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Introduction

The generalized Tanaka–Webster (in short, the g-Tanaka–Webster) connec-
tion for contact metric manifolds was introduced by Tanno [16] as a generalization
of the well-known connection defined by Tanaka in [15] and, independently, by
Webster in [17]. This connection coincides with the Tanaka–Webster connection
if the associated CR-structure is integrable. The Tanaka–Webster connection is
defined as the canonical affine connection on a non-degenerate pseudo-Hermitian
CR-manifold. For a real hypersurface in a Kähler manifold with almost contact
metric structure (φ, ξ, η, g), the g-Tanaka–Webster connection ∇̂(k) for a non-zero
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real number k was given in [5] and [9]. In particular, if a real hypersurface satis-
fies φA + Aφ = 2kφ, then the g-Tanaka–Webster connection ∇̂(k) coincides with
the Tanaka–Webster connection.

Using the g-Tanaka–Webster connection, many geometers have studied some
characterizations of real hypersurfaces in the complex space form M̃n(c) with
constant holomorphic sectional curvature c. For instance, when c > 0, that
is, M̃n(c) is a complex projective space CPn, Kon [9] proved that if the Ricci
tensor Ŝ of the g-Tanaka–Webster connection ∇̂(k) vanishes identically, then a
real hypersurface in CPn is locally congruent to a geodesic hypersphere with
k2 ≥ 4n(n− 1).

Now let us denote by G2(Cm+2) the set of all complex two-dimensional lin-
ear subspaces in Cm+2. This Riemannian symmetric space G2(Cm+2) has a re-
markable geometric structure. It is the unique compact irreducible Riemannian
manifold equipped with both a Kähler structure J and a quaternionic Kähler
structure J not containing J . In other words, G2(Cm+2) is the unique compact,
irreducible, Kähler, quaternionic Kähler manifold which is not a hyper-Kähler
manifold. Then, naturally we could consider two geometric conditions for hy-
persurfaces M in G2(Cm+2) that a 1-dimensional distribution [ξ] = Span{ξ} and
a 3-dimensional distribution D⊥ = Span{ξ1, ξ2, ξ3} are both invariant under the
shape operator A of M (see Berndt and Suh [3]).

Here the almost contact structure vector field ξ defined by ξ = −JN is said
to be a Reeb vector field, where N denotes a local unit normal vector field of
M in G2(Cm+2). The almost contact 3-structure vector fields {ξ1, ξ2, ξ3} for the
3-dimensional distribution D⊥ of M in G2(Cm+2) are defined by ξν = −JνN
(ν = 1, 2, 3), where Jν denotes a canonical local basis of a quaternionic Kähler
structure J such that TxM = D⊕D⊥, x ∈ M .

By using these two geometric conditions and the results obtained by Alek-
seevskii [1], Berndt and Suh [3] proved the following :

Theorem A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.
Then both [ξ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2),
or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).

When the Reeb flow on M in G2(Cm+2) is isometric, we say that the Reeb
vector field ξ on M is Killing. This means that the metric tensor g is invariant
under the Reeb flow of ξ on M . They gave a characterization of real hypersurfaces
of type (A) in Theorem A in terms of the Reeb flow on M as follows (see Berndt
and Suh [4]) :
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Theorem B. Let M be a connected orientable real hypersurface in G2(Cm+2),
m ≥ 3. Then the Reeb flow on M is isometric if and only if M is an open part
of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2).

On the other hand, using Riemannian connection, in [12] Suh gave a non-
existence theorem for Hopf hypersurfaces in G2(Cm+2) with parallel shape oper-
ator. Moreover, Suh proved a non-existence theorem for Hopf hypersurfaces in
G2(Cm+2) with F-parallel shape operator, where F = [ξ] ∪D⊥(see [13]).

In particular, Jeong, Lee and Suh considered the g-Tanaka–Webster paral-
lelism of A for real hypersurfaces in G2(Cm+2). In other words, the shape op-
erator A is called g-Tanaka–Webster parallel if it satisfies (∇̂(k)

X A)Y = 0 for any
tangent vector fields X and Y on M . Using this notion, the authors gave a
non-existence theorem for Hopf hypersurfaces in G2(Cm+2) as follows (see [5]) :

Theorem C. There does not exist any Hopf hypersurface in the complex two-
plane Grassmannians G2(Cm+2), m ≥ 3, with parallel shape operator in the gen-
eralized Tanaka–Webster connection if α 6= 2k.

