,...,z,. Suppose that 1 €
G(S(plx,))- Since D1 | x; =1, we see that 21 € G(S(p|x,)), hence there exists
R € N such that Az € H(zs,...,z,). [

Return to a general case of ergodic invariant measures on the stationary Brat-
teli diagrams. If i is a probability measure on X, and S(u|x,)U{1} = S(u|xy),
then, by Lemma 3.2, we have S(u|yx,) = S(i|x5). By Theorem 3.3, the mea-
sure p is good on wX,. Hence pl,x, is homeomorphic to pu|x, (see [11]). If u is
infinite, then the measures pul,x, and p|x, are not homeomorphic since 9
is one point and I is a Cantor set (see [9]).

Hlwxa
Hlxp

Example 2. Let X be a Cantor space and p be a good probability
measure on X with S(u) = {3% : m € NN[0,2"],n € N} (for example a Bernoulli
measure B(3,1)). Clearly, pu, = 54 is a good measure for n € N with S(u,) =
25(1) C S(p). Let {Xy, 1 }52 be a sequence of Cantor spaces with measures
. Let A =[]77; X, be the disjoint union of X,,. Denote by v a measure on
A such that v|x, = pp. Then v is a good measure on a locally compact Cantor
space A with S(v) = S(p) N[0, 1).

Consider the one-point compactification wA and the extension 11 of v to wA.
We add to S(v) the measures of sets which contain {occ} and have a compact open
complement. Hence we add the set I' = {1 —~:~v € S(v)}. SinceI' C S(v)U{1},
we have S(v1) = S(v) U {1}. By Theorem 3.3, the measure v, is good on wA.

Consider the two-point compactification of A. Let A = A; U Ay where

= | Jpey Xog—1 and Ay = |_|;><> 1 X2j. Then cA = wA;UwA; is a two- point com-
pactlﬁcatlon of A. Let 15 be the extension of v to cA. Then vy(41) = 2 & S(v).
Hence, by Theorem 3.3, the measure v is not good on cA.

In the same example, we can make a two-point compactification which pre-
serves S(v|4). Since p, is good for n € N there is a compact open partltlon
xPux® = X, such that un(X(Z)) st for i =1,2. Let By = |7 x7 for
i =1,2. Consider ¢A = wBj LlwBy. Then it can be proved in the same Way as
above that S(v|za) = S(v|a) U{1}.

Example 3. Let u= 5(3, 3) be a Bernoulli (product) measure on
the Cantor space Y = {0,1}" generated by the initial distribution p(0) = %,
p(1) = Z. Then p is not good but S(u) = {% : a € NN [0,3"],n € N} is group-
like (see [10]). Let X be an open dense subset of Y such that p(Y \ X) = 0.
Thus, Y is a compactification of a non-compact locally compact Cantor space X
and p extends from X to Y. Then pu is not good on X.

The compact open subsets of X are exactly the clopen subsets of Y that lie
in X. The compact open subset of X is a union of the finite number of the com-

pact open cylinders. Consider any compact open cylinder U = {ag, ..., an,*}
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which consists of all points in z € Y such that z; = a; for 0 <¢ < n. Then U is a
disjoint union of two subcylinders Vi = {aq, ..., an,0,*} and Vi = {ag, ..., an, 1, *}
with u(Va) = 2u(Vi). Let the numerator of the fraction u(V;) be 28, Then the
numerator of the fraction u(V2) is 257!, Moreover, for any compact open W C V5
the numerator of the fraction (W) will be divisible by 2**+!. Since S(u) con-
tains only finite sums of the measures of the cylinder compact open sets and the
denominators of the elements of S(u) are the powers of 3, there is no compact
open subset W C V4, such that u(W) = u(V4). Hence p is not good on X.

Moreover, let = {00...} be a point in Y which consists only of zeroes. Then
S(ly\{zy) & S(ply) while S(uly\qyy) = S(uly) for any y # .