Moreover, Jeong, Kimura, Lee and Suh considered a more generalized no-
tion weaker than a parallel shape operator in the g-Tanaka–Webster connection
of M in G2(Cm+2). When the shape operator A of M in G2(Cm+2) satisfies
(∇̂(k)

ξ A)Y = 0 for any tangent vector field Y on M , we say that the shape op-
erator is g-Tanaka–Webster Reeb parallel. Using this notion, the authors gave a
characterization of the real hypersurface of type (A) in G2(Cm+2) as follows (see
[6]) :

Theorem D. Let M be a connected orientable Hopf hypersurface, α 6= 2k, in
G2(Cm+2), m ≥ 3. If the shape operator A is generalized Tanaka–Webster Reeb
parallel, then M is locally congruent to an open part of a tube around a totally
geodesic G2(Cm+1) in G2(Cm+2).

Jeong, Lee and Suh introduced the notion of the g-Tanaka–Webster D⊥-
parallel shape operator for M in G2(Cm+2). It means that the shape operator
A of M satisfies (∇̂(k)

X A)Y = 0 for any X in D⊥ and Y on M . Naturally, we
can see that the notion of g-Tanaka–Webster D⊥-parallel is weaker than the
g-Tanaka–Webster parallelism. By using the notion of D⊥-parallel for the g-
Tanaka–Webster connection, we gave a characterization of the real hypersurfaces
of type (B) in G2(Cm+2) as follows (see [7]) :

Theorem E. Let M be a connected orientable Hopf hypersurface, α 6= 2k,
in G2(Cm+2), m ≥ 3. If the shape operator A is g-Tanaka–Webster D⊥-parallel,
then M is locally congruent to an open part of a tube around a totally geodesic
HPn in G2(Cm+2) where m = 2n.
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Specially, Suh asserted a characterization of the real hypersurfaces of type (A)
in Theorem A by another geometric Lie invariant, that is, the shape operator A
of M in G2(Cm+2) is invariant under the Reeb flow on M as follows (see [14]) :

Theorem F. Let M be a connected orientable real hypersurface in G2(Cm+2),
m ≥ 3. Then the Reeb flow on M satisfies LξA = 0 if and only if M is an open
part of a tube around some totally geodesic G2(Cm+1) in G2(Cm+2).

Motivated by Theorem F, let us consider another Lie invariant of the shape
operator in G2(Cm+2). First of all, we consider a new notion of the generalized
Lie invariant shape operator related to the g-Tanaka–Webster connection of M
in G2(Cm+2), namely, the generalized Tanaka–Webster invariant (in short, the g-
Tanaka–Webster invariant) shape operator, that is, (L̂(k)

X A)Y = 0 for any vector
fields X and Y on M in G2(Cm+2). Here L̂(k) denotes the g-Tanaka–Webster
Lie derivative induced from the g-Tanaka–Webster connection ∇̂(k). In general,
the notion of the g-Tanaka–Webster invariant differs from the g-Tanaka–Webster
parallel and gives us fruitful information rather than usual covariant parallelisms
in the g-Tanaka–Webster connection.

By using this notion of Lie invariant for the g-Tanaka–Webster connection, we
give a non-existence theorem for the real hypersurfaces in G2(Cm+2) as follows:

Main Theorem. There does not exist any Hopf hypersurface in G2(Cm+2)
with invariant shape operator in the generalized Tanaka–Webster connection if
α 6= 2k.

1. Riemannian Geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details we
refer to [2], [3] and [4]. By G2(Cm+2), we denote the set of all complex two-
dimensional linear subspaces in Cm+2. The special unitary group G = SU(m +
2) acts transitively on G2(Cm+2) with stabilizer isomorphic to K = S(U(2) ×
U(m)) ⊂ G. Then G2(Cm+2) can be identified with the homogeneous space
G/K. Moreover, we equip it with the unique analytic structure for which the
natural action of G on G2(Cm+2) becomes analytic. Denote by g and k the Lie
algebra of G and K, respectively, and by m the orthogonal complement of k in g

with respect to the Cartan–Killing form B of g. Then g = k ⊕ m is an Ad(K)-
invariant reductive decomposition of g. We put o = eK and identify ToG2(Cm+2)
with m in the usual manner. Since B is negative definite on g, its restriction to
m × m yields a positive definite inner product on m. By Ad(K)-invariance of
B this inner product can be extended to a G-invariant Riemannian metric g on
G2(Cm+2). In this way, G2(Cm+2) becomes a Riemannian homogeneous space,
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even a Riemannian symmetric space. For computational reasons we normalize g
such that the maximal sectional curvature of (G2(Cm+2), g) is eight.

When m = 1, G2(C3) is isometric to the two-dimensional complex projective
space CP 2 with constant holomorphic sectional curvature eight. When m = 2,
we note that the isomorphism Spin(6) ' SU(4) yields an isometry between
G2(C4) and the real Grassmann manifold G+

2 (R6) of oriented two-dimensional
linear subspaces in R6. In this paper, we will assume m≥3.

The Lie algebra k has the direct sum decomposition k = su(m) ⊕ su(2) ⊕R,
where R is the center of k. Viewing k as the holonomy algebra of G2(Cm+2),
the center R induces a Kähler structure J and the su(2)-part a quaternionic
Kähler structure J on G2(Cm+2). If Jν is any almost Hermitian structure in J,
then JJν = JνJ , and JJν is a symmetric endomorphism with (JJν)2 = I and
tr(JJν) = 0 for ν = 1, 2, 3.

A canonical local basis {J1, J2, J3} of J consists of three local almost Hermi-
tian structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index ν
is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection ∇̃ of (G2(Cm+2), g), for any canonical local basis {J1, J2, J3} of J there
exist three local one-forms q1, q2, q3 such that

∇̃XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (1.1)

for all vector fields X on G2(Cm+2).
The Riemannian curvature tensor R̃ of G2(Cm+2) is locally given by

R̃(X,Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{
g(JνY, Z)JνX − g(JνX,Z)JνY − 2g(JνX, Y )JνZ

}

+
3∑

ν=1

{
g(JνJY, Z)JνJX − g(JνJX, Z)JνJY

}
, (1.2)

where {J1, J2, J3} denotes a canonical local basis of J.
Now we derive some basic formulas and the Codazzi equation for a real hy-

persurface in G2(Cm+2) (see [3, 4, 10–13]).
Let M be a real hypersurface of G2(Cm+2), that is, a submanifold of G2(Cm+2)

with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and ∇ will denote the Riemannian connection of (M, g). Let N
be a local unit normal vector field of M , and A the shape operator of M with
respect to N .
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Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N (1.3)

for any tangent vector field X of a real hypersurface M in G2(Cm+2), where N
denotes a unit normal vector field of M in G2(Cm+2). From the Kähler structure
J of G2(Cm+2) there exists an almost contact metric structure (φ, ξ, η, g) induced
on M in such a way that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local
basis of J. Then the quaternionic Kähler structure Jν of G2(Cm+2), together
with the condition JνJν+1 = Jν+2 = −Jν+1Jν in Sec. 1, induces an almost
contact metric 3-structure (φν , ξν , ην , g) on M as follows :

φ2
νX = −X + ην(X)ξν , ην(ξν) = 1, φνξν = 0,

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1

(1.4)

for any vector field X tangent to M . Moreover, from the commuting property of
JνJ = JJν , ν = 1, 2, 3 in Sec. 1 and (1.3), the relation between these two contact
metric structures (φ, ξ, η, g) and (φν , ξν , ην , g), ν = 1, 2, 3, can be given by

φφνX = φνφX + ην(X)ξ − η(X)ξν ,

ην(φX) = η(φνX), φξν = φνξ.
(1.5)

On the other hand, from the parallelism of the Kähler structure J , that is,
∇̃J = 0 and the quaternionic Kähler structure Jν , together with Gauss and
Weingarten equations, it follows that

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX, (1.6)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (1.7)

(∇Xφν)Y =− qν+1(X)φν+2Y + qν+2(X)φν+1Y

+ ην(Y )AX − g(AX,Y )ξν .
(1.8)

Using the above expression (1.2) for the curvature tensor R̃ of G2(Cm+2), the
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equation of Codazzi becomes

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν .

(1.9)

Now we introduce the notion of the g-Tanaka–Webster connection (see [9]).
As stated above, the Tanaka–Webster connection is the canonical affine con-

nection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [15],
[17]). In [16], Tanno defined the g-Tanaka–Webster connection for the contact
metric manifolds by the canonical connection. It coincides with the Tanaka–
Webster connection if the associated CR-structure is integrable.