Consider the case y # x. Let, for instance, y = {111...}, all other cases are
proved in the same way. Let U, = {z € Y : 20 = ... = 2,1 = 1,2, = 0}.
Then Y \ {y} = | °>, U, U {0%}. Denote Sy = u(| ", U,) and Sy = 0. Then
limpy_oo Sy = % Let G = {5 : a € Z,n € N}. Then G is an additive subgroup
of reals, and S(uly) = G N [0,1]. We prove that S(uly\3) = G N[0,1), ie.,
for every n € N and a = 0,...,3" — 1 there exists a compact open set W in
Y \ {y} such that pu(W) = 3. Indeed, we have S(ulf0.y) = G N[0, z] and
[0,1) = U2 [Sn, Sn + 3]. Hence GN[0,1) = U ((GN[Sn, Sn + 3]). For every
v € G there exists N € N such that v € [Sy, Sy + %] There exists a compact
open subset Wy of {0} such that u(Wy) =~v— Sn. Set W = Uy UWy. Then W
is a compact open subset of Y\ {y} and pu(W) = ~.

Now consider the set Y \ {z}. Every cylinder that lies in Y \ {z} has an even
numerator, hence S(p|y\(z1) & S(uly). It can be proved in the same way as

above that S(uly\(2}3) = {g—fﬁ :keN}NI0,1).

Example 4. ((C,F)-construction). Denote by |A| the cardinality of a
set A. Given two subsets E, F' C Z, by E+ F we mean {e+ fle € E, f € F'} (for
more details see [13, 16]). Let {F,}5°,,{Cn}>2, C Z such that for each n:

(1) |F,| < o0, |Cpl| < o0,

(2) |0l > 1.

(3) Fr + Cp +{—-1,0,1} C Fyq,

(4) (Fo+co)n(Fr+)=0forall c#c € Cpy.

Set X, = Fyy X [[5,, Cr and endow X, with a product topology. By (1), (2),
each X, is a Cantor space.

For each n, define a map 4, ,,+1: X, — Xp41 such that

in,nJrl(fna Cn+1,Cn+2,- - ) = (fn + Cn+1, Cnt2, - )

By (1), (2) each iy pn41 is a well defined injective continuous map. Since X, is
compact, we see that 4,41 is a homeomorphism between X,, and i, ,+1(X5).
Thereby the embedding 4, ,,+1 preserves topology. The set iy, 54+1(Xy) is a clopen
subset of X, 1. Let iy, 1 Xy, — X, such that ¢y, 5, = 4y n—10%n—1,n—20. . .Olmt1,m
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for m < n and i,, = id. Denote by X the topological inductive limit of the
sequence (Xp,innt1). Then X = (Jo7, X, Since imp = inn-1 0 in—1p-2 ©

. 0 bpmt1,m for m < n, we can write X1 C X9 C .... The set X is a non-
compact locally compact Cantor set. The Borel o-algebra on X is generated by
the cylinder sets [A], = {z € X : x = (fn, Cnt1,Cn42,...) € X, and f,, € A}
There exists a canonical measure on X. Let k, stand for the equidistribution

on C, and let v, = % on F,. The product measure on X,, is defined as

n = Vn X Kpgl X Knpt2 ><|0n, and a o-finite measure g on X is defined by the
restrictions p|x, = pn. The measure p is a unique up to the scaling ergodic
locally finite invariant measure for a minimal self-homeomorphism of X (see [13,
16]). For every two compact open subsets U, V' C X there exists n € N such that
U,V C X,. The measure p is obviously good, since the restriction of u onto X,
is just the infinite product of the equidistributed measures on F;, and C,,, m > n.

We have S(pu) = {W ta,n € N}N[0, u(X)).

Example 5. Let pbe a prime number and Q, be the set of p-adic
numbers. Endowed with the p-adic norm, the set Q, is a non-compact locally
compact Cantor space. Thus the Haar measure p on Q, is good and S(u) =
{npn € N,y € Z}.
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