From now on, we introduce the g-Tanaka–Webster connection due to Tanno [16]
for real hypersurfaces in Kähler manifolds by natural extending the canonical
affine connection to a non-degenerate pseudo-Hermitian CR manifold.

Now let us recall the g-Tanaka–Webster connection ∇̂ defined by Tanno [16]
for the contact metric manifolds as follows :

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY

for all vector fields X and Y (see [16]).
By taking (1.6) into account, the g-Tanaka–Webster connection ∇̂(k) for the

real hypersurfaces of Kähler manifolds is defined by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (1.10)

for a non-zero real number k (see [5] and [9]). (Note that ∇̂(k) is invariant under
the choice of the orientation. Namely, we may take −k instead of k in (1.10) for
the opposite orientation −N .)

2. Key Lemmas

First, let us assume that the shape operator A is invariant, that is, LXA = 0
for any tangent vector field X on M in the complex two-plane Grassmannian
G2(Cm+2).

From the definition of Lie derivative we have

(LXA)Y = LX(AY )−ALXY

= (∇XA)Y −∇AY X + A∇Y X
(2.1)
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for any tangent vector fields X and Y on M .
By putting X = ξ in (2.1), we obtain

(LξA)Y = (∇ξA)Y −∇AY ξ + A∇Y ξ.

From Theorem F [14], if M is a real hypersurface in G2(Cm+2), m ≥ 3, with
Reeb invariant shape operator, that is, LξA = 0, then M is locally congruent to
a real hypersurface of type (A).

Now let us denote by M a real hypersurface of type (A) in G2(Cm+2). Then
let us check whether the shape operator of type (A) is invariant in usual Levi–
Civita connection. In order to solve this problem, we introduce a proposition due
to Berndt and Suh [3] as follows :

Proposition A. Let M be a connected real hypersurface of G2(Cm+2). Sup-
pose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost
Hermitian structure such that JN = J1N . Then M has three (if r = π/2

√
8) or

four (otherwise) distinct constant principal curvatures

α =
√

8 cot(
√

8r), β =
√

2 cot(
√

2r), λ = −
√

2 tan(
√

2r), µ = 0

with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ = RJN = Rξ1 = Span
{
ξ
}

= Span
{
ξ1

}
,

Tβ = C⊥ξ = C⊥N = Rξ2 ⊕ Rξ3 = Span
{
ξ2, ξ3

}
,

Tλ = {X|X ⊥ Hξ, JX = J1X},
Tµ = {X|X ⊥ Hξ, JX = −J1X},

where Rξ, Cξ and Hξ, respectively, denote real, complex and quaternionic spans
of the structure vector field ξ, and C⊥ξ denotes the orthogonal complement of Cξ
in Hξ.

Applying X = ξ2, Y ∈ Tλ and ξ = ξ1 ∈ D⊥ in (2.1), we get

0 = (∇ξ2A)Y −∇AY ξ2 + A∇Y ξ2

= (∇ξ2A)Y − λ∇Y ξ2 + A∇Y ξ2.
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On the other hand, using (1.9) and Aξ2 = βξ2, we have

(∇ξ2A)Y = (∇Y A)ξ2 + η(ξ2)φY − η(Y )φξ2 − 2g(φξ2, Y )ξ

+
3∑

ν=1

{
ην(ξ2)φνY − ην(Y )φνξ2 − 2g(φνξ2, Y )ξν

}

+
3∑

ν=1

{
ην(φξ2)φνφY − ην(φY )φνφξ2

}

+
3∑

ν=1

{
η(ξ2)ην(φY )− η(Y )ην(φξ2)

}
ξν

= (∇Y A)ξ2 + φ2Y − φ3φY

= −A∇Y ξ2 + β∇Y ξ2 + φ2Y − φ3φY. (2.2)

Thus we obtain

0 = −A∇Y ξ2 + β∇Y ξ2 + φ2Y − φ3φY − λ∇Y ξ2 + A∇Y ξ2

= (β − λ)∇Y ξ2

= (β − λ)(q1(Y )ξ3 − q3(Y )ξ1 + φ2AY ).

On the other hand, we know

φAY = ∇Y ξ

= ∇Y ξ1

= q3(Y )ξ2 − q2(Y )ξ3 + φ1AY.

Taking the inner product with ξ2, we have

g(φAY, ξ2) = q3(Y ) + g(φ1AY, ξ2),

that is,

q3(Y ) = g(φAY, ξ2)− g(φ1AY, ξ2)
= −g(AY, φξ2) + g(AY, φ1ξ2)
= 2g(AY, ξ3)
= 2λg(Y, ξ3)
= 0.

It yields
0 = (β − λ)q1(Y )ξ3 + λ(β − λ)φ2Y.
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Taking the inner product with φ2Y in the equation above, we have

0 = λ(β − λ)g(φ2Y, φ2Y )
= λ(β − λ).

Consequently, we get λ = 0 or β − λ = 0, which contradicts the values of β
and λ in Proposition A. From this, we conclude the following :

Proposition 2.1. There does not exist a hypersurface in G2(Cm+2) with in-
variant shape operator.

From this motivation, we consider a new notion of the g-Tanaka–Webster
invariant shape operator. By using Lie invariant for the g-Tanaka–Webster con-
nection, in Sec. 3 we will give a non-existence theorem for the real hypersurface
in G2(Cm+2).

On the other hand, in [5] Jeong, Lee and Suh considered the notion of the
g-Tanaka–Webster parallelism of the shape operator of a real hypersurface in the
complex two-plane Grassmannians. Now in this section, let us give a new notion
of the generalized Lie invariant of the shape operator for M in G2(Cm+2). As it
is well known, the Lie derivative of Y with respect to X is defined by

LXY = lim
t→0

Y − (ϕt)∗Y
t

= ∇XY −∇Y X,

where ∇ denotes the Levi–Civita connection of M in G2(Cm+2), and ϕt is a local
1-parameter group of the transformations generated by X. Similarly, we define
the generalized Tanaka–Webster Lie derivative L̂

(k)
X for any direction X on M as

follows :
L̂

(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X,

where ∇̂(k) denotes the g-Tanaka–Webster connection of M in G2(Cm+2). Since
G2(Cm+2) can be regarded as a Kähler manifold, the connection ∇̂(k) can be
defined as in (1.10).

The shape operator A is said to be generalized Tanaka–Webster invariant if
(L̂(k)

X A)Y = 0 for any tangent vector fields X and Y on M .

In this section, we will prove that the Reeb vector field ξ belongs to either
the distribution D or the distribution D⊥ of M with g-Tanaka–Webster invariant
shape operator.

From the definition of the g-Tanaka–Webster connection (1.10), we have

(L̂(k)
X A)Y = (∇XA)Y + g(φAX,AY )ξ − η(AY )φAX − kη(X)φAY

− g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY

−∇AY X − g(φA2Y, X)ξ + η(X)φA2Y + kη(AY )φX

+ A∇Y X + g(φAY, X)Aξ − η(X)AφAY − kη(Y )AφX
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for any tangent vector fields X and Y on M .
Let M be a Hopf hypersurface in G2(Cm+2) with g-Tanaka–Webster invariant

shape operator, that is, (L̂(k)
X A)Y = 0 and Aξ = αξ. This becomes

0 = (L̂(k)
X A)Y

= (∇XA)Y + g(φAX, AY )ξ − αη(Y )φAX − kη(X)φAY

− αg(φAX, Y )ξ + η(Y )AφAX + kη(X)AφY

−∇AY X − g(φA2Y, X)ξ + η(X)φA2Y + αkη(Y )φX

+ A∇Y X + αg(φAY, X)ξ − η(X)AφAY − kη(Y )AφX (2.3)

for any tangent vector fields X and Y on M .
Using (2.3), we can assert the following:

Lemma 2.2. Let M be a Hopf hypersurface in G2(Cm+2). If M has the
g-Tanaka–Webster invariant shape operator, then the principal curvature α =
g(Aξ, ξ) is constant.

P r o o f. Replacing Y by ξ in (2.3) and using Aξ = αξ, we have

0 = (L̂(k)
X A)ξ

= (∇XA)ξ − αφAX + AφAX − α∇ξX + αkφX + A∇ξX − kAφX

= −AφAX + (Xα)ξ + αφAX − αφAX + AφAX

− α∇ξX + αkφX + A∇ξX − kAφX.

Then we have

0 = (Xα)ξ − α∇ξX + αkφX + A∇ξX − kAφX (2.4)

for any tangent vector field X on M .
Taking the inner product of (2.4) with ξ, we get

0 = (Xα)g(ξ, ξ)− αg(∇ξX, ξ) + αkg(φX, ξ) + g(A∇ξX, ξ)− kg(AφX, ξ)
= (Xα)− αg(∇ξX, ξ) + αg(∇ξX, ξ).

Thus we have our assertion.

Now we introduce the lemma as follows :

Lemma 2.3. Let M be a Hopf hypersurface in G2(Cm+2). If M has the g-
Tanaka–Webster invariant shape operator, then the Reeb vector field ξ belongs to
either the distribution D or the distribution D⊥.
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P r o o f. We assume that

ξ = η(X0)X0 + η(ξ1)ξ1 (*)

for some unit vector field X0 ∈ D and η(ξ1)η(X0) 6= 0.
Under the assumption that M is Hopf, Berdnt and Suh [3] gave

Y α = (ξα)η(Y )− 4
3∑

ν=1

ην(ξ)ην(φY )

for any tangent vector field Y on M .
Using Lemma 2.2, we get

0 =
3∑

ν=1

ην(ξ)ην(φY ).

From this, together with (*), we obtain

0 = η1(ξ)η1(φY )
= −η(ξ1)g(φξ1, Y )

for any tangent vector field Y on M . Because of η(ξ1) 6= 0, we have

0 = φξ1

= φ1(η(X0)X0 + η(ξ1)ξ1)
= η(X0)φ1X0.

Since η(X0) 6= 0, we get φ1X0 = 0. This gives a contradiction.
Hence we complete the proof of this lemma.

3. The Proof of the Main Theorem

From now on, let M be a Hopf hypersurface in G2(Cm+2) with g-Tanaka–
Webster invariant shape operator. Then by Lemma 2.3, we consider the following
two cases, that is, ξ ∈ D⊥ and ξ ∈ D, respectively.

First, we consider the case ξ ∈ D⊥. From this, without loss of generality, we
may put ξ = ξ1.

Lemma 3.1. Let M be a Hopf hypersurface, α 6= 2k, in G2(Cm+2), m ≥ 3,
with g-Tanaka–Webster invariant shape operator. If the Reeb vector ξ belongs
to the distribution D⊥, then the shape operator A commutes with the structure
tensor φ.
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P r o o f. Previously we obtained this equation

0 = (L̂(k)
X A)Y

= (∇̂(k)
X A)Y − ∇̂(k)

AY (X) + A∇̂(k)
Y X.

By putting X = ξ, Y = X and using (1.10) in the equation above, we have

0 = (L̂(k)
ξ A)X

= (∇̂(k)
ξ A)X − ∇̂(k)

AX(ξ) + A∇̂(k)
X ξ

= (∇̂(k)
ξ A)X − {∇AXξ + g(φA2X, ξ)ξ − η(ξ)φA2X − kη(AX)φξ}

+ A{∇Xξ + g(φAX, ξ)ξ − η(ξ)φAX − kη(X)φξ}
= (∇̂(k)

ξ A)X − φA2X + φA2X + AφAX −AφAX

= (∇̂(k)
ξ A)X (3.1)

for any tangent vector field X on M . So we can use the proof of the lemma ([6],
Lemma 3.1). Since α 6= 2k, we know that the shape operator A commutes with
the structure tensor φ.

Due to Berdnt and Suh [4], the Reeb flow on M is isometric if and only if the
structure tensor field φ commutes with the shape operator A of M . Thus, from
Lemma 3.1 and Theorem B we have the following :

Lemma 3.2. Let M be a Hopf hypersurface, α 6= 2k, in G2(Cm+2), m ≥ 3,
with g-Tanaka–Webster invariant shape operator. If the Reeb vector ξ belongs
to the distribution D⊥, then M is locally congruent to an open part of a tube
around a totally geodesic G2(Cm+1) in G2(Cm+2).

Now let us denote by M a real hypersurface of type (A) in G2(Cm+2). Then,
using Lemma 3.2 and Proposition A due to Berndt and Suh [3], let us check
whether the shape operator A of M is invariant for the g-Tanaka–Webster con-
nection as follows :

Case A : ξ ∈ D⊥.
Applying X = ξ2, Y ∈ Tλ and ξ = ξ1 ∈ D⊥ in (2.3), we get

0 = (∇ξ2A)Y + g(φAξ2, AY )ξ − αη(Y )φAξ2 − kη(ξ2)φAY

− αg(φAξ2, Y )ξ + η(Y )AφAξ2 + kη(ξ2)AφY

−∇AY ξ2 − g(φA2Y, ξ2)ξ + η(ξ2)φA2Y + αkη(Y )φξ2

+ A∇Y ξ2 + αg(φAY, ξ2)ξ − η(ξ2)AφAY − kη(Y )Aφξ2.
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Since Y ∈ Tλ, using φTλ ⊂ Tλ, we have

g(φAξ2, AY ) = λg(φAξ2, Y )

= −λ2g(φY, ξ2)

= λ2g(Y, φξ2)
= 0.

Similarly, we obtain g(φAξ2, Y ) = g(φA2Y, ξ2) = g(φAY, ξ2) = 0. Then we have

0 = (∇ξ2A)Y −∇AY ξ2 + A∇Y ξ2

= (∇ξ2A)Y − λ∇Y ξ2 + A∇Y ξ2.

Thus, using (2.2), we obtain

0 = −A∇Y ξ2 + β∇Y ξ2 + φ2Y − φ3φY − λ∇Y ξ2 + A∇Y ξ2

= (β − λ)∇Y ξ2

= (β − λ)(q1(Y )ξ3 − q3(Y )ξ1 + φ2AY ).

Because of q3(Y ) = 0, taking the inner product with φ2Y , we get

0 = λ(β − λ).

Consequently, we have λ = 0 or β − λ = 0. This gives a contradiction. So we
give a proof of the Main Theorem for ξ ∈ D⊥.

Now let us consider the following :
Case B : ξ ∈ D.
First of all, we introduce the proposition given by Berndt and Suh in [3] as

follows :

Proposition B. Let M be a connected real hypersurface in G2(Cm+2). Sup-
pose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic
dimension m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant
principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ = Span
{
ξ
}
,

Tβ = JJξ = Span
{
ξν | ν = 1, 2, 3

}
,

Tγ = Jξ = Span
{
φνξ | ν = 1, 2, 3

}
,

Tλ, Tµ,
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where
Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

The distribution (HCξ)⊥ is the orthogonal complement of HCξ, where HCξ =
Rξ ⊕ RJξ ⊕ Jξ ⊕ JJξ.

Applying X = ξ in (2.3), we get

0 = (L̂(k)
ξ A)Y

= (∇̂(k)
ξ A)Y

= (∇ξA)Y − kφAY + kAφY.

Then we have
0 = ∇ξ(AY )−A∇ξY − kφAY + kAφY (3.2)

for any tangent vector field Y on M .
From this, by putting Y = ξ2, we obtain

0 = ∇ξ(Aξ2)−A∇ξξ2 − kφAξ2 + kAφξ2

= β∇ξξ2 −A∇ξξ2 − kβφξ2

= β(q1(ξ)ξ3 − q3(ξ)ξ1 + φ2Aξ)
−A(q1(ξ)ξ3 − q3(ξ)ξ1 + φ2Aξ)− kβφξ2

= αβφ2ξ − αAφ2ξ − kβφ2ξ.

Then we get
0 = β(α− k)φ2ξ,

that is, β = 0 or α = k.

Subcase 1 : β = 0.
Since β =

√
2 cot(

√
2r) > 0 for r ∈ (0, π/4), it gives us a contradiction.

Subcase 2 : α = k.
Using (2.3) and (1.9) , we have

0 = (L̂(k)
ξ A)Y

= (∇ξA)Y − kφAY + kAφY

= −AφAY + (Y α)ξ + (α− k)φAY + kAφY + φY

+
3∑

ν=1

{
ην(ξ)φνY − ην(Y )φνξ + 3ην(φY )ξν

}

for any tangent vector field Y on M .
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Applying ξ ∈ D and α = k in this equation, we get

0 = −AφAY + αAφY + φY +
3∑

ν=1

{
− ην(Y )φνξ + 3ην(φY )ξν

}
.

Combining Y ∈ Tλ and JTλ = Tµ, we obtain

0 = −λAφY + αµφY + φY

= −λµφY + αµφY + φY

= (−λµ + αµ + 1)φY,

that is,

0 = −λµ + αµ + 1
= −(cot r)(− tan r) + (−2 tan 2r)(− tan r) + 1
= 1 + 2 tan 2r tan r + 1
= 2(1 + tan 2r tan r).

Thus we know

0 = 1 + tan 2r tan r

= 1 +
2 tan r

1− tan2 r
tan r

=
1 + tan2 r

1− tan2 r
for r ∈ (0, π/4).

Consequently, we have
1 + tan2 r = 0,

which contradicts 0 < tan r < 1.

Hence summing up all the cases, we have our Main Theorem from Introduc-
tion.

4. Generalized Tanaka–Webster Reeb Invariant for α = 2k

In the proof of our Main Theorem, in Sec. 3 we assumed α 6= 2k. But for
Hopf hypersurfaces in G2(Cm+2) with α = 2k and ξ ∈ D⊥, naturally the shape
operator becomes Reeb parallel for the g-Tanaka–Webster connection. From this
point of view, in this section we will show that the assumption of Reeb parallel
for the g-Tanaka–Webster connection has no meaning for α = 2k and ξ∈D⊥.

Summing up the above situations, we assert the following:

Proposition 4.1. Let M be a Hopf hypersurface in G2(Cm+2), m ≥ 3, such
that α = 2k and ξ ∈ D⊥. Then the shape operator A is g-Tanaka–Webster Reeb
parallel.
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P r o o f. From the definition of the g-Tanaka–Webster connection (1.10),
we get

(∇̂(k)
X A)Y = ∇̂(k)

X (AY )−A∇̂(k)
X Y

= (∇XA)Y + g(φAX,AY )ξ − η(AY )φAX − kη(X)φAY

− g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY

for any tangent vector fields X and Y on M .
Putting X = ξ, Y = X in this equation, we have

(∇̂(k)
ξ A)X = (∇ξA)X + g(φAξ,AX)ξ − η(AX)φAξ − kη(ξ)φAX

− g(φAξ, X)Aξ + η(X)AφAξ + kη(ξ)AφX.

Since M is a Hopf hypersurface of G2(Cm+2), we obtain

(∇̂(k)
ξ A)X = (∇ξA)X − kφAX + kAφX

for any tangent vector field X on M .
Using (1.9), we have

(∇̂(k)
ξ A)X = (∇XA)ξ + φX +

3∑

ν=1

{
ην(ξ)φνX − ην(X)φνξ − 3g(φνξ,X)ξν

}

− kφAX + kAφX. (4.1)

Applying α = 2k and ξ = ξ1 ∈ D⊥ in (4.1), we get

(∇̂(k)
ξ A)X = (∇XA)ξ + φX + φ1X − η2(X)φ2ξ − η3(X)φ3ξ

− 3g(φ2ξ, X)ξ2 − 3g(φ3ξ,X)ξ3 − α

2
φAX +

α

2
AφX

= −AφAX + αφAX + φX + φ1X + η2(X)ξ3 − η3(X)ξ2

+ 3η3(X)ξ2 − 3η2(X)ξ3 − α

2
φAX +

α

2
AφX.

Thus we have

(∇̂(k)
ξ A)X = −AφAX +

α

2
φAX + φX + φ1X

− 2η2(X)ξ3 + 2η3(X)ξ2 +
α

2
AφX. (4.2)

On the other hand, we know from Berdnt and Suh [4],

2AφAX = αAφX + αφAX + 2φX + 2φ1X

− 4η2(X)ξ3 + 4η3(X)ξ2 (4.3)
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for any tangent vector field X on M . Then (4.2) can be rearranged as follows :

2(∇̂(k)
ξ A)X = −2AφAX + αφAX + 2φX + 2φ1X

− 4η2(X)ξ3 + 4η3(X)ξ2 + αAφX.

Therefore, from (4.3), we obtain

(∇̂(k)
ξ A)X = 0

for any tangent vector field X on M .

R e m a r k 4.2. In the paper [6] due to Jeong, Kimura, Lee and Suh,
Proposition 4.1 is also remarked.

R e m a r k 4.3. From Proposition 4.1 together with (3.1), for the case α = 2k,
it can be easily verified that

(L̂(k)
ξ A)Y = 0

for any tangent vector field Y on M . Thus the assumption of Reeb invariant for
α = 2k has no meaning.

Accordingly, if we consider that (L̂(k)
ξ A)Y = 0, that is, the g-Tanaka–Webster

Reeb invariant shape operator, it should be natural to consider the condition that
α 6= 2k.
